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Abstract 
 
Association rule mining has become an essential data mining technique in various fields and the massive 

growth of the available data demands more and more computational power. To address this issue, it is 

necessary to study parallel implementations of such algorithms. In this paper, we propose a parallel 

approach to the Frequent Pattern Tree (FP-Tree) algorithm, which is a fast and popular tree projection 

based mining algorithm. In our approach we build several local frequent pattern trees and carry out the 

mining task parallely until all the frequent patterns are generated. We have devised a dynamic task 

scheduling strategy at different stages of the algorithm to achieve good workload balancing among 

processors at runtime. According to experimental results with data sets generated by the IBM synthetic 

data generator on a 32 processor distributed memory environment (Terascale Computing System), our 

parallel algorithm resulted in higher speedups in almost all the cases compared to the sequential 

algorithm. Also, our parallel algorithm showed scalable performance for larger data sets. 
 

Keywords: Parallel association rule mining, Parallel FP-Tree algorithm. 

 
 

1. Introduction 

Knowledge Discovery & Data mining (KDD) has become an important inference process to 

discover previously unknown patterns in vast amount of data. Such knowledge discovery process 

provides a lot of useful information in all the fields of business, science, medicine, and etc. For 

example, in the field of business, identifying customer buying patterns and customer groups 

provide wealth of information to improve the organization. When considering the availability of 

massive volume of data, analyzing and decision making is still a major issue. 

   One popular and commonly used data mining task is the mining for associations, which is the 

process of finding associations between items in transactional data. There are several association 

rule mining algorithms available [1, 3, 13, 19]. One interesting algorithm is the FP-Tree 

algorithm recently proposed by Han et al [3]. Although the FP-Tree algorithm is very efficient, 

when compared with previously available association rule mining algorithms, it still takes a lot 

of time to mine massive volume of data measured in millions of transactions. To address this 

issue, it is necessary to study parallel implementation of such algorithms. Parallel 

implementation of tree projection based algorithms, such as FP-Tree, has received relatively little 

attention. Existing parallel implementations such as [2] have been targeted to shared-memory 

environments only. 



   In this paper, we propose a parallel formulation of the FP-Tree algorithm on a distributed 

memory environment. Our parallel algorithm consists of two main stages: parallel construction 

of FP-trees for each available processor, and parallel formulation of the FP-Growth sequential 

mining method to mine each FP-tree. We construct conditional pattern bases [3] and build 

Conditional FP-Trees (CFPT) [3] recursively in parallel until all the frequent itemsets are 

generated. We have identified two major bottlenecks of existing parallel approaches; one is the 

time to combine the conditional pattern bases of every processor to generate CFPTs and the other 

is the time to mine CFPTs recursively. Here we attack them by proposing a master-worker based 

dynamic task scheduling technique to balance the workload at run time. Due to the skewness of 

transactional databases, dynamic task scheduling technique we propose here will give good 

performance than existing approaches with static task scheduling. We also give a time 

complexity analysis of the parallel algorithm to justify our results. 

   We have implemented and tested our algorithm using large data sets on a Terascale Computer 

System (TCS) at the Pittsburgh Supercomputing Center. Our machine environment consists of 

Compaq Alpha server ES45 nodes connected by a high-speed network and we used MPI [15] to 

achieve parallel communication. We have used up to 32 processors of this system and evaluated 

our algorithms with transactional database size of up to 5 millions. In almost all the cases, we 

achieved high speedups and scalable performance. 

   The rest of the paper is organized as follows: Section 2 describes the problem statement and 

related research in this area. Section 3 describes the parallel execution model and the proposed 

parallel FP-tree algorithm in detail. Section 4 presents the environment used to test our algorithm 

and the results obtained by evaluating it on the target architecture. Finally, Section 5 concludes 

the paper. 

 

2. Frequent Itemset Mining 

The problem of mining for frequent patterns can be stated as follows: Let I = {i1, i2, …,im} be a 

set of m distinct items. An itemset S is a non-empty subset of items; i.e. S ⊆ I. Itemset with k 

items is called a k-itemset. Also, an item can occur only once in an itemset. 

   A transaction database D consists of set of transactions where each transaction is of the form: 

(transaction_id, itemset). The support of an itemset S is defined as the fraction of total 

transactions that contain S. An itemset is called frequent if its support is above a user specified 

minimum support threshold t. Given a database D of transactions and support threshold t, the 

problem of mining for frequent patterns is to find all frequent itemsets in the database. 

 

2.1 Related Work 

The problem of mining association rules was first addressed by Agrawal et al [8]. Since then a 

number of algorithms for association rule mining has been proposed [1, 3, 4, 7, 13, 18, 19]. A 

popular algorithm is the Apriori algorithm [1], which forms the foundation for many sequential 

and parallel algorithms. However candidate set generation of this algorithm seems to be a major 

cost. Recently tree projection algorithms [4, 7], where transactions in the database are projected 

to a lexicographic tree, were proposed. FP-Tree [3] is another such algorithm, which creates a 

compact tree structure and applies partitioned-based, divide & conquer method of mining. This 

approach has shown faster execution time than other recent techniques in the literature. 

   There have been several parallel association rule mining algorithms in the literature [2, 5, 6, 14, 

15, 16, 17, 21, 22, 23]. Most such parallel algorithms are Apriori based. Agrawal et al [6] 



presents three different parallel versions of the Apriori algorithm on distributed memory 

environment. The count distribution algorithm replicates the generation of the candidate set and 

is a straightforward parallelization of Apriori. The other two algorithms (data distribution and 

hybrid) partition the candidate set among processors. Park et al [14] uses a similar approach by 

replicating the candidate set on all processors. Several parallel mining algorithms were presented 

in [5] for generalized association rules and they addressed the problem of skewed transactional 

data. Cheung et al [22] also addressed the effect of data skewness in their FPM (Fast Parallel 

Mining) algorithm, which is based on the count distribution approach. A parallel tree projection 

based algorithm, called MLFPT, based on FP-Tree algorithm is presented in [2] for a shared 

memory environment. In our approach we construct several local FP-trees similar to that in [2] 

on a distributed memory environment. Also, [2] used static task partitioning strategy to balance 

the workload. But in our approach we used master-worker based dynamic task-scheduling 

strategy during the merging phase of conditional pattern bases and the mining phase to balance 

the workload dynamically at runtime, and obtained fast performance than in [2] on a distributed 

memory environment. 

 

3. Parallel Itemset Mining 

Our proposed parallel frequent pattern mining algorithm consists of parallel construction of 

frequent pattern trees and parallel mining of the tree structure on a distributed memory 

environment. A detailed description of each major step is described in subsequent sections. 

 

3.1 Parallel Frequent Pattern Tree Construction 

The first stage of the parallel mining algorithm is the construction of FP-trees parallely on each 

processor. For this purpose, we divide the transactional database (D) equally among available 

processors (P). This ensures that each processor gets N/P transactions (DN/P), where N and P are 

the total number of transactions in the database and the number of processors available 

respectively. Partitioning of the database among the P processors is done randomly. After 

partitioning of data, it is necessary to identify the frequent 1-itemset (F1-itemset) before building a 

local FP-tree. Once each processor counts the frequency ( )(if local ) of each item i using its local 

data partition DN/P all worker processors send the local count )(if local to master processor. The 

master processor collects all such items and combines them to generate a global count )(if global . 

After that it removes the items with support count less than the minimum support threshold t. 

Once a complete frequent 1-itemset is constructed, it will be broadcasted to all the processors in 

the group. 

   The next step is the building of FP-trees. Each processor scans its local database DN/P and 

inserts frequent items into its local FP-tree. Construction of a FP-tree by each processor for its 

local database is as same as that described in the serial algorithm [3]. Further more, we have used 

the same data structure illustrated in [3] to implement the tree.  

   We have shown a sample database, with 12 transactions and 10 items (0, 1, 2,…, 9) in Figure 

1. The database is partitioned among 3 processors (P0, P1, P2) where each processor has equal 

number of transactions. With a support threshold of 6 we can determine the frequent 1-itemset 

with the support count as {3:11, 8:9, 9:9, 5:8, 6:7, 0:7, 7:7}. Figure 1 also shows the initial FP-

trees constructed by each processor using its local database. 
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3.2 Parallel Mining & Frequent Itemset Generation 

Our mining approach consists of several stages. In the first stage we traverse the local FP-tree 

and form the conditional pattern bases. In the next stage, we combine conditional pattern bases 

of every processor to build the first conditional FP-tree (CFPT) for each frequent item. Final 

stage is to perform further mining by building conditional pattern bases and CFPTs recursively 

until it generates all the frequent itemsets. A detail description is given in subsequent sections. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Partitioned transaction database & initial FP-trees 

 

 

3.2.1 Construction of Conditional Pattern Bases 

Each processor visits its header table (local frequent 1-itemset) in a top-down manner and forms 

the conditional pattern bases for each frequent item. Formation of the conditional pattern bases is 

done by a bottom-up traversal of the nodes in the local FP-Tree as in the serial algorithm [3]. 

This process is illustrated in Table 1 for our sample database.  

 

3.2.2 Building of First Conditional FP-Tree 

When all the conditional pattern bases are available, conditional FP-Trees are built by merging 

the conditional pattern bases. Our method of merging is similar to that mentioned in [2] and [3]. 

For each frequent item, the conditional pattern bases are merged such that the support counts of 

the same items are added to calculate the total support count. Also, if this total support count of 

an item is less than the minimum support threshold, the item will be removed from the 

conditional FP-tree. This process is illustrated in Table 1 for the minimum support threshold of 

six.    

 We found out that the merging phase is one bottleneck of our parallel approach, which takes a 

lot of time for a large database. So, here we propose a parallel model to generate conditional FP-

trees, such that the workload is fairly balanced among available processors. Our parallel model is 

a master-worker model. The master processor submits the items to be mined and the worker 

processors generate the conditional FP-Trees for those items. Once a worker processor completes 

the generation of conditional FP-tree for a given item, it sends a token to the master processor 

requesting the next item. The task of the master processor is to listen to incoming requests from 
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any worker processors. It responds to them by sending the next item. Once the worker processor 

receives the next item, it will start generating the CFPT for that item. The communication 

overhead is minimal because each processor sends a token only. Also, the workload is balanced 

fairly among the processes in the group. Because once a processor finished its task, it gets 

another one immediately. 
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Table 1: Conditional pattern bases & first conditional FP-Trees after the merging  

 

 

3.2.3 Generation of Frequent Itemsets 

Generation of frequent itemsets is the final stage of our parallel mining process. Here we have 

proposed a parallel model to find frequent itemsets by building conditional pattern bases and 

conditional FP-Trees recursively by each processor. Once a conditional FP-tree with a one 

branch is constructed, we obtain all possible combinations of the items in that tree as frequent 

itemsets similar to that in the serial FP-Growth algorithm [3]. 

   Our parallel model is a master-worker model similar to that used in the merging phase. The 

master processor submits the base items to be mined and the worker processors carry out the 

mining task for those items, and generate frequent itemsets. In this model, once a worker 

processor finished its task it gets another one immediately, which makes all the processors busy 

until the end of mining process. Here the work load balancing happens at runtime. Our master-

worker model continues until all the frequent itemsets are generated for each frequent item in the 

F1-itemset. After that all worker processors send their frequent itemsets to the master processor and 

the mining process stops.  

   For each item, frequent item sets are generated by constructing conditional pattern bases and 

conditional FP-Trees recursively as shown by Figure 2 (only first recursive level conditional FP-

Trees are shown for clarity). Here we have three processors and therefore two worker processors 
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generate frequent itemsets as shown in Figure 2. Also, Figure 2 shows all the frequent itemsets 

for our example database.  
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Figure 2: Frequent itemsets generated by subsequent construction of pattern bases & CFPTs  

 

 

3.2 Parallel FP-Tree Algorithm 

In this section we give our parallel FP-Tree itemset mining algorithm, based on dynamic task 

partitioning technique. 

 

 
Algorithm: Parallel frequent itemset mining. 

Input: Transaction database DN/P for each processor and minimum support threshold t. 

Output: The complete set of frequent itemsets. 

Method: 

(1) read local transactional database DN/P; 

(2) count local frequency flocal(i) for each item i; 

(3) if Master processor then 

(4) for each Worker processor do 

(5)  receive flocal(i); 

(6) let F1-itemset ={i | ∑ flocal(i) ≥ t for each item i} & broadcast F1-itemset to all; 

(7) else send flocal(i) for each item i to Master and receive frequent 1-itemset F1-itemset; 

(8) build local FP-Tree FPTlocal by scanning local DN/P for items in F1-itemset; 

(9) traverse FPTlocal and generate conditional pattern bases and broadcast to all; 

(10) if Master processor then 

(11) for each frequent item i ∈ F1-itemset do // Task scheduling to form CFPTs 

(12) get Worker processor request and send item i; 

(13) for each frequent item i ∈ F1-itemset do // Task scheduling for mining 

(14)  get Worker processor request and send item i to be mined; 

First recursive level 



(15) for each Worker processor do  

(16) collect frequent itemsets and output all frequent itemsets; 

(17)  else do    // Merging of conditional pattern bases 

(18)  request next item i and generate Conditional FP-Tree CFPTi; 

(19) until end of frequent items; 

(20) broadcast CFPTs to every processor except Master and receive all CFPTs; 

(21) do     

(22)   request next item i and call FP-Growth-OneItem (CFPTs, null, i); 

(23) until end of frequent items; 

(24) send frequent itemsets to Master; 

 

 

Subroutine FP-Growth-OneItem (Tree, α, i) 

Method: 

(1) if Tree contains a single path and i ≠ null then 

(2) generate itemset with support ≥ t for each combination of the nodes in the path 

(3) else if i ≠ null then 

(4)  generate itemset β = i ∪ α and construct β’s conditional pattern bases and CFPTβ 

(5) else for each i in the header table of Tree  

(6) generate itemset β = i ∪ α and construct β’s conditional pattern bases and CFPTβ 

(7) if CFPTβ  ≠ ∅ call FP-Growth-OneItem(CFPTβ , β, null) 

 

 

4. Performance Evaluation 

4.1. Evaluating Environment 

Our machine environment consists of 750 Compaq Alpha server ES45 nodes and two separate 

front-end nodes (Lemieux at Pittsburgh Supercomputing Center). Each such node contains four 

1-GHz processors and runs the Tru64 Unix operating system. A Quadrics interconnection 

network connects the nodes. Each node is a 4 processor SMP, with 4Gb of memory [13].  

   Our programs are compiled using C compilers (gcc) with default code optimization. To run a 

job, we use batch mode (dedicated) available on Lemieux. The Portable Batch System (PBS) 

scheduler controls all access to Lemieux's compute nodes.  

   We used transactional databases generated by the IBM Quest synthetic data generator [12]. 

The sizes of our databases vary from 1 to 5 millions transactions. There are 10,000 different 

items in all of our transactional databases and the average length of a transaction is 10 to 20 

items. Various parameters of the databases are shown in Table 2. Also, each transaction contains 

set of items preceded by the length of the transaction. We used minimum support threshold of 

0.1% in all our experiments. 

 
 

Data Sets 
Parameters 

T10I4D1000k T20I4D1000k T10I4D1500k T10I4D2000k T10I4D5000k 

No. of Transactions in Database 1,000,000 1,000,000 1,500,000 2,000,000 5,000,000 

No. of different Items in Database 10,000 10,000 10,000 10,000 10,000 

Avg. No. of Items per Transaction 10 20 10 10 10 

Avg. length of Maximal Pattern 4 4 4 4 4 

 

Table 2: Parameters of the generated data sets 



   We used Message Passing Interface (MPI) library [15] to achieve parallel communication of 

our programs. MPI message passing library is available on the machine environment we used.  

 

4.2. Experimental Results 

We have run the proposed parallel algorithm with 2, 4, 8, 16 and 32 processors, and compared it 

with the FP-tree sequential algorithm. Sequential version of the FP-Tree algorithm is obtained 

from the author [3]. Both parallel and sequential algorithms were executed and the frequent 

itemsets were generated for a minimum support threshold of 0.1%. Itemsets generated by both 

algorithms were compared and parallel algorithm generated the same result as that of the serial 

algorithm. We have measured FP-tree building time and mining time in seconds. Table 3 shows 

our measurements for all the data sets for both parallel and sequential (P = 1) FP-Tree 

algorithms. Figure 3 shows execution time variation for the parallel algorithm. Two figures were 

shown because of the difference in time scale. 

 

Number of Processors 

Data Set 
1 2 4 8 16 32 

T10I4D1000k       

Build-Tree 1466.94 428.37 137.04 49.40 21.47 10.41 

Mining 443.82 248.37 85.92 56.76 38.96 35.12 

Total 1910.76 676.75 222.95 106.16 60.44 45.53 

T20I4D1000k       

Build-Tree 9539.23 2372.88 647.34 186.57 64.57 20.30 

Mining 3152.22 1554.34 773.78 431.67 267.94 239.92 

Total 12691.45 3927.22 1421.12 618.24 332.51 260.23 

T10I4D1500k       

Build-Tree 3281.21 889.67 274.67 91.26 36.74 18.22 

Mining 659.37 367.02 126.48 77.55 55.06 47.25 

Total 3940.58 1256.69 401.15 168.81 91.80 65.47 

T10I4D2000k       

Build-Tree 5945.10 1548.94 443.55 142.83 54.49 25.77 

Mining 880.45 484.29 166.62 90.12 77.22 64.62 

Total 6825.55 2033.23 610.17 232.95 131.71 90.39 

T10I4D5000k       

Build-Tree 33560.51 9299.69 2308.47 678.49 218.43 89.41 

Mining 2269.07 1301.71 778.89 395.00 252.67 185.79 

Total 35829.58 10601.40 3087.35 1073.49 471.10 275.20 

 

Table 3: Execution time in seconds for FP-Tree algorithm 
 

   When analyzing the results of the parallel algorithm, total execution time always became 

smaller when the number of processors is increased. When we consider the time to build the FP-

trees, it shows very impressive results. FP-tree building time becomes lower and lower when the 

number of processors increases and shows superlinear speedups for all the data sets. The reason 

behind this superlinear speedup is the dramatic reduction of the tree building cost (tree searching 

cost for insertion of new transaction and the variation of the number of tree nodes to be 

constructed on the existing tree) with the number of processors increasing. We will show later 



how the time complexity of this stage justifies this behavior. Similar behavior has been observed 

in the past [22], when using such divide-and-conquer technique in mining with data set 

partitioning 

   The build-tree stage results suggest that we can improve the serial algorithm by applying 

divide-and-conquer technique for tree construction. Here, instead of building a single tree, we 

can partition the database into, say k partitions, and build k trees. The pattern bases of each tree 

can be combined using a similar approach as in the merging stage of the parallel algorithm. 

Preliminary experiments and results, which are not reported here, shows good improvements to 

the serial FP-Tree construction algorithm. 

   Figure 4 shows the speedup achieved by our algorithm according to the P = 2 processor case. It 

is clear that in almost all the cases, we have achieved good speedups. This is significant for 

higher database sizes and the parallel algorithm tends to be run faster for larger data sets. Total 

execution time always became lower when number of processors is increased. That is our 

algorithm shows scalable performance in this machine environment. 
 

 

Figure 3: Execution time variations for small & large data sets 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Scalability of the parallel FP-Tree algorithm 
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   When we consider the time taken for the mining stage, Table 3 also shows that, for smaller 

data sets, the reduction of time from the 16-processor case to the 32-processor case is not sharp. 

For example, in T10I4D1000k data set, mining stage takes 38.96 seconds in the 16-processor 

case whereas it is 35.12 seconds for the 32-processor case. The reason is that there are several 

communication costs that we cannot avoid when the number of processors is increased. One such 

communication is the broadcasting of conditional FP-Trees by worker processors to all other 

worker processors. The size of the conditional FP-Tree is constant irrespective of the number of 

processors because it is an n×n table (n = number of frequent items) consisting of support counts. 

Time complexity analysis of this phase shows that its time complexity is O(n
2
P), where P is the 

number of processors.  Another communication cost is the broadcast of conditional pattern bases. 

In our algorithm, each processor sends pattern bases to every processor. Therefore, the time 

complexity analysis of this communication phase is O(nP). So, when the number of processors 

increases, communication time also increases heavily. Therefore these costs tend to be 

significant for higher number of processors in smaller data sets, but for larger data sets our 

algorithm performs well as shown by the evaluation. 

   Balancing the work load is a major issue in any parallel algorithm with task partitioning 

strategy. There are several static task partitioning techniques, such as random partitioning and 

partitioning based on support count, used in past approaches [2]. In random partitioning itemset 

is divided into equal size of itemsets randomly. Here the performance is poor because of the 

skewness of the transactions. Although partitioning based on support count gives better 

performance than random partitioning, work load is not accurately determined by the support 

count. Support count of an item is the frequency of that item in the database. It does not include 

other parameters of the transactional database, such as average number of items in a transaction, 

average length of the maximal pattern etc. Therefore, performance obtain from static task 

partitioning is sub optimal. Figure 5 shows how static partitioning works when merging 

conditional pattern bases to form the CFPTs.  Here merging time increases after 16 processors, 

because of the load imbalance. Figure 5 (r.h.s. figure) shows the variation of merging time spent 

by each processor in 8-processor case. 

 
 

 

 

Figure 5: Parallel merging time variation for T10I4D1000k data set 
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Figure 6: Parallel merging time variation for T10I4D1000k data set with load balancing 

 

 

Figure 7: Time variation of Conditional FP-Tree mining stage for T10I4D1000k data set 

 

   Our proposed task partitioning strategy is a dynamic task partitioning technique, which balance 

the work load at runtime. When we consider the effectiveness of our master-worker based task 

scheduling technique used in the parallel merging of conditional pattern bases and mining of 

conditional FP-trees, it is clear that we always balance the work load well. We have measured 

the merging time taken by each processor for our experimental data sets and found out that the 

workload is completely balanced. Each processor spends almost the same time spend by another 

processor with a variation of ±10%. Figure 6 shows this scenario for T10I4D1000k data set in 

merging stage and Figure 7 shows this for the mining phase of CFPTs. Both figures show 

scalable performance and well balanced workloads. 

 

4.3 Time Complexity Analysis of the Parallel Algorithm 

In this section, we analyze the time complexity of our algorithm. Our parallel FP-tree algorithm 

consists of two stages: tree building stage & mining stage. When we consider the tree building 

stage of our parallel FP-Tree algorithm, we partition N transaction equally among P processors. 

So each processor works with total of N/P transactions and therefore in the worst case we have at 

most N/P branches in a single tree. Also, to insert i
th

 transaction into the tree, we have to search 

i-1 branches in the growing tree in the worst case. Now we can derive the time taken by the build 

tree stage as ∑
=

−
PN

i

i
1

)1( + C, which is O(N
2
/P

2
). Here C is a constant. So, the speedup of the tree 
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building stage approach to P
2
. This explains why we achieve superlinear speedups such as 375.3 

in T10I4D5000k data set for 32 processors. 

   Now we analyze the time taken by the mining stage of the algorithm. Major computational 

components of the algorithm are: generation of pattern bases, merging of pattern bases to form 

CFPTs and use of FP-growth mining to generate frequent items.   When time to generate pattern 

bases is considered, we have n frequent items and, each processor traverse the local FP-tree to 

find N/P number of pattern bases in the worst case for each frequent item. So, the time to 

generate pattern bases is O(nN/P). In the merging part, CFPTs need to be generated for n 

frequent items. In our master-worker model worker processors perform the actual merging of 

pattern bases. So, each worker processor shares the merging time. So, the cost of a single worker 

processor is: ∑
=−

n

K

MergingK
T

P 1)1(

1
+ C, where C is a constant.  In mining stage we use FP-Growth 

mining method for each frequent item to generate frequent itemsets. Since we have parallelized 

this stage using a master-worker model, each of the (P-1) worker processors shares this cost 

evenly. So the cost of a single worker processor is: ∑
=

−
−

n

K

GrowthFP K
T

P 1)1(

1
+ C.  

   The communication components of the mining stage are: communication of pattern bases to 

every processor, communication of CFPTs to every processor, collection of all frequent itemsets 

from each worker processor by the master processor.  In the algorithm, each processor 

communicates pattern bases, of each frequent item, to every processor. So, the time to 

communicate pattern bases is O(nP). In our algorithm worker processors communicate CFPTs to 

every processor. Also, CFPT is a n×n table consisting of support counts. So, time to 

communicate CFPTs is O(n
2
P). Also, after the generation of frequent item sets, master processor 

needs to collect them. So the communication cost for this phase is O(P). So the total 

communication cost is of O(nP) + O(n
2
P) + O(P). 

   When analyzing the speedup of the mining stage the maximum we will achieve is O(P), when 

considering only the computational components of this stage. But, because of the communication 

cost we will never achieve this linear speedup. Figure 8 shows the actual speedup achieved by 

our algorithm for mining stage. Further more, because of the task scheduling based parallelism, it 

is possible that when number of processors is increased, the speedup achieved by the mining 

stage never increases, as one processor might be busy with a longest mining task. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 8: Speedup of the mining phase for T10I4D5000k data set 
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5. Conclusions 

In this paper, we have proposed a parallel implementation of the sequential FP-Tree (and FP-

Growth) mining algorithm. The main stages of our algorithm are to build the trees and carry out 

the mining task in parallel until all the frequent itemsets are generated. We have tested our 

algorithm using several data sets of size up to 5 millions on a 32-processor distributed memory 

environment. Our experiments showed good speedups for almost all the cases. Furthermore, it 

showed scalable performance on the 32-processor environment tested. This was significant for 

larger data sets, particularly with more than 2 millions transactions.  

   Experiments to measure execution time of various components of the algorithm revealed that, 

the master-worker based dynamic task scheduling model, we proposed for merging of 

conditional pattern bases and for mining of CFPTs has balanced the work load efficiently and 

showed scalable performance results. Therefore, we can say that our proposed dynamic task 

scheduling technique is an effective method for load balancing in distributed memory 

environments. Furthermore, this shows the effectiveness of dynamic task scheduling techniques 

when compared with the static task scheduling approaches. 

   Analysis of the experimental results and the time complexity of the parallel algorithm revealed 

that the sequential pattern tree construction approach can be further improved by constructing 

multiple trees sequentially for large databases, instead of constructing single large tree as in [3]. 

The number of trees to be built depends on several parameters of the database, such as average 

length of the transaction, number of transactions in the database, number of frequent items, and 

support threshold. We intend to improve the serial algorithm based on our findings and run our 

parallel algorithm for even higher number of processors with larger data sets, based on the 

resource availability on the machine environment.  
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