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Chapter 1Introduction1.1 Self-stabilizationRobustness is one of the most important requirements of modern distributed systems sincevarious types of (transient) faults are likely to occur as these systems are exposed to constantchange of their environment. One of the most inclusive approaches to fault-tolerance indistributed systems is self-stabilization [8, 17]. Introduced by Dijkstra [8], this techniqueguarantees that, regardless of the initial state, the system will eventually converge to theintended behavior. Since most self-stabilizing fault-tolerant algorithms are nonterminating,if the distributed system is subject to transient faults corrupting the internal node state butnot its behavior, once faults cease, the algorithms themselves guarantee to recover in a �nitetime to a safe state without any human intervention. This also means that the complicatedtask of initializing distributed systems is no longer needed, since self-stabilizing algorithmsregain correct behavior regardless of the initial state. Furthermore, in practice, the contextin which we may apply self-stabilizing algorithms is fairly broad since the program code canbe stored in a stable storage at each node, so that it is always possible to reload the programafter faults cease or after every fault detection.1.2 Vertex ColoringThe vertex coloring problem, issued from classical graph theory, consists in choosing di�erentcolors for any two neighboring nodes in a arbitrary graph. In Distributed Computing, vertexcoloring algorithms are mainly used for resource allocation (see [16] for more details). Avertex coloring de�nes a partial order on processors allowing them, for example, to executetheir critical section according to the order de�ned by their respective colors.Related problems include acyclic orientation of graphs (which can be induced by the par-tial ordering on vertices) and maximal independent set (which requires that no two neighbor-ing vertices are colored black and that no extra vertex can be colored black without violatingthe �rst rule). 3



1.3 Related worksIn uniform networks, it is well known that several problems cannot be solved self-stabilizinglyusing deterministic algorithms (e.g. [14] shows that there exists no deterministic self-stabilizingmutual exclusion protocol for unidirectional uniform rings). Therefore, in the self-stabilizingsetting, randomization was mostly used for symmetry breaking and construction of algo-rithms that self-stabilize with high probability (e.g. [2, 6] both provide randomized self-stabilizing mutual exclusion protocols for unidirectional rings). Herman (in [13]) and Gradi-nariu and Tixeuil (in [12]) used randomization to reduce the memory space usually needed tosolve the mutual exclusion problem and the l-mutual exclusion problem, respectively. Worksby Israeli and Jalfon (see [14]) and by Durand-Lose (see [9]) use randomization to weakenthe scheduling requirements. A number of distributed algorithms are stabilizing only if thescheduling is constrained in scope (e.g. a single processor is allowed to perform an actionat the same time) or in fairness (e.g. every processors performs an action in�nitely often).Even with weaker scheduling requirements (where an arbitrary subset of the processors mayperform an action at the same time, or where simple progression vs. fairness is needed),randomness sometimes permit that the solution remains self-stabilizing.Self-stabilizing distributed vertex coloration was previously studied for planar and bipar-tite graphs (see [10, 22, 20, 21]). Using a well-known result from graph theory, Gosh andKaraata [10] provide an elegant solution for coloring acyclic planar graphs with exactly sixcolors, along with an identi�er based solution for acyclic orientation of planar graphs. Thismakes their solution limited to systems whose communication graph is planar and proces-sors have unique identi�ers. Sur and Srimani [22] vertex coloring algorithm is only valid forbipartite graphs. A paper by Shukla et al. (see [21]) provides a randomized self-stabilizingsolution to the two coloring problem for several classes of bipartite graphs, namely completeodd-degree bipartite graphs and tree graphs. Moreover, [21] shows that there exist no de-terministic self-stabilizing algorithm that provides a two coloring of an arbitrary odd-degreebipartite graph, even assuming the stronger scheduling hypothesis.Recent works on self-stabilizing acyclic orientation have been presented in [7] for non-anonymous networks where a single vertex is distinguished. The maximal independent setproblem was solved in [15] using randomization yet was not self-stabilizing. In [21], a self-stabilizing maximal independent set construction algorithm is given for general anonymousgraphs, but assumes that processors are fairly scheduled.1.4 Our contributionWe present three self-stabilizing solutions to the vertex coloring problem that perform inspite of unfair scheduling. The �rst two solutions are deterministic: one deals with anony-mous networks but assumes a locally central unfair scheduler (that does not activates twoneighboring processors at the same time), the other requires unique identi�ers for processorsbut copes with unfair distributed scheduling. The last solution is randomized and presentsweakest hypothesis: anonymous networks with unfair distributed scheduling.Every solution do not need more than B+1 colors, where B denotes the network degree.Note that this bound is reached in the case of completely connected graphs. The time



complexity is O(n �B) processor atomic actions. A nice property of our algorithm is thatonce stabilized, a directed acyclic orientation as well as a maximal independent set areobtained at no extra cost.1.5 OutlineAfter de�ning the system setting in Chapter 2, we present our three solution to the colorationproblem in Chapter 3, along with their proofs of correctness. Chapter 4 presents two directapplications for our work, while Chapter 5 provides concluding remarks.





Chapter 2Model2.1 Distributed SystemsA distributed system is a set of state machines called processors. Each processor can commu-nicate with a subset of the processors called neighbors. We will use Nx to denote the set ofneighbors of node x. The communication among neighboring processors is carried out usingthe communication registers (called \shared variables" throughout this paper). The system'scommunication graph is drawn by representing processors as nodes and the neighborhoodrelationship by edges between the nodes.Any processor in a distributed system executes an algorithm which contains a �nite setof guarded actions of the form: hlabeli :: hguardi �! hstatementi, where each guard is aboolean expression over the shared variables.A con�guration of a distributed system is an instance of the state of the system processors.A processor is enabled in a given con�guration if at least one of the guards of its algorithmis true.A distributed system can be modeled by a transition system. A transition system is athree-tuple S = (C;T ;I) where C is the collection of all the con�gurations, I is a subsetof C called the set of initial con�gurations, and T is a function T : C �! C. A transition,also called a computation step, is a tuple (c1; c2) such that c2 = T (c1). A computation of analgorithmP is amaximal sequence of computations steps e = ((c0; c1) (c1; c2) : : : (ci; ci+1) : : : )such that for i � 0; ci+1 = T (ci) (a single computation step) if ci+1 exists, or ci is a terminalcon�guration. Maximality means that the sequence is either in�nite, or it is �nite and noprocessor is enabled in the terminal (�nal) con�guration. All computations considered inthis paper are assumed to be maximal.A history of a computation is a �nite pre�x of a computation. A fragment of a compu-tation e is a �nite sequence of successive computation steps of e.2.2 SchedulerIn this model, a scheduler is a predicate over the system computations. In a computa-tion, a transition (ci; ci+1) occurs due to the execution of a nonempty subset of the enabledprocessors in con�guration ci. In every computation step, this subset is chosen by the sched-7



uler. We refer to the following types of schedulers in this paper: locally central scheduler ([11, 1, 3]) in every computation step, neighboring processors are not chosen concurrently bythe scheduler; distributed scheduler | during a computation step, any nonempty subset ofthe enabled processors is chosen by the scheduler.The interaction between a scheduler and the distributed system generates some specialstructures called by us strategies. The strategy de�nition is based on the tree of compu-tations. Let c be a system con�guration. A TS-tree rooted in c, T ree(c), is the tree-representation of all computations beginning in c. Let n1 be a node in T ree(c), a branchrooted in n1 is the set of all T ree(c) computations starting in n1 having the same �rst tran-sition. The degree of n1 is the number of branches rooted in n1. A sub-TS-tree of degree 1rooted in c is a restriction of T ree(c) such that the degree of any T ree(c)'s node is at most1. A strategy is de�ned as follows:De�nition 1 (Strategy) Let TS be a transition system, let D be a scheduler and let c bea TS con�guration. We call a scheduler strategy rooted in c a sub-TS-tree of degree 1 ofT ree(c) such that any computation of the sub-tree veri�es the scheduler D.Let st be a strategy. An st-cone Ch corresponding to a pre�x h is the set of all possiblest-computations with the same pre�x h (for more details see [18]). In the deterministicsystems a cone of computations is reduced to a computation. The measure of an st-coneCh is the measure of the pre�x h (i.e., the product of the probability of every transitionoccurring in h). An st-cone Ch0 is called a sub-cone of Ch if and only if h0 = [hx], where x isa computation factor.2.3 Deterministic self-stabilizationIn order to de�ne self-stabilization for a distributed system, we use two types of predicates:the legitimacy predicate|de�ned on the system con�gurations and denoted by L|and theproblem speci�cation|de�ned on the system computations and denoted by SP.Let P be an algorithm. The set of all computations of the algorithm P is denoted byEP . Let X be a set and Pred be a predicate de�ned on the set X . The notation x ` Predmeans that the element x of X satis�es the predicate Pred de�ned on the set X .De�nition 2 (Deterministic self-stabilization) An algorithm P is self-stabilizing for aspeci�cation SP if and only if the following two properties hold:(1) convergence | all computations reach a con�guration that satis�es the legitimacy predi-cate. Formally, 8e 2 EP :: e = ((c0; c1)(c1; c2) : : : ) : 9n � 1; cn ` C;(2) correctness | all computations starting in con�gurations satisfying the legitimacy pred-icate satisfy the problem speci�cation SP. Formally, 8e 2 EP :: e = ((c0; c1) (c1; c2): : : ) : c0 ` L ) e ` SP.2.4 Probabilistic self-stabilizationA predicate P is closed for the computations of a distributed system if and only if when Pholds in a con�guration c, P also holds in any con�guration reachable from c.



Notation 1 Let S be a system, D be a scheduler and st be a strategy satisfying the predicateD. Let CP be the set of all system con�gurations satisfying a closed predicate P (formally8c 2 CP; c ` P ). The set of st-computations that reach con�gurations c 2 CP is denoted byEPst and its probability by Prst(EPst).In this paper we study silent algorithms - those for which the terminal con�gurations arelegitimate. The probabilistic stabilization for this particular case of algorithms is restrictedto the probabilistic convergence de�nition.De�nition 3 (Probabilistic Stabilization) A system S is self-stabilizing under a sched-uler D for a speci�cation SP if and only if there exists a closed legitimacy predicate L oncon�gurations such that in any strategy st of S under D, the two following conditions hold:The probability of the set of st-computations, starting from c, reaching a con�guration c0,such that c0 satis�es L is 1 (probabilistic convergence). Formally, 8st; P rst(ELst) = 12.5 Convergence of Probabilistic Stabilizing SystemsBuilding on previous works on probabilistic automata (see [19, 23, 18]), [4] presented aframework for proving self-stabilization of probabilistic distributed systems. In the followingwe recall a key property of the system called local convergence and denoted by LC.De�nition 4 (Local Convergence) Let st be a strategy, PR1 and PR2 be two predicateson con�gurations, where PR1 is a closed predicate. Let � be a positive probability and N apositive integer. Let Ch be a st-cone with last(h) ` PR1 and let M denote the set of sub-cones Ch0 of the cone Ch such that the following is true for every sub-cone Ch0: last(h0) ` PR2and length(h0) � length(h) � N . The cone Ch satis�es LC (PR1; PR2; �;N) if and only ifPr(SCh02M Ch0) � �.Now, if in strategy st, there exist �st > 0 and Nst � 1 such that any st-cone, Ch withlast(h) ` PR1, satis�es LC(PR1; PR2; �st; Nst), then the main theorem of [4] states thatthe probability of the set of st-computations reaching con�gurations satisfying PR1 ^ PR2is 1.





Chapter 3Self-stabilizing coloration algorithmsIn this section we provide two deterministic and one probabilistic solutions for the colorationproblem. Our solutions are based on a greedy algorithm that takes the maximum availablecolor.The �rst deterministic algorithm (see Section 3.1) performs in anonymous networks yetrequires a locally central scheduler. The second deterministic algorithm (see Section 3.2)makes use of unique identi�ers but runs correctly under the unfair distributed scheduler.The probabilistic solution (see Section 3.3) o�ers the best of both worlds: unfair distributedscheduler support in anonymous networks.3.1 Anonymous networks & locally central schedulerThe algorithm presented in this section requires a locally central scheduler, i.e. two neigh-boring nodes may not execute their critical section simultaneously. There exist numerouspapers in the literature that provide such schedulers, e.g. [11], [1] and [3]. Our algorithm canbe combined with any of those generic approaches to obtain a system that support strongerschedulers. Sections 3.2 and 3.3 provide alternative ways to obtain the same result.3.1.1 Algorithm overviewWe assume that each processor knows a bound B on the network degree. Each processormaintains a color, whose domain is the set f0; : : : ; Bg. The neighborhood agreement of aparticular processor p is de�ned as follows:De�nition 5 (Agreement) A processor p agrees with its neighborhood if the two followingconditions are veri�ed:1. p's color is di�erent from any of p's neighbors,2. p's color is maximal within the set f0; :::; Bg n [j2Ni(Rj).When any of these two conditions is not veri�ed, p performs the following actions: (i) premoves colors used by its neighbors from the set f0; : : : ; Bg and (ii) takes the maximum11



color of the resulting set as its new color. Since B is an upper bound on the network degree,the resulting set is always non-empty. Core of the algorithm is presented in Algorithm 3.1.1.For example, assume that the color set is f0; 1; 2; 3g, p's color is 0 and p's neighborsuse the colors 1 and 3. Then p does not agree with its neighborhood since Condition 2 ofDe�nition 5 is not veri�ed. After executing its algorithm, p's color becomes 2, the greatestelement of the set f0; 1; 2; 3g n f1; 3g = f0; 2g.Algorithm 3.1.1 Self-stabilizing Deterministic Coloration AlgorithmShared Variable:Ri: integer 2 f0; : : : ; Bg;Function:Agree(i) : Ri = max�f0; : : : ; Bg nSj2NifRjg�Actions:C : :Agree(i) �! Ri := max�f0; : : : ; Bg nSj2NifRjg�3.1.2 Algorithm analysisIn this section, we �rst de�ne legitimate con�gurations as con�gurations where every pro-cessor agrees with its neighborhood. Since any terminal con�guration of Algorithm 3.1.1 islegitimate, we concentrate on proving convergence from any initial con�guration.De�nition 6 A con�guration is legitimate if and only if every processor p agrees (in thesense of De�nition 5) with its neighborhood.In an arbitrary initial con�guration c, a processor p may not agree with its neighborhood.From De�nition 5, this may occur in two (non mutually exclusive) cases:1. First kind disagreement: there exists some q 2 Np such that Rp = Rq. Let M c1 bethe set of such processors p in c.2. Second kind disagreement: there exists a color C in f0; : : : ; Bg nSq2NpfRqg, suchthat Rp < C. Let M c2 be the set of such processors p in c.We �rst show that for any processor p inM c1 , executing its action leads to a con�gurationc0 where p =2 M c01 (see Lemma 1). Then we show that for any processor p in M c02 yet not inM c01 , the number of executed actions in any computation is bounded (see Lemma 2). Weconclude that overall any system computation ends up in a terminal con�guration, which islegitimate (see De�nition 6).Lemma 1 Let e = ((c1; c2); : : : ; (ck; ck+1); : : : ) be a computation of Algorithm 3.1.1 under alocally central scheduler. If (ck; ck+1) is an action of a processor of M ck1 , then for any i > k,jM ck1 j > jM ci1 j.



Proof: Let p 2M ck1 be a processor which executes Rule C at ck. None of p's neighbors mayexecute an action (by the locally central scheduler hypothesis), and Rule C gives p a colorthat is di�erent from any of its neighbors in ck+1, therefore jM ck1 j > jM ck+11 j.For any processor p, it is impossible that Rule C results in giving the same color to p thatany of its neighbors, thus for any i � k + 1, jM ck+11 j � jM ci1 j. 2A direct consequence of this proof is that any processor executes its action at most oncefor being in M1.Lemma 2 Let e = ((c1; c2); : : : ; (ck; ck+1); : : : ) be a computation of Algorithm 3.1.1 under alocally central scheduler. If (ck; ck+1) is an action of a processor p of M ck2 not in M ck1 , thenp may only execute B � 2 actions in any subsequent computation.Proof: Let p 2M ck2 nM ck1 be a processor which executes Rule C at ck. None of p's neighborsmay execute an action (by the locally central scheduler hypothesis), and Rule C gives p acolor that is strictly greater than its previous one (its previous color was not maximal). Sinceits previous color was at least 0, its new color is at least 1. Since p's color may only increaseto reach B and that Rule C strictly increases p's color, then starting from ck+1, p may onlyexecute its action at most B � 2 times. 2Theorem 1 Any computation of Algorithm 3.1.1 under a locally central scheduler eventuallyachieves a legitimate con�guration.Proof: Let e be a computation of Algorithm 3.1.1 under a locally central scheduler startingin the con�guration c. By Lemmas 1 and 2, a processor p may execute at most B�1 actions.Then after at most n� (B � 1) actions, the system reaches a terminal con�guration, whereno rule is enabled. Since any terminal con�guration is legitimate, the theorem is proved. 23.2 Identi�er networks & distributed schedulerIn this section, we transform Algorithm 3.1.1 such that it stabilizes in spite of any unfairdistributed scheduler. In order to break possible network symmetry we make use of uniqueprocessor identi�ers. In actual networks, such identi�ers can be obtained from the networkdevice.3.2.1 Algorithm overview and analysisAlgorithm 3.2.1 di�ers from Algorithm 3.1.1 in two ways:1. processors that are colored with the same color as one of their neighbors may executeRule C1 if and only if their identi�er is locally maximal between all identically coloredneighbors,2. processors colored with a color di�erent from any of their neighbors may execute ruleC2 as in Algorithm 3.1.1.



Algorithm 3.2.1 Self-stabilizing Deterministic Coloration Algorithm under an unfair sched-ulerShared Variable:Ri: integer 2 f0; : : : ; Bg;Function:Agree(i) : Ri = max�f0; : : : ; Bg nSj2NifRjg�Actions:C1 : :Agree(i) ^ (9j 2 Ni; Rj = Ri ^ idi > max (idk; k 2 Ni ^Ri = Rk)) �!Ri := max�f0; : : : ; Bg nSj2NifRjg�C2 : :Agree(i) ^ (8j 2 Ni; Ri 6= Rj) �! Ri := max�f0; : : : ; Bg nSj2NifRjg�We use the same proof technique as that of Algorithm 3.2.1 by showing that any processoris able to perform a bounded number of actions, implying that any computation of the systemis �nite.For technical reasons, we split the set of processors in three mutually exclusive sets:� S1 | the set of processors having the same color as one of their neighbors. Formally,S1 = fi j :Agree(i) ^ 9j 2 Ni; Ri = Rjg� Sk2 | the set of the k-colored processors (0 � k < B) that do not agree with theirneighbors and whose color is di�erent from those of their neighbors. Formally,Sk2 = fi j :Agree(i) ^Ri = k ^ (8j 2 Ni; Ri 6= Rj)g� Sk3 | the set of the k-colored processors (0 � k < B) that agree with their neighbors.Formally, Sk3 = fi j Agree(i) ^ Ri = kgThe �rst two sets we consider processors with some kind of disagreement (see Sec-tion 3.1.2), while the third set includes processors that agree with their neighbors. Weuse these sets when proving that any system computation eventually leads to a con�gura-tion where all processors are in the Sj3 sets (0 � j � B). In such a con�guration, no rulecan be executed and the con�guration is terminal.In more details, we �rst show that a processor of S1 may execute Rule C1 and eventuallybecome an element of Sk3 . Then, a processor of Sk2 may execute Rule C2 and then become amember of S1 or Sj3 (with j > k). In turn, a processor of Sk3 may either remain forever inthis set of move to set Sk2 if one of its neighbors, by executing Rule C2, frees a color greaterthan k. Since the number of sets Sk3 and Sk2 (0 � k � B) is �nite then, eventually, a terminalcon�guration is reached.



Lemma 3 Let e be a computation of Algorithm 3.2.1 starting in a con�guration where jS1j+PB�1k=0 jSk2 j 6= 0. Then e eventually reaches a con�guration where jS1j+PB�1k=0 jSk2 j = 0.Proof: Let c be the initial con�guration of e. We study the value of jS1j+PB�1k=0 jSk2 j afterexecution of some processor p action in c:1. p 2 S1; and 8q 2 Np; q 2 St2; (0 � t � B � 1). Then p executes Rule C1 and moves toSk3 ;2. p 2 S1, and 9q 2 Sr2 such that p and q are chosen by the scheduler at the same time andsimultaneously execute their action. After execution of Rule C1, p has two possibilities:(i) stepping out of S1 or (ii) coloring itself with a greater color s.3. p 2 Sr2 and 8q 2 Np; q 2 S1 or q 2 Sm2 (m � r), q does not execute its action at c.Then, p may only execute Rule C2 and move to St3, with t > r4. p 2 Sr2 and 9q 2 Np; q 2 S1 or q 2 Sm2 (m � r) such that p and q are chosen by thescheduler at the same time and simultaneously execute their action. After executingRule C2, p can either move to S3 or to S1, colored with s > r as its neighbor q. Then,there are two possible cases:(a) After execution of Rule C1, p's neighbors may choose a color that is di�erent fromp, which makes p an element of Ss3.(b) If p has the maximal identi�er between its s-colored neighbors colored, then onlyp may execute an action in its neighborhood and move to Sk3 .Note that a processor may move from Sk3 (0 � k � B � 1) to Sk2 only if one of its neighbors(in St2, with t > k) executes Rule C2 so that color t becomes available to p.Now assume that there exists a processor q that executes actions in�nitely. We consideran execution starting in con�guration c0 where q 2 S1 is s-colored and chosen to execute itsaction. Then q colors itself with k1. Processor q would move again to S1 if there exists afree color greater than k1. By hypothesis, q executes in�nitely many actions. Using a similarargument as in the proof of Lemma 2, q may move to S1 only a �nite number of times, henceour hypothesis is false, and the expression jS1j+PB�1k=0 jSk2 j eventually decreases. Since thesystem only terminates when all processors are in some S3, the preceding sum eventuallyreaches 0. 23.3 Anonymous networks & distributed schedulerIn this section we present the randomized variant of Algorithm 3.1.1. This algorithm workson anonymous networks and stabilizes with an unfair scheduler.3.3.1 Algorithm overview and analysisCompared to Algorithm 3.1.1, a processor which does not agree with one of its neighborstosses a coin before changing its color. Even if neighboring processors would compete for



Algorithm 3.3.1 Self-stabilizing Randomized Coloration AlgorithmShared Variable:8j 2 Ni; Rj: integer 2 f0; : : : ; Bg;Function:Agree(i) : Ri = max�f0; : : : ; Bg nSj2NifRjg�Actions:C : :Agree(i) �! if random(0,1)=1 then Ri := max�f0; : : : ; Bg nSj2NifRjg�executing their action, by randomization there exists a positive probability that only one ofthose processors executes its actions.In order to prove the correctness of Algorithm 3.3.1, we study an arbitrary strategy ofthis algorithm under the distributed unfair scheduler. We prove that in this strategy, the setof computations achieving a terminal con�guration in a �nite number of computation stepshas a positive probability. Hence the strategy satis�es the local convergence property (seeDe�nition 4) and the set of computations reaching terminal con�guration has probability 1.The proof is divided in two main parts:1. starting in an arbitrary con�guration, the system eventually reaches a con�gurationwhere all processors have a color that is di�erent from their neighbors;2. starting in such a con�guration, the system eventually reaches a con�guration whereall processors agree with their neighbors (see De�nition 5).Lemma 4 In any strategy st of Algorithm 3.3.1 under the unfair distributed scheduler, thereexists a positive probability to achieve a legitimate con�guration in a �nite number of steps.Proof: Let c be a starting con�guration for the strategy. Assume that in c, bothM c1 andM c2(see Section 3.1.2 for de�nition) are non-empty. We now prove the two previously outlinedparts.We consider the following scenario for the �rst part: (i) every timewhen some neighboringprocessors are chosen simultaneously by the scheduler to execute their action, exactly oneof them execute its action, and (ii) only processors which neighbors have the same colorexecute their rule. Note that Condition (i) of this scenario simulates the locally centralscheduler.This scenario repeats itself until there are no two neighboring processors colored identi-cally. Let us denote by c0 a con�guration where jM c01 j = 0. In Strategy st, the probability ofthe set of computations reaching c0 is�1 � �12�n ��12�Pni=1 diwhere n is the network size and di is the degree of the node i. The lower bound for theprobability value is obtained by considering that a processor i executes its rule and none



of its neighbors execute their rule with probability 12 � �12�di , and that there are at most nprocessors in the network.The scenario for the second part is reduced to Condition (i) of the �rst scenario. Ac-cording to Lemma 2, a processor can only execute a �nite number of actions (bounded byB � 2). Therefore the the set of computations reaching c00 (with jM c001 j = 0 and jM c002 j = 0)has probability� � �1 ��12�(B�2)�n ��12�(B�2)�Pni=1 di � �12�(B�1)�(n+Pni=1 di)where n is the network size and di is the degree of the node i. 2Lemma 5 The average number of computations steps to reach a con�guration c where allprocessors agree with their neighbors is O((B � 1)� log2 n).Proof: Let A be the set of processors which agree with their neighbors (see De�nition 5).By Lemmas 1 and 2, the probability for processor i moving to A after at most B�1 trials ispi � �12�B�1 ��12�B�(B�1)Therefore, for n-sized networks, the average number of processors in A after B � 1 trials isat least n � �12�(B+1)�(B�1). This also means that at most n � �1 � �12�(B2�1)� processorsare not in A.After x�(B�1) trials, the average number of processors inA is at least n��1 � �12�(B2�1)�x.The algorithm would stop when all processors agree. Then x is a solution of the followingequation"n�  1� �12�(B2�1)!x = 1#) "x = log 11� 12 (B2�1) n#) 264x = log2 nlog2 11� 12 (B2�1) 375) x = O(log2 n)Therefore, on average, all processors agree with their neighbors within O((B � 1) � log n)computation steps. 2





Chapter 4ApplicationsIn this section we present two immediate applications of our algorithms: acyclic orientationand maximum independent set. In the following, we assume that each processor i has acolor Ri that satis�es Agree(i) (see De�nition 5). Depending on the scheduling and systemsymmetry, one of our algorithms will be used. In the following, we refer those algorithmsunder the common name of Coloring Algorithm.4.1 Acyclic orientationA directed acyclic graph (or DAG) can be derived from any terminal con�guration of ourcoloring algorithm by using the following predicate:De�nition 7 Let c be a terminal con�guration of the coloring algorithm. Let (i; j) be anedge of the communication graph. The edge (i; j) is oriented from i to j if in c, Ri < Rj.That de�nition was used in [10, 5] with system-wide unique identi�er. The followinglemma states that local coloration is su�cient.Lemma 6 In any terminal con�guration of the coloring algorithm, De�nition 7 induces anacyclic orientation.Proof: Let c be a terminal con�guration of the coloring algorithm. Suppose that De�nition 7induces a cycle in the communication graph in c. Let p1; : : : ; pm the processors in this cycle.By De�nition 7, we would then have R1 < R1, which is impossible. 2All previously known self-stabilizing algorithms that require directed acyclic graphs (suchas those presented in [5]) can be run on top of the coloring algorithm to obtain the sameresults on anonymous networks.4.2 Maximal independent setSolving the maximal independent set problem enables to construct a set M of processorssuch that the following two conditions are satis�ed:19



1. no two neighboring processors are in M,2. there is no other set M0 such that M�M0 and no two neighboring processors are inM0.In this section we prove that a maximal independent set can be derived from any terminalcon�guration of our coloring algorithm by using the following predicate:De�nition 8 Let c be a terminal con�guration of the coloring algorithm. Let Mc be the setof processors colored with B (where B is the bound used by the coloring algorithm).Lemma 7 In any terminal con�guration of the coloring algorithm, De�nition 7 induces amaximal independent set.Proof: Assume that there exists another setM0c of independent processors such thatMc �M0c. This means that there exists at least one processor p in M0c that is not in Mc. Let usenumerate the di�erent possibilities:1. processor p is colored with B and then M =M0 or2. processor p has no neighbor in M and it is not colored with B, which means thatAgree(p) is false that Con�guration c is not terminal.Any of those two case contradicts the hypothesis. 2Unlike the maximal independent set algorithm provided in [21], we do not assume thatthe scheduler is fair between system processors. Only simple progression is needed to ensuresystem stabilization. The cost for this extra convenience is the additional memory space(that was O(1) in [21]).



Chapter 5ConclusionsWe provided three self-stabilizing solutions to the vertex coloring problem that perform inspite of unfair scheduling. In particular, the last solution is randomized and presents weakesthypothesis: anonymous networks with unfair distributed scheduling. As direct application,we were able to solve directed acyclic orientation as well as maximal independent set at noadditional cost.
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