SELF-STABILIZING VERTEX COLORING
OF ARBITRARY (GRAPHS

Maria Gradinariu and Sébastien Tixeuil

Laboratoire de Recherche en Informatique, UMR CNRS 8623,
Université de Paris Sud, 91405 Orsay Cedex, France
email: {mariag,tixeuil}@lri.fr

Abstract

A self-stabilizing algorithm, regardless of the initial system state, converges in finite time
to a set of states that satisfy a legitimacy predicate without the need for explicit exception
handler of backward recovery. The vertex coloration problem consists in ensuring that every
node in the system has a color that is different from any of its neighbors.

We provide three self-stabilizing solutions to the vertex coloration problem under unfair
scheduling that are based on a greedy technique. We use at most B + 1 different colors (in
complete graphs), where B is the graph degree, and ensure stabilization within O(n x B)
processor atomic steps. Two of our algorithms deal with uniform networks where nodes
do not have identifiers. Our solutions lead to directed acyclic orientation and maximal
independent set construction at no additional cost.

Keywords: self-stabilization, vertex coloring, unfair scheduler

Résumé

Un algorithme auto-stabilisant converge en temps fini, et indépendement de 1’état initial
du systeme, vers un ensemble de configurations qui satisfont un prédicat de légitimité, sans
requérir de traitement d’erreur particulier. Le probleme de la coloration des nceuds consiste
a assurer que chaque nceud du systeme possede une couleur différente de celle de ses voisins.

Nous proposons trois solutions auto-stabilisantes au probleme de la coloration des nceuds
sous un démon non-équitable qui sont basées sur une technique gloutonne. Nous utilisons au
plus B + 1 couleurs différentes (dans les graphes complets), ou B est le degré du graphe, et
assurons la stabilisation en O(n x B) actions atomiques de processeurs. Deux de nos algo-
rithmes supportent des réseaux anonymes ou les processeurs ne possedent pas d’identifiants.
Nos solutions menent a la construction d’orientations acycliques et d’ensemble maximal in-
dépendants sans surcout additionnel.

Mots clés : auto-stabilisation, coloration de nceuds, ordonnancement non
équitable

Chapter 1

Introduction

1.1 Self-stabilization

Robustness is one of the most important requirements of modern distributed systems since
various types of (transient) faults are likely to occur as these systems are exposed to constant
change of their environment. One of the most inclusive approaches to fault-tolerance in
distributed systems is self-stabilization [8, 17]. Introduced by Dijkstra [8], this technique
guarantees that, regardless of the initial state, the system will eventually converge to the
intended behavior. Since most self-stabilizing fault-tolerant algorithms are nonterminating,
if the distributed system is subject to transient faults corrupting the internal node state but
not its behavior, once faults cease, the algorithms themselves guarantee to recover in a finite
time to a safe state without any human intervention. This also means that the complicated
task of initializing distributed systems is no longer needed, since self-stabilizing algorithms
regain correct behavior regardless of the initial state. Furthermore, in practice, the context
in which we may apply self-stabilizing algorithms is fairly broad since the program code can
be stored in a stable storage at each node, so that it is always possible to reload the program
after faults cease or after every fault detection.

1.2 Vertex Coloring

The vertex coloring problem, issued from classical graph theory, consists in choosing different
colors for any two neighboring nodes in a arbitrary graph. In Distributed Computing, vertex
coloring algorithms are mainly used for resource allocation (see [16] for more details). A
vertex coloring defines a partial order on processors allowing them, for example, to execute
their critical section according to the order defined by their respective colors.

Related problems include acyclic orientation of graphs (which can be induced by the par-
tial ordering on vertices) and maximal independent set (which requires that no two neighbor-
ing vertices are colored black and that no extra vertex can be colored black without violating
the first rule).

1.3 Related works

In uniform networks, it is well known that several problems cannot be solved self-stabilizingly
using deterministic algorithms (e.g. [14] shows that there exists no deterministic self-stabilizing
mutual exclusion protocol for unidirectional uniform rings). Therefore, in the self-stabilizing
setting, randomization was mostly used for symmetry breaking and construction of algo-
rithms that self-stabilize with high probability (e.g. [2, 6] both provide randomized self-
stabilizing mutual exclusion protocols for unidirectional rings). Herman (in [13]) and Gradi-
nariu and Tixeuil (in [12]) used randomization to reduce the memory space usually needed to
solve the mutual exclusion problem and the [-mutual exclusion problem, respectively. Works
by Israeli and Jalfon (see [14]) and by Durand-Lose (see [9]) use randomization to weaken
the scheduling requirements. A number of distributed algorithms are stabilizing only if the
scheduling is constrained in scope (e.g. a single processor is allowed to perform an action
at the same time) or in fairness (e.g. every processors performs an action infinitely often).
Even with weaker scheduling requirements (where an arbitrary subset of the processors may
perform an action at the same time, or where simple progression vs. fairness is needed),
randomness sometimes permit that the solution remains self-stabilizing.

Self-stabilizing distributed vertex coloration was previously studied for planar and bipar-
tite graphs (see [10, 22, 20, 21]). Using a well-known result from graph theory, Gosh and
Karaata [10] provide an elegant solution for coloring acyclic planar graphs with exactly six
colors, along with an identifier based solution for acyclic orientation of planar graphs. This
makes their solution limited to systems whose communication graph is planar and proces-
sors have unique identifiers. Sur and Srimani [22] vertex coloring algorithm is only valid for
bipartite graphs. A paper by Shukla et al. (see [21]) provides a randomized self-stabilizing
solution to the two coloring problem for several classes of bipartite graphs, namely complete
odd-degree bipartite graphs and tree graphs. Moreover, [21] shows that there exist no de-
terministic self-stabilizing algorithm that provides a two coloring of an arbitrary odd-degree
bipartite graph, even assuming the stronger scheduling hypothesis.

Recent works on self-stabilizing acyclic orientation have been presented in [7] for non-
anonymous networks where a single vertex is distinguished. The maximal independent set
problem was solved in [15] using randomization yet was not self-stabilizing. In [21], a self-
stabilizing maximal independent set construction algorithm is given for general anonymous
graphs, but assumes that processors are fairly scheduled.

1.4 Owur contribution

We present three self-stabilizing solutions to the vertex coloring problem that perform in
spite of unfair scheduling. The first two solutions are deterministic: one deals with anony-
mous networks but assumes a locally central unfair scheduler (that does not activates two
neighboring processors at the same time), the other requires unique identifiers for processors
but copes with unfair distributed scheduling. The last solution is randomized and presents
weakest hypothesis: anonymous networks with unfair distributed scheduling.

Every solution do not need more than B+ 1 colors, where B denotes the network degree.
Note that this bound is reached in the case of completely connected graphs. The time

complexity is O(n x B) processor atomic actions. A nice property of our algorithm is that
once stabilized, a directed acyclic orientation as well as a maximal independent set are
obtained at no extra cost.

1.5 Outline

After defining the system setting in Chapter 2, we present our three solution to the coloration
problem in Chapter 3, along with their proofs of correctness. Chapter 4 presents two direct
applications for our work, while Chapter 5 provides concluding remarks.

Chapter 2

Model

2.1 Distributed Systems

A distributed system is a set of state machines called processors. Each processor can commu-
nicate with a subset of the processors called neighbors. We will use AV, to denote the set of
neighbors of node x. The communication among neighboring processors is carried out using
the communication registers (called “shared variables” throughout this paper). The system’s
communication graph is drawn by representing processors as nodes and the neighborhood
relationship by edges between the nodes.

Any processor in a distributed system executes an algorithm which contains a finite set
of guarded actions of the form: (label) :: (guard) — (statement), where each guard is a
boolean expression over the shared variables.

A configuration of a distributed system is an instance of the state of the system processors.
A processor is enabled in a given configuration if at least one of the guards of its algorithm
is true.

A distributed system can be modeled by a transition system. A transition system is a
three-tuple S = (C,7,Z) where C is the collection of all the configurations, 7 is a subset
of C called the set of initial configurations, and 7 is a function 7 : C — C. A transition,
also called a computation step, is a tuple (¢, ¢2) such that ¢ = T (e1). A computation of an
algorithm P is a mazimal sequence of computations steps e = ((¢co, ¢1) (c1,¢2) ... (¢, 1) -+)
such that for i > 0,¢;41 = T (¢;) (a single computation step) if ¢;41 exists, or ¢; is a terminal
configuration. Mazimality means that the sequence is either infinite, or it is finite and no
processor is enabled in the terminal (final) configuration. All computations considered in
this paper are assumed to be maximal.

A history of a computation is a finite prefix of a computation. A fragment of a compu-
tation e is a finite sequence of successive computation steps of e.

2.2 Scheduler

In this model, a scheduler is a predicate over the system computations. In a computa-
tion, a transition (¢;, ¢;41) occurs due to the execution of a nonempty subset of the enabled
processors in configuration ¢;. In every computation step, this subset is chosen by the sched-

uler. We refer to the following types of schedulers in this paper: locally central scheduler (
[11, 1, 3]) in every computation step, neighboring processors are not chosen concurrently by
the scheduler; distributed scheduler — during a computation step, any nonempty subset of
the enabled processors is chosen by the scheduler.

The interaction between a scheduler and the distributed system generates some special
structures called by us strategies. The strategy definition is based on the tree of compu-
tations. Let ¢ be a system configuration. A TS-tree rooted in ¢, Tree(c), is the tree-
representation of all computations beginning in ¢. Let ny be a node in Tree(c), a branch
rooted in ny is the set of all Tree(c) computations starting in ny having the same first tran-
sition. The degree of n; is the number of branches rooted in ny. A sub-TS-tree of degree 1
rooted in ¢ is a restriction of Tree(c) such that the degree of any Tree(c)’s node is at most
1. A strategy is defined as follows:

Definition 1 (Strategy) Let T'S be a transition system, let D be a scheduler and let ¢ be
a TS configuration. We call a scheduler strategy rooted in ¢ a sub-TS-tree of degree 1 of
Tree(c) such that any computation of the sub-tree verifies the scheduler D.

Let st be a strategy. An st-cone Cj, corresponding to a prefix h is the set of all possible
st-computations with the same prefix h (for more details see [18]). In the deterministic
systems a cone of computations is reduced to a computation. The measure of an st-cone
Ch, is the measure of the prefix h (i.e., the product of the probability of every transition
occurring in h). An st-cone Cp is called a sub-cone of C;, if and only if ' = [hz], where z is
a computation factor.

2.3 Deterministic self-stabilization

In order to define self-stabilization for a distributed system, we use two types of predicates:
the legitimacy predicate—defined on the system configurations and denoted by £L—and the
problem specification—defined on the system computations and denoted by SP.

Let P be an algorithm. The set of all computations of the algorithm P is denoted by
Ep. Let X be a set and Pred be a predicate defined on the set X'. The notation x F Pred
means that the element x of X' satisfies the predicate Pred defined on the set X.

Definition 2 (Deterministic self-stabilization) An algorithm P is self-stabilizing for a
specification SP if and only if the following two properties hold:

(1) convergence — all computations reach a configuration that satisfies the legitimacy predi-
cate. Formally, Ve € Ep i1 e = ((co,c1)(c1,c2) ...) s In > 1,¢, FC;
(2) correctness — all computations starting in configurations satisfying the legitimacy pred-

icate satisfy the problem specification SP. Formally, Ve € Ep e = ((co,c1) (c1,¢2)
)i L=eFSP.

2.4 Probabilistic self-stabilization

A predicate P is closed for the computations of a distributed system if and only if when P
holds in a configuration ¢, P also holds in any configuration reachable from ec.

Notation 1 Let S be a system, D be a scheduler and st be a strategy satisfying the predicate
D. Let CP be the set of all system configurations satisfying a closed predicate P (formally
Ve e CP,ct P). The set of st-computations that reach configurations ¢ € C'P is denoted by
EP s and its probability by Pry(EPs).

In this paper we study silent algorithms - those for which the terminal configurations are
legitimate. The probabilistic stabilization for this particular case of algorithms is restricted
to the probabilistic convergence definition.

Definition 3 (Probabilistic Stabilization) A system S is self-stabilizing under a sched-
uler D for a specification SP if and only if there exists a closed legitimacy predicate L on
configurations such that in any strategy st of S under D, the two following conditions hold:
The probability of the set of st-computations, starting from ¢, reaching a configuration ¢,
such that ¢ satisfies L is 1 (probabilistic convergence). Formally, Vst, Pra(ELg) = 1

2.5 Convergence of Probabilistic Stabilizing Systems

Building on previous works on probabilistic automata (see [19, 23, 18]), [4] presented a
framework for proving self-stabilization of probabilistic distributed systems. In the following
we recall a key property of the system called local convergence and denoted by LC.

Definition 4 (Local Convergence) Let st be a strategy, PR1 and PR2 be two predicates
on configurations, where PR1 is a closed predicate. Let & be a positive probability and N a
positive integer. Let Cy be a st-cone with last(h) = PR1 and let M denote the set of sub-
cones Cpr of the cone Cp, such that the following is true for every sub-cone Cpi: last(h') b PR2
and length(h') — length(h) < N. The cone Cj, satisfies LC (PR1, PR2,6,N) if and only if
PT(UCh/eMCh') Z (S

Now, if in strategy st, there exist dy; > 0 and Ny > 1 such that any st-cone, C, with
last(h) = PRI, satisfies LC(PR1, PR2,65, Ng), then the main theorem of [4] states that
the probability of the set of st-computations reaching configurations satisfying PR1 A PR2
is 1.

Chapter 3

Self-stabilizing coloration algorithms

In this section we provide two deterministic and one probabilistic solutions for the coloration
problem. Our solutions are based on a greedy algorithm that takes the maximum available
color.

The first deterministic algorithm (see Section 3.1) performs in anonymous networks yet
requires a locally central scheduler. The second deterministic algorithm (see Section 3.2)
makes use of unique identifiers but runs correctly under the unfair distributed scheduler.
The probabilistic solution (see Section 3.3) offers the best of both worlds: unfair distributed
scheduler support in anonymous networks.

3.1 Anonymous networks & locally central scheduler

The algorithm presented in this section requires a locally central scheduler, i.e. two neigh-
boring nodes may not execute their critical section simultaneously. There exist numerous
papers in the literature that provide such schedulers, e.g. [11], [1] and [3]. Our algorithm can
be combined with any of those generic approaches to obtain a system that support stronger
schedulers. Sections 3.2 and 3.3 provide alternative ways to obtain the same result.

3.1.1 Algorithm overview

We assume that each processor knows a bound B on the network degree. Each processor
maintains a color, whose domain is the set {0,...,B}. The neighborhood agreement of a
particular processor p is defined as follows:

Definition 5 (Agreement) A processor p agrees with its neighborhood if the two following
conditions are verified:

1. p’s color is different from any of p’s neighbors,

2. p’s color is mazimal within the set {0,..., B} \ Ujen,(R;).

When any of these two conditions is not verified, p performs the following actions: (i) p
removes colors used by its neighbors from the set {0,..., B} and (ii) takes the maximum

11

color of the resulting set as its new color. Since B is an upper bound on the network degree,
the resulting set is always non-empty. Core of the algorithm is presented in Algorithm 3.1.1.

For example, assume that the color set is {0,1,2,3}, p’s color is 0 and p’s neighbors
use the colors 1 and 3. Then p does not agree with its neighborhood since Condition 2 of
Definition 5 is not verified. After executing its algorithm, p’s color becomes 2, the greatest

element of the set {0,1,2,3}\ {1,3} = {0,2}.

Algorithm 3.1.1 Self-stabilizing Deterministic Coloration Algorithm
Shared Variable:
R;: integer € {0,..., B};

Function:

Agree(i) : R, = max <{0, ..., B}\ UjeNi{RJ}>

Actions:

C: —Agree(i) — R; := max <{0, ..., B}\ UjeNi{Rj}>

3.1.2 Algorithm analysis

In this section, we first define legitimate configurations as configurations where every pro-
cessor agrees with its neighborhood. Since any terminal configuration of Algorithm 3.1.1 is
legitimate, we concentrate on proving convergence from any initial configuration.

Definition 6 A configuration is legitimate if and only if every processor p agrees (in the
sense of Definition 5) with its neighborhood.

In an arbitrary initial configuration ¢, a processor p may not agree with its neighborhood.
From Definition 5, this may occur in two (non mutually exclusive) cases:

1. First kind disagreement: there exists some ¢ € N, such that R, = R,. Let M{ be
the set of such processors p in c.

2. Second kind disagreement: there exists a color C'in {0,... , B} \ U, { R}, such
that B, < C. Let M$ be the set of such processors p in c.

We first show that for any processor p in M;, executing its action leads to a configuration
¢ where p ¢ M¢ (see Lemma 1). Then we show that for any processor p in MS' yet not in
Mf/, the number of executed actions in any computation is bounded (see Lemma 2). We
conclude that overall any system computation ends up in a terminal configuration, which is
legitimate (see Definition 6).

Lemma 1 Lete = ((¢1,¢2),...,(CkyChy1),-..) be a computation of Algorithm 3.1.1 under a

locally central scheduler. If (ck,cr1) is an action of a processor of M{*, then for any i > k,
| My*| > | My

Proof: Let p € M* be a processor which executes Rule C at ¢;. None of p’s neighbors may
execute an action (by the locally central scheduler hypothesis), and Rule C gives p a color
that is different from any of its neighbors in ¢4y, therefore |M*| > | M**'|.
For any processor p, it is impossible that Rule C results in giving the same color to p that
any of its neighbors, thus for any i > &k + 1, |[M**'| > | M’ O
A direct consequence of this proof is that any processor executes its action at most once

for being in M;.

Lemma 2 Lete = ((¢1,¢2),...,(ChyChy1),-..) be a computation of Algorithm 3.1.1 under a
locally central scheduler. If (¢k,cr1) s an action of a processor p of My* not in M{*, then
p may only execute B — 2 actions in any subsequent computation.

Proof: Let p € My*\ M{* be a processor which executes Rule C at ¢;. None of p’s neighbors
may execute an action (by the locally central scheduler hypothesis), and Rule C gives p a
color that is strictly greater than its previous one (its previous color was not maximal). Since
its previous color was at least 0, its new color is at least 1. Since p’s color may only increase
to reach B and that Rule C strictly increases p’s color, then starting from cg11, p may only
execute its action at most B — 2 times. O

Theorem 1 Any computation of Algorithm 3.1.1 under a locally central scheduler eventually
achieves a legitimate configuration.

Proof: Let e be a computation of Algorithm 3.1.1 under a locally central scheduler starting
in the configuration ¢. By Lemmas 1 and 2, a processor p may execute at most B —1 actions.
Then after at most n x (B — 1) actions, the system reaches a terminal configuration, where
no rule is enabled. Since any terminal configuration is legitimate, the theorem is proved. O

3.2 Identifier networks & distributed scheduler

In this section, we transform Algorithm 3.1.1 such that it stabilizes in spite of any unfair
distributed scheduler. In order to break possible network symmetry we make use of unique
processor identifiers. In actual networks, such identifiers can be obtained from the network
device.

3.2.1 Algorithm overview and analysis

Algorithm 3.2.1 differs from Algorithm 3.1.1 in two ways:

1. processors that are colored with the same color as one of their neighbors may execute
Rule C; if and only if their identifier is locally maximal between all identically colored
neighbors,

2. processors colored with a color different from any of their neighbors may execute rule
Cy as in Algorithm 3.1.1.

Algorithm 3.2.1 Self-stabilizing Deterministic Coloration Algorithm under an unfair sched-
uler

Shared Variable:
R;: integer € {0,..., B};

Function:

Agree(i) : R, = max <{0, ..., B}\ UjeNi{RJ}>

Actions:

Cy: —Agree(i) A (35 € Ny R; = R Aid; > max (idg, k € N; AR, = Ry)) —
R; := mag <{0, L BY UmM{J@})

Cy: mAgree(i) A (Vj € N, Ri# R;) — R;:= max <{0, ..., B}\ UjeNi{RJ'}>

We use the same proof technique as that of Algorithm 3.2.1 by showing that any processor
is able to perform a bounded number of actions, implying that any computation of the system
is finite.

For technical reasons, we split the set of processors in three mutually exclusive sets:

e 57 — the set of processors having the same color as one of their neighbors. Formally,

Sy ={i | ~Agree(i) AN3j € N;, R, = R;}

e S% — the set of the k-colored processors (0 < k < B) that do not agree with their
neighbors and whose color is different from those of their neighbors. Formally,

55 ={i | "Agree(i)AN R = kAN (Vj €N, R # Rj)}

o S% — the set of the k-colored processors (0 < k < B) that agree with their neighbors.
Formally,

SE={i| Agree(i) N R; = k}

The first two sets we consider processors with some kind of disagreement (see Sec-
tion 3.1.2), while the third set includes processors that agree with their neighbors. We
use these sets when proving that any system computation eventually leads to a configura-
tion where all processors are in the S3 sets (0 < j < B). In such a configuration, no rule
can be executed and the configuration is terminal.

In more details, we first show that a processor of S; may execute Rule C; and eventually
become an element of S¥. Then, a processor of S¥ may execute Rule Cy and then become a
member of S; or S5 (with j > k). In turn, a processor of S5 may either remain forever in
this set of move to set S} if one of its neighbors, by executing Rule C,, frees a color greater
than k. Since the number of sets S5 and S% (0 < k < B) is finite then, eventually, a terminal
configuration is reached.

Lemma 3 Let e be a computation of Algorithm 3.2.1 starting in a configuration where |S7|+
Zf:_ol |S¥| #£ 0. Then e eventually reaches a configuration where | S|+ Zf:_ol |SE| = 0.

Proof: Let ¢ be the initial configuration of e. We study the value of |S;| + Zf:_ol |S| after
execution of some processor p action in c:

l.pe Sy, andVge N,, g€ S, (0 <t < B—1). Then p executes Rule C; and moves to
Ss;

2. p € 51, and Jg € S} such that p and ¢ are chosen by the scheduler at the same time and
simultaneously execute their action. After execution of Rule C;, p has two possibilities:
(i) stepping out of Sy or (ii) coloring itself with a greater color s.

3. pe Syand Vg € N,,q € 51 or ¢ € S7*(m < 1), q does not execute its action at c.
Then, p may only execute Rule Cy and move to S%, with ¢ > r

4. p € Sy and 3¢ € N,,q € Sy or g € S5*(m < r) such that p and ¢ are chosen by the
scheduler at the same time and simultaneously execute their action. After executing
Rule Cy, p can either move to S5 or to 51, colored with s > r as its neighbor ¢. Then,
there are two possible cases:

(a) After execution of Rule Cy, p’s neighbors may choose a color that is different from
p, which makes p an element of 53.

(b) If p has the maximal identifier between its s-colored neighbors colored, then only
p may execute an action in its neighborhood and move to S%.

Note that a processor may move from S5 (0 < k < B — 1) to S¥ only if one of its neighbors
(in S%, with ¢ > k) executes Rule C3 so that color ¢ becomes available to p.

Now assume that there exists a processor ¢ that executes actions infinitely. We consider
an execution starting in configuration ¢’ where ¢ € 5 is s-colored and chosen to execute its
action. Then ¢ colors itself with k;. Processor ¢ would move again to S; if there exists a
free color greater than k;. By hypothesis, g executes infinitely many actions. Using a similar
argument as in the proof of Lemma 2, ¢ may move to S; only a finite number of times, hence
our hypothesis is false, and the expression |51| + Zf:_ol |S5| eventually decreases. Since the
system only terminates when all processors are in some S3, the preceding sum eventually

reaches 0. O

3.3 Anonymous networks & distributed scheduler

In this section we present the randomized variant of Algorithm 3.1.1. This algorithm works
on anonymous networks and stabilizes with an unfair scheduler.

3.3.1 Algorithm overview and analysis

Compared to Algorithm 3.1.1, a processor which does not agree with one of its neighbors
tosses a coin before changing its color. Even if neighboring processors would compete for

Algorithm 3.3.1 Self-stabilizing Randomized Coloration Algorithm
Shared Variable:
Vj € N, R;: integer € {0,... , B};

Function:

Agree(i) : R, = max <{0, ..., B}\ UjeNi{RJ'}>

Actions:

C: ~Agree(i) — if random(0,1)=1 then R;:= max <{0, .., B}\ UjeNi{RJ}>

executing their action, by randomization there exists a positive probability that only one of
those processors executes its actions.

In order to prove the correctness of Algorithm 3.3.1, we study an arbitrary strategy of
this algorithm under the distributed unfair scheduler. We prove that in this strategy, the set
of computations achieving a terminal configuration in a finite number of computation steps
has a positive probability. Hence the strategy satisfies the local convergence property (see
Definition 4) and the set of computations reaching terminal configuration has probability 1.
The proof is divided in two main parts:

1. starting in an arbitrary configuration, the system eventually reaches a configuration
where all processors have a color that is different from their neighbors;

2. starting in such a configuration, the system eventually reaches a configuration where
all processors agree with their neighbors (see Definition 5).

Lemma 4 In any strategy st of Algorithm 3.3.1 under the unfair distributed scheduler, there
exists a positive probability to achieve a legitimate configuration in a finite number of steps.

Proof: Let ¢ be a starting configuration for the strategy. Assume that in ¢, both M; and M;
(see Section 3.1.2 for definition) are non-empty. We now prove the two previously outlined
parts.

We consider the following scenario for the first part: (i) every time when some neighboring
processors are chosen simultaneously by the scheduler to execute their action, exactly one
of them execute its action, and (4i) only processors which neighbors have the same color
execute their rule. Note that Condition (i) of this scenario simulates the locally central
scheduler.

This scenario repeats itself until there are no two neighboring processors colored identi-
cally. Let us denote by ¢ a configuration where |M¢'| = 0. In Strategy st, the probability of
the set of computations reaching ¢ is

1 n 1 E?:ldi
€1 Z — X | =
2 2

where n is the network size and d; is the degree of the node 7. The lower bound for the
probability value is obtained by considering that a processor i executes its rule and none

d;

of its neighbors execute their rule with probability % X (%) , and that there are at most n
processors in the network.

The scenario for the second part is reduced to Condition (i) of the first scenario. Ac-
cording to Lemma 2, a processor can only execute a finite number of actions (bounded by
B — 2). Therefore the the set of computations reaching ¢’ (with |[M¢"| = 0 and |MS'| = 0)
has probability

1 (B-2)xn 1 (B=2)x377 , di 1 (B-1)x(n+37, di)
e e X | = X | = > | =
2 2 2

where n is the network size and d; is the degree of the node 1. O

Lemma 5 The average number of computations steps to reach a configuration ¢ where all
processors agree with their neighbors is O((B — 1) x logyn).

Proof: Let A be the set of processors which agree with their neighbors (see Definition 5).
By Lemmas 1 and 2, the probability for processor : moving to A after at most B — 1 trials is

1\ B! 1\ Bx(B-1)
> 2 Z
=) ()

Therefore, for n-sized networks, the average number of processors in A after B — 1 trials is

at least n x <l>(B+1)X(B_1). This also means that at most n x <1 — <l>(B2_1)> processors

2 2
are not in A.

After x x(B—1) trials, the average number of processors in A is at least n x <1 — (%) (B°-1) .

The algorithm would stop when all processors agree. Then x is a solution of the following
equation

1\ (B*=D\” log, n
n X 1_(_) =1| = [z =log 1 n| = x:—21 = ¢ = O(log, n)
2 RPYEE log, — @y

Therefore, on average, all processors agree with their neighbors within O((B — 1) x logn)
computation steps. a

Chapter 4

Applications

In this section we present two immediate applications of our algorithms: acyclic orientation
and maximum independent set. In the following, we assume that each processor ¢ has a
color R; that satisfies Agree(i) (see Definition 5). Depending on the scheduling and system
symmetry, one of our algorithms will be used. In the following, we refer those algorithms
under the common name of Coloring Algorithm.

4.1 Acyclic orientation

A directed acyclic graph (or DAG) can be derived from any terminal configuration of our
coloring algorithm by using the following predicate:

Definition 7 Let ¢ be a terminal configuration of the coloring algorithm. Let (i,7) be an
edge of the communication graph. The edge (i,7) is oriented from i to j if in ¢, R; < R;.

That definition was used in [10, 5] with system-wide unique identifier. The following
lemma states that local coloration is sufficient.

Lemma 6 In any terminal configuration of the coloring algorithm, Definition 7 induces an
acyclic orientation.

Proof: Let ¢ be a terminal configuration of the coloring algorithm. Suppose that Definition 7
induces a cycle in the communication graph in ¢. Let py,... , p, the processors in this cycle.
By Definition 7, we would then have R; < Ry, which is impossible. a

All previously known self-stabilizing algorithms that require directed acyclic graphs (such
as those presented in [5]) can be run on top of the coloring algorithm to obtain the same
results on anonymous networks.

4.2 Maximal independent set

Solving the maximal independent set problem enables to construct a set M of processors
such that the following two conditions are satisfied:

19

1. no two neighboring processors are in M,

2. there is no other set M’ such that M C M’ and no two neighboring processors are in
M.

In this section we prove that a maximal independent set can be derived from any terminal
configuration of our coloring algorithm by using the following predicate:

Definition 8 Let ¢ be a terminal configuration of the coloring algorithm. Let M. be the sel
of processors colored with B (where B is the bound used by the coloring algorithm).

Lemma 7 In any terminal configuration of the coloring algorithm, Definition 7 induces a
maximal independent set.

Proof: Assume that there exists another set M’ of independent processors such that M, C
M. This means that there exists at least one processor p in M/, that is not in M.. Let us
enumerate the different possibilities:

1. processor p is colored with B and then M = M’ or

2. processor p has no neighbor in M and it is not colored with B, which means that
Agree(p) is false that Configuration ¢ is not terminal.

Any of those two case contradicts the hypothesis. a

Unlike the maximal independent set algorithm provided in [21], we do not assume that
the scheduler is fair between system processors. Only simple progression is needed to ensure
system stabilization. The cost for this extra convenience is the additional memory space

(that was O(1) in [21]).

Chapter 5

Conclusions

We provided three self-stabilizing solutions to the vertex coloring problem that perform in
spite of unfair scheduling. In particular, the last solution is randomized and presents weakest
hypothesis: anonymous networks with unfair distributed scheduling. As direct application,
we were able to solve directed acyclic orientation as well as maximal independent set at no

additional cost.

21

Bibliography

[1] A. Arora and M. Nesterenko. Stabilization-preserving atomicity refinement. DISC’99,
pages 254-268, 1999.

[2] J. Beauquier, S. Cordier, and S. Delaét. Optimum probabilistic self-stabilization on uni-
form rings. In Proceedings of the Second Workshop on Self-stabilizing Systems (WS57°95),
pages 15.1-15.15, 1995.

[3] J. Beauquier, A. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing local mutual
exclusion and daemon refinement. In Proceedings of the International Conference on

Distributed Computing (DISC’2000), page to apear, 2000.

[4] J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing optimal leader
election under arbitrary scheduler on rings. Technical Report 1225, Laboratoire de
Recherche en Informatique, September 1999.

[5] Sajal K. Das, Ajoy K. Datta, and Sébastien Tixeuil. Self-stabilizing algorithms on dag
structured networks. Parallel Processing Letters, 9(4):563-574, December 1999.

[6] Ajoy K. Datta, M. Gradinariu, and Sébastien Tixeuil. Self-stabilizing mutual exclusion
using unfair distributed scheduler. In Proceedings of the IPDPS’2000 International
Conference, pages 465-470, Cancun, Mexico, May 2000.

[7] Ajoy K. Datta, S. Gurumurthy, Franck Petit, and Vincent Villain. Self-stabilizing
network orientation algorithms in arbitrary networks. In Proceedings of the Twenteeth
International Conference on Distributed Computing Systems (ICDCS’2000), pages 576—
583, 2000.

[8] E. Dijkstra. Self stabilizing systems in spite of distributed control. Communications of
the ACM, 17:643-644, 1974.

[9] J. Durand-Lose. Randomized uniform self-stabilizing mutual exclusion. In Proceedings of
the Second International Conference on Principles of Distributed Systems (OPODIS’98),
pages 89-98, 1998.

[10] S. Ghosh and Mehmet Hakan Karaata. A self-stabilizing algorithm for coloring planar
graphs. Distributed Computing, pages 7:55-59, 1993.

23

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

23]

M. Gouda and F. Hadix. The alternator. In Proceedings of the Third Workshop on
Self-Stabilizing Systems (published in association with I[CDCS99 The 19th IEEE Inter-
national Conference on Distributed Computing Systems), pages 48-53, 1999.

M. Gradinariu and Sébastien Tixeuil. Tight space uniform self-stabilizing [-mutual
exclusion. Technical Report 1249, Laboratoire de Recherche en Informatique, Université

de Paris Sud, March 2000.

T. Herman. Self-stabilization: randomness to reduce space. Distributed Computing,

6:95-98, 1992.

A. Israeli and M. Jalfon. Token management schemes and random walks yield self-
stabilizing mutual exclusion. In Proceedings of the International Conference on Princi-

ples of Distributed Computing (PODC’90), pages 119-131, 1990.

M. Luby. A simple parallel algorithm for the maximal independent set problem. In
SIAM, Journal of Computing, volume 15(4), pages 1036-1053, 1986.

N Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
M. Schneider. Self-stabilization. ACM Computing Surveys, 25:45-67, 1993.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, MIT, Departament of Electrical Engineering and Computer Science, 1995.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Springer-Verlag, editor, Proceedings of the Fifth International Conference on Concur-
rency Theory (CONCUR’94) LNCS:836, Uppsala, Sweden, August 1994.

S. Shukla, D. Rosenkrantz, and S. Ravi. Developing self-stabilizing coloring algorithms
via systematic randomization. In Proceedings of the International Workshop on Parallel

Processing, pages 668-673, Bangalore, India, 1994. Tata-McGrawhill, New Delhi.

S. Shukla, D. Rosenkrantz, and S. Ravi. Observations on self-stabilizing graph al-
gorithms for anonymous networks. In Proceedings of the Second Workshop on Self-

stabilizing Systems (WS5°95), pages 7.1-7.15, 1995.

S. Sur and Pradip K. Srimani. A self-stabilizing algorithm for coloring bipartite graphs.
Information Sciences, 69:219-227, 1993.

S. H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of probabilistic
i/o automata. In Proceedings of the Fifth International Conference on Concurrency

Theory (CONCUR94) LNCS:836, pages 513-528, 994.

