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Abstract

Localization is the problem of determining the position of a mobile robot from
sensor data. Most existing localization approaches are passive, i.e., they do not ex-
ploit the opportunity to control the robot’s effectors during localization. This paper
proposes an active localization approach. The approach provides rational criteria
for (1) setting the robot’s motion direction (exploration), and (2) determining the
pointing direction of the sensors so as to most efficiently localize the robot. The ap-
propriateness of our approach is demonstrated empirically using a RWI B21 mobile
robot in a structured office environment.

1 Introduction

To navigate reliably in indoor environments, a mobile robot must know where it is. Over
the last few years, there has been a tremendous scientific interest in algorithms for esti-
mating a robot’s location from sensor data. A recent book on this issue [2] illustrates the
importance of the localization problem and provides a unique description of the state-of-
the-art.

The vast majority of existing approaches to localization are passive. Passive localiza-
tion exclusively addresses the estimation of location based on an incoming stream of sensor
data. It rests on the assumption that neither robot motion, nor the pointing direction
of the robot’s sensors can be controlled. Active localization goes beyond this paradigm.
It assumes that during localization, the localization routine has partial or full control
over the robot, providing the opportunity to increase the efficiency and the robustness of
localization. Key open issues in active localization are “where to move” and “where to
look” so as to best localize the robot.

This paper demonstrates that active localization is a promising research direction for
developing more efficient and more robust localization methods. In other sub-fields of



artificial intelligence (such as heuristic search and machine learning), the value of active
control during learning and problem solving has long been recognized. It has been shown,
both through theoretical analysis and practical experimentation, that the complexity of
achieving a task can be greatly reduced by actively interacting with the environment. For
example, choosing the right action during exploration can reduce exponential complexity
to low-degree polynomial complexity, as for example shown in Koenig’s and Thrun’s
work on exploration in heuristic search and learning control [10, 19]. Similarly, active
vision (see e.g., [1]) has also led to results superior to passive approaches to computer
vision. In the context of mobile robot localization, actively controlling a robot pays
off whenever the environment possesses relatively few features that enable a robot to
unambiguously determine its location. This is the case in many office environments. For
example, corridors and offices often look alike for a mobile robot, hence random motion
or perpetual wall following is often incapable for determining a robot’s position, or vastly
inefficient.

In this paper we demonstrate that actively controlling the robot’s actuators can signif-
icantly improve the efficiency of localization. A mathematical framework for localization
is derived, which provides rational criteria for (1) active determining where to move, and
(2) actively controlling where to point the robot’s sensors. Our framework is based on
Markov localization, a passive probabilistic approach to localization which was recently
developed in various sites [4, 8, 15, 17, 18]. At any point in time, Markov localization
maintains a probability density (belief) over the entire configuration space of the robot;
however, it does not provide an answer as to how to control the robot’s actuators. The
guiding principle of our approach is to control the actuators so as to minimize future ex-
pected uncertainty. Uncertainty is measured by the entropy of future belief distributions.
By choosing actions to minimize the expected future uncertainty, the approach is capable
of actively localizing the robot.

The approach is empirically validated in the context of two localization problems:
1. Active navigation, which addresses the questions of where to move next, and

2. active sensing, which addresses the problem of what sensors to use and where to
point them.

Our implementation assumes that initially, the robot is given a metric map of its en-
vironment, but it does not know where it is. Notice that this is a difficult localization
problem; most existing approaches (see, e.g., [2]) concentrate on situations where the ini-
tial robot location is known, thus are not capable of localizing a robot from scratch. Our
approach has been empirically tested using a mobile robot equipped with a circular array
of 24 sonar sensors. The key experimental result is that the efficiency of localization is
improved drastically by actively controlling the robot’s motion direction, and by actively
controlling its sensors.



Fig. 1. The robot used in our experiments

2 Related Work

There is a huge body of literature on passive localization (see e.g., [2] and references
therein). Active localization, however, has received considerably little attention in the
mobile robotics community. This is primarily because the vast majority of literature
concerned with robot control (e.g., the planning community) assumes that the position of
the robot is known, whereas research on localization has mainly focused on the estimation
problem itself. In recent years, navigation under uncertainty has been addressed by a
few researchers [17, 15], who developed the Markov navigation paradigm on which our
research is based; however, both their approaches do not aim at actively localizing the
robot. Localization occurs as a side effect when operating the robot under uncertainty.
Moreover, as argued by Kaelbling [8], there exist conditions under which the approach
reported in [17] can exhibit cyclic behavior due to uncertainty in localization.

On the forefront of localization driven navigation, Kuipers [12] used a rehearsal pro-
cedure to check whether a location has been visited while learning a map. More recently,
Kaelbling and colleagues have proposed two approaches to active navigation similar to
the one proposed here. In one approach [9], acting in the environment is modeled as a
partially observable Markov decision process (POMDP), for which an optimal strategy is
derived off-line. Unfortunately, the methods for computing optimal policies for POMDP
are computationally extremely complex and barely applicable for environments with sev-



eral 100 states (our experiments involve environments with 3 million states), making them
inapplicable to all but the most simple mobile robot environments. A second approach
[8] minimizes the expected entropy after the immediate next robot control action. While
this approach is computationally tractable, its greediness might prevent it from finding
efficient solutions in realistic environments. For example, if disambiguating the robot’s
position requires the robot to move to a remote location, there is no reason other than
pure chance that this approach might actually move there. Others, such as Thrun and col-
leagues [21], have developed robot exploration techniques for efficiently mapping unknown
environments. While such methods might give better-than-random results when applied
to localization, their primary goal is not to localize a robot, and there are situations in
which they will fail to do so.

The literature on active perception is huge (see e.g., [16]), with research almost ex-
clusively focused on active vision. To the best of our knowledge, the problem of active
perception with the specific purpose of localization has not been studied before.

3 Active Localization by Entropy Minimization

3.1 Markov Localization

This section briefly outlines the basic Markov localization algorithm upon which our
approach is based; see [15, 17] for a more detailed description and a derivation.

The key idea of Markov localization is to compute a probability distribution over all
possible locations in the environment. Let [ = (x,y, #) denote a location. The distribution,
denoted by Bel(l), expresses the robot’s subjective belief for being at [. Initially, Bel(l)
reflects the initial state of knowledge: if the robot knows its initial position, Bel(l) is
centered on the correct location; if the robot does not know its initial location, Bel(l) is
uniformly distributed to reflect the global uncertainty of the robot—the latter is the case
in all our experiments.

Bel(l) is updated whenever . ..

...the robot moves. Robot motion is modeled by a conditional probability, denoted
by P,(I|I'). P,(l|!") denotes the probability action a, when executed at {’, carries
the robot to [. In the remainder of this section, actions a are of the type “Move to a
location 1 meter in front and 2 meters to the right.” Applied to I’ = (0m, 0m, 90°),
P,(l']1") is centered around the expected new location [ = (2m, 1m, 90°).

P,(l'|1") is used to update Bel(l) upon robot motion:
Bel(l) +— / P.(L| 1) Bel(l') dI’ (1)

In our implementation, P,(l | I') is obtained from a model of the robot’s kinematics.

...the robot senses. Let s denote a sensor reading, and P(s | [) the likelihood of
perceiving s at [. P(s |[) is usually referred to as map of the environment, since it
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specifies the probability of observations at the different locations in the environment.
When sensing s, Bel(l) is updated according to the following rule:

P(s |1) Bel(l)

Bel(l) 0 (2)

Here P(s) is a normalizer that ensures that the Bel(l) sum up to 1.

In general, Bel(l) can be represented by Kalman filters [18] or discrete approximation
[4, 5, 15, 17, 8]. P(s | ), the map of the environment, is a crucial component of the
update equations. It specifies the likelihood of observing s at location [, for any choice
of s and [. In [14, 4], P(s | ) is obtained from a CAD model of the environment, and a
model of sonar sensors. [15, 17, 8] first scan sensor data for the presence or absence of
certain landmarks. Here, too, P(s |[) is constructed from a CAD model. [11]

While our description of Markov navigation is brief, it is important that the reader
grasps the essentials of the approach: The robot maintains a belief distribution Bel(!)
which is updated upon robot motion, and upon the arrival of sensor data. Probabilistic
representations are well-suited for mobile robot localization due to its ability to handle
ambiguities and to represent degree-of-belief. Recently, Markov localization has been
employed successfully at various sites. However, Markov localization is passive. It does
not provide means to control the actuators of the robot.

3.2 Active Localization

To eliminate uncertainty in the position estimate Bel(l), the robot must choose actions
which help it distinguish different locations. The entropy of the belief, obtained by the
following formula

H = —/Bel(l) log(Bel(1)) dl, (3)

measures the uncertainty in the robot position: If H = 0, Bel(l) is centered on a sin-
gle position, whereas H is maximal, if the robot is completely uncertain and Bel(l) is
uniformly distributed. The general principle for action selection can be summarized as
follows: Actions are selected by minimizing the expected future entropy.

To formally derive the expected future entropy upon executing an action a, we have
to introduce two auxiliary notations: Let Bel,(l) denote the belief after executing action
a, and let Bel, s(I) denote the belief after executing a and sensing s. Both Bel,(l) and
Bel, s(1) can easily be computed from Bel(l) using the Markov positioning update equa-
tions (1) and (2). The expected entropy, conditioned on the action, can then be expressed
by the following term:

EJH] = — / Bel, (1) log(Bel,(1)) dl (4)
S / / Belo (1) log(Bela(1))p(s) dl ds (5)
S / / P(s | )Bel (1) - log [P(s | 1) Bel (D)p(s)™)] dl ds (6)
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The expression (6) is obtained from the definition of the entropy, by integrating over
all possible sensor values s, weighted by their likelihood, and by applying the update
rule (2). This simple, greedy principle— minimizing the expected future entropy—is the
cornerstone of our active localization methods.

In active sensing, different actions a correspond to different pointing direction of the
robot’s sensors. Whenever the robot senses, that pointing direction is determined by
minimizing the expected entropy F,[H].

3.3 Active Navigation

Active navigation addresses the problem of determining where to move so as to best
position the robot. At first glance, one might use simple motor control actions (such as
“move Im forward”) as basic actions in active navigation. However, just looking at the
immediate next motor command is often insufficient. For example, a robot might have to
move to a remote room in order to uniquely determine its location, which might involve
a long sequence of individual motor commands.

For this reason, we have chosen to consider arbitrary target points as atomic actions
in active navigation. Target points are specified relative to the current robot location, not
in absolute coordinates. For example, an action a = move(12m, 2m) will make the robot
move to a location 12 meter ahead and 2 meters to the left, relative to its current location
and heading direction. Since the costs of reaching a target point can differ substantially
depending on the time-of-travel, it has to be taken into account.

The reminder of this section specifies the computation of the costs, the cost-optimal
path, and demonstrates how to incorporate costs into action selection.

Occupancy probabilities: Our approach rests on the assumption that a map of the
environment is available, which specifies which point [ is occupied and which one is not.
Let P,..(I) denote the probability that location [ is blocked by an obstacle. The robot
has to compute the probability that a target point @ is occupied. Recall that the robot
does not know its exact location; thus, it must estimate the probability that a target
point a is occupied. This probability will be denoted P,..(a). Simple geometric consid-
erations permit the “translation” from P,..(l) (in real-world coordinates) to P,..(a) (in
robot coordinates):

Pola) = / Bel(l) P, fu(1)) dl (7)

Here f,(l) is a simple coordinate transformation, which expresses the real-world coordi-
nates of the point a, assuming that the robot is at [. In essence, (7) translates, for any [,
the point @ into real-world coordinates f,([), then considers the occupancy of this point
(Poee(fa(l))). The expected occupancy is then obtained by averaging over all locations [,
weighted by the robot’s subjective belief of actually being there Bel(l). The result is the
expected occupancy of a point a relative to the robot.

Costs and cost-optimal paths: Based on P,..(a), the expected path length and the
cost-optimal policy can be obtained through value iteration, a popular version of dynamic



programming (see e.g., [13] for details). Value iteration assigns to each location a a value
v(a) that represents its distance to the robot. Initially, v(a) is set to 0 for the location
a = (0,0) (which is the robot’s location, recall that « is specified in relative coordinates),
and oo for all other locations a. The value function v(a) is then updated recursively
according to the following rule:

v(a) +— Pocc(a)—l—arginin[v(b)] (8)

Here b is minimized over all a neighbors of a, i.e., all locations that can be reached from a
with a single, atomic motor command. (8) assumes that the costs for traversing a point
a is proportional to the probability that @ is occupied (P,..(a)). Iteratively applying (8)
leads to the cost function for reaching any point a relative to the robot, and hill climbing
in v (starting at a) gives the cost-optimal path from the robot’s current position to any
location a.

Action selection: Armed with the definition of the expected entropy and the expected
costs, we are ready to set the policy for selecting actions in active localization. At every
point in time, the robot chooses the action «* that maximizes

a” = arginin(Ea[H]—l—ozv(a)) (9)

Here o > 0 determines the relative importance of certainty versus costs. The choice of «
depends on the application. In our experiments, a was set to 1.

This completes the description of active navigation with the purpose of localization.
Note that active sensing is realized simply by pointing the sensor into the direction which
minimizes the expected entropy of the action ¢ = move(0,0). To summarize, actions
represent arbitrary target points relative to the robot’s current position. Actions are
selected by minimizing a weighted sum of (1) expected uncertainty (entropy) and (2)
costs of moving there. Costs are considered because they may vary drastically between
different target points.

3.4 Efficient Implementation

The active navigation and sensing methods described here have been implemented and
tested using position probability grids [4]. This technique represents the location of the
robot by a discrete three-dimensional grid. To achieve the level of accuracy necessary for
predicting robot motion, the resolution of robot orientation is typically in the order of 1°,
and the resolution of longitudinal information is often as small as 10cm.

While position probability grids are capable of approximating most probability func-
tions of practical interest, their update can be computationally very expensive. The
complexity of computing the expected entropy is in O(|L| - |S|), where L denotes the set
of grid-cells in the position probability grids, and .S’ the set of distinguishable sensations.
For example, for a mid-size environment of size 100m?, |L| = 3,600, 000 for the resolution
specified above. If the number of possible sensations is large, computing the expected
entropy is infeasible in real-time.



We have modified the basic code in a variety of ways, to ensure all necessary quantities
can be approximated in real-time. Most importantly, instead of integrating over all loca-
tions L, only a small subset of L is considered, assuming that I can be approximated by
a set L,, of m Gaussian densities with means i, € L. The center of the Gaussians p; are
computed at runtime, by scanning locations whose probability Bel(l) exceeds a certain
threshold. Our simplification is somewhat justified by the observation that in practice,
Bel(l) is usually quickly centered on a small number of hypothesis and approximately
zero anywhere. Without this modification, action selection could not be performed in
real-time.

4 Experimental Results

The central claim of this paper that by selecting actions thoughtfully, the results of lo-
calization can be significantly improved. The experiments described in this section were
carried out using a RWI B21 mobile robot equipped with 24 sonar sensors.

4.1 Active navigation

Active navigation was tested by placing the robot in a structured office environment (see
Fig. 2). Notice that the corridor in this environment is basically symmetric and possesses
various places that look alike, making it difficult for the robot to determine where it is.
In this particular case, the robot must move into one of the offices, since only here it finds
distinguishing features due to the different furniture in different offices.

In a total of 10 experiments, random wandering and/or wall following consistently
failed to localize the robot. This is because our wandering routines are unable to move
the robot through narrow doors, and the symmetry of the corridor made it impossible to
uniquely determine the location. In more than 20 experiments using the active navigation
approach presented here, the robot always managed to localize itself in a considerably
short amount of time.

Fig. 2. Environment and path of Fig. 3. Belief Bel(l) position 2
the robot



Fig. 2 shows a representative example of the path taken during active exploration.
In this particular run we started the robot at position 1 in the corridor facing south-
west. The task of the robot was to determine its position within the environment, and
then to move into room A (so that we could see that localization was successful). After
about ten meters of robot motion, it reached position 2 shown in Fig. 2. Fig. 3 depicts
the belief Bel(l) at this point in time (more likely positions are darker). The positions
and orientations of the six local maxima are marked by the six circles. The expected
occupancy probabilities P,..(a), obtained by (7), are depicted in Fig. 4.

Fig. 4. Occupancy probabilities Fig. 5. Expected costs v(a) at
P,..(a) at pos. 2 pos. 2

High probabilities are shown in dark colors. Note that this figure roughly corresponds
to a weighted overlay of the environmental map relative to the different local maxima,
where the weights are given by the probabilities of the local maxima. Fig. 4 also contains
the origin of the corresponding coordinate system. In this coordinate system a coordinate
(x,y) represents a target point x meters in front of the robot and y meters to the left.
Fig. 5 displays the expected costs for reaching the different target points (c.f., (8)) using
the occupancy probabilities from Fig. 4.

Fig. 6. Expected entropy F,[H] at Fig. 7. E,[H] + v(a) at pos. 2
pos. 2

Finally, Fig. 6 shows the expected entropies of the target points, according to (6).
As can be seen there, the expected entropy of locations in rooms is low, making them



favorable for localization. It is also low, however, for the two ends of the corridor, since
those can further reduce uncertainty. Based on the entropy-cost trade-off (c.f. Fig. 7), the
robot now decides to first pick a target at the end of the corridor.

At this point it is important to notice that the trajectory from the current position
to the target point cannot be computed off-line. This is due to unavoidable inaccuracies
in the world model and to unforeseen obstacles in populated environments such as our
office. These difficulties are increased if the position of the robot is not known, as is the
case during localization. To overcome these problems the robot must be controlled by a
reactive collision avoidance technique. In our implementation a global planning module
uses dynamic programming as described in section 3.3 to generate a cost minimal path
to the target location (see [20]). Intermediate target points on this path are presented
to our reactive collision avoidance technique described in [7, 6]. The collision avoidance
then generates motion commands to safely guide the robot to these targes. An overview
of the architecture of the navigation system is given in [3, 21].

Fig. 9. Occupancy prob. P,..(a) at Fig. 10. Expected costs v(a) at
pos. 3 pos. 3

After having reached the end of the corridor (position 3) the belief state contains only
two local maxima (see Fig. 8). Note that this kind of ambiguity can no longer be resolved

10



Fig. 11. Expected entropy £,[H] Fig. 12. F,[H]+ v(a) at pos. 3
at pos. 3

without leaving the corridor. Accordingly the expected entropy shown in Fig. 11 is high
for target points in the corridor compared to the expected entropy of actions which guide
the robot into the rooms. Because of the state of the doors, which only influences the cost
of reaching target points (see Fig. 9 and Fig. 10), the overall payoff as displayed in Fig. 12
is maximal for target points in rooms B and C. As shown in Fig. 2 the robot decides to
move into the room behind him on the right, which in this case turned out to be room
B. After resolving the ambiguity between the rooms B and C the robot moved straight
to the target location in room A. Fig. 13 shows the belief state at this point.

Fig. 13. Final belief Bel(l)

In addition to runs in our real office environment we did extensive testing in artificial
hallway environments taken from [8]. Our active navigation system successfully localized
the robot in every case by automatically detecting junctions of hallways and openings as
crucial points for the localization task, and was uniformly superior to passive localization.
The exact results are omitted for brevity.
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Fig. 14. Corridor of the department

4.2 Active Sensing

Our positive results were confirmed in the context of active sensing. Here we placed the
robot in the corridor shown in Fig. 14. This corridor ( 23 x 4.5m?, all doors closed) is
symmetric except for a single obstacle on its side. Thus, to determine its location, the
robot has to sense this obstacle.

To simulate active sensing, we allowed the robot to read only a single sonar sensor at
any point in time. As a passive method, we chose a sensor at random (a new sensor was
chosen randomly for every reading, which was the best passive approach out of a number
of alternatives that we tried). This passive method was compared to our active approach,
where sensors are chosen by minimizing entropy.
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Fig. 15. Entropy of belief states Fig. 16. Estimation error

The results are depicted in Figures 15 and 16. Figure 15 plots the entropy of Bel(l)
as a function of the number of sensor measurements, averaged over 12 runs, along with
their variances (bars). As can be seen here, the entropy (uncertainty) decreases much
faster when sensors are selected actively. Of course, minimizing entropy alone is not an
indicator of successful localization; even a low-entropy estimate could be wrong. Figure 16
plots the error in localization (measured by the L; norm, weighted by Bel(l)) for both
approaches as a function of the number of sensor measurements. Here, too, the active
approach is more efficient than the passive one. These results clearly demonstrate the
benefit of active localization.
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5 Conclusions

This paper advocates a new, active approach to mobile robot localization. In active
localization, the robot controls its various effectors so as to most efficiently localize itself.
Based on Markov localization [4, 8,15, 17, 18], a popular passive approach to mobile robot
localization, this paper describes an approach for determining the robot’s actions during
control. In essence, actions are generated by minimizing the future expected uncertainty,
measured by entropy. This basic principle has been applied to two active localization
problems: active navigation, and active sensing. In the case of active navigation, an
extension has been developed that incorporates expected costs into the action selection,
and also determines cost-optimal paths under uncertainty using a modified version of
dynamic programming. Both approaches have been verified empirically using a RWI B21
mobile robot.

The key results of the experimental comparison are:

1. The efficiency of localization is increased when actions are selected by minimizing
entropy. This is the case for both active navigation and active sensing. In some
cases, the active component enabled a robot to localize itself where the passive
counterpart failed.

2. The relative advantage of active localization is particularly large if the environment
possesses relatively few features that enable a robot to unambiguously determine
its location.

Despite these encouraging results, there are some limitations that deserve future research.
One of the key limitations arises from the algorithmic complexity of the entropy predic-
tion. While some algorithmic tricks made the computation of entropy feasible within the
complexity bounds of our environment, more research is needed to scale the approach
to environments that are significantly larger (e.g., 1000mx1000m). A second limitation
arises from the greediness of action selection. In principle, the problem of optimal explo-
ration is NP hard, and there exist situations where greedy solutions will fail. However,
in none of our experiments we ever observed that the robot was unable to localize itself
using our greedy approach, something that quite frequently happened with the passive
counterpart.
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