PERGAMON

Neural Networks 14 (2001) 1331-1355

Neural
Networks

www.elsevier.com/locate/neunet

Contributed article

Connectionist inference models

Antony Browne*™, Ron Sun”

iSchool of Computing, Information Systems and Mathematics, London Guildhall University, London EC3N 1JY, UK
°CECS Department, University of Missouri-Columbia, USA

Received 12 July 2000; accepted 9 July 2001

Abstract

The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of
this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-
based reasoning and whether they involve distributed or localist representations. The benefits and disadvantages of different representations
and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic
inference systems or when used for cognitive modelling. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Symbolic inference; Resolution; Variable binding; Localist representations; Distributed representations

1. Introduction

An essential question in connectionist inference systems
research is: “Why should we bother attempting to perform
symbolic inference using connectionist networks?’. It could
be argued that symbolic inference should be left to classical
symbolic Artificial Intelligence (AI) systems (such as
theorem provers or production systems), whilst the applica-
tion of connectionist systems should be restricted to tasks
that they perform best (such as learning function mappings
of noisy or incomplete data). Another approach could be to
just ‘bolt’ together a symbolic inference system and a
connectionist network into a hybrid system which, although
being a non-uniform solution to a problem, solved that
problem nonetheless. However, there are many important
reasons for developing uniform connectionist solutions for
performing symbolic inference, including the following.

e The human capacities for algorithmic reasoning and
abstraction suggest the importance of symbol-based
processing (Buchheit, 1999). Indeed, recent experiments
(Marcus, Vijayan, Rao & Vishton, 1999) suggest that
even human infants may perform rule-based reasoning.

e To demonstrate the power of connectionism as an
alternative paradigm for Al, it must be demonstrated
that connectionist models are fully capable of performing
symbolic reasoning. Therefore, attempts must be made to

* Corresponding author. Tel.: +44-207-320-1307; fax: +44-207-320-
1717.
E-mail address: abrowne @lgu.ac.uk (A. Browne).

develop these capabilities within entirely connectionist
systems.

e Science seeks to unify theories and explanations, because
in such a process a deeper understanding of the nature of
things can be achieved. In Al, a great variety of models,
techniques, and paradigms have been developed, and it
may be fruitful to unify these different approaches.

e Serial symbolic systems are much too slow to account for
the speed and style of reflexive and direct reasoning
processes. There is no adequate parallel symbolic system
available for handling these types of reasoning.
Massively parallel connectionist models are more suit-
able for carrying out such reasoning.

e In many hybrid systems (Chan & Franklin, 1998;
Ghalwash, 1998; Sun, 1995c¢), while the connectionist
component enjoys being fault tolerant and generalizable,
the symbolic component is brittle and rigid and becomes
the ‘Achilles’ heel’ of the system.

To construct solutions for the points outlined above, many
different connectionist systems have been developed. In the
next section, an attempt is made to construct broad
taxonomies of these systems.

2. Classification of connectionist inference systems

It is impossible to precisely classify the wide variety of
existing connectionist inference systems into specific
groupings, but a rough attempt can be made depending on
whether or not the systems implement variable binding and

0893-6080/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0893-6080(01)00109-5

1332 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

whether they employ localist or distributed representations.
In the following discussion, the syntax of the Prolog
programming language has been adopted, where variables
are in upper case (such as X) and constants or functors are in
lower case (such as f).

2.1. The variable binding problem

Some connectionist rule-based reasoning systems avoid
implementing variable binding (see Section 3). However,
many researchers have argued that the ability to perform
variable binding is essential if connectionist systems are
ever to perform complex reasoning tasks (but see Barnden
& Srinivas, 1996). There are several main points to this
argument.

e Variable binding is essential if dynamic structures are to
be created in connectionist systems (Feldman & Ballard,
1992; Sun, 1992). As an example, consider a system that
can reason with Prolog structures representing vehicles
such as ‘blue cars’ and ‘red motorcycles’, the system
must have a method of binding the colour blue with the
vehicle car and red with the vehicle motorcycle, as in:

colour(X, blue), vehicle(X, car) and

colour(X, red), vehicle(X, motorcycle)

e Variable binding is needed to achieve greater
computational power in connectionist systems (Sun,
1992), as without variable binding there must be many
specific rules rather than one general rule. For example,
with variable binding there can be one general rule such
as:

dog(X) — hairy(X), barks(X)

representing that X is a dog if X is hairy and X barks.
Without variable binding we must have a specific rule for
each eventuality that the system may encounter, such as:

dog(fido) — hairy(fido), barks(fido) and

dog(rex) — hairy(rex), barks(rex) and...etc.

e Variable binding is essential in modelling human
cognition. For example, it has been argued that it is
necessary for modelling the human language faculty
(Pinker & Prince, 1988) as it imposes constraints on
rule matching needed when modelling certain aspects
of past-tense learning.

One problem that arises is how to handle variables that are
used in rule-based reasoning, that is, variables as arguments
to a predicate in predicate logic or as parameters in produc-
tion rules, in a connectionist fashion. Difficulties exist in the
following.

1. How to represent the values of a variable, which can be
changed at any time during reasoning processes due to
the application of a rule.

2. How to transfer such values from a known (stored) fact to
a rule, or from conditions of a rule to the conclusion of a
rule, or from a rule to a fact to be stored (all these types of
transfers are necessary to ensure that correct inference is
performed when variables are used).

There are many solutions to the variable binding problem
(see Browne & Sun, 1999, for a review) and some are
discussed in Sections 4 and 5.

2.2. Localist and distributed representations

Those models using localist representational schemes
(often known as structured or spreading activation
networks) can be broadly divided into two types.

1. Those using a fully localist representation, which is
characterized by representing each concept (in a particu-
lar task domain) with a separate node in a network,
implying one node for one concept (i.e. there is a
one-to-one mapping between nodes and concepts).

2. Those using a distributed localist (or modularly
distributed) representation, which uses a set of nodes
for one concept, each of which does the same process-
ing. This implies a set of nodes for one concept (i.e. there
is a one-to-one mapping between sets of nodes and
concepts).

In models using these schemes, every different item to be
represented is mapped onto its own distinctive unit or units
in the network. These models tend to represent knowledge
in structures similar to the semantic network of classical Al,
in which concepts are represented by individual neurons or
units and relations between concepts are encoded by
weighted connections between those units. The activation
level on each unit generally represents the amount of
evidence available for its concept within a given context.
These models address important questions, such as how
connectionist models can deal with discrete, symbolic, and
step-by-step reasoning as well as performing the continuous
mapping, associative retrieval, and constraint satisfaction
characteristics commonly associated with connectionist
models. These models are capable of:

1. carrying out symbolic rule-based reasoning, including
handling the variable binding problem;

2. reasoning in a computationally efficient manner (when
implemented on parallel hardware);

3. replacing hybrid models in which a symbolic component
is coupled with a connectionist component; and

4. showing promise in better addressing some symbolic
processing tasks (Sun, 1995b).

Despite the accomplishments of localist connectionist

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1333

models, they have a number of (alleged) shortcomings,
including the following.

e They are incapable of generalization and, therefore,
suffer from the same rigidity problems as traditional
symbolic Al systems (Sun, 1995b), whereas in most
models using distributed representations, the representa-
tions are a result of the organization of statistical input
which provides a natural means to capture semantic
similarity (Smolensky, 1995).

o [tis difficult to apply connectionist learning algorithms to
develop representation automatically (although some
learning algorithms do exist, such as recruitment
learning, Diederich, 1988, 1991).

o Localist models are not robust to noise or damage, unlike
those using distributed representations (Churchland &
Sejnowski, 1992).

e Localist models entail a high representational complexity
as every possible concept needs to be represented
explicitly as an individual node, leading to combinatorial
explosion. Models using distributed representation make
more efficient use of representational resources.

e Available evidence seems to indicate that the representa-
tion used in biological neural systems are distributed.

Although some of these problems may not be entirely true
(for example, the problems with noise, generalization and
fault tolerance may not be as clear cut as described above,
for a further discussion see Page, 2000), they are still indi-
cative of the need to develop distributed alternatives to
localist models. Localist connectionist models which
perform rule-based reasoning are discussed in Sections 3
and 4. Connections using distributed representations main-
tain that the correct level at which to model intelligent
systems (including the human mind) lies below the level
of the symbol (see the subsymbolic hypothesis, Smolensky,
1990) and reject the Physical Symbol System Hypothesis of
symbolic Al (Newell, 1980, 1986). There have been many
attempts to define distribution in connectionist representa-
tions, such as microfeatures (Hinton, 1990; Hinton,
McClelland & Rumelhart, 1986), and coarse coding
(Rosenfeld & Touretsky, 1988). Perhaps the most formal
notion of distribution has been given by van Gelder
(1991) who described distributed representations with
respect to their extendedness and superposition. For a repre-
sentation to be extended, the things being represented must
be represented over many units or, more generally, over
some relatively extended proportion of the available
resources in the system (such as the units in a neural
network). A representation can be said to be superpositional
if it represents many items using the same resources. Repre-
sentations in a standard feedforward network can be both
extended and superposed (Sharkey, 1992), as the represen-
tation of each input may be distributed over many hidden
units, and each hidden unit may be representing several
inputs. An in-depth discussion of the various definitions of

distribution in connectionist representations would make
this paper too lengthy; for a more extensive elaboration of
these definitions, readers are referred to the previous refer-
ences or Browne and Sun (1999). One could argue that, as
both neural networks and Von-Neumann type physical
symbol systems are both universal Turing machines
(Franklin & Garzon, 1990), at some level of abstraction
there is no distinction between them. However, the key
issue is what constitutes the primitive representation used
by these different systems. This is a pertinent issue, both in
modelling human cognition and in building intelligent
systems. Models of rule-based reasoning using distributed
representations are described in Section 5.

2.3. Other classification schemes for hybrid systems

In another approach to system classification (Sun &
Bookman, 1994), architectures can be divided up into two
broad categories: single-module architectures and multi-
module architectures. In both, it is easier to incorporate
prior knowledge into models using localist representations
since their structures can be made to directly correspond to
that of symbolic knowledge. In multi-module systems, there
can be different combinations of different types of constitu-
ent modules. For example, a system can be a combination of
localist modules and distributed modules.

Other classification schemes have been proposed.
Medsker’s (1994) classification scheme is based on the
degree of coupling between neural and symbolic com-
ponents (where coupling is the degree of communication
activity between modules in the hybrid system) and makes
no attempt to describe a hierarchy of modules. The classi-
fication scheme proposed by Hilario (1997, 2000) classifies
systems into unified and hybrid approaches where the
unified approach attempts to endow neural networks with
symbolic capabilities so that no distinct symbolic com-
ponent is required. The hybrid approach integrates separate
symbolic and neural elements using four distinct integration
techniques based upon the flow of data between the modules
and has two degrees of coupling (loosely and tightly
coupled).

Another scheme (McGarry, Wermter & Maclntyre,
1999a) proposes that a classification scheme can be made
with three groups.

1. Unified hybrid systems are those that have all processing
activities implemented by neural network elements.

2. Transformational hybrid systems can transform a
symbolic representation into a neural one and vice versa.

3. Modular hybrid systems are comprised of several neural
network and symbolic modules which can have different
degrees of coupling and integration. The hierarchy of
module configuration can allow sequential flow of infor-
mation between modules (i.e. one process must be
completed before being passed on) or parallel flow. In
this scheme, module coupling can take three forms:

1334 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

— — 7
i 0" ‘ oO— J o]
give J‘ | own | can-sell
o | | |
! X e} | O ' O
A oy oy
¢ — —= o] —=0
B2 B N L

Fig. 1. A connectionist implementation of rules.

passive coupling, when the symbolic and neural com-
ponents communicate only through a shared data file,
so after one component completes its task the results
are placed in a file to be read by the other component;
active coupling, which involving having memory/data
structures shared between the neural and symbolic
modules and communication may be bi-directional
allowing feedback to occur between the different
modules; and interleaved coupling, which involves the
neural and symbolic components interacting at a very
fine-grained level (such as at the level of function calls)
and an external observer would be unable to differentiate
between them.

There is currently a large amount of work being performed
on hybrid systems, and a comprehensive overview is too
large to encompass here. Interested readers are referred to
Sun and Alexandre (1997) and Wermter and Sun (2000).

3. Connectionist inference systems without variable
binding

The idea of implementing propositional logic in connec-
tionist networks was explored early on in the history of
connectionism. For example, McCullough and Pitts (1943)
studied the encoding of simple logical operations in neural
networks, and Collins and Loftus (1975) explored the idea
of spreading activation within networks. Without variable
binding, models can consist of extremely simple production
systems containing no parameters or propositional logic
without arguments to predicates. Suppose there is a set of
rules for determining the classification of certain objects:

table — phy_obj
chair — phy_obj

phy_obj — thing

The set of rules together form a particular structure deter-
mined by the connection imposed by the rules between
various concepts (from conditions to conclusions). The
structure stays the same irrespective of any particular
order in which rules are presented, and of the semantics of
the rules and the concepts used in the rules. In order to
implement such a rule set, the connectivity pattern of the

network should reflect the structure of the rule set by the
following.

1. Representing each concept mentioned in the rule set with
an individual node in the network.

2. Implementing a rule by using a link to directly connect
each node representing a concept in the condition of a
rule and the node representing a concept in the con-
clusion of a rule.

3. If two rules reach the same conclusion, two intermediate
nodes should be created, each of which is used in place of
the conclusion of one rule.

4. If there is a negated concept involved, it is represented by
the same node that represents the positive form of that
concept.

5. If a condition is positive and the conclusion is negative,
the link between them should have a negative weight.

6. If a condition is negative and the conclusion is negative,
the link between them should have a positive weight.

7. If a condition is negative and the conclusion is positive,
the link between them should have a negative weight.

In this way, there is a direct, one-to-one isomorphic
mapping between the structure of the rule set and that of
the network.

For the set of rules listed above, a connectionist network
implementation is depicted in Fig. 1. Reasoning in such a
network is carried out by spreading of activation of nodes
representing the conditions of rules to nodes representing
the conclusions of rules. This process starts from externally
activated and clamped nodes (representing initially known
information) and then (if some of them are conditions of a
rule), activation will be propagated to the nodes represent-
ing the conclusion of the rule. Furthermore, if some of these
newly activated nodes in turn are the conditions of other
rules, the activation will be further propagated to simulate
application of these rules. This process continues until no
more nodes can be activated. If weighted-sum computations
are used in each node of the network for determining the
activation of the node based on inputs received, the resulting
activation in each node can be viewed as an accumulation of
evidence to determine the confidence in the conclusion
which the node represents. This is accomplished through
first weighing each piece of evidence (with respect to each
concept in the condition of a rule) by multiplying it with a
numerical weight for each input that represents the confi-
dence (in relation to the corresponding concept) and then
summing all the products:

a(t) =Y w;ii(0)
J

where [is any node in the network, a denotes the activation,
and i;s are inputs received. Thus, the most commonly used
weighted-sum computation in connectionist models is a
simple way for performing evidential reasoning. Other
commonly encountered node computations can also be

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1335

O d
A (threshold= 0.99)
1/3
173 1/3
0 O O
a b c

Fig. 2. A connectionist implementation of precise logic rules.

used, such as radial basis functions for implementing fuzzy
logic rules (Peterson & Sun, 1998).

In certain situations, logical reasoning may need to be
carried out precisely, without involving evidential or
fuzzy reasoning. Precise (propositional) logic rules can be
implemented using the approach outlined above. For
example, propositional Horn clause logic consists of single
concepts, such as p, and rules such as pp,---p,— ¢q. The
concept in the conditions of a rule can be in negated form
(e.g. — py), but the conclusion must be in positive form. To
implement such logic, weights are assigned from (all the
nodes representing) all the conditions of a rule to (the
node representing) the conclusion of the rule in a way that
ensures the total weight (the sum of the absolute values of
all the weights) is 1, and the threshold of (the node repre-
senting) the conclusion of the rule is assigned the value of 1.
If a condition is positive, then the corresponding weight is
positive, otherwise a negative weight is assigned. In this
way, the activation of a node will be either 1 or —1, depend-
ing on whether the weighted-sum of the inputs is greater
than or equal to the threshold. For example, supposing there
is the following rule:

abc — d

a connectionist implementation is as shown in Fig. 2.
Problems with this approach include how to handle
reasoning involving multiple instances of the same rules
and how to handle distinct instances that should be treated
differently. One approach is to set up multiple copies of the
rule, each of which takes care of one particular instantiation.

thingl © thing2 O thing3
phy-obj1 o phy-obj2 O phy-obj3 o
tablel O label2 O chair O

Fig. 3. Implementing rules in a connectionist network with multiple instan-
tiations.

In a rule set that contains multiple rules and where the
conclusion of one rule is the condition of another, care
must be taken in handling the chaining of rules, where
the conclusion reached from one rule is the condition in
another rule. With multiple instantiation of rules, there is
a need to implement each valid pair of first rules and second
rules, in order to enable all valid inferences to be drawn. The
implementation is shown in Fig. 3. Maintaining separate
chains is necessary if multiple objects can be present at
the same time and if there is a need to keep track of each
of them.

It is possible to calculate the computational complexity of
this implementation. Supposing there are a; instantiations of
the condition of the first rule, ¢, instantiations of the conclu-
sions of the first rule, a, instantiations of the condition
of the second rule, and ¢, instantiations of the conclusion
of the second rule. Then there will be a;c; instantiations of
the first rule, and a,c, instantiations of the second rule.
The total number of instantiations can be as high as
aia,cic,. The example above is based on a simple chain of
two rules, but is suggestive of the kind of complexity inher-
ent when there are a large number of rules, some of which
may form long chains. Connectionist inference systems
implemented without variables also lack expressive
power. For example, it is difficult to express relations, espe-
cially high-order relations (or n-ary relations in general).
Without an adequate representation of relations, there is
no way to form transient associations and structures dyna-
mically (which are needed in most reasoning situations). An
example of this would be the handling of a complex struc-
tured object or the remembering of a sentence with its
original structures intact. Without the use of variables it is
also impossible to avoid interference (i.e. cross-talk) of
multiple conjunctive concepts (Feldman & Ballard, 1992).
Despite the inherent problems with localist models, many
researchers have used them for performing inference.
Models include one by Derthick (1988) who translated
logical constraints into energy functions and used them to
implement a subset of the language KL-ONE. A modified
Hopfield network was used by Narazaki and Ralescu (1992),
with inference realized by a minimization of the energy
function using a relaxation method which avoids local
minima by having pertubation which is automatically trig-
gered when the solution has fallen into a local minimum.
Pinkas (1995) developed a connectionist inference engine
capable of representing and learning propositional knowl-
edge. Using densely connected networks (such as Hopfield
networks and Boltzmann machines) Pinkas performed
symbolic constraint satisfaction to perform nonmonotonic
reasoning, coping with inconsistent facts and unreliable
knowledge sources. A radial basis function network has
been used by Raghuvanshi and Kumar (1997) in which
inductive learning takes place using an error based
heuristic adaptation rule. Their model can perform inference
with conflicting knowledge and perform abduction and
deduction.

1336 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

give | own can-sell
~O 1 A
) ~ 73
N \V/ (-w d - +
< O O O
o
X
O O O
) \/ y
O —— o (6]
V4 | z z

Fig. 4. A connectionist network for backward-chaining reasoning where
‘ +’ indicates enabling and * — ‘ indicates blocking.

4. Localist connectionist inference systems with variable
binding

The following systems are examples of early localist
implementations of rule-based reasoning using variable
binding, which demonstrate the feasibility of this approach.

e Parallel logical inference (Ballard, 1986) has been
performed to implement a restricted form of resolution
(see Section 5.2) using a parallel relaxation algorithm and
simple terms consisting of unitary constants or variables.
All possible variable substitutions were prewired using
hand-coded weights, with incompatible findings being
represented by units being connected with inhibitory
links. This need for prewiring restricts the applicability
of the model severely, as if arbitrary function symbols are
allowed the set of possible substitutions becomes infinite
and so cannot be prewired. Another localist connectionist
system for performing resolution has been constructed by
Lima (1992).

e A connectionist unification and inference system has
been developed by Holldobler (1990a,b) which can
perform Horn clause logic on logical terms of fixed
width and having a fixed depth of nesting of arguments.

e The Role Binding and Inferencing Network (ROBIN)
(Lange & Dyer, 1989) is a hybrid localist spreading-
activation inference system which handles dynamic
variable bindings using a mechanism similar to marker-
passing. In this model, the terms used are just simple
constants and variables. Each constant has a unit in the
network that has a uniquely identifiable value called its
signature; bindings are formed by passing these
signatures around the network.

e Shastri and Ajjanagadde (1990) perform backward-
chaining rule-based reasoning with first-order predicate
logic (see Section 4.2).

e An analysis is presented of how to perform generic rule-
based reasoning in connectionist models by Sun (1989),
and the work addresses a number of important, but often
neglected, issues in performing such a task. The analysis
has been extended in CONSYDERR (Sun, 1992), an
architecture integrating rule-based and similarity-based
reasoning. This system can accommodate variable bind-
ing and inference with functional terms, and the author

suggests how some of the localist nodes could be repre-
sented in their own distributed representational space by
implementing them using conventional three layer feed-
forward networks (see Section 4.1).

e Barnden (1989) takes a different tack on the problem of
performing rule-based reasoning. Instead of having rules
wired-in ahead of the time and in fixed forms, his system
can dynamically construct representation during the
reasoning process. Any particular representation used at
a particular moment is transient, constructed on the basis
of the resource constraints and other system-dependent
considerations.

e Net-Clause-Language (NCL) (Markov, 1991) is a neural
network tool which integrates some connectionist and
some classical symbolic processing features in a unified
computational environment. It cannot be considered to be
a purely connectionist system as the processing elements
do not perform simple numeric calculations. In addition,
the network connections, rather than propagating activa-
tion values, propagate complex data structures. This
system is best seen as a symbolic system which uses
some connectionist ideas to organize its computation in
a more flexible way. Similarly, INFANT (Buchbheit,
1999) is a symbolic-like system where nodes contain
propositional fragments, that also organizes some of its
computations in a connectionist-like way.

In the following sections two of these models are investi-
gated in greater depth, the sign propagation model of Sun
(1992) and a synchronous activation model (Shastri &
Ajjanagadde, 1990).

4.1. Sign propagation

There must be some way of assigning values to variables
dynamically during the reasoning process and passing such
values from one variable to another. There are a variety of
ways (for an overview see Browne & Sun, 1999), the
simplest of which is sign propagation. This was first
proposed in Lange and Dyer (1989); Sun (1989), and further
developed in Sun (1992); Sun and Waltz (1991). A separate
node is allocated for each variable associated with each
concept. For example, in first-order predicate logic, each
argument of a predicate is allocated a node as its representa-
tion. A value is allocated to represent each particular object
(i.e. a constant in first-order logic) and, thus, is a sign of the
object which it represents. A node may take on an activation
value as a sign in the same way as in conventional connec-
tionist models. However, this activation value represents a
particular object and is merely a pointer. This sign can be
propagated from one node to other nodes, when the same
object which the sign represents is being bound to other
variables from the application of a rule. Consider an
example (adapted from Shastri & Ajjanagadde, 1990):

X, Y, Z[give(X,Y,Z) — own(Y,Z)]

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1337

X, Y[buy(X,Y) — own(X, Y)]

X, Y[own(X,Y) — can_sell(X, Y)]

A network can be constructed for representing these rules
and reasoning with them, as shown in Fig. 4.

For each predicate in the rule set, an assembly (of nodes)
is constructed. The assembly contains k + 1 nodes if the
corresponding predicate contains k arguments. Each node
in the assembly represents one particular argument of the
predicate (the argument nodes), except one node, which
represents the predicate as a whole (the predicate node).
The argument nodes handle the binding of the correspond-
ing arguments, whilst the predicate node computes as its
activation the confidence (certainty) measure of an entire
instantiated predicate. If there is a rule containing a condi-
tion (such as give(X, Y, Z)) and a conclusion (such as own(Y,
7)), corresponding nodes are connected in the assembly
representing the condition and in the assembly representing
the conclusion. In this process, the corresponding predicate
nodes are always linked, so that the second predicate node
can calculate the confidence for the second assembly based
on the confidence of the first assembly (its logical antece-
dent) represented by the activation of the first predicate
node. For the argument nodes, an argument node in the
first assembly is linked to those argument nodes in the
second assembly that have the same name as the originating
argument node in the rule being implemented. If there are
multiple conditions in a rule, the predicate nodes of all the
assemblies that represent the conditions of the rule are
linked to the predicate node in the assembly representing
the conclusion. A weighted-sum can be used in the receiving
predicate node for evidential combination. To perform
forward-chaining inference, the assemblies that represent
known facts are activated, then activations from these
assemblies will propagate to other assemblies to which the
initial assemblies are connected. Further propagation will
occur when those newly activated assemblies pass on their
activations to other assemblies downstream. This process
will continue until all the assemblies that are reachable
from the initial assemblies are activated. There are two
kinds of activation that are propagated. One kind is the
confidence measure (evidential support) of a corresponding
predicate (which is passed between predicate nodes), and
the other is the sign (a pointer) used for representing an
individual object (which is passed between argument
nodes). Both types can be represented as a real number
within a pre-defined range (such as between 1 and —1).
These two kinds of activation are completely different
and, thus, have separate pathways, implying there are two
different types of weights. One type is for weighing
evidence, and the other is for mapping (or passing around
information about) an object. However, these two types
of activations and two types of weights are treated in
the same way in such networks, thus ensuring the simplicity
and uniformity of the models. For backward-chaining, a

hypothesis must be proven based on known facts. For
example, in answering a query, the query is treated as a
hypothesis and an attempt is made to prove it with
known rules and facts. The process is as follows: initially
an attempt is made to match the hypothesis with the
conclusions of existing rules; if a match is found the condi-
tions of the matching rule are used as a new hypothesis;
if this new hypothesis can be proven, the original hypoth-
esis is also proven. This process repeats until all of the
hypotheses are proven. For example, to prove that mary
can sell a particular book: can_sell(mary, bookl), the
predicate is matched with the conclusion of the rule:
own(X,Y) — can_sell(X,Y). With this match, an attempt
is made to prove a new hypothesis: own(mary, bookl),
because if the latter can be proven the former follows
immediately. Assuming that the fact that Mary owns
bookl is already known: own(mary, bookl), the new
hypothesis is matched exactly and proven, consequently
the original hypothesis can be proven. To implement
backward-chaining with assemblies, in addition to the
predicate node another node is needed in an assembly
for indicating whether a node is being considered as a
hypothesis: the hypothesis node. To simplify this dis-
cussion, binary (true/false) cases are considered ini-
tially. To generate hypotheses backwards, the direction
of the link between two hypothesis nodes across two
assemblies should be reversed (i.e. the opposite of the
direction of the corresponding rule), but the direction of
the link between two predicate nodes across two assemblies
should remain the same (the direction of the rule). The
purpose of hypothesis nodes and links connecting them
is to generate new hypotheses backwards, whilst the
purpose of predicate nodes is to prove hypotheses gener-
ated in the forward direction (and, thus, in the opposite
direction of hypotheses generation). To start backward-
chaining inference, the predicate nodes are activated of
all the assemblies representing known conditions (but they
do not propagate activation). Then, the hypothesis node of
the assembly representing the hypothesis to be proved is
activated. This node will propagate activation through back-
ward links to generate new hypotheses. If a hypothesis node
is activated in an assembly where the predicate node is
already activated (i.e. the assembly represents a known
fact), the (backward) activation flow of the hypothesis
node is stopped and the activation flow of the predicate
node is started (in a forward direction) to activate the predi-
cate nodes of the assemblies where the activation to the
current hypothesis node is from. This forward activation
flow continues to activate the predicate nodes of the assem-
blies on the path from the original hypothesis to the hypoth-
esis that matches the known fact, in the opposite direction of
hypothesis generating activation flow. Thus, there are two
passes involved, a backward pass and the other a forward
pass. The system should be constructed as follows.

1. A hypothesis node can propagate activation to other

1338 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

e

o
///

/

/ o

from John
from Mary

from book

can-sell U E C) O

Fig. 5. A network utilizing phase synchronization for variable binding.

assemblies in a backward direction as long as there is no
activated predicate node in these other assemblies.

2. A predicate node can propagate activation to other
assemblies if and only if these other assemblies have
activated hypothesis nodes.

To implement this policy, some gating or the use of
conjunctive links is necessary (see Fig. 4). Where rules
have multiple conditions, when the conclusion of a rule is
matched with a hypothesis, multiple new hypotheses
corresponding to all of the conditions are generated simul-
taneously with backward propagation. Later (during
forward propagation), the activation from all of these
conditions together activates the predicate node of the
conclusion (weighted-sum computation can accomplish
this as described above). It is also possible to carry out
both forward- and backward-chaining inference simulta-
neously in one system. In this case, the known facts are
activated and the network run to obtain all plausible
conclusions. Rules are treated as specifying associations
between conditions and conclusions, simultaneously in
both directions. Notice that here rules are not imple-
mented in a strict logical sense as circular reasoning is
not excluded. To perform forward- and backward-chaining
simultaneously, instead of a hypothesis node and a pre-
dicate node in an assembly, two predicate nodes are used
(a forward predicate node for forward-chaining and a
backward predicate node for backward-chaining). Once
a forward predicate node in an assembly is activated, the
backward predicate node is activated. Once a backward
predicate node is activated, the corresponding forward
predicate node is activated. The two nodes contain the
same confidence measure for the predicate they represent,
but if both are activated from separate sources the larger
activation value prevails. These two nodes are used in
different ways.

e Forward predicate nodes are used to propagate activa-
tion in a forward direction from a condition of a rule to
the conclusion.

e Backward predicate nodes are used to propagate activa-
tion in a backward direction from the conclusion of a
rule to a condition.

The propagation along both directions occurs at the same
time, from the initial activation of known facts. One
problem with such a network is that some of the activated
nodes may quickly rise to saturation level because of
mutual (bi-directional) reinforcement. One way to control
activation is to use a global inhibition node that measures
at each moment in time the overall activity level of the
network (by receiving activations from all of the predicate
nodes), and then inhibits all predicate nodes by an equal
proportion. That is:

J

at) = a—(t)
g

where [is any predicate node in the network, g is the
global inhibition node, and a denotes activation. Global
inhibition allows the activation of the nodes in each
assembly to reflect their true confidence measure, i.e. the
evidential support received from input lines. This model is
parallel at the knowledge level and allows any number of
variables to be implemented, however its complexity is
high. Based on the ideas explained above, a formal treat-
ment of variable binding with sign propagation is pre-
sented in the Discrete Neuronal (DN) model formalism,
first proposed in Sun (1989) and further developed in Sun
(1992); Sun and Waltz (1991). This model is a general-
ization of conventional connectionist models, aiming at
resolving some difficulties inherent in these models
(such as variable binding) by removing some unnecessary
restrictions. The generalization in this formalism extends
over several dimensions, such as internal states, differen-
tiated outputs and temporal responses. However, there is
insufficient space in this paper to explain this model at depth,
for an in-depth treatment see Browne and Sun (1999).

4.2. Temporal synchrony

One way of dealing with variable binding in connectionist
systems is to use temporal aspects of node activation, in
addition to or substituting the use of instantaneous activa-
tion values. Phase synchronization can be used by allowing
different phases in an activation cycle to represent different
objects involved in reasoning, and representing variable
binding by the in-phase firing of nodes. The connectionist
inference system SHRUTI (Ajjanagadde & Shastri, 1989,
1991; Shastri & Ajjanagadde, 1990) can represent a
restricted number of rules with multi-place predicates.
There are three different types of nodes in SHRUTI (see
Fig. 5):

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1339

e circular nodes, which fire in a particular phase when they
are activated in that phase;

e triangular nodes, which fire in all of the phases of a cycle
when they are activated in that phase; and

e pentagonal nodes, which fire in all of the phases of a
cycle when they are activated in all of the phases of a
previous cycle uninterruptedly.

The same inference as used in Section 4.1 is used to show
backward-chaining in this system. A predicate with k
arguments is represented by a pair of pentagonal nodes
and k circular nodes. One of the pentagonal nodes is equiva-
lent to the hypothesis node in the sign propagation method
discussed above, the other pentagonal node is equivalent to
the predicate node. All of the k circular nodes are equivalent
to the argument nodes. The pentagonal node representing
the hypothesis is used in the backward pass, whilst the
pentagonal node representing the predicate is used in the
forward pass. The hypothesis pentagonal nodes related by
a rule are connected in a backward direction (the opposite
direction of a rule) and the predicate pentagonal nodes are
connected in a forward direction (the direction of a rule).
Circular nodes of the predicates involved are connected in a
backward direction (the opposite direction of a rule) as in
Fig. 5. In this example, the known fact is give(john, mary,
book1). When the hypothesis nodes are activated by a query,
activation flows backwards to those hypothesis nodes that
represent the conditions of a rule that has the original
hypothesis as its conclusion. These hypothesis nodes repre-
sent new hypotheses, which once proven can be used to
prove the original hypothesis. Each circular node for an
argument of a predicate that represents a known fact
is gated by the node representing the object (constant) to
which the circular node (representing the argument) is
bound. If these nodes fire in the same phase, the gate will
transmit activation. If such links pass on activation, the sum
of these activations will activate the predicate pentagonal
node of the assembly (showing that the hypothesis repre-
sented by the assembly is proven). Such an activated predi-
cate pentagonal node will propagate activation in a forward
direction to other predicate pentagonal nodes in
other assemblies. In Fig. 5, the original hypothesis is
can_sell(mary, bookl). The hypotheses own(mary, bookl)
and give(john, mary, bookl) are then generated. After
give(john, mary, bookl) is proven with the gating system
described above, it is possible to use the forward flow of
activation between respective pentagonal nodes to prove
those hypotheses that generate this hypothesis, namely:
own(mary, bookl) and can_sell(mary, book1). The triangu-
lar nodes are used to implement constraints, such as the
constraint when implementing p(X) — g(X, a) that its
second argument must be a. This can be achieved by a
gate that will allow activation to pass if and only if both
the circular node representing the argument and the circular
node representing the constant a fire in the same phase.
More recently, SHRUTTI has been extended in a number

of ways (Shastri, 1999; Shastri, Grannes, Narayanan &
Feldman, 1999; Shastri & Wendelken, 1999). Other
researchers (Bailey, Chang, Feldman & Narayanan, 1998;
Cohen, Freeman & Wolf, 1996; Lane & Henderson, 1998;
Park, 2000; Park, Robertson & Stenning, 1995) have used
architectures similar to SHRUTI for modelling tasks such as
human syntactic processing, language acquisition and
attention shifting. Hummel and Holyoak (1998) have used
a synchronous activation approach to model analogical
inference, whilst Ajjanagadde (1991, 1993) has worked on
the problem of abductive reasoning and also pursued an
alternate set of representational mechanisms (Ajjanagadde,
1997).

4.3. Constructing localist rule representations dynamically

Due to their associative nature and the computational
efficiency resulting from parallelism, the methods discussed
in Sections 4.1 and 4.2 may well capture reflexive
non-deliberative reasoning in which the immediate associa-
tion and instant response are required. However, one
common shortcoming of the methods discussed is that
they use a pre-wired static representation that cannot be
changed dynamically. It is often necessary to be able to
construct representation on the fly, and to modify the
constructed representation whenever a change occurs. This
is especially true for deliberative (non-reflexive) reasoning
(Hadley, 1990). One way to overcome this is to build local-
ist representation ‘on the fly’, without pre-assigning each
node to represent a particular (fixed) concept. This can be
called transiently localist representation, since each node in
a network represents a particular object at a particular
moment in time, but can be used to represent a different
object at a different moment in time. The first method to
attempt this was described by Barnden (1989). In this
model, a working space is needed that will hold the repre-
sentation constructed. One method to achieve this is to use a
two-dimensional array of nodes, such as an array of ‘regis-
ters’. Each register is a connectionist network with a fixed
set of representational nodes, which contains a set of flags
(which can either be on or off) and a symbol. A symbol or a
flag is an activation vector in the register network. However,
it can simply be viewed as a sign in a single node. A symbol
can be used to denote an object in the domain, predicate or a
logical connective (i.e. a ‘class’ as it is called in this model).
A flag is used to denote the role of a particular symbol
(which is stored in a register along with the flag) in the
representation (whether it is an argument to a predicate or
whether it is a symbol for a particular representation). Some
particularly useful flags are class and instance flags, and
those that denote arguments of a predicate: argl, arg2,
etc. Representation in this model is set up with two techni-
ques. One is physical adjacency (of neighbouring registers)
to form clumps. The other is the use of the same symbol
to link different clumps of representations together (if they
are part of a representation for a structured piece of

1340 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

W give
inst) class)

John Mary | bookl
argl) (arg2) [arg3)

Fig. 6. Representing give(john, mary, bookl) with adjacent registers for
give(class), W(instance), john(argl), mary(arg2), and bookl1(arg3).

information). For example, to represent a predicate such as
give(john, mary, book1) a clump can be created by assigning
a number of adjacent registers to represent each of the
following: give(class), W(instance), john(argl), mary(arg2),
and bookl(arg3). Here, in each pair the first word is a
symbol, and the word in the parentheses is a flag associated
with the symbol (see Fig. 6). The representation should be
interpreted as: W is an instance of give(john, mary, book1).

However, the representation of a single item can be made
up of several clumps. For example, to represent —
give(john, mary, bookl) two clumps can be created by
dividing the representation into two. One clump contains a
set of registers for the following: give(class) W(instance),
john(argl), mary(arg2), and bookl(arg3), and the other

T T
| |

T
!

| 7z not
(inst) class)
]

|

(

|
4
i
|
|
t
|
|
I

W
argl)

W give
(inst) class)

!

1 T

i John | Mary | bookl
(argl) (arg2) (arg3)
T T
| i
|
|

|
|
|
|
|
|
:’F
|
i
|
T
|
)
|

Fig. 7. Representing not give(john, mary, book1) with two clumps of adja-
cent registers for give(class), W(instance), john(argl), mary(arg2), and
bookl1(arg3).

clump contains the following: not(class), Z(instance), and
W(argl). In the same way as before, in each pair the first
word is a symbol and the word in the parentheses is a flag
associated with the symbol (see Fig. 7). The representation
can be interpreted as: W is an instance of give(john, mary,
bookl), and Z is an instance of notW, which means that Z is
an instance of — give(john, mary, bookl).

The dynamic construction of such representation is
accomplished by a hard-wired specialized network along
with the help of the array of registers. The actual work of
construction is performed through a sequence of ‘command
signals’, which are initiated by the special network and are
sent to all the registers in parallel. Each register can respond
to the signals in specific ways based on its own flags and the
flags of its neighbouring registers. Each command signal
can specify as part of the signal a number of conditions
which each responding register has to satisfy, regarding its
flags and/or its neighbouring registers’ flag. A command
signal can also specify that only one of all the responding
registers will be selected for a task. The selection can be
accomplished by a temporal winner-take-all (Barnden &
Srinivas, 1992). This is useful for selecting an area in the
array to create a clump to represent a predicate. To create a
clump, a command signal first chooses a set of free registers
away from existing clumps in the array, sets up the main
symbol to be represented (i.e. the predicate symbol), and
then sets up its flags as appropriate. Subsequent command
signals then set up symbols and flags for each adjacent
register. The details of each register subnetwork and the
command signal generator network will not be expanded,
since they can be realized in various ways and the particular
way they are implemented is not important.

5. Connectionist inference systems using distributed
representations

Distributed representations can be divided into those
which use modularly distributed representations (where
each symbol may be represented within a group of units)
or globally distributed (where the same representation space
is used for all symbols).

5.1. A model using a modularly distributed representation

Some localist models (Barnden, 1989) can also be viewed
as distributed, because each symbol in the system is an
activation vector (a vector of the activation values of a
particular set of nodes). These activation vectors are
allocated to represent symbols when a representation is
constructed and is propagated and matched with other
representations (i.e. other activation vectors). Such finely
modular distributed models are very close to localist models
in that a simple transformation is possible to turn one type
into another by mapping an activation vector (a set of
activation values of a number of nodes) in modularly

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1341

>
o

T

o o o
bl b2 bn
®
an

T
i

o O
al a2

2
Fig. 8. Mapping between modularly distributed representations and
localist representations where a is (ay, ay, ..., a,), bis (by, b, ..., b,), and
cis (1, Ca -ovs Cp).

distributed models into an activation value in localist
models and vice versa (see Fig. 8).

Referring to the localist connectionist rule-based
reasoning model discussed in Section 4.1, it is possible to
transform it into a modularly distributed model. Recall that
in the model, assemblies containing a type of complex node
(called DN nodes) are used, that can perform extensive
processing (i.e. more than just weighted-sum computation).
If each of these nodes can be turned into a small network of
simple connectionist nodes (computing only weighted-sum
or sigmoid functions), and if each input/output value of
these complex nodes can be represented with an activation
vector, this will be modularly distributed connectionist
model. To achieve this:

1. consideration needs to be taken of a mapping between an
input/output value of a complex node and an activation
vector of a network of simple nodes;

. the question must be addressed of how to carry out input/
output mapping (i.e. the action function of a DN node);
and

. questions must be addressed of how to represent states in
the DN formalism and then how to carry out the state
transition function of a DN node.

[\

[98]

a multi-layer

neural net

INPUT

for state transitions

o

delay

a multi-layer

OUTPUT

neural net

for actions

Fig. 9. Implementing a DN node in conventional connectionist networks.

It has been shown that a multi-layer recurrent connectionist
network of conventional nodes can achieve this (Giles &
Omlin, 1993a; Giles, Miller, Chen, Chen, Sun & Lee, 1992),
where a group of nodes represents the current state and
separate groups of nodes represent all input/output lines,
and all the groups of nodes can propagate their activations
through sets of links. A recurrent MLP maps the current
state and current inputs to a new state (represented by
another group of nodes) and outputs (represented by yet
another group of nodes). The new state is fed back (through
some delay elements) as the new current state to the network
in the next cycle. This helps the network to decide (along
with the current inputs) which state to enter next and what to
output next. This cycle can completely implement the func-
tionality of a DN node. With DN nodes replaced by a
network of conventional nodes, it can be seen that assem-
blies are a set of these networks (interconnected as
explained in Section 4.1), and a complete network for
rule-based reasoning is a set of such assemblies, as shown
in Fig. 9.

Fig. 10 shows a network that implements the rules used in
earlier examples.

5.1.1. Compilation of rules into networks

In small examples such as that given above, it is easy to
work out mappings used in predicate nodes and in argument
nodes for carrying out variable binding. However, with
large rule sets, it is not easy to do this; what is needed is a
systematic procedure for building up a network to carry out
rule-based reasoning. A procedure has been constructed to
build a network automatically when given a set of rules
(each of which comes with weights). This procedure
involves the Compilation of Fuzzy Evidential Logic into
DN Network (CFELDNN) (Fuzzy Evidential Logic is
explained in more depth in Section 6). This procedure is
restricted to forward-chaining reasoning, and to the distrib-
uted pattern propagation and sign propagation methods for
variable binding. In this procedure, three different types of
assemblies are used (see Fig. 11).

1342 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

|
)

o O

I ogive

|
O } : : own

o O O

O

can-sell

N
O

O

V*_l
y | of
Dlo

0

Fig. 10. A modularly distributed network for rule-based reasoning.

e Ordinary assemblies, which compute weighted-sums of
inputs and pass bindings for the variables.

e OR assemblies, which compute the maximum of inputs
and select one set of bindings out of many using this
maximum.

e Complex assemblies, which are similar to ordinary assem-
blies except that they perform checking and unification.

As before, it can be assumed that each node has a set of intra-
assembly inputs and a set of inter-assembly inputs. Likewise,
each node has a set of intra-assembly outputs and a set of
inter-assembly outputs. In addition, it is assumed that there
is no recursion in the rule set (that is, the rule set is acyclic). It
is also assumed that rules come with weights attached. The
main bottom-up procedure for compilation of a set of rules
into a network is as follows:

SET-UP-RULE-NET:

Initialize the rule set to include all the rules to be imple-

mented.

Repeat until the set is empty:
Choose a rule P1XDpa(X2)-+-pp(X,) —
q(X)|w1,w2,...,wn) to work on, if there is no rule in
the set that has p; as the conclusion.
Identify all the existing assemblies for p, i =1, 2, ..., n,
if there are none (with the same binding requirement),
make one.

Identify all the existing assemblies for g, if there are none
(with the same binding requirement), make one.
If there is only assembly for each p; and there is no
in-link to g, link each p; to g, assign weights to each link.
If there are in-links to ¢, link p;s to an intermediate
assembly, then or-link this assembly with the existing
g to a new g assembly which assumes all the out-links
of g, and assign weights as appropriate.
If there are multiple assemblies for p;, or-link all assem-
blies for the p; to an intermediate assembly, then link
that intermediate assembly to ¢, and assign weights as
appropriate.

Delete from the set the rule implemented.

The procedure for setting up each individual assembly is
described in Browne and Sun (1999); Sun (1992). A brief
explanation is as follows.

e For an ordinary assembly, the predicate node receives
intra-assembly inputs from argument nodes, computes
weighted-sums of inter-assembly inputs, and sends a
simple signal to argument nodes. Its functionality can be
fully determined by the mappings specified above which
can be implemented as a MLP that maps strings to numeri-
cal valuesand T to 0.

e For an OR assembly, the predicate node computes the
maximum of inter-assembly inputs, and the computation

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1343

. C
i
p
\\ o= pi + Wi
; //7 I p q’q
q
/] .
l / X2
b b
X1
)
o:max(ip) lq)
_| Tifi >
2 otherwise

C—___)
(vector) U U_[C*W if a=b
b \ 2 a 0 otherwise

a
\ / X2
b_ao 101 __b)

X

(3)

Fig. 11. The three types of assemblies, where C denotes a predicate node
and X denotes an argument node: (1) an ordinary assembly; (2) an OR
assembly; and (3) a complex assembly (for equality checking and other
tasks).

can be carried out by a MLP. Each argument node chooses
one binding out of many based on the maximum activation
in the predicate node, this can also easily be implemented
using a MLP. Intra-assembly communications can be taken
care of along with the basic functionalities above.

e Complex assemblies perform constraint checking and/or
unification (and other operations). From the discussion
above, it is clear that they can be implemented using
MLPs based on the mappings specified.

This model uses a modularly distributed representation, in
which each variable has its own separate representational
space and is a good way of avoiding interference and
cross-talk (cf. Shastri and Ajjanagadde’s (1990) analysis of
cross-talk in Touretzky and Hinton’s (1988) model).

However, the modularly distributed representation used in
the model described above does not meet van Gelder’s
(1991) criteria of ‘superposition’ and ‘extendedness’ of repre-
sentation. Fully distributed connectionist inference systems
such as those outlined in the rest of this section do meet
these criteria. Touretzky and Hinton’s DCPS (1988) uses a
globally distributed representation (i.e. the same representa-
tional space for all symbols), but has some limitations. Only a
limited form of production rules are allowed in the model,
where there is only one variable and it appears in the first
position of both the condition sides of the inference rule,
and anywhere in any of the action side of that rule. The
model is further restricted in that it assumes that at any time
only one hypothesis of a rule matches the contents of working
memory. Although the representation of the symbols in the
system is distributed, rules must be performed in a serial
fashion (as they must first be ‘extracted’ by the settling of
the Boltzmann Machine onto the ‘symbol surface’ and then
executed). Because of this, the only kind of parallelism that
exists in the system is below the level of rules (in the mechan-
ism for implementing rules) limiting any potential gains avail-
able from parallelism. It is not clear how this model can be
extended and enhanced to handle more complex rule repre-
sentation issues, since it is already very complex. No sugges-
tions have been made as to how the system may be modified
to cope with variables appearing in other positions, or how the
matching of variables present in rules against variables present
in WM could be performed. Another model, RUBICON
(Samad, 1992) is a connectionist rule-based system that
does allow for a variable number of expressions in the left
and right hand sides of each rule.

5.2. Performing resolution with a distributed representation

Resolution (Robinson, 1965b) is a powerful formal
inference method. A system using resolution can infer
new facts and relationships from given facts and relation-
ships, hence resolution is more powerful than simpler
reasoning approaches such as Herbrand instantiation
(Shapiro, 1991). There are many examples of symbolic
resolution-based inference systems such as the reasoning
performed by the Prolog inference engine (which has a
resolution-based theorem prover at its heart) and many
practical applications of resolution, including the design
and validation of logic circuits (Kabat & Wojcik, 1985).
Resolution can be thought of as being a generalization of
the transitivity rule ‘from a implies b and b implies c,
deduce that a implies ¢’. Logical implication a—b is
logically equivalent to the clause —aV b, so it can be
shown from the two clauses a Vb and —aV c that bV c.
This implies that by using two clauses that contain a
complementary pair of literals (where one is a negation of
the other) a third clause can be deduced and the comple-
mentary pair disposed of. A mechanical process (Nilsson,
1971) can be used to reduce logical expressions that involve
universal quantifiers, existential quantifiers and implication

1344 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

|
L

—— e ———

network A autoassociates
term pairs

network C maps
distributed
representations from A to
B

output C attempts to
match hidden B

network B autoassociates

unification results

_____ > output of C passed to
cut rule network

Fig. 12. Complete unification network. Autoassociator A produces distributed representations of two input terms. Autoassociator B produces distributed
representations of unification results. Network C maps distributed representations from hidden layer of A to hidden layer of B.

symbols to a set of clauses. A variable binding process
called unification is used in tandem with resolution. For
example, the resolution p(X) and p(— a) requires the bind-
ing X = a as this would produce the desired contradiction.
Resolution based theorem provers successively apply unifi-
cation followed by the ‘cut rule’ (Hogger, 1990). This rule
states that it is possible to remove an atom if it occurs at
opposite sides of two clauses then merge the resultant
clauses into a new one, i.e. from p— ¢ and g—r it is
possible to deduce p — r. A query to the theorem prover
is formulated as a negative clause (i.e. when asking ‘a’
this is formulated as ‘ — a’). By successively applying unifi-
cation and the cut rule, the theorem prover attempts to
generate the empty clause.

The connectionist resolution model outlined here
(Browne, 1998b) built on a previous model that performed
unification of (fixed width) nested terms and included the

occurs check (Browne & Pilkington, 1995; Browne & Sun,
1999). There is insufficient space in this paper to discuss the
unification system in detail; readers seeking further
explanation are referred to Browne and Sun (1999) for a
comprehensive explanation, and to Weber (1992, 1993)
for explanations of other methods of performing unification
with distributed representations. In the unification system
used (Fig. 12) the symbolic representations of pre-
unification term pairs and unification results (taken from
Holldobler, 1990a) were transformed into distributed repre-
sentations on the hidden layers of autoassociators.
Autoassociator A in Fig. 12 produced distributed represen-
tations of input term pairs, whilst autoassociator B produced
distributed representations of the unification results.
Symbolic representations presented to the input autoasso-
ciator consisted of 9216 pairs of logical terms.

A four layer feedforward neural network (network C in

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1345

unification results
from network C

database representation
before resolution

input layer 1 input layer 2
—
-
—
-
-
-
-
-
hidden layer 1
hidden layer 2
output layer
~
~
S~
~
S~
S~
~
~~
sigma-pi units

final output

database representation

Fig. 13. Cut rule network. Distributed representation of unification results
from output layer of network C is supplied as input together with distributed
representation of term from database. Result of feedforward network
mapping allows sigma—pi units to gate database and reproduce representa-
tion of term at output if resolution is performed, or set all output units to 0
indicating term has been removed from database.

Fig. 12) mapped the distributed representations of pre-
unification terms produced by input autoassociator A to
the distributed representations of unification results pro-
duced by target autoassociator B. The distributed represen-
tation representing the unification results was read off the
output layer of network C and presented as input to a second
network for resolution step to be attempted (Fig. 13). This
network had two sections:

e a section that made a decision based on the similarity of
two distributed patterns of activation that it was
presented with; and

e a section that performed the cut rule.

This network took two distributed patterns of activation as
inputs, the distributed pattern of activation representing the
unification results read from the output layer of network C,
and a distributed pattern of activation representing a term
stored in a database. These database terms were identical to
the representations of post-unification results taken from the
hidden layer of network B. The outputs of this first section
were connected via weighted connections to the second part

of the network consisting of sigma—pi units (Rumelhart,
Hinton & Williams, 1986), connected by weighted con-
nections to the units represented the distributed pattern of
activation stored in the database prior to performance of the
resolution step. The sigma—pi units were connected to an
output layer representing the database contents after the
resolution step had been performed. A form of gating was
performed by the sigma—pi units, in that they allowed the
first section of the network to gate the outputs of the network
in such a way that the network could produce the following
outputs.

e [f the post-unification pattern of activation taken from the
output layer of network C and the database pattern of
activation were similar (i.e. where the distributed
representations of a term and its complement were
present) the first section of this network was trained to
generate 0 at all of its outputs.

e [f the post-unification pattern of activation taken from the
output layer of network C and the database pattern of
activation were not similar (i.e. they did not represent a
term and its complement), the network was trained to
generate 1 at all of its outputs to signify the cut rule
should not be performed.

e If the two distributed patterns of activation were not
judged to be similar, the cut rule was not performed.
The distributed pattern of activation present at the data-
base inputs of the network was reproduced at its outputs,
indicating that the term was still present in the database.

To check the performance of the resolution network, the
distributed patterns of activation generated at its outputs
were decoded through the hidden-to-output layer weights
of autoassociator B. Then, the symbolic outputs generated
were compared with their expected values to discover
whether resolution had been performed correctly.

The unification network correctly unified 97% of the
novel terms pairs presented to it, whilst the resolution
network correctly resolved 82% of the novel distributed
representations passed to it from the output layer of network
C. This was an acceptable level of generalization as the
probability of the correct output being produced by either
network at random was 1 in 2*! (as there are 21 binary
output units representing the correctly decoded term).
Less than 100% performance is typical of connectionist
systems trained by gradient descent. Whether this is impor-
tant depends on what the system is being used to model. As
a replacement for a symbolic theorem prover, this level of
performance would not be acceptable, whereas from a
cognitive modelling viewpoint it may be acceptable as
humans often give less than 100% correct performance.
The performance of the resolution network was worse
than the unification network, this can be explained as it
was attempting resolution on the ‘noisy’ distributed repre-
sentations generated on the output layer of network C. These
(real numbered) representations will not be 100% accurate,

1346 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

and this inaccuracy inevitably affected the resolution
process. Conceivably, a distributed connectionist ‘clean-
up’ network for transforming the distributed representation
output by network C to the nearest representation formed on
the hidden layer of network B could reduce these errors.

In its current form, the model performs only a single
resolution step, in most proofs many such steps are required
for useful inference. To do this, the system would have to
incorporate a database containing the distributed represen-
tations of several terms (robust to the deletion of these
terms). In addition, in a chain of inference often one of a
series of resolution steps will fail, forcing the system to
retrace its steps and then attempt a different series of
resolutions. This entails the provision of a backtracking
mechanism in the model. It is possible that some form of
recursive auto-associative memory (Pollack, 1988) could
provide the stacking facility required by backtracking. A
form of overall control mechanism would have to be
provided to control the series of resolution steps attempted.
It is possible a finite-state machine could provide a solution
(Giles & Omlin, 1993a; Giles et al., 1992). Many problems
are computationally inefficient to solve by relying on a
single inference rule such as resolution. However, resolution
has led to the development of inference rules that are
effective in these situations, such as hyper-resolution
(Robinson, 1965a), unit resolution (Henschen & Wos,
1974) and paramodulation (Robinson & Wos, 1981). In
the future, it would be interesting to construct a connection-
ist inference system using distributed representations to
perform these inference rules.

5.3. Tensor product representations

The representation of variable-sized structures in connec-
tionist networks has been a challenge to connectionists.
Many connectionist systems (such as those described in
Section 5.2) have a limited set of inputs and can only
cope with a limited level of recursion (i.e. nesting of term
structures). Because of this, the set of input patterns
(variables, constants and terms) that can be correctly gener-
ated and processed often need to be completely specified
when the network is constructed. Recursive connectionist
architectures using distributed representations, such as
RAAMs (Pollack, 1988), XRAAMs (Lee, Flowers &
Dyer, 1990), LRAAMs (Sperduti, 1995), SRAAMs (Callan
& Palmer-Brown, 1997) and BRAAMs (Adamson &
Damper, 1999) exist. However, the width and depth of
embedding of the structures represented within them are
limited. Tensor product based systems are one way of avoid-
ing this restriction. In this form of representation, structures
(such as logical terms) can be represented by a set of slots
(roles or attributes) and fillers (values). The use of tensor
products allows a set of variable-value pairs to be repre-
sented by accumulating activation in a fixed-size collection
of units. For example, a set of variable-value pairs Var_1,

val_1 and Var_2, val_2 is represented by:
Var_1 Q@ val_1+ Var_ 2 @ val_2

where & represents the tensor product operation. If a
variable is represented by an m-dimensional vector and a
value by an n-dimensional vector, the tensor product of this
variable and value is an m X n matrix of units. New variable-
value pairs are superimposed over this matrix of units,
allowing recursive structures to be constructed ‘on the fly’
of a size only bounded by the graceful saturation properties
of the network. The use of tensor products for variable
binding was proposed by Smolensky (1990). A connection-
ist implementation of production systems using tensor
products that extended the work of Touretzky and Hinton
was discussed in Dolan and Smolensky (1988) (although
this model still suffers from the restriction on variables
found in DCPS and is serial at the rule level). Whilst this
model used role-filler bindings, other tensor-based models
have used symbol—argument—argument bindings (Halford,
Wilson, Guo, Gayler, Wiles & Stewart, 1994; Wiles,
Halford, Stewart, Humphreys, Bain & Wilson, 1992) to
perform analogical inference. In these schemes, multiple
predicates can be stored and one component of a predicate
(the variable or the value) can be retrieved given the remain-
ing components. A predicate is represented by the tensor
product of all its components, for example the representa-
tion of the predicate brother_of(fred, sam) would be:

brother_of & fred ® sam

Tensor product representations can represent certain proper-
ties of relations that do not seem to be possible for
SHRUTT’s synchronous activation approach (Halford,
1993a). A relation r(A, B, ..., n) can be handled by a tensor
product of rank n + 1, and this tensor not only represents the
predicate—argument bindings but also the interactions
within the structure. For example, the tensor product repre-
sentation of (A, B, C) represents the influence of C on r(A,
B), the influence of B on r(A, C) and the influence of A on
r(B, C). The synchronous activation approach used by
SHRUTT can handle slot-filler bindings, but it does not
appear to be able to represent these higher-order relations
that are important to complex concepts. There is also
evidence that tensor product based models show stronger
systematicity of inference than conventional feedforward
or recurrent networks (Halford, Wilson & Phillips, 1998;
Phillips, 1998; Phillips & Halford, 1997). However, one
problem with tensor product based systems is their space
requirements, they require an exponentially increasing
number of elements to represent bindings.

5.4. Inference systems using novel recursive representations

Novel representational schemes such as Holographic
Reduced Representations (HRRs) (Plate, 1991, 1995,
2000), Binary Spatter codes (Kanerva, 1998) and the
Braid operator (Gayler, 1998) have been proposed as a

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1347

way of avoiding the exponential space requirements of
tensor product based representational schemes, and have
the ability to represent nested structures in fixed-width
vectors. HRRs are constructed by using a form of vector
multiplication called circular convolution and decoded
using correlation (the approximate inverse of circular
convolution). The convolution of two HRRs results in
another HRR encoding the information in the two original
HRRs. This third HRR is not similar to either of the two
HRRs it was constructed from, although the original com-
ponent HRRs can be regenerated by decoding the third HRR
using correlation. A role-filler (variable-value) binding is
generated by circular convolution (*), for example to
bind the role lover to the person john this would be
lover * john, and to bind the role is_loved to the person
mary this would be is_loved * mary. Propositions are
encoded by the superposition of role-filler bindings, for
example the predicate loves(john, mary) is represented by:

loves + lover * john + is_loved * mary

The representations of fundamental entities such as roles
and labels are based on random activation patterns with
zero mean and a Gaussian distribution. Representations of
semantically similar entities (such as mary and john) are
composed of a base type (such as human) and random iden-
tifying patterns that are unique. When decoding HRRs the
resulting vectors are noisy, and are recognized using the dot
product operation to find the nearest matching vector. When
HRRs are convolved or superposed the dimensionality of
the resulting dimension vector is the same as the original
vectors, so they avoid an explosion in the size of representa-
tions as the structures represented by the system become
more complex. This property, together with the fact that
some of the information in the original HRRs is lost on
encoding (i.e. the new HRR does not contain all the infor-
mation present before encoding) allows these representa-
tions to be considered to be ‘reduced’ representations as
defined by Hinton (1990). Connectionist systems using
HRRs have been used to perform analogical inference
(Eliasmith & Thagard, 2001; Plate, 2000). Other novel tech-
niques for generating distributed representations (with
insufficient space to detail it here) are context depending
thinning (Rachkovski & Kussul, 2001) and linear relational
embedding (Paccanaro & Hinton, 2000).

6. Representing fuzzy inference in connectionist systems

Connectionist models appear to have some relationship
with fuzzy logic as both deal with the inexactness of real
world situations, using numerical values that can change in
correspondence with the change in certainty of real world
situations. The question is: ‘How can the two be merged in
order to unify them and to utilize the strengths of both?’.
One way to accomplish this aim is to map one paradigm
onto another (preferably in a simple and direct way). This

section presents a simple mapping of weighted-sum connec-
tionist models in terms of fuzzy inferences. In the following
subsections, a simple fuzzy logic Fuzzy Evidential Logic
(FEL) is defined and then implemented it in connectionist
networks, see Sun (1989, 1992); Sun and Waltz (1991).

6.1. A propositonal fuzzy logic

Propositional FEL is a direct reformulation of the
weighted-sum connectionist models in logical terms. Here
are some definitions.

e A fact is an atom or its negation, represented by a letter
(with or without a negation symbol) and having a value
between a lower bound and an upper bound. The value of
an atom is related to the value of its negation by a specific
method, so that knowing the value of an atom results in
immediately knowing the value of its negation, and vice
versa. For example, a, —a, x, and m are all facts.

e A rule is a structure composed of two parts: a left hand
side (LHS), which consists of one or more facts, and a
right hand side (RHS), which consists of one fact. When
facts in the LHS get assigned values, the fact in the RHS
can be assigned a value according to a weighting scheme.
When the value of the LHS of a fact is unknown, zero is
assigned as its value. For example, abc — d is a rule, and
a weighting scheme associated with it indicate the value
of d once the values of a, b, and ¢ are known.

e A weighting scheme is a systematic method for assigning
a weigh to each fact in the LHS of a rule, with the sum of
the absolute values of all weights less than or equal to 1.
It also determines the value of the fact in the RHS of a
rule by a threshold (if thresholds are used) by using
weighted-sum of the values of the facts in the LHS (i.e.
an inner product of a weight vector and a vector of values
of the LHS facts). When the range of values is continu-
ous, then the weighted-sum is passed on if its absolute
value is greater than the threshold, or O if otherwise.
When the range of values is binary (or bipolar), then
the result will be one or the other depending on whether
the weighted-sum (or the absolute value of it) is greater
than the threshold (usually the result will be 1 if the
weighted-sum is greater than the threshold, 0 or —1 if
otherwise). For example, a weighting scheme for the
rule above is: w; =0.3, w, =0.3, w3 =0.4. The value
of d, which is between a pair of bounds [/, u] (e.g.
[—1, 1] or [0, 1], depending on the value ranges of
a, b, and c¢) is calculated by their weighted-sum: i.e.
d =wia + wyb + wsc.

e A conclusion is a value associated with a fact, and is
defined here recursively. In using this definition and the
procedure for calculating conclusions implied by the
definition it is possible to restrict the structure of theories
allowed in order to avoid circular reasoning by doing the
following.

e For each rule having that conclusion in its RHS, obtain

1348 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

conclusions of all facts in its LHS (if any fact is unobtain-
able, assume it to be zero). Then calculate the value of the
conclusion in question using the weighting scheme.

e Take the MAX of all these values associated with that
conclusion calculated from different rules or given in
initial input.

Here are some further definitions:

e An implementation of FEL is a network of elements
connected via links, where each element represents an
atom and its negation (there is a one-to-one mapping
between an atom, including its negation, and an element).
There are links that represent rules, going from elements
representing facts in the LHS of a rule to elements repre-
senting facts in the RHS of a rule.

e An element is a structure that represents one and only one
fact (including its negation) and has multiple sites, each
of which receives a group of links that represents one
single rule (i.e. links from facts in the LHS of the same
rule).

This implementation of FEL is, in fact, a connectionist
network where elements are nodes in a network, and rules
are defined using links. There are links emanating from
nodes representing conditions in a rule to nodes representing
the conclusion in a rule, and weighted-sum computation is
carried out within each site of a node for computing and
propagating activations (i.e. for evidential combination in
reaching conclusions based on given conditions). Activa-
tions from different sites of a node are MAXed, correspond-
ing to the previous definition of conclusions.

In terms of dynamics, inferences in FEL can also be
easily mapped to connectionist networks. In FEL, no parti-
cular order is specified in which inferences should be
performed, so any appropriate order can be used. The
network implementation of FEL can be viewed as perform-
ing a parallel breadth-first search reasoning, with all the
links that are applicable taking effect at the same time and
activation flows propagating in all directions. Details of
implementations are beyond the scope of this paper. For
formal proofs of correctness and other implementation
details, see Sun (1995a,c).

FEL can handle some simple, but important, logics as
special cases. Such generality is necessary to ascertain the
usefulness of FEL and, consequently, the adequacy of
connectionist networks in capturing logical inferences.
Firstly, it is shown how FEL can simulate Horn clause
logic (Sun, 1995a). A binary FEL is a reduced version of
FEL, in which values associated with facts are binary, the
sum of weights (each of which is positive) in each rule is 1,
and all thresholds are set to 1. The binary FEL is sound and
complete with respect to Horn clause logic. The binary FEL
is sound and complete with respect to Horn clause logic
(Sun, 1995a,c). In addition to Horn clause logic, it can be

shown that FEL can emulate one of its extensions—
Shoham’s Causal Theory (CT) (Sun, 1995c¢).

The connectionist model presented above can be viewed
as an implementation of the propositional FEL, whilst the
sign propagation method for variable binding presented in
Section 4.1 can be viewed as a suitable implementation of
predicate FEL. The logical correctness of the sign propaga-
tion variable binding method as an implementation of FEL
can be established (Sun, 1995a,c).

Other researchers have investigated the relationship
between fuzzy and connectionist modelling, including a
fuzzy neural logic network which attempts to model a
Prolog-like fuzzy inference system (Ding, The, Wang &
Liu, 1996) and a model that can encode directly structured
knowledge in a fuzzy neural network and perform incre-
mental learning (Machado & da Rocha, 1997). Fuzzy
rules have also been used in connectionist production
systems (Kasabov, 1994; Kasabov & Shishkov, 1993). A
thorough overview of fuzzy neurocomputing can be found
in Magdalena (1997).

7. Extraction of inference rules

Many attempts have been made to extract symbolic
IF-THEN rules from connectionist systems. Gallant’s
connectionist expert systems (Gallant, 1988) and Matrix
Controlled Inference Engine (MACIE) (Gallant & Hayashi,
1990) are two early models where expert system rules are
extracted from a neural network. Many other rule extraction
techniques followed, mostly applied to extracting rules from
MLPs (Ampratwum, Picton & Browne, 1998; Baba, Enbutu
& Yoda, 1990; Benitez, Castro & Requina, 1997,
Bochereau & Boutgine, 1990; Fletcher & Hinde, 1995;
Goh, 1993; Ishikawa, 2000; McMillan, Mozer &
Smolensky, 1993; Saito & Nakano, 1988; Sethi & Yoo,
1994; Setiono, 2000; Shavlik & Towell, 1989; Taha &
Ghosh, 1997; Thrun, 1995; Yeung & Fong, 1994; Yoon &
Lacher, 1994) with a smaller number applied to Kohonen
networks (Ultsch, Mantyk & Halmans, 1993), recurrent
networks (Giles & Omlin, 1993b) and radial basis func-
tion networks (McGarry, Wermter & Maclntyre, 1999b).
The difference between the approaches to rule extraction
can be categorized (Tickle, Maire, Bologna, Andrews &
Diederich, 2000) as that between ‘decompositional’ and
‘pedagogical’ approaches. Decompositional approaches
involve analysing weights and links to extract rules, with
some requiring specialized weight modification algorithms
(Shavlik, 1994) or network architectures such as an extra
hidden layer of units with staircase activation functions
(Bologna, 2000). Pedagogical approaches treat the network
as a ‘black box’ and extract rules by observing the relation-
ship between its inputs and outputs, and because of this are
general purpose in nature and can be applied to any feed-
forward network (Craven & Shavlik, 1997). Some of
methods lead to the extraction of rules that involve fuzzy

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1349

grades of membership calculation (Hayashi, 1991; Mitra &
Hayashi, 2000).

A typical approach to rule extraction is that of Fu (1994)
who proposed an exhaustive search based algorithm to
extract conjunctive rules from MLPs. To find rules, the
learner first searchers for all the combinations of positive
conditions that can lead to a conclusion. Then, with a
previously found combination of positive conditions, the
learner searchers for negative conditions that should be
added to guarantee the conclusion. In the case of three-
layered networks, the learner can extract two separate sets
of rules (one for each layer) and then integrate them by
substitution.

An alternative form of rules exists, the N-of-M form.
Rules in this form state: ‘If N of the M conditions, a,, a,,

..y Gy, 18 true, then the conclusion b is true’. It is argued
(Towell & Shavlik, 1993) that some concepts can be better
expressed in such a form, and they also help to avoid the
combinatorial explosion in tree size found with IF-THEN
rules. A four-step procedure is used to extract such rules, by
first grouping similarly weighted links, eliminating insigni-
ficant groups, and then forming rules from the remaining
groups through an exhaustive search. The following steps
are performed.

1. With each output node, form groups of similarly
weighted links.

2. Set link weights of all group members to the average of
the group.

3. Eliminate any groups that do not significantly affect the
output value.

4. Optimize biases (thresholds) of all output nodes, using
the backpropagation algorithm, while holding links
weights constants.

5. Form a rule for each output node, using the weights and
threshold of the rule.

6. If possible, create an N-of-M rule.

These rule extraction algorithms are meant to be applied at
the end of the training of a network. Once extracted, the
rules are fixed; there is no modification on the fly, unless
the rules are re-extracted (starting anew) after further train-
ing of the network. On the other hand, in CLARION (Sun &
Peterson, 1998), is an agent that can extract and modify
rules dynamically. In this model, connectionist reinforce-
ment learning and rule learning work together simulta-
neously. Extracting and modifying rules dynamically is
computationally less expensive because it minimizes the
search necessary and helps the agent adapt to changing
environments by allowing the addition and the removal of
rules at any time. In doing so, CLARION avoids examining
the details of the network from which rules are extracted.
Instead it focuses on the behaviour of the network. Specifi-
cally, if some action decided by the bottom level is success-
ful then a rule is extracted that corresponds to the decision
and the rule is added to the rule network. In subsequent

interactions with the world, the extracted rule is verified
by considering the outcome of applying the rule. If the
outcome was not successful (as measured by a criterion),
then the rule should be made more specific and exclusive of
the current case. If the outcome was successful, an attempt
is made to generalize the rule to make it more universal.
This process is determined by an information gain criterion
which measures the success of a rule application. As well as
being a useful technique for understanding what a particular
network has learnt, rule extraction can be helpful when a
link between the neural and symbolic components is
required in hybrid architectures (McGarry et al., 1999a;
Wermter & Sun, 2000).

8. Comparisons between models using localist or
distributed representations

Comparisons can be made between different representa-
tional schemes used to perform connectionist symbolic
inference. Localist representations are popular with many
researchers in this field, partially because they are easy to
interpret, as the activation value of a node in a localist
connectionist system is semantically interpretable. One
significant problem of distributed representations is that
they can be difficult to interpret. Because of its superposed
and extended nature, the distributed pattern of activation
representing a concept cannot be easily labelled.
Techniques do exist which attempt to interpret distributed
patterns of activation, including statistical techniques
(Bullinaria, 1997, rule extraction techniques (Andrews,
Tickle, Golea & Diederich, 1997) and generalized effect
analysis (Browne, 1998a; Browne & Picton, 1999), but
these are obviously more complex than simply recording
the activation of a node in a localist connectionist represen-
tation. In addition, training times in distributed connection-
ist systems can be extensive, and it can often be difficult to
achieve 100% correct performance.

As the representations in localist connectionist systems
are localized, they can be thought of as symbolic systems.
However, in these models processing is typically carried out
not by some form of inbuilt theorem prover as seen in clas-
sical Al, but by the massively parallel flow of activation
values between units.

In a classical symbolic Al system, an entity is given an
arbitrary label that distinguishes it from other entities. For
example, nothing about an entity labelled dog makes this
entity more closely related to the concept of ‘dog’ than to
the concept of ‘tree’. There is nothing about the entities
themselves that indicates their meaning because they get
their designated meaning only because of how the system
interprets them. In a localist connectionist system an entity
may be arbitrarily designated or it may be learnt using a
learning algorithm such as recruitment learning (Diederich,
1988, 1991). In contrast, a semantic entity in a distributed
connectionist system is a distributed pattern of activity with

1350 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

a microsemantics (Dyer, 1990), because it has an internal
pattern that systematically reflects the meaning of the entity.
The entity representing the concept ‘dog’ will in some way
be closer to the internal representation of a concept such as
‘cat’, and in some way more removed from a concept such
as ‘tree’. In this way, distributed connectionist representa-
tions carry their own meaning, and this gives them ability to
generalize on encountering novel input. A novel example
being presented to the network and fed through the appro-
priate weights and activation functions will be systemati-
cally given an appropriate representation. The internal
structure of this representation will be relatively similar to
the structure of representations of objects to which this
example is semantically similar in relevant aspects, and
quite different from the structure of semantically different
objects. Symbolic systems and localist connectionist
systems often generalize poorly on encountering novel
input (Sun, 1995c) (but as a counter to this see Page,
2000). This generalization ability constitutes a significant
advantage of distributed representations over symbolic or
localist representations.

Although many connectionist models are not realistic
implements of biological neural networks (for a discussion
see Crick, 1989), models using distributed representations
are more neurobiologically realistic than localist con-
nectionist or symbolic Al models (Smolensky, 1995).

9. Problems with connectionist inference systems

There are many problems with connectionist systems
(Browne, 1997), but two major problems suffered by
connectionist systems using localist or distributed represen-
tations to perform inference are described below. These
problems are not suffered by symbolic Al systems.

9.1. Limits on the productivity and width of representations

The productivity of a system refers to the ability of
that system to generate and correctly process items from
an infinite set. With reference to inference, this refers to
the processing of a (potentially) infinite number of vari-
ables and constants or functors (potentially) up to infin-
ite length. Because of the possibility of nesting of
arguments, computational structures such as terms with
other terms nested inside them can be produced. The
size of these structures cannot be predetermined before
the run-time of a system. The property of productivity
is displayed by symbolic systems which can produce
and process an (almost) infinite set of terms from an
(almost) infinite set of symbols using recursive struc-
tures with an (almost) infinite level of embedding
(only being limited by physical constraints such as
memory size). Most connectionist systems have a
limited set of inputs and can only cope with a limited
level of recursion (i.e. nesting of term structures).
Because of this, the set of input patterns that can be

correctly generated and processed often need to be
completely specified when the network is constructed.
Recursive connectionist architectures using distributed
representations, such as RAAMs (Pollack, 1988),
XRAAMs (Lee et al., 1990), LRAAMs (Sperduti,
1995), SRAAMs (Callan & Palmer-Brown, 1997) and
BRAAMs (Adamson & Damper, 1999) exist, however
the width and depth of embedding of structures repre-
sented within them are limited by the precision of
implementation, and they cannot produce infinitely
larger or deeper structures. The tensor product, HRR
and other novel representations discussed in Sections
5.3 and 5.4 can be modified dynamically as the network
is performing its processing. However, there are limita-
tions that interfere with the representation of structures
using vectors or real numbers. The precision with which
real numbers can be implemented will affect the repre-
sentation, together with the fact that the more deeply
nested the components of recursive structures the more
degradation by noise when encoding and decoding these
structures. Whether this is a serious limitation on
connectionist systems depends on the task they are
being used for. If the task is to emulate the properties
of a symbolic inference system (such as a theorem
prover), this limitation is serious. However, if the task
is that of modelling human cognition this may not be
such a serious limitation. The representation of recur-
sive structures is intimately related to the competence/
performance issue in cognitive science (MacLennan,
1993). Cognitive science often distinguishes between
an idealized theoretical competence (under which the
embedding of structures is unlimited) from the observed
performance (which is limited in the observed depth).
There is evidence that humans exhibit a limit on the
depth of recursion they can process (Dyer, 1995). This
is indicated by the difficulty that humans have in under-
standing sentences containing more than a certain level
of embedding. Other evidence relates to the number of
elements in a representation (i.e. the width of the repre-
sentation) that humans can successfully deal with,
where the number of elements in a representation
affects the level of relation that the representation can
represent. The number of elements can be thought of as
the number of facets of a situation that can be viewed
simultaneously. There is considerable evidence (Halford,
1993b; Halford et al., 1998) that most humans can
reason using representations with at most five elements,
such as a predicate (the first element) with four argu-
ments (the four other elements). The psychological exis-
tence of the processing of rank six representations (such
as a predicate with five arguments) by humans is specu-
lative, and if it exists it probably does so only for a
minority of adults. This implies that insofar as matching
human cognitive capacity is the goal, a network using
distributed representations would only have to process
a limited arity. In addition, the graceful degradation

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1351

observed when inference systems using distributed
representation have to process deeply embedded struc-
tures is much closer to observed human performance
than the hard limit imposed by (for example) stack
size in a symbolic AI system. Thus, connectionist
systems can provide more realistic models of observed
human cognitive processing.

9.2. Representing structural systematicity

Structural systematicity leads to the ability of a system to
correctly process inputs that it has never encountered
before. There are a number of different definitions of struc-
tural systematicity. Three levels of systematicity from weak
to strong were defined by Hadley (1992), but the most
precise definition, using six levels of systematicity, has
been given by Nicklasson and van Gelder (1994). These
levels are as follows.

1. Where no novelty is present in the inputs presented to the
system. Every input presented to the system has already
been encountered (for example in the training phase of a
connectionist system).

2. Where novelty is present in the inputs, but all the
individual arguments in these inputs have at some time
appeared in the same positions in inputs previously
encountered by the system.

3. Where the inputs contain at least one example which has
an argument in a position in which it has never before
been encountered by the system. For example, a connec-
tionist system could be trained on a selection of input
patterns in which a particular symbol was never present
in the first argument position of the patterns used for
training, and then tested on a set of patterns where that
symbol was present at that argument position.

4. Where novel symbols appear in the new inputs presented
to the system.

5. Where there is novel complexity in the new inputs
presented to the system. To display this form of complex-
ity, a connectionist system would have to be capable of
being trained on patterns with » inputs in the training set
and then correctly process patterns with n + 1 inputs in
the test set (this is related to the arguments discussed in
Section 9.1).

6. Where the test set contains both novel symbols and novel
complexity.

Symbolic Al inference systems can display all these levels
of systematicity as they are not dependent on the makeup of
a training set to form their representations. Hence, they can
generate and process new items whilst only being restricted
by physical constraints, such as the size of available
memory resources. Localist connectionist systems are not
usually dependent on the makeup of a training set to form
their representations, and so easily cope with tasks involv-
ing up to the third level of systematicity described above,

but because of the problems outlined in Section 9.1, have
problems displaying the fourth and higher levels because
any recursive representation in the network has to be
constructed to a pre-specified depth, unlike the (potentially
almost infinite) recursive representation provided with
symbolic systems.

Connectionist systems using distributed representations
are heavily dependent on the makeup of the training set
used to develop these representations, hence they often do
not display systematicity beyond the second level described
above. However, in performing simple logical operations
with a system using distributed representations (Niklasson
& van Gelder, 1994) systematic performance of a neural
network both when exposed to novel inputs and when
exposed to inputs appearing in novel positions has been
demonstrated (i.e. up to the fourth level above). However,
there is evidence (Phillips, 1998) that inference systems
based on standard feedforward and recurrent networks
may never be able to reach the top level of systematicity
described above. However, it may be that systems based on
tensor products or HRRs will achieve this. '

10. Conclusions

It has been argued that connectionist systems may well
offer an opportunity to escape some of the problems of
symbolic Al, only if ways can be found of instantiating
the sources of power displayed by symbolic systems within
connectionist systems (Smolensky, 1988; Sun, 1995b,c). At
least in the case of inference, connectionist systems have
not as yet matched the power of symbolic Al inference
systems. However, any attempt to match the capabilities
of a symbolic theorem prover using a connectionist system
may be a misguided attempt to tie connectionist systems into
a ‘symbolic straightjacket’. Connectionist systems may well
give better models of the (limited) inference capabilities of
the human mind. In addition, connectionist systems have
unique advantages. For example, they generalize better to
unexpected or noisy inputs than symbolic Al systems. For
complex tasks, some form of hybrid system (Sun &
Bookman, 1994; Wermter & Sun, 2000) combining the
capabilities of connectionist and symbolic Al components
may be more appropriate.

New theories of representation are being developed.
While some of these theories attempt to link symbolic Al
and connectionist representations (Smolensky, Legendre &
Miyata, 1992) in a description that applies to both, other
theories try to subsume both types of representation within
a higher level theory such as dynamical systems theory (Port
& van Gelder, 1995). In the future, we hope that from these

! Hadley has achieved the top level of Niklasson and van Gelder’s hier-
archy and satisfied his own criteria of strong systematicity with a connec-
tionist model (Hadley & Cardei, 1997), but this model has some symbolic
components and so cannot be said to have achieved the highest levels of
systematicity in a connectionist way.

1352 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

theories will spring new types of more powerful and flexible
representation for building better intelligent systems as well
as for modelling human cognition.

Acknowledgements

We thank two anonymous referees who provided useful
comments on the first draft of this paper. Ron Sun acknowl-
edges the support from the ARI grant DASWO1-00-K-0012
during the preparation of this paper.

References

Adamson, M. J., & Damper, R. I. (1999). B-RAAM: a connectionist model
which develops holistic internal representations of symbolic structures.
Connection Science, 11, 41-71.

Ajjanagadde, V. (1991). Abductive reasoning in connectionist networks:
incorporating variables, background knowledge, and structured
explanada. Technical Report WSI 91-6, Wilhelm-Schickard Institute,
University of Tubingen, Tubingen, Germany.

Ajjanagadde, V. (1993). Incorporating background knowledge and
structured explanada in abductive reasoning: a framework. IEEE
Transactions on Systems, Man, and Cybernetics, 23, 650—654.

Ajjanagadde, V. (1997). Rule-based reasoning in connectionist networks.
PhD thesis, Department of Computer Sciences, University of
Minnesota.

Ajjanagadde, V., & Shastri, L. (1989). Efficient inference with multi-place
predicates and variables in a connectionist system. In Proceedings of
the 11th Annual Cognitive Science Society Conference (pp. 396—403).
Hillsdale, NJ: Lawrence Erlbaum.

Ajjanagadde, V., & Shastri, L. (1991). Rules and variables in neural nets.
Neural Computation, 3, 121-134.

Ampratwum, C. S., Picton, P. D., & Browne, A. (1998). Rule extraction
from neural network models of chemical species in optical emission
spectra. In Proceedings of the Workshop on Recent Advances in Soft
Computing (pp. 53—-64).

Andrews, R., Tickle, A. B., Golea, M., & Diederich, J. (1997). Rule
extraction from trained artificial neural networks. In A. Browne, Neural
network analysis, architectures and algorithmsBristol, UK: Institute of
Physics Press.

Baba, K., Enbutu, L., & Yoda, M. (1990). Explicit representation of
knowledge acquired from plant historical data using neural networks.
In Proceedings of the International Joint Conference on Neural
Networks (pp. 155-160).

Bailey, D., Chang, N., Feldman, J., & Narayanan, S. (1998). Extending
embodied lexical development. In Proceedings of the 20th Conference
of the Cognitive Science Society (pp. 84-89).

Ballard, D. H. (1986). Parallel logical inference and energy minimisation.
In Proceedings of the AAAI National Conference on Artificial
Intelligence (pp. 203-208).

Barnden, J. A. (1989). Neural net implementation of complex symbol
processing in a mental model approach to syllogistic reasoning. In
Proceedings of the International Joint Conference on Artificial
Intelligence (pp. 568-573).

Barnden, J., & Srinivas, K. (1992). Overcoming rule-based rigidity and
connectionist limitations through massively parallel case-based
reasoning. [International Journal of Man-Machine Studies, 36,
221-246.

Barnden, J. A., & Srinivas, K. (1996). Quantification without variables in
connectionism. Minds and Machines, 6, 173-201.

Benitez, J., Castro, J., & Requina, J. I. (1997). Are artificial neural networks
black boxes? IEEE Transactions on Neural Networks, 8 (5), 1156—
1164.

Bochereau, L., & Boutgine, P. (1990). Extraction of semantic features and
logical rules from multilayer neural networks. In Proceedings of the
International Joint Conference on Neural Networks, Washington, DC
(pp. 579-582).

Bologna, G. (2000). Rule extraction from a multilayer perceptron with
staircase activation functions. In Proceedings of the International
Joint Conference on Neural Networks, Como, Italy (pp. 419-424).

Browne, A. (1997). Challenges for neural computing. In A. Browne, Neural
network perspectives on cognition and adaptive robotics (pp. 3—19).
Bristol, UK: Institute of Physics Press.

Browne, A. (1998a). Detecting systematic structure in distributed
representations. Neural Networks, 11 (5), 815—-824.

Browne, A. (1998b). Performing a symbolic inference step on distributed
representations. Neurocomputing, 19, 23-34.

Browne, A., & Picton, P. (1999). Two analysis techniques for feed-forward
neworks. Behaviormetrika: Special Issue on Analysis of Knowledge
Representations in Neural Network Models, 26 (1), 75-87.

Browne, A., & Pilkington, J. (1995). Performing variable binding with
a neural network. In J. Taylor, Neural networks (pp. 71-84).
Henley-on-Thames, UK: Alfred Waller.

Browne, A., & Sun, R. (1999). Connectionist variable binding. Expert
Systems: The International Journal of Knowledge Engineering and
Neural Networks, 16 (3), 189-207.

Buchheit, P. (1999). A neuro-propositional model of language processing.
International Journal of Intelligent Systems, 13, 585-601.

Bullinaria, J. (1997). Analyzing the internal representations of trained
neural networks. In A. Browne, Neural network analysis, architectures
and algorithms (pp. 3—26). Bristol, UK: Institute of Physics Press.

Callan, R., & Palmer-Brown, D. (1997). (S)RAAM: an analytical technique
for fast and reliable derivation of connectionist symbol structure
representations. Connection Science, 9 (2), 139-159.

Chan, S. W. K., & Franklin, J. (1998). Symbolic connectionism in natural
language disambiguation. IEEE Transactions on Neural Networks, 9
(5), 739-755.

Churchland, P. S., & Sejnowski, T. (1992). The computational brain,
Cambridge, MA: MIT Press.

Cohen, M. S., Freeman, J. T., & Wolf, S. (1996). Meta-recognition in time
stressed decision making: recognizing, critiquing, and correcting.
Human Factors, 38 (2), 206-219.

Collins, A., & Loftus, J. (1975). Spreading activation theory of semantic
processing. Psychological Review, 82, 407-428.

Craven, M. W., & Shavlik, J. W. (1997). Understanding time series
networks. International Journal of Neural Systems, 8 (4), 373-384.
Crick, F. (1989). The recent excitement about neural networks. Nature, 337,

129-132.

Derthick, M. (1988). Mundane reasoning by parallel constraint
satisfaction. Technical Report TR CMU-CS-88-182, Carnegie Mellon
University.

Diederich, J. (1988). Connectionist recruitment learning. In Proceedings of
the European Conference on Artificial Intelligence (pp. 351-356).
Diederich, J. (1991). Steps towards knowledge-intensive connectionist
learning. In J. A. Barnden & J. Pollack, Advances in connectionist

and neural computation theory, vol. 1. Norwood, NJ: Ablex.

Ding, L., The, H. H., Wang, P., & Liu, H. C. (1996). A Prolog-like inference
system based on neural logic: an attempt towards fuzzy neural logic
programming. Fuzzy Sets and Systems, 82, 235-251.

Dolan, C. P., & Smolensky, P. (1989). Tensor product production system—
a modular architecture and representation. Connection Science, 1 (1),
53-68.

Dyer, M. G. (1990). Distributed symbol formation and processing in
connectionist network. Journal of Experimental and Theoretical
Artificial Intelligence, 2, 215-239.

Dyer, M. G. (1995). Connectionist natural language processing: a status
report. In R. Sun & L. A. Bookman, Computational architectures
integrating neural and symbolic processes (pp. 389-429). Boston,
USA: Kluwer Academic Press.

Eliasmith, C., & Thagard, P. (2001). Integrating structure and meaning: a

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1353

distributed model of analogical mapping. Cognitive Science, 25, 245—
286.

Feldman, J. A., & Ballard, D. H. (1992). Connectionist models and their
properties. Cognitive Science, 6(3), 205-254.

Fletcher, G., & Hinde, C. (1995). Using neural networks as a tool for
constructive rule based architectures. Knowledge Based Systems, 8
(4), 183-187.

Franklin, S., & Garzon, M. (1990). Neural compatibility. In O. Omidvar,
Progress in neural networks, vol. 1. Norwood, NJ: Ablex.

Fu, L. (1994). Rule generation from neural networks. IEEE Transactions on
Systems, Man, and Cybernetics, 24 (8), 1114—-1124.

Gallant, S. I. (1988). Connectionist expert systems. Communications of the
ACM, 31, 152-169.

Gallant, S. I., & Hayashi, Y. (1990). A neural network expert system with
confidence measurements. In Proceedings of the International
Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems, Paris, France (pp. 3-5).

Gayler, R. W. (1998). Multiplicative binding, representation operators and
analogy (full text available at http://cogprints.soton.ac.uk). In K.
Holyoak, D. Gentner & B. Kokinov, Advances in analogy research:
integration of theory and data from the cognitive, computational and
neural sciences, Sofia, Bulgaria: New Bulgarian University.

Ghalwash, A. Z. (1998). A recency inference engine for connectionist
knowledge bases. Applied Intelligence, 9, 205-215.

Giles, C., & Omlin, C. (1993a). Extraction, insertion, and refinement of
symbolic rules in dynamically driven recurrent networks. Connection
Science, 5 (3&4), 307-328.

Giles, C., & Omlin, C. (1993). Rule refinement with recurrent neural
networks. In Proceedings of the IEEE International Conference on
Neural Networks (pp. 801-806).

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., & Lee, Y. C.
(1992). Learning and extracting finite state automata with second order
recurrent neural networks. Neural Computation, 4, 393—-405.

Goh, T. H. (1993). Semantic extraction using neural network modelling and
sensitivity analysis. In Proceedings of the International Joint
Conference on Neural Networks, Nagoya, Japan (pp. 1031-1034).

Hadley, R. (1990). Connectionism, rule following and symbolic
manipulation. In Proceedings of the American Association of Artificial
Intelligence (vol. 2, pp. 579-586).

Hadley, R. (1992). Compositionality and systematicity in connectionist
language learning. In Proceedings of the 14th Annual Conference of
the Cognitive Science Society (pp. 659-664). Lawrence Erlbaum.

Hadley, R. F., & Cardei, V. C. (1997). Acquisition of the active-passive
distinction from sparse input and no error feedback. Technical Report
CSS-IS TR97-01. School of Computing Science, Simon Frazer
University, Burnaby, B.C., Canada.

Halford, G. S. (1993a). Commentary: competing, or perhaps
complementary approaches to the dynamic binding problem with
similar capacity limitations. Behavioral and Brain Sciences, 16 (3),
461-462.

Halford, G. S. (1993b). Creativity and the capacity for representation: why
are humans so creative? AISB Quarterly, 85, 32—-41.

Halford, G. S., Wilson, W. H., Guo, J., Gayler, R. W., Wiles, J., & Stewart,
J. E. M. (1994). 63 415. Connectionist implications for processing
capacity limitations in analogies (p. 3). Norwood, NJ: Ablex.

Halford, G., Wilson, W., & Phillips, S. (1998). Processing capacity defined
by relational complexity: implications for comparative, developmental,
and cognitive psychology. Behavioral and Brain Sciences, 21(6), 803—
831.

Hayashi, Y. (1991). A neural expert system with automated extraction of
fuzzy if-then rules and its application to medical diagnosis. In R.
Lippmann, J. Moody & D. Touretzky, Advances in neural information
processing systems, vol. 3. San Mateo, CA: Morgan Kaufman.

Henschen, L., & Wos, L. (1974). Unit refutations and Horn sets. Journal of
the Association for Computing Machinery, 21, 590-605.

Hilario, M. (1997). An overview of strategies for neurosymbolic

integration. In R. Sun & F Alexandre, Connectionist symbolic
integration, Hillsdale, NJ: Lawrence Erlbaum.

Hilario, M. (2000). Architectures and techniques for knowledge-based
neurocomputing. In I. Cloete & J. M. Zurada, Knowledge-based
neurocomputing hybrid systems reference (pp. 27—62). Cambridge,
UK: MIT Press.

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist
networks. Artificial Intelligence, 46, 47-75.

Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed
representations. In D. Rumelhart & J. McClelland, Parallel distributed
processing (pp. 77-109). Cambridge, MA: MIT Press.

Hogger, C. J. (1990). Essentials of logic programming, New York:
McGraw-Hill.

Holldobler, S. (1990). A connectionist unification algorithm. Technical
Report TR-90-012, International Computer Science Institute, Berkeley,
CA.

Holldobler, S. (1990). CHCL—a connectionist inference system for Horn
logic based on the connection method. Technical Report TR-90-042,
International Computer Science Institute, Berkeley, CA.

Hummel, J. E., & Holyoak, K. (1998). Distributed representations of
structure: a theory of analogical access and mapping. Psychological
Review, 104, 427-466.

Ishikawa, M. (2000). Rule extraction by successive regularization. Neural
Networks, 13, 1171-1183.

Kabat, W., & Wojcik, A. (1985). Automated synthesis of combinatorial
logic using theorem proving techniques. IEEE Transactions on
Computing, C-34, 610—-628.

Kanerva, P. (1998). Encoding structure in Boolean space. In Proceedings of
the International Conference on Artificial Neural Networks (pp.
387-392).

Kasabov, N. K. (1994). Connectionist fuzzy production systems. In
Proceedings of the Fuzzy Logic in Artificial Intelligence IJCAI
Workshop of LNAI (vol. 847, pp. 114—127). Berlin: Springer-Verlag.

Kasabov, N. K., & Shishkov, S. I. (1993). A connectionist production
system with partial match and its use for approximate reasoning.
Connection Science, 5 (3—4), 275-305.

Lane, P., & Henderson, J. (1998). Simple synchrony networks: learning to
parse natural language with temporal synchrony variable binding. In
Proceedings of the International Conference on Artificial Neural
Networks (pp. 615-620).

Lange, T., & Dyer, M. G. (1989). High-level inferencing in a connectionist
network. Technical Report UCLA-AI-89-12, UCLA, Los Angeles,
USA.

Lee, G., Flowers, M., & Dyer, M. G. (1990). Learning distributed
representations for conceptual knowledge and their application to
script-based story processing. Connection Science, 2 (4), 313-345.

Lima, P. M. V. (1992). Logical abduction and prediction of unit clauses in
symmetric Hopfield networks. In 1. Alexander & J. Taylor, Artificial
neural networks, Amsterdam, The Netherlands: Elsevier.

Machado, R. J., & da Rocha, A. F. (1997). Inference, inquiry, evidence,
censorship and explanation in connectionist expert systems. /EEE
Transactions on Fuzzy Systems, 5 (3), 443—459.

MacLennan, B. (1993). Characteristics of connectionist knowledge
representation. Information Sciences, 70, 119—143.

Magadalena, L. (1997). A first approach to a taxonomy of fuzzy-neural-
systems. In R. Sun & F. Alexandre, Connectionist symbolic integration,
Hillsdale, NJ: Lawrence Erlbaum.

Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. (1999). Rule learning
in seven month old infants. Science, 283, 77-80.

Markov, Z. (1991). A tool for building connectionist-like networks based
on term unification. In Proceedings of the Processing Declarative
Knowledge International Workshop (pp. 199-213).

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

McGarry, K., Wermter, S., & Maclntyre, J. (1999a). Hybrid neural systems:
from simple coupling to fully integrated neural networks. Neural
Computing Surveys, 2 (1), 62-93.

1354 A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355

McGarry, K., Wermter, S., & Maclntyre, J. (1999). Knowledge extraction
from radial basis function networks and multilayer perceptrons. In
Proceedings of the International Joint Conference on Neural Networks,
Washington, DC.

McMillan, C., Mozer, M. & Smolensky, P. (1993). Dynamic conflict
resolution in a connectionist rule-based system. In Proceedings of the
International Joint Conference on Artificial Inteligence (vols. 1 and 2,
pp. 1366-1371).

Medsker, L. R. (1994). Hybrid neural network and expert systems, Boston,
MA: Kluwer Academic.

Mitra, S., & Hayashi, Y. (2000). Neuro-fuzzy rule generation: survey in a
soft computing framework. IEEE Transactions on Neural Networks, 11
(3), 748-768.

Narazaki, H., & Ralescu, A. L. (1992). A connectionist approach for
rule-based inference using an improved relaxation method. IEEE
Transactions on Neural Networks, 3 (5), 741-751.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4,
135-183.

Newell, A. (1986). The symbol level and the knowledge level. In Z. W.
Pylyshyn & W. Demopoulos, Meaning and cognitive structure (pp. 31—
39). Norwood, NJ: Ablex.

Niklasson, L., & van Gelder, T. (1994). Can connectionist models exhibit
non-classical structure sensitivity? In Proceedings of the Cognitive
Science Society (pp. 664—669). Hillsdale, NJ: Lawrence Erlbaum.

Nilsson, N. J. (1971). Problem solving methods in artificial intelligence,
New York: McGraw-Hill.

Paccanaro, A., & Hinton, G. (2000). Learning distributed representations
of concepts using linear relational embedding. Technical Report
GCNU TR 2000-002, University College London, London, UK.

Page, M. (2000). Connectionist modeling in psychology: a localist
manifesto. Behavioral and Brain Sciences, 23, 479-480.

Park, N. S. (2000). Connectionist symbolic rule encoding using a
generalized phase-locking mechanism. Expert Systems: The
International Journal of Knowledge Engineering and Neural Networks
(Special Issue on Connectionist Symbol Processing), (in press).

Park, N. S., Robertson, D., & Stenning, K. (1995). Extension of the
temporal synchrony approach to dynamic variable binding in a
connectionist inference system. Knowledge-Based Systems, 8 (6),
345-357.

Peterson, T., & Sun, R. (1998). An RBF network alternative to a hybrid
architecture. In Proceedings of the IEEE International Joint Conference
on Neural Networks (pp. 768—773).

Phillips, S. (1998). Are feedforward and recurrent networks systematic?
Analysis and implications for a connectionist cognitive architecture.
Connection Science, 10 (2), 137-160.

Phillips, S., & Halford, G. S. (1997). Systematicity: psychological evidence
with connection implications. In Proceedings of the 19th Annual
Conference of the Cognitive Science Society (pp. 614—619).

Pinkas, G. (1995). Reasoning, nonmonoticity and learning in connectionist
networks that capture propositional knowledge. Artificial Intelligence,
77,203-247.

Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis
of a parallel distributed processing model of language acquisition.
Cognition, 28 (1-2), 73—193.

Plate, T. (1991). Holographic reduced representations. Technical Report
CRG-TR-91-1, Department of Computer Science, University of
Toronto, Ontario, Canada.

Plate, T. (1995). Holographic reduced representations. IEEE Transactions
on Neural Networks, 6 (3), 623-641.

Plate, T. (2000). Analogy retrieval and processing with distributed vector
representations. Expert Systems: The International Journal of
Knowledge Engineering and Neural Networks (Special Issue on
Connectionist Symbol Processing), 17 (1), 29-40.

Pollack, J. B. (1988). Recursive auto-associative memory—devising
compositional distributed representations. In Proceedings of the 10th
Annual Conference of the Cognitive Science Society (pp. 33—39).

Port, R. F., & van Gelder, T. (1995). Mind as motion: Explorations in the
dynamics of cognition, Cambridge, MA: MIT Press.

Rachkovski, D. A., & Kussel, E. M. (2001). Binding and normalisation of
binary sparse distributed representations by context-dependent
thinning. Neural Computation, 13 (2), 411-452.

Raghuvanshi, P. S., & Kumar, S. (1997). Bipolar radial basis function
inference networks. Neurocomputing, 13, 195-204.

Robinson, J. A. (1965a). Automatic deduction with hyper-resolution.
International Journal of Computing and Mathematics, 1, 227-234.
Robinson, J. A. (1965b). A machine-oriented logic based on the resolution
principle. Journal of the Association for Computing Machinery, 12, 23—

41.

Robinson, G., & Wos, L. (1981). Paramodulation and theorem proving in
first-order theories with equality, Amsterdam, The Netherlands:
Elsevier.

Rosenfeld, R., & Touretzky, D. (1988). Coarse coded symbol memories and
their properties. Complex Systems, 2, 463—484.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation, Cambridge, MA: MIT
Press.

Saito, K., & Nakano, R. (1988). Medical diagnostic expert system based on
PDP model. In Proceedings of IEEE International Conference on
Neural Networks (pp. 255-262).

Samad, T. (1992). Hybrid distributed/localist architectures After
Touretzky, Rubicon, a connectionist rule-based system that allows for
a variable number of expressions in the left and right-hand of a rule.
Similar approaches taken by Kasabov and Shishkov (1993); Kasabov
(1994). In A. Kandel & G. Langholz, Hybrid architectures for
intelligent systems (pp. 200-219). Boca Raton, FL: CRC Press.

Sethi, 1., & Yoo, J. (1994). Symbolic approximation of feedforward
networks. In E. Gesema & L. Kanal, Pattern recognition in practice
(pp. 313-324). , vol. IV. Elsevier, North-Holland.

Setiono, R. (2000). Extracting m-of-n rules from trained neural networks.
IEEE Transactions on Neural Networks, 11 (2), 512-519.

Shapiro, E. (1991). Encyclopedia of artificial intelligence, Cambridge, MA:
MIT Press.

Sharkey, N. (1992). The ghost in the hybrid: a study of uniquely
connectionist representations. AISB Quarterly, 79, 10-16.

Shastri, L. (1999). Advances in SHRUTI: a neurally motivated model of
relational knowledge representation and rapid inferencing using
temporal synchrony. Applied Intelligence, 11 (1), 79—-108.

Shastri, L., & Ajjanagadde, V. (1990). From simple associations to
systematic reasoning: a connectionist representation of rules, variables
and dynamic bindings. Technical Report MS-CIS-90-05, University of
Pennsylvania, Philadelphia, PA.

Shastri, L., Grannes, D. J., Narayanan, S., & Feldman, J. A. (1999). A
connectionist encoding of schemas and reactive plans. In G. K.
Kraetzschmar & G. Palm, Hybrid information processing in adaptive
autonomous vehicles: lecture notes in artificial intelligence, Berlin:
Springer-Verlag.

Shastri, L., & Wendelken, C. (1999). Knowledge fusion in the large: taking
a cue from the brain. Proceedings of the Second International
Conference on Information Fusion, Sunnyvale, CA (pp. 1262-1269).

Shavlik, J. (1994). Combining symbolic and neural learning. Machine
Learning, 14 (2), 321-331.

Shavlik, J., & Towell, G. (1989). An approach to combining
explanation-based and neural learning algorithms. Connection Science,
1 (3), 233-255.

Smolensky, P. (1988). On the proper treatment of connectionism.
Behavioral and Brain Sciences, 11, 1-74.

Smolensky, P. (1990). Tensor product variable binding and the
representation of symbolic structures in connectionist systems.
Artificial Intelligence, 46, 159-216.

Smolensky, P. (1995). Computational models of mind, Cambridge, MA:
Blackwell.

Smolensky, P., Legendre, G., & Miyata, Y. (1992). Principles for an
integrated connectionist and symbolic theory of higher cognition.

A. Browne, R. Sun / Neural Networks 14 (2001) 1331-1355 1355

Technical Report CU-CS-600-92, Computer Science Department,
University of Colorado, Boulder, CO.

Sperduti, A. (1995). Stability properties of labeling recursive auto-
associative memory. IEEE Transactions on Neural Networks, 6 (6),
1452-1460.

Sun, R. (1989). A discrete neural network model for conceptual
representation and reasoning. In Proceedings of the 11th Conference
of the Cognitive Science Society (pp. 916-923). Hillsdale, NI:
Lawrence Erlbaum.

Sun, R. (1992). On variable binding in connectionist networks. Connection
Science, 4, 93-124.

Sun, R. (1995a). A new approach towards modelling causality in
commonsense reasoning. International Journal of Intelligent Systems,
10, 581-616.

Sun, R. (1995b). Robust reasoning: integrating rule-based and
similarity-based reasoning. Artificial Intelligence, 75 (2), 241-296.
Sun, R. (1995c). Schemas, logics and neural assemblies. Applied

Intelligence, 5 (2), 83—-102.

Sun, R., & Alexandre, F. (1997). Connectionist symbolic integration,
Hillsdale, NJ: Lawrence Erlbaum.

Sun, R., & Bookman, L. A. (1994). Computational architectures
integrating neural and symbolic processes: a perspective on the state
of the art, Boston: Kluwer.

Sun, R., & Peterson, T. (1998). Autonomous learning of sequential tasks:
experiments and analyses. I[EEE Transactions on Neural Networks, 9
(6), 1217-1234.

Sun, R., & Waltz, D. (1991). Neurally inspired massively parallel model of
rule-based reasoning. In B. Soucek, Neural and intelligent system
integration (pp. 341-381). New York: John Wiley.

Taha, I., & Ghosh, J. (1997). Evaluating and ordering of rules extracted
from feedforward networks. In Proceedings of the IEEE International
Conference on Neural Networks (vol. 1, pp. 408—413).

Thrun, S. (1995). Extracting rules from artificial neural networks with
distributed representations. In G. Tesauro, D. Touretzky & T. Leen,
Advances in neural information processing systems (pp. 505-512).
San Mateo, CA: MIT Press.

Tickle, A., Maire, F., Bologna, G., Andrews, R., & Diederich, J. (2000).
Lessons from past, current issues, and future research directions
in extracting knowledge embedded in artificial neural networks. In
S. Wermter & R. Sun, Hybrid neural systems, Berlin: Springer-
Verlag.

Touretzky, D. S., & Hinton, G. E. (1988). A distributed connectionist
production system. Cognitive Science, 12 (3), 423-466.

Towell, G., & Shavlik, J. W. (1993). The extraction of refined rules from
knowledge based neural networks. Machine Learning, 31, 71-101.
Ultsch, A., Mantyk, R., & Halmans, G. (1993). Connectionist knowledge
acquisition tool: CONKAT. In J. Hand, Artificial intelligence frontiers
in statistics: Al and statistics (vol. III, pp. 256-263). London, UK:

Chapman & Hall.

van Gelder, T. (1991). What is the ‘D’ in ‘PDP’? A survey of the concept of
distribution. In W. Ramsey, S. Stich & D. E. Rumelhart, Philosophy and
connectionist theory (pp. 33—60). Hillsdale, NJ: Lawrence Erlbaum.

Weber, V. (1992). Connectionist unification with a distributed
representation. In Proceedings of the International Joint Conference
on Neural Networks (pp. 555-560).

Weber, V. (1993). Unification in Prolog by connectionist models. In
Proceedings of the Fourth Australian Conference on Neural Networks

(pp.- A5-A8).
Wermter, S., & Sun, R, (2000). Hybrid neural systems, Heidelberg:
Springer.

Wiles, J., Halford, G., Stewart, J. E. M., Humphreys, M. S., Bain, J. D., &
Wilson, W. H. (1992). Tensor models: a creative basis for memory
retrieval and analogical mapping. Technical Report 218, University
of Queensland, Queensland, Australia.

Yeung, D., & Fong, H. (1994). Knowledge matrix: an explanation and
knowledge refinement facility for a rule induced neural network. In
Proceedings of the 12th National Conference on Artificial Intelligence
(vol. 2, pp. 889-894).

Yoon, B., & Lacher, R. (1994). Extracting rules by destructive learning. In
Proceedings of the IEEE International Conference on Neural Networks,
Orlando, FL (pp. 1771-1776).

