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AbstractLocalization is the problem of determining the position of a mobile robot fromsensor data. Most existing localization approaches are passive, i.e., they do not ex-ploit the opportunity to control the robot's e�ectors during localization. This paperproposes an active localization approach. The approach provides rational criteriafor (1) setting the robot's motion direction (exploration), and (2) determining thepointing direction of the sensors so as to most e�ciently localize the robot. The ap-propriateness of our approach is demonstrated empirically using a RWI B21 mobilerobot in a structured o�ce environment.1 IntroductionTo navigate reliably in indoor environments, a mobile robot must know where it is. Overthe last few years, there has been a tremendous scienti�c interest in algorithms for esti-mating a robot's location from sensor data. A recent book on this issue [2] illustrates theimportance of the localization problem and provides a unique description of the state-of-the-art.The vast majority of existing approaches to localization are passive. Passive localiza-tion exclusively addresses the estimation of location based on an incoming stream of sensordata. It rests on the assumption that neither robot motion, nor the pointing directionof the robot's sensors can be controlled. Active localization goes beyond this paradigm.It assumes that during localization, the localization routine has partial or full controlover the robot, providing the opportunity to increase the e�ciency and the robustness oflocalization. Key open issues in active localization are \where to move" and \where tolook" so as to best localize the robot.This paper demonstrates that active localization is a promising research direction fordeveloping more e�cient and more robust localization methods. In other sub-�elds of1



arti�cial intelligence (such as heuristic search and machine learning), the value of activecontrol during learning and problem solving has long been recognized. It has been shown,both through theoretical analysis and practical experimentation, that the complexity ofachieving a task can be greatly reduced by actively interacting with the environment. Forexample, choosing the right action during exploration can reduce exponential complexityto low-degree polynomial complexity, as for example shown in Koenig's and Thrun'swork on exploration in heuristic search and learning control [10, 19]. Similarly, activevision (see e.g., [1]) has also led to results superior to passive approaches to computervision. In the context of mobile robot localization, actively controlling a robot payso� whenever the environment possesses relatively few features that enable a robot tounambiguously determine its location. This is the case in many o�ce environments. Forexample, corridors and o�ces often look alike for a mobile robot, hence random motionor perpetual wall following is often incapable for determining a robot's position, or vastlyine�cient.In this paper we demonstrate that actively controlling the robot's actuators can signif-icantly improve the e�ciency of localization. A mathematical framework for localizationis derived, which provides rational criteria for (1) active determining where to move, and(2) actively controlling where to point the robot's sensors. Our framework is based onMarkov localization, a passive probabilistic approach to localization which was recentlydeveloped in various sites [4, 8, 15, 17, 18]. At any point in time, Markov localizationmaintains a probability density (belief ) over the entire con�guration space of the robot;however, it does not provide an answer as to how to control the robot's actuators. Theguiding principle of our approach is to control the actuators so as to minimize future ex-pected uncertainty. Uncertainty is measured by the entropy of future belief distributions.By choosing actions to minimize the expected future uncertainty, the approach is capableof actively localizing the robot.The approach is empirically validated in the context of two localization problems:1. Active navigation, which addresses the questions of where to move next, and2. active sensing, which addresses the problem of what sensors to use and where topoint them.Our implementation assumes that initially, the robot is given a metric map of its en-vironment, but it does not know where it is. Notice that this is a di�cult localizationproblem; most existing approaches (see, e.g., [2]) concentrate on situations where the ini-tial robot location is known, thus are not capable of localizing a robot from scratch. Ourapproach has been empirically tested using a mobile robot equipped with a circular arrayof 24 sonar sensors. The key experimental result is that the e�ciency of localization isimproved drastically by actively controlling the robot's motion direction, and by activelycontrolling its sensors. 2



Fig. 1. The robot used in our experiments2 Related WorkThere is a huge body of literature on passive localization (see e.g., [2] and referencestherein). Active localization, however, has received considerably little attention in themobile robotics community. This is primarily because the vast majority of literatureconcerned with robot control (e.g., the planning community) assumes that the position ofthe robot is known, whereas research on localization has mainly focused on the estimationproblem itself. In recent years, navigation under uncertainty has been addressed by afew researchers [17, 15], who developed the Markov navigation paradigm on which ourresearch is based; however, both their approaches do not aim at actively localizing therobot. Localization occurs as a side e�ect when operating the robot under uncertainty.Moreover, as argued by Kaelbling [8], there exist conditions under which the approachreported in [17] can exhibit cyclic behavior due to uncertainty in localization.On the forefront of localization driven navigation, Kuipers [12] used a rehearsal pro-cedure to check whether a location has been visited while learning a map. More recently,Kaelbling and colleagues have proposed two approaches to active navigation similar tothe one proposed here. In one approach [9], acting in the environment is modeled as apartially observable Markov decision process (POMDP), for which an optimal strategy isderived o�-line. Unfortunately, the methods for computing optimal policies for POMDPare computationally extremely complex and barely applicable for environments with sev-3



eral 100 states (our experiments involve environments with 3 million states), making theminapplicable to all but the most simple mobile robot environments. A second approach[8] minimizes the expected entropy after the immediate next robot control action. Whilethis approach is computationally tractable, its greediness might prevent it from �ndinge�cient solutions in realistic environments. For example, if disambiguating the robot'sposition requires the robot to move to a remote location, there is no reason other thanpure chance that this approach might actually move there. Others, such as Thrun and col-leagues [21], have developed robot exploration techniques for e�ciently mapping unknownenvironments. While such methods might give better-than-random results when appliedto localization, their primary goal is not to localize a robot, and there are situations inwhich they will fail to do so.The literature on active perception is huge (see e.g., [16]), with research almost ex-clusively focused on active vision. To the best of our knowledge, the problem of activeperception with the speci�c purpose of localization has not been studied before.3 Active Localization by Entropy Minimization3.1 Markov LocalizationThis section brie
y outlines the basic Markov localization algorithm upon which ourapproach is based; see [15, 17] for a more detailed description and a derivation.The key idea of Markov localization is to compute a probability distribution over allpossible locations in the environment. Let l = hx; y; �i denote a location. The distribution,denoted by Bel(l), expresses the robot's subjective belief for being at l. Initially, Bel(l)re
ects the initial state of knowledge: if the robot knows its initial position, Bel(l) iscentered on the correct location; if the robot does not know its initial location, Bel(l) isuniformly distributed to re
ect the global uncertainty of the robot|the latter is the casein all our experiments.Bel(l) is updated whenever . . .. . . the robot moves. Robot motion is modeled by a conditional probability, denotedby Pa(l j l0). Pa(l j l0) denotes the probability action a, when executed at l0, carriesthe robot to l. In the remainder of this section, actions a are of the type \Move to alocation 1 meter in front and 2 meters to the right." Applied to l0 = h0m; 0m; 90�i,Pa(l j l0) is centered around the expected new location l = h2m; 1m; 90�i.Pa(l j l0) is used to update Bel(l) upon robot motion:Bel(l)  � Z Pa(l j l0) Bel(l0) dl0 (1)In our implementation, Pa(l j l0) is obtained from a model of the robot's kinematics.. . . the robot senses. Let s denote a sensor reading, and P (s j l) the likelihood ofperceiving s at l. P (s j l) is usually referred to as map of the environment, since it4



speci�es the probability of observations at the di�erent locations in the environment.When sensing s, Bel(l) is updated according to the following rule:Bel(l)  � P (s j l) Bel(l)P (s) (2)Here P (s) is a normalizer that ensures that the Bel(l) sum up to 1.In general, Bel(l) can be represented by Kalman �lters [18] or discrete approximation[4, 5, 15, 17, 8]. P (s j l), the map of the environment, is a crucial component of theupdate equations. It speci�es the likelihood of observing s at location l, for any choiceof s and l. In [14, 4], P (s j l) is obtained from a CAD model of the environment, and amodel of sonar sensors. [15, 17, 8] �rst scan sensor data for the presence or absence ofcertain landmarks. Here, too, P (s j l) is constructed from a CAD model. [11]While our description of Markov navigation is brief, it is important that the readergrasps the essentials of the approach: The robot maintains a belief distribution Bel(l)which is updated upon robot motion, and upon the arrival of sensor data. Probabilisticrepresentations are well-suited for mobile robot localization due to its ability to handleambiguities and to represent degree-of-belief. Recently, Markov localization has beenemployed successfully at various sites. However, Markov localization is passive. It doesnot provide means to control the actuators of the robot.3.2 Active LocalizationTo eliminate uncertainty in the position estimate Bel(l), the robot must choose actionswhich help it distinguish di�erent locations. The entropy of the belief, obtained by thefollowing formula H = � Z Bel(l) log(Bel(l)) dl; (3)measures the uncertainty in the robot position: If H = 0, Bel(l) is centered on a sin-gle position, whereas H is maximal, if the robot is completely uncertain and Bel(l) isuniformly distributed. The general principle for action selection can be summarized asfollows: Actions are selected by minimizing the expected future entropy.To formally derive the expected future entropy upon executing an action a, we haveto introduce two auxiliary notations: Let Bela(l) denote the belief after executing actiona, and let Bela;s(l) denote the belief after executing a and sensing s. Both Bela(l) andBela;s(l) can easily be computed from Bel(l) using the Markov positioning update equa-tions (1) and (2). The expected entropy, conditioned on the action, can then be expressedby the following term:Ea[H] = � Z Bela;s(l) log(Bela;s(l)) dl (4)= � Z Z Bela;s(l) log(Bela;s(l))p(s) dl ds (5)= � Z Z P (s j l)Bela(l) � log hP (s j l)Bela(l)p(s)�1)i dl ds (6)5



The expression (6) is obtained from the de�nition of the entropy, by integrating overall possible sensor values s, weighted by their likelihood, and by applying the updaterule (2). This simple, greedy principle| minimizing the expected future entropy|is thecornerstone of our active localization methods.In active sensing, di�erent actions a correspond to di�erent pointing direction of therobot's sensors. Whenever the robot senses, that pointing direction is determined byminimizing the expected entropy Ea[H].3.3 Active NavigationActive navigation addresses the problem of determining where to move so as to bestposition the robot. At �rst glance, one might use simple motor control actions (such as\move 1m forward") as basic actions in active navigation. However, just looking at theimmediate next motor command is often insu�cient. For example, a robot might have tomove to a remote room in order to uniquely determine its location, which might involvea long sequence of individual motor commands.For this reason, we have chosen to consider arbitrary target points as atomic actionsin active navigation. Target points are speci�ed relative to the current robot location, notin absolute coordinates. For example, an action a = move(12m; 2m) will make the robotmove to a location 12 meter ahead and 2 meters to the left, relative to its current locationand heading direction. Since the costs of reaching a target point can di�er substantiallydepending on the time-of-travel, it has to be taken into account.The reminder of this section speci�es the computation of the costs, the cost-optimalpath, and demonstrates how to incorporate costs into action selection.Occupancy probabilities: Our approach rests on the assumption that a map of theenvironment is available, which speci�es which point l is occupied and which one is not.Let Pocc(l) denote the probability that location l is blocked by an obstacle. The robothas to compute the probability that a target point a is occupied. Recall that the robotdoes not know its exact location; thus, it must estimate the probability that a targetpoint a is occupied. This probability will be denoted Pocc(a). Simple geometric consid-erations permit the \translation" from Pocc(l) (in real-world coordinates) to Pocc(a) (inrobot coordinates): Pocc(a) = Z Bel(l)Pocc(fa(l)) dl (7)Here fa(l) is a simple coordinate transformation, which expresses the real-world coordi-nates of the point a, assuming that the robot is at l. In essence, (7) translates, for any l,the point a into real-world coordinates fa(l), then considers the occupancy of this point(Pocc(fa(l))). The expected occupancy is then obtained by averaging over all locations l,weighted by the robot's subjective belief of actually being there Bel(l). The result is theexpected occupancy of a point a relative to the robot.Costs and cost-optimal paths: Based on Pocc(a), the expected path length and thecost-optimal policy can be obtained through value iteration, a popular version of dynamic6



programming (see e.g., [13] for details). Value iteration assigns to each location a a valuev(a) that represents its distance to the robot. Initially, v(a) is set to 0 for the locationa = (0; 0) (which is the robot's location, recall that a is speci�ed in relative coordinates),and 1 for all other locations a. The value function v(a) is then updated recursivelyaccording to the following rule:v(a)  � Pocc(a) + argminb [v(b)] (8)Here b is minimized over all a neighbors of a, i.e., all locations that can be reached from awith a single, atomic motor command. (8) assumes that the costs for traversing a pointa is proportional to the probability that a is occupied (Pocc(a)). Iteratively applying (8)leads to the cost function for reaching any point a relative to the robot, and hill climbingin v (starting at a) gives the cost-optimal path from the robot's current position to anylocation a.Action selection: Armed with the de�nition of the expected entropy and the expectedcosts, we are ready to set the policy for selecting actions in active localization. At everypoint in time, the robot chooses the action a� that maximizesa� = argmina (Ea[H] + �v(a)) (9)Here � � 0 determines the relative importance of certainty versus costs. The choice of �depends on the application. In our experiments, � was set to 1.This completes the description of active navigation with the purpose of localization.Note that active sensing is realized simply by pointing the sensor into the direction whichminimizes the expected entropy of the action a = move(0; 0). To summarize, actionsrepresent arbitrary target points relative to the robot's current position. Actions areselected by minimizing a weighted sum of (1) expected uncertainty (entropy) and (2)costs of moving there. Costs are considered because they may vary drastically betweendi�erent target points.3.4 E�cient ImplementationThe active navigation and sensing methods described here have been implemented andtested using position probability grids [4]. This technique represents the location of therobot by a discrete three-dimensional grid. To achieve the level of accuracy necessary forpredicting robot motion, the resolution of robot orientation is typically in the order of 1�,and the resolution of longitudinal information is often as small as 10cm.While position probability grids are capable of approximating most probability func-tions of practical interest, their update can be computationally very expensive. Thecomplexity of computing the expected entropy is in O(jLj � jSj), where L denotes the setof grid-cells in the position probability grids, and S the set of distinguishable sensations.For example, for a mid-size environment of size 100m2, jLj = 3; 600; 000 for the resolutionspeci�ed above. If the number of possible sensations is large, computing the expectedentropy is infeasible in real-time. 7



We have modi�ed the basic code in a variety of ways, to ensure all necessary quantitiescan be approximated in real-time. Most importantly, instead of integrating over all loca-tions L, only a small subset of L is considered, assuming that L can be approximated bya set Lm of m Gaussian densities with means �m 2 L. The center of the Gaussians �i arecomputed at runtime, by scanning locations whose probability Bel(l) exceeds a certainthreshold. Our simpli�cation is somewhat justi�ed by the observation that in practice,Bel(l) is usually quickly centered on a small number of hypothesis and approximatelyzero anywhere. Without this modi�cation, action selection could not be performed inreal-time.4 Experimental ResultsThe central claim of this paper that by selecting actions thoughtfully, the results of lo-calization can be signi�cantly improved. The experiments described in this section werecarried out using a RWI B21 mobile robot equipped with 24 sonar sensors.4.1 Active navigationActive navigation was tested by placing the robot in a structured o�ce environment (seeFig. 2). Notice that the corridor in this environment is basically symmetric and possessesvarious places that look alike, making it di�cult for the robot to determine where it is.In this particular case, the robot must move into one of the o�ces, since only here it �ndsdistinguishing features due to the di�erent furniture in di�erent o�ces.In a total of 10 experiments, random wandering and/or wall following consistentlyfailed to localize the robot. This is because our wandering routines are unable to movethe robot through narrow doors, and the symmetry of the corridor made it impossible touniquely determine the location. In more than 20 experiments using the active navigationapproach presented here, the robot always managed to localize itself in a considerablyshort amount of time.
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Fig. 2 shows a representative example of the path taken during active exploration.In this particular run we started the robot at position 1 in the corridor facing south-west. The task of the robot was to determine its position within the environment, andthen to move into room A (so that we could see that localization was successful). Afterabout ten meters of robot motion, it reached position 2 shown in Fig. 2. Fig. 3 depictsthe belief Bel(l) at this point in time (more likely positions are darker). The positionsand orientations of the six local maxima are marked by the six circles. The expectedoccupancy probabilities Pocc(a), obtained by (7), are depicted in Fig. 4.
Fig. 4. Occupancy probabilitiesPocc(a) at pos. 2 Fig. 5. Expected costs v(a) atpos. 2High probabilities are shown in dark colors. Note that this �gure roughly correspondsto a weighted overlay of the environmental map relative to the di�erent local maxima,where the weights are given by the probabilities of the local maxima. Fig. 4 also containsthe origin of the corresponding coordinate system. In this coordinate system a coordinatehx; yi represents a target point x meters in front of the robot and y meters to the left.Fig. 5 displays the expected costs for reaching the di�erent target points (c.f., (8)) usingthe occupancy probabilities from Fig. 4.

Fig. 6. Expected entropy Ea[H] atpos. 2 Fig. 7. Ea[H] + v(a) at pos. 2Finally, Fig. 6 shows the expected entropies of the target points, according to (6).As can be seen there, the expected entropy of locations in rooms is low, making them9



favorable for localization. It is also low, however, for the two ends of the corridor, sincethose can further reduce uncertainty. Based on the entropy-cost trade-o� (c.f. Fig. 7), therobot now decides to �rst pick a target at the end of the corridor.At this point it is important to notice that the trajectory from the current positionto the target point cannot be computed o�-line. This is due to unavoidable inaccuraciesin the world model and to unforeseen obstacles in populated environments such as ouro�ce. These di�culties are increased if the position of the robot is not known, as is thecase during localization. To overcome these problems the robot must be controlled by areactive collision avoidance technique. In our implementation a global planning moduleuses dynamic programming as described in section 3.3 to generate a cost minimal pathto the target location (see [20]). Intermediate target points on this path are presentedto our reactive collision avoidance technique described in [7, 6]. The collision avoidancethen generates motion commands to safely guide the robot to these targes. An overviewof the architecture of the navigation system is given in [3, 21].
Fig. 8. Belief Bel(l) at pos. 3

Fig. 9. Occupancy prob. Pocc(a) atpos. 3 Fig. 10. Expected costs v(a) atpos. 3After having reached the end of the corridor (position 3) the belief state contains onlytwo local maxima (see Fig. 8). Note that this kind of ambiguity can no longer be resolved10



Fig. 11. Expected entropy Ea[H]at pos. 3 Fig. 12. Ea[H] + v(a) at pos. 3without leaving the corridor. Accordingly the expected entropy shown in Fig. 11 is highfor target points in the corridor compared to the expected entropy of actions which guidethe robot into the rooms. Because of the state of the doors, which only in
uences the costof reaching target points (see Fig. 9 and Fig. 10), the overall payo� as displayed in Fig. 12is maximal for target points in rooms B and C. As shown in Fig. 2 the robot decides tomove into the room behind him on the right, which in this case turned out to be roomB. After resolving the ambiguity between the rooms B and C the robot moved straightto the target location in room A. Fig. 13 shows the belief state at this point.
Fig. 13. Final belief Bel(l)In addition to runs in our real o�ce environment we did extensive testing in arti�cialhallway environments taken from [8]. Our active navigation system successfully localizedthe robot in every case by automatically detecting junctions of hallways and openings ascrucial points for the localization task, and was uniformly superior to passive localization.The exact results are omitted for brevity. 11



Fig. 14. Corridor of the department4.2 Active SensingOur positive results were con�rmed in the context of active sensing. Here we placed therobot in the corridor shown in Fig. 14. This corridor ( 23 � 4:5m2, all doors closed) issymmetric except for a single obstacle on its side. Thus, to determine its location, therobot has to sense this obstacle.To simulate active sensing, we allowed the robot to read only a single sonar sensor atany point in time. As a passive method, we chose a sensor at random (a new sensor waschosen randomly for every reading, which was the best passive approach out of a numberof alternatives that we tried). This passive method was compared to our active approach,where sensors are chosen by minimizing entropy.
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randomFig. 15. Entropy of belief states Fig. 16. Estimation errorThe results are depicted in Figures 15 and 16. Figure 15 plots the entropy of Bel(l)as a function of the number of sensor measurements, averaged over 12 runs, along withtheir variances (bars). As can be seen here, the entropy (uncertainty) decreases muchfaster when sensors are selected actively. Of course, minimizing entropy alone is not anindicator of successful localization; even a low-entropy estimate could be wrong. Figure 16plots the error in localization (measured by the L1 norm, weighted by Bel(l)) for bothapproaches as a function of the number of sensor measurements. Here, too, the activeapproach is more e�cient than the passive one. These results clearly demonstrate thebene�t of active localization. 12



5 ConclusionsThis paper advocates a new, active approach to mobile robot localization. In activelocalization, the robot controls its various e�ectors so as to most e�ciently localize itself.Based on Markov localization [4, 8, 15, 17, 18], a popular passive approach to mobile robotlocalization, this paper describes an approach for determining the robot's actions duringcontrol. In essence, actions are generated by minimizing the future expected uncertainty,measured by entropy. This basic principle has been applied to two active localizationproblems: active navigation, and active sensing. In the case of active navigation, anextension has been developed that incorporates expected costs into the action selection,and also determines cost-optimal paths under uncertainty using a modi�ed version ofdynamic programming. Both approaches have been veri�ed empirically using a RWI B21mobile robot.The key results of the experimental comparison are:1. The e�ciency of localization is increased when actions are selected by minimizingentropy. This is the case for both active navigation and active sensing. In somecases, the active component enabled a robot to localize itself where the passivecounterpart failed.2. The relative advantage of active localization is particularly large if the environmentpossesses relatively few features that enable a robot to unambiguously determineits location.Despite these encouraging results, there are some limitations that deserve future research.One of the key limitations arises from the algorithmic complexity of the entropy predic-tion. While some algorithmic tricks made the computation of entropy feasible within thecomplexity bounds of our environment, more research is needed to scale the approachto environments that are signi�cantly larger (e.g., 1000m�1000m). A second limitationarises from the greediness of action selection. In principle, the problem of optimal explo-ration is NP hard, and there exist situations where greedy solutions will fail. However,in none of our experiments we ever observed that the robot was unable to localize itselfusing our greedy approach, something that quite frequently happened with the passivecounterpart.References[1] D.H. Ballard and C.M. Brown. Computer Vision. Prentice-Hall, 1982.[2] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems andTechniques. A. K. Peters, Ltd., Wellesley, MA, 1996.[3] J. Buhmann, W. Burgard, A.B. Cremers, D. Fox, T. Hofmann, F. Schneider,J. Strikos, and S. Thrun. The mobile robot Rhino. AI Magazine, 16(2):31{38,Summer 1995. 13
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