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Coupled photorefractive spatial-soliton pairs
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We provide a comprehensive experimental and theoretical study of incoherently coupled photorefractive
spatial-soliton pairs in all three possible realizations: bright–bright, dark–dark, and dark–bright. We also
show that when the total intensity of two coupled solitons is much lower than the effective dark irradiance, the
coupled soliton pair is reduced to Manakov solitons. In all cases, mutual trapping of both components in the
coupled soliton pair is verified by analyzing, experimentally and numerically, the beam evolution after decou-
pling. © 1997 Optical Society of America [S0740-3224(97)02111-5]
1. INTRODUCTION
Self-trapping of light and formation of optical spatial soli-
tons has been studied since 1964.1 It has recently at-
tracted considerable interest following the progress on
photorefractive solitons,2 quadratic (or x (2)) solitons,3 and
solitons in saturable nonlinear media.4 In addition, since
spatial solitons are potentially useful for all-optical
switching, three-dimensional optical inter-
connects,5 and waveguide applications,6,7 research in this
field has spanned from soliton formation to soliton-
induced waveguides to soliton interactions. The purpose
of this paper is to provide a comprehensive study of inco-
herently coupled photorefractive spatial-soliton pairs.

Soliton pairing has been studied previously in the spa-
tiotemporal domain (in Kerr media) by employing two
coupled nonlinear Schrödinger equations. In particular,
it has been shown that an optical pulse can propagate un-
distorted in a single-mode fiber as a bright soliton when it
couples to a dark soliton (at a different wavelength)
through cross-phase modulation8–10 (XPM). Pairing of
bright and/or dark fundamental temporal solitons corre-
sponds to a particular set of solutions of the coupled non-
linear wave equations.8–10 These studies were then ex-
tended to the spatial domain, where the evolution of
spatial solitons in Kerr media is governed by the same set
of nonlinear Schrödinger equations, similar to the spatio-
temporal analogy discussed for the scalar solitons.11 It
has been shown theoretically that pairing of bright and/or
dark spatial solitons of two different wavelengths can be
realized in a self-focusing or defocusing Kerr-type me-
dium through XPM, provided that the two soliton compo-
nents have properly scaled relative intensities when they
are superimposed.12 Indeed, a coupled bright–dark
0740-3224/97/113066-12$10.00 ©
spatial-soliton pair has been observed experimentally in a
focusing Kerr medium with two beams of different
colors.13

Pairing of two spatial solitons has always been an in-
triguing issue among spatial-soliton interactions.
Specifically, in the case of a coupled soliton pair the two
beams are mutually trapped and depend on each other in
such a way that each of them propagates undistorted.
The presence of both components is required, since each
beam alone cannot survive as a soliton if the other beam
is absent. On the other hand, it is well known that a spa-
tial soliton forms a self-induced waveguide that can guide
not only the soliton beam itself but also another probe
beam.14 Extending this concept to the nonlinear case, we
come to a coupled soliton pair, for which the refractive-
index modulation (or the self-induced waveguide) is cre-
ated by the two pairing beams and both beams are self-
guided, whereas in guiding a beam in a soliton-induced
waveguide the index modulation is set only by the soliton
that remains unchanged if the guided beam is removed.
Thus a coupled soliton pair is in contradistinction to guid-
ing a probe beam in a soliton-induced waveguide.

In general, two copropagating beams in a nonlinear
medium are known to interact through XPM. Thus, re-
moving one beam should affect the other since the XPM
term disappears. For a coupled soliton pair, which con-
sists of two soliton components of nearly equal amplitude,
the XPM is comparable with the self-phase modulation
(SPM) of each beam, and both effects play an important
role in forming a coupled soliton pair. Therefore, when
one beam is absent, the other cannot remain as a soliton.
On the other hand, for a weak beam guided in a soliton-
induced waveguide, the XPM is small enough relative to
1997 Optical Society of America
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the SPM (one beam has a higher intensity than the other)
that the weak beam does not greatly affect the strong
beam. At the same time the weak beam is guided in the
waveguide induced by the strong beam (provided that the
strong beam alone can form a soliton). In this latter
case, even though the weak beam by itself is not a soliton,
it is guided by the strong beam through XPM. When the
weak beam is removed, the strong one still remains a soli-
ton. In fact, this is why the guided beam must be much
weaker than the soliton beam itself in all experiments
with Kerr spatial solitons. Because of this subtlety, the
nomenclature of coupled soliton pairs or soliton pairing is
in general used for the case that two beams are mutually
self-trapped and coupled to form solitons simultaneously,
as has been used previously.12,13

In this paper we present an experimental and a theo-
retical study of coupled photorefractive spatial-soliton
pairs. Photorefractive solitons were predicted a few
years ago,2 and they have been studied extensively since
then. Photorefractive solitons exhibit several interesting
properties that are different from Kerr-type solitons. For
instance, these solitons are stable in both transverse di-
mensions and can be generated even at microwatt power
levels.15 Also unique to photorefractive solitons is that a
weak soliton beam can induce a waveguide that can guide
in it an intense beam of a wavelength that is photorefrac-
tively less sensitive.16 Thus far, photorefractive solitons
have been observed in biased photorefractive crystals in
both quasi steady state2,15,17,18 and steady state,5,19–27 in
photovoltaic media28–32 as well as in photorefractive
semiconductors.33 It has also been shown that even a
spatially incoherent optical beam can be self-trapped by
use of the photorefractive nonlinearity.34,35 Among these
studies, of particular interest are the steady-state photo-
refractive solitons, which use the effect of nonuniform
screening of the externally applied electric field and are
thus called screening solitons.19 When an optical beam
passes through a properly biased photorefractive crystal,
the refractive-index change resulting from the nonuni-
formly screened electric field can have a self-focusing or a
defocusing effect on the beam, depending on the polarity
of the applied field with respect to the crystalline
axes.5,19,20 Both bright22–24 and dark25–27 screening soli-
tons can be obtained once the self-focusing or -defocusing
effect balances diffraction. Since the first prediction19 of
screening solitons, attention has also been drawn to their
induced waveguides25,26,36 and their coherent and inco-
herent interactions.37–46

There are three different initial configurations in which
two one-dimensional spatial solitons can interact in the
same plane: overlapping, parallel propagating, and
crossing. When two coherent fundamental photorefrac-
tive screening solitons are launched close to each other
(parallel propagating but not overlapping), interaction be-
tween them leads to their attraction or repulsion, depend-
ing on their initial phase difference,45,47,48 similar to the
interaction of two Kerr-type spatial solitons.49 Interac-
tion between two one-dimensional incoherent colliding
screening solitons has been studied in Ref. 42.

Here we investigate the interaction between two inco-
herent overlapping (copropagating) photorefractive
screening solitons that leads to coupled spatial-soliton
pairs. As predicted in Ref. 37, an incoherently coupled
photorefractive soliton pair can be generated if two mutu-
ally incoherent optical beams copropagate in a biased
photorefractive crystal and experience the same refrac-
tive index and electro-optic coefficient. Experimentally,
a possible choice is to use two beams of approximately the
same wavelength and polarization that are at the same
time mutually incoherent. This means that the interfer-
ence pattern between these two beams must fluctuate
randomly with time much faster than the response time
of the photorefractive medium. The formation time of
photorefractive screening solitons is roughly given by the
dielectric relaxation time, tdie , which is longer than 1 ms
in all photorefractive nonsemiconductor crystals for an
optical illumination of ;1 W/cm2 maximum intensity.
This implies that for such two beams to form an incoher-
ent soliton pair, their average frequencies must be differ-
ent by Dn @ 1/tdie ' 1 kHz. If one uses both beams from
the same laser source and delays them with respect to one
another, then the coherence length of the laser, lc , must
be much shorter than ctdie ' 100 km (c is the speed of
light in vacuum). On the other hand, each component of
the soliton pair must maintain its own coherence
throughout propagation, which implies that lc must be
much longer than the propagation length in the nonlinear
medium (approximately a few centimeters). Therefore
we find it convenient to work with a multimode argon-ion
laser of lc ' 10 cm @lxtal ! lc ! ctdie# and to delay the
two beams by ;3 m with respect to each other so that
they are mutually incoherent from the perspective of the
nonlinear medium. Thus the two pairing beams have
roughly the same wavelength. In addition, both beams
are extraordinarily polarized in order to use the optimal
electro-optic coefficients for soliton formation in the pho-
torefractive crystal5,19,20 (note that both beams now expe-
rience the same reflective index and electro-optic coeffi-
cient) so that the two pairing beams also have the same
polarization. Because of the mutual incoherence, the two
beams are now coupled merely through nonlinear
intensity-driven XPM. When such two beams propagate
collinearly in a biased photorefractive crystal, they can
couple to form a steady-state screening-soliton pair under
certain conditions. In Ref. 37, coupled soliton-pair solu-
tions (bright–bright, dark–dark, or dark–bright) have
been found at a particular set of parameters for two
beams that have identical full width at half-maximum
(FWHM) but different peak intensities. As we show in
the present paper, if the intensity difference between two
beams is too large, they resemble a coupled soliton pair,
but the two beams have a master–slave relation that is
close to the case of guiding one beam by the other.

The paper is organized as follows: In Sections 2 and 3
we present a theoretical model for the study of coupled
photorefractive soliton pairs and an intuitive understand-
ing of such soliton pairs from the existence curve of the
photorefractive screening solitons. The Manakov soliton
limit is discussed in Section 4. In Section 5 we discuss
the experimental setup and the technique used to sepa-
rate and characterize the two beams from a coupled pair
(despite their having the same frequency and polariza-
tion). Sections 6–8 deal with three different configura-
tions of soliton pairing, namely, bright–bright, dark–
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dark, and dark–bright. Both experimental results and
numerical simulations of coupled soliton propagation are
presented. It is shown that, while a coupled bright–
bright or dark–dark photorefractive soliton pair propa-
gates like a single fundamental bright or dark screening
soliton, a dark–bright soliton pair corresponds to self-
guided propagation of both beams. Furthermore, we dis-
cuss the coupling–decoupling behavior of a soliton pair
(i.e., two beams can couple to form a soliton pair, but one
beam alone cannot preserve the soliton behavior without
the other). In Section 9 we discuss some other issues
such as the stability of coupled soliton pairs. Conclu-
sions are given in Section 10.

2. MODEL
For photorefractive screening solitons the theoretical
model that characterizes the evolution of one-dimensional
spatial solitons in biased photorefractive media is now
well established5,19,20 and has been tested exper-
imentally.24,25 The basic equations are the Helmholtz
equation for the slowly varying amplitude of the optical
field and a set of the charge-transport equations that de-
scribe the photorefractive effect in a nonlinear medium.
These equations reduce to a single nonlinear equation
and can be extended to the case of two optical beams co-
propagating in a photorefractive medium. In steady
state the coupled wave equations can be written as
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where F(x, z) and C(x, z) are the slowly varying ampli-
tudes of the two optical fields, x and z are the transverse
and longitudinal coordinates, respectively, k 5 2pnb /l,
nb is the unperturbed index of refraction, and l is the
free-space wavelength. Dn(Esc) is the change in the re-
fractive index, which is driven by the space-charge field
Esc(x, z) through the electro-optic effect
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In writing Eqs. (1) and (2), we assume that the two beams
copropagate in the z direction with the same wavelength
l and the same polarization. When the photorefractive
crystal is strontium barium niobate (SBN), the most fa-
vorable configuration for soliton formation is when the
crystalline c axis is parallel to the x direction, which is
also the direction of beam polarization, and employs the
large electro-optic coefficient r33 . Under appropriate
conditions the steady-state space-charge field is approxi-
mately given by5,19,20

Esc 5 E0
I` 1 Id

I~x, z ! 1 Id
, (3)

where E0 is the space-charge field at x → 6`, and it is
approximately equal to 6V/l, that is, the voltage V ap-
plied across the crystal of width l. I(x, z) is the total in-
tensity of the two optical beams. I` 5 I(x → 6`) repre-
sents the total intensity far away from the center of the
beams (near the crystal x boundaries), and Id is the effec-
tive dark irradiance.5,19,20 (When no background beam is
provided for dark illumination, Id is just the natural dark
irradiance in the crystal. When a background illumina-
tion is provided and is much stronger than the natural
dark irradiance, Id is roughly the intensity of the back-
ground beam). For two mutually incoherent beams the
total intensity can be considered as the sum of the two
Poynting fluxes, i.e., I 5 (ne/2h0)(uFu2 1 uCu2), where
h0 5 (m0 /e0)1/2. It is through this intensity superposi-
tion that the two beams are coupled, since the total opti-
cal intensity modifies the space-charge field through Eq.
(3) and thus modifies the refractive-index of the crystal
through Eq. (2). The refractive-index change induced by
both beams is then experienced by each beam through
Eqs. (1). Under appropriate normalization of z
5 z/(kx0

2), j 5 x/x0 , F 5 (2h0Id /nb)U, and C
5 (2h0Id /nb)V, Eqs. (1) can be written as two coupled
nonlinear equations in dimensionless variables37:
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where r 5 I` /Id , b 5 1/2(kx0)2nb
2r33 E0 , and x0 is an

arbitrary spatial width for scaling. These are the basic
equations we used in our theoretical modeling.

3. SOLITON SOLUTIONS AND THE
EXISTENCE CURVES
In general, Eqs. (4) are not integrable, and therefore their
spatially localized solutions of any kind should be found
only numerically by separation of the trajectories of the
corresponding stationary problem. However, because
the saturable nonlinearity depends on the total intensity
ratio, Eqs. (4) have a family of the solitary-wave solutions
of equal width but unequal amplitudes that can be ob-
tained from the theory of single-beam propagation in a
photorefractive medium. To see this, we discuss each
case individually. For the case of bright–bright soliton
pairs the intensities are expected to vanish at the bound-
aries (j → 6`); thus we have I` 5 r 5 0. To seek such
soliton-pair solutions, we can express the normalized en-
velopes U and V as U 5 r1/2y(j)cos u exp(imz ) and V
5 r1/2y(j)sin u exp(imz ), where r is the total peak inten-
sity of the pair normalized to the effective dark irradiance
[r 5 I0 /Id , and I0 5 I (j 5 0) is the total peak intensity
of this bright two-component beam configuration], y(j) is
a normalized real function bounded between 0 < y(j)
< 1, u is an arbitrary projection angle, and m represents
a nonlinear shift of the propagation constant.37 Then
Eqs. (4) can be reduced to

d2y

dj2 2 2my 2
2b

1 1 ry2 y 5 0. (5)

This equation is known to allow bright solitons when b or
E0 is positive, which corresponds to a negative sign of
Dn(j) for all j, and a net self-focusing effect on the optical
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beam. The bright-soliton solutions of Eq. (5) have been
discussed in great detail,5,19,20 and these studies have pre-
dicted a unique relation for the soliton width, the applied
field, and the intensity ratio I0 /Id , i.e., the ratio of the
peak soliton intensity to the sum of the natural dark ir-
radiance and the uniform background illumination. This
relation constitutes the soliton existence curve shown in
Fig. 1(a), where we plot the soliton width in normalized
units Dj 5 Dxkne(r33V/l)1/2 (Dx is the soliton FWHM in
actual units) as a function of the square root of the peak
intensity ratio. The existence curve for bright solitons
has been verified in several experiments.24,39,45 In our
case of coupled soliton pairs the two components can be
considered as the u projections of the fundamental bright-
soliton envelope. We note that these are only the sim-
plest type of solutions in which uUu2 and uVu2 have the
same functional dependence on j.

Dark–dark soliton pairs can be analyzed in a similar
way. A one-dimensional dark spatial soliton is a dark
notch resulting from an antisymmetric field profile that
remains invariant while propagating in a nonlinear
medium. Thus I` and r are now nonzero quantities
[r 5 I` /Id , and I` 5 I(j → 6`) is the peak intensity
for dark beams]. The envelopes of the two dark (notch-
bearing) beams can then be expressed as U 5 r1/2y(j)
3 cos u exp(imz ) and V5 r1/2y(j)sin u exp(imz), where
uy(j)u < 1. Equations (4) now become

Fig. 1. Theoretical plot of the existence curves (normalized soli-
ton width versus the square root of the intensity ratio) for fun-
damental (a) bright and (b) dark photorefractive solitons. The
points marked by filled circles correspond to conditions discussed
in the text.
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This equation is known to allow dark solitons when b or
E0 is negative, which corresponds to a positive sign of
Dn(j) for all j, and a net self-defocusing effect on the
notch-bearing optical beams. The dark-soliton solutions
of Eq. (6) have been studied extensively,5,19,20 and the
soliton existence curve for dark solitons has been found
[see Fig. 1(b)] to be quite different from the one for bright
solitons in the high-intensity regime (I` /Id @ 1). The
existence curve has also been verified experimentally.25

Again, the two components of a dark–dark pair can be
simply obtained through a u projection.

Intuitively, one can understand coupled soliton pairs
from the photorefractive soliton existence curves of Fig. 1.
As observed in many experiments,23–27,39 a large devia-
tion of the experimental parameters from a soliton exis-
tence curve proves unfavorable for soliton propagation.
For instance, an optical beam diffracts if the applied volt-
age is not high enough (at a particular intensity ratio),
and it is distorted by instabilities24,39 or, for a broad input
dark notch, breaks up into multiple filaments26,27 if the
voltage is too high. Both the applied voltage and the in-
tensity ratio control the nonlinearity, as seen from Eqs.
(2) and (3). For the case of a bright–bright soliton pair,
two mutually incoherent beams of the same size can form
a coupled soliton pair as long as their combined intensity
ratio and width match the curve of Fig. 1(a). However,
once they are decoupled (i.e., one beam is blocked), each
beam alone cannot remain as a soliton under the same ex-
perimental conditions. For instance, if the coupled soli-
ton pair is formed from two identical bright beams at cer-
tain bias field and intensity ratio that corresponds to
point A on the existence curve of Fig. 1(a), blocking one
beam shifts the operating point to B since now the inten-
sity ratio is reduced by half. This in turn entails a large
deviation from the curve, and thus each component by it-
self can no longer behave like a soliton. In fact, the non-
linearity becomes too high for self-trapping of a single
beam at this bias field, which may lead to beam breakup
into filaments. A bright soliton can be retrieved either
by decreasing the bias field that moves the operating
point to C or by readjusting the intensity ratio that moves
the operating point to A or D.

Similarly, a dark–dark photorefractive soliton pair can
be obtained, provided that their total intensity ratio and
normalized width match the curve of Fig. 1(b). Because
the existence curve for dark solitons is different from that
for bright, the behavior of each beam after decoupling is
also different. If a coupled dark–dark pair is formed in
the region of low intensity ratio, e.g., at point A on the
curve of Fig. 1(b) (I` /Id < 10), blocking one beam shifts
the operating point to B as the intensity ratio is reduced.
Now a large deviation from the curve leads to diffraction
of the dark notch (rather than breakup), since the nonlin-
earity is not high enough at this bias field for each beam
to form a dark soliton, unless the bias is increased to
match point C. However, if a coupled pair is formed in
the region of high intensity ratio, say, at point E on the
curve of Fig. 1(b) (I` /Id @ 1), blocking one beam shifts
the operating point to F, which still roughly matches the
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curve, because the existence curve is practically flat for
I` @ Id , and reducing I` by half does not change Dj. In
this case, no significant change is expected when a dark–
dark soliton pair is decoupled. Thus for dark–dark pairs,
significant difference after decoupling is only expected for
I` /Id well below 10.

Finally, a dark–bright soliton pair solution can also be
obtained from the coupled equations [Eqs. (4)] under
proper conditions.37 When the peak intensity of a bright
beam I0 and that of a dark beam I` are comparable but
not equal, the combined intensity pattern can be of a
bright peak (when I0 . I`) or a dark notch (when I0
, I`) in the center of the beam; thus it is equivalent to
either a bright or a dark beam that will require different
polarity of the bias field for soliton formation. Interest-
ingly, a stable dark–bright photorefractive pair can be re-
alized only with a self-defocusing nonlinearity when the
combined intensity pattern is of a dark notch, i.e., when
I0 , I` . This dark notch can be self-trapped at an ap-
propriate negative bias, similar to ordinary dark (or gray)
photorefractive screening solitons. When the bright com-
ponent is blocked, the effective intensity ratio is
increased.41 As a result, the nonlinearity is too high to
support a fundamental dark soliton of the same width. If
the applied field is not adjusted accordingly, the dark
notch evolves into multiple dark solitons when the input
notch is broad enough or breaks up owing to transverse
instabilities if the input notch is too narrow.27 From Fig.
1(b), this corresponds to moving point A somewhere to the
right, and thus, in contradistinction to the dark–dark
case, it shifts above the curve and the nonlinearity be-
comes higher. If the total intensity exhibits a bright
peak (I0 . I`), then a positive bias is needed to create a
self-guided channel for both beams. But, since a bright
soliton requires a self-focusing nonlinearity,5 the bias
field leads to modulation instability of the broad back-
ground associated with the dark beam. Eventually, no
stable dark–bright pair with I0 . I` can form, no matter
where the operating point is on Fig. 1(a). Therefore a
dark–bright photorefractive soliton pair requires I0 , I`

and a self-defocusing nonlinearity.

4. MANAKOV SOLITON LIMIT
For the particular case of low total intensity ratio ( uUu2

1 uVu2 ! 1) we can expand the term describing the satu-
rable nonlinearity (as done in Ref. 5) and obtain the fol-
lowing equations:
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where the normalized envelopes u(z, j) and v(z, j) are
introduced according to the relations (U, V) 5 (u, v)
3 @ ubu(1 1 r)#21/2 $exp@2ib (1 1 r)z #%, and the dual sign
6 defines the polarity of the bias field corresponding to fo-
cusing or defocusing nonlinearity, respectively.

The system of Eqs. (7) is known as the Manakov equa-
tions, and its integrability for the focusing case was estab-
lished in Ref. 50. It is well known that the localized
bright–bright soliton solutions with equal widths but dif-
ferent amplitudes, which can be obtained by a simple re-
duction of u(z, j) 5 f(z, j)cos u and v(z, j)
5 f(z, j)sin u (where u is constant as in Section 3), are
the only possible type of one-soliton solutions of the
Manakov model, and their common envelope f is de-
scribed by the cubic nonlinear Schrödinger equation.

As has been shown recently,51 special polarization
properties of the beam propagation in semiconductor Al-
GaAs planar waveguides allow the TE and TM soliton po-
larization components of a bright–bright vector soliton to
have equal width. This happens when the ratio between
the SPM to XPM equals to unity, and the SPM terms
must be identical for the two polarization components.
The authors of Ref. 51 associated the property of the
equal width of the polarization components with those of
the Manakov solitons analyzed in Ref. 50. As can be seen
from the analysis presented above, the same property is
valid for any kind of incoherent soliton interaction, and it
is a simple consequence of the dependence of the
refractive-index change on the total beam intensity.

The case of defocusing nonlinearity in the Manakov
equations did not get enough attention in the past; pre-
liminary study has been started only recently,52,53 and
the dark–dark and dark–bright solitons and their elastic
interaction, corresponding to the limit of integrable
Manakov model, have been revealed. In this respect, the
present paper also reports the first experimental observa-
tion of a coupled dark–dark Manakov soliton pair. For
the dark–bright case the general solution of Eqs. (7) is

u~z, j! 5 tanh~aj!exp~2iz!,

v~z, j! 5 A1 2 a2 sech~aj!exp@2i~1 2 a2/2!z#,
(8)

where the parameter a characterizes the amplitude of the
bright component, 0 , a2 , 1, provided the total back-
ground intensity is normalized to unity (a particular case
of this solution was found in Ref. 37). As follows from
this exact solution, for any a it describes only a dark
notch for the total intensity profile. Because the Mana-
kov model is exactly integrable, it allows the exact solu-
tion that describes interaction of any number of solitons.
This property does not persist for larger intensity ratios
(uUu2 1 uVu2 @ 1) when the approximation by the Mana-
kov model is not valid, and therefore some new types of
generalized Manakov-like solitons are expected.

5. EXPERIMENTAL ARRANGEMENT
The experiments are performed with a cw argon-ion laser
and a photorefractive SBN crystal (Fig. 2). The laser
beam is collimated and split by a polarizing beam splitter.
The ordinarily polarized beam is used as the uniform
background illumination so as to mimic the dark
irradiance,22,24,25 whereas the extraordinarily polarized
beam is split into two soliton-forming beams. We make
these two beams mutually incoherent at the input face of
the crystal by having their optical path difference greatly
exceed the coherence length of the laser. Thus no sta-
tionary interference gratings can form within a time scale
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comparable with the response time of the crystal, as dis-
cussed in Section 1. For the bright–bright pair experi-
ments the two bright beams are cylindrically focused
(narrow in x and almost uniform in y, which define the
transverse plane) onto the crystal input face and are su-
perimposed on each other so that they propagate col-
linearly through the crystal along the longitudinal direc-
tion z. For the dark–dark pair experiments each beam
falls on a l/4 step mirror, which generates upon reflection
a narrow dark notch in each beam.25 The dark notches
are then imaged onto the input face of the crystal, with
each dark (notch-bearing) beam covering the entire input
face of the crystal to ensure steady-state soliton
formation.19,25,27 We vary the width (FWHM) of each
beam at the input face of the crystal by using different
magnifications of the imaging system and/or by adjusting
the variable slit positioned in the central focal plane of
the imaging lens. We perform experiments on dark–
bright pairs by replacing one of the dark beams by a
bright beam and superimposing the bright beam onto the
dark notch. In each case, we generate one-dimensional
screening solitons by applying an appropriate (in terms of
magnitude and polarity) dc field parallel to the crystalline
c axis. The input–output beams from the crystal are
monitored by a CCD camera.

Since the two collinear beams have roughly the same l
and polarization, it is difficult to distinguish them by use
of a l filter or a polarizer. However, since the space-
charge field builds up (or decays) with a response time de-
termined by the dielectric relaxation time tdie (typically a
few seconds in our experiments at a beam intensity of
;100 mW/cm2), a photorefractive soliton and its induced
waveguide, once formed, has a memory time of a few sec-
onds. Thus we identify each beam at the coupled output
by blocking one beam with a mechanical shutter and sam-
pling the other within a time interval much shorter than
tdie. This permits viewing of each soliton beam sepa-
rately although the two beams share roughly the same
frequency and polarization, as the refractive-index modu-
lation (or the soliton-induced waveguide) created by both
soliton beams remains unaffected by the rapid change in
the intensity within such a short time interval.

6. BRIGHT–BRIGHT PAIRS
The experiments with bright–bright soliton pairs are per-
formed in a 5-mm-long Co-doped SBN:61 crystal. Two
bright beams are made to have nearly the same input size

Fig. 2. Experimental setup. Beams 1 and 2 are two soliton-
forming beams made incoherent to each other. For bright-beam
generation they are cylindrically focused directly onto the crystal
input face. For dark-beam generation they are reflected from
l/2 step mirrors (M1 and M2) and then imaged onto the crystal
input face.
(FWHM: 9 mm, 61mm) and nearly the same peak inten-
sity of ;120 mW/cm2. Without the external field each
beam diffracts to ;52 mm after 5-mm propagation.
When both beams are on, the peak intensity ratio I0 /Id
(the ratio between the total peak intensity of the two
bright beams and the intensity of the background beam
for dark illumination, as defined above) is measured to be
84 with ;20% error. The error is because the beams are
not exactly uniform in y; i.e., they are cylindrically fo-
cused Gaussian beams rather than ideal one-dimensional
beams. By applying a positive voltage of V 5 2150 V be-
tween l 5 4.5 mm, the output beams are trapped to form
a steady-state coupled bright–bright soliton pair. Typi-
cal experimental results are presented in Fig. 3, where
photographs are taken at the input and output faces of
the crystal to show input beams [Fig. 3(a)], output beams
of normal diffraction [Fig. 3(b)], and output beams of a
coupled soliton pair [Fig. 3(c)]. The photographs of Fig.
3(c) are taken from each beam immediately (less than 0.1
s) after its pairing beam is turned off. We observe that
both beams are trapped to their initial input size. The
coupled soliton pair corresponds to point A on the soliton
existence curve of Fig. 1(a). When the two beams are de-
coupled, i.e., when one of the two beams is blocked long
enough (t @ tdie) for the crystal to reach a new steady
state, while no other experimental condition is changed,
the remaining beam can no longer preserve its soliton
properties. Instead, it is severely distorted in the trans-
verse plane because of transverse modulation
instability24; meanwhile, it exhibits strong
self-bending23,54 toward the crystalline c axis (the latter
feature is attributed to the enhanced effect of the diffu-
sion field at high bias55). Eventually, the beam breaks
up. Figure 3(d) shows the photographs of each beam
taken after its pairing beam is blocked for a time (5 min),
much longer than the crystal response time. Although

Fig. 3. Experimental results showing coupling–decoupling of a
bright–bright soliton pair. Photographs are taken at (a) the in-
put and (b)–(d) the output faces of the crystal: (b) diffraction
output from the crystal, (c) coupled output when the pairing
beam is present, and (d) decoupled output when the pairing
beam is absent.
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each beam is still focused to a certain degree, it is no
longer a soliton, as each beam is highly distorted by
transverse instability. From the soliton existence curve
of Fig. 1(a), the transition from a coupled pair to the case
of one beam alone shifts the operating point from A to B.
This implies that the applied voltage of 2150 V is too high
for the remaining beam to form a soliton on its own.
However, by readjustment of the applied voltage down to
1200 V (without a change in its intensity), each beam
alone can then be trapped to form a fundamental soliton.
This corresponds to point C in Fig. 1(a).

Numerical simulations are performed to compare with
the above experimental observations. The two coupled
evolution equations [Eqs. (4)] are solved by beam propa-
gation methods. For simplicity, beam self-bending
effects54,55 are neglected in all our simulations in this pa-
per. (Self-bending was included in our numerical simu-
lations in a previous paper on bright–bright soliton
pairs.39) The parameters used correspond to those of the
experiments: the input FWHM of each beam is 9.9 mm,
the positive trapping voltage is 2150 V (over 4.5 mm), and
the total intensity ratio is 84, where the two input beams
are of equal intensity. The r33 electro-optic coefficient of
the SBN crystal is 280 pm/V, as measured from experi-
ments. Figure 4(a) depicts each component of such a
soliton pair under these conditions. The pair propagates
smoothly with a constant shape. When one of the beams
is turned off (for the same voltage), each beam does not

Fig. 4. Numerical simulations corresponding to Figs. 3(c) and
3(d): (a) propagation of one of the bright beams from a coupled
bright–bright soliton pair and (b) propagation of one of the bright
beams when the pairing beam is absent.
maintain a constant width while propagating; instead, it
experiences considerable oscillation in its width, as illus-
trated in Fig. 4(b).

We also studied the case that the two bright beams are
not identical, e.g., they are different in intensity and/or
size. When two beams are of different sizes but with the
same intensity, they can still exhibit mutual
self-trapping.39 When the two beams are of different in-
tensities such that one beam is much stronger than the
other, they resemble a coupled soliton pair. However,
the two beams have a master–slave relation: The weak
beam is guided (slaved) in the waveguide dominated
(mastered) by the strong beam, as is further discussed in
Section 9.

7. DARK–DARK PAIRS
The experiments with dark–dark pairs are performed in a
11.7-mm-long undoped SBN:61 crystal. The r33 mea-
sured for this crystal is ;247 pm/V. As discussed above
on the existence curve for dark solitons [Fig. 1(b)], block-
ing one beam reduces the total intensity ratio and moves
the operating point to the left and below the curve. Thus
we should see the diffraction of the dark notch since the
nonlinearity is now insufficient to balance diffraction.
However, the diffraction of a dark notch (borne on a broad
background beam) is smaller than that of a cylindrically
focused Gaussian beam of the same size.27 Therefore we
use a longer crystal for observing the decoupling behavior
of a dark–dark soliton pair. Two dark notches are now
made to have roughly the same input size (FWHM: 16
mm, 61 mm), borne on two broad beams of nearly the
same average intensity. The two dark notches overlap
and propagate collinearly through the crystal. Without
the external field, each notch diffracts to ;36 mm. Since
the combined intensity pattern is of a deeper dark notch
(same FWHM, double intensity of the bearing beam), a
negative bias is required to turn the medium into a self-
defocusing type for dark-soliton formation.

Indeed, as we set the total intensity of the dark beams
less than, or comparable with, the effective dark irradi-
ance (i.e., I` /Id < 1, in the region of low intensity ratio),
we observe that the two beams are coupled to form a
dark–dark screening soliton pair by applying a negative
voltage. Typical experimental results are presented in
Fig. 5. At I` /Id 5 0.8 and V 5 2420 V (applied between
l 5 5.3 mm), the FWHM of each dark soliton is ;14 mm.
Again, the photographs of Fig. 5(c) are taken from each
beam immediately after its pairing beam is turned off,
and those of Fig. 5(d) are taken after the pairing beam is
blocked and a new steady state is reached. When both
beams are on, they couple to form a soliton pair. How-
ever, when one of them is turned off, the other cannot be
sustained as a dark soliton, and it broadens to ;24 mm.
From Fig. 1(b) the decoupling of the coupled soliton pair
corresponds to a transition of the operating point from A
to B. This implies that the applied voltage is not high
enough for the remaining beam to form a dark soliton on
its own. Experimentally, we cannot retrieve the dark
soliton just by increasing the applied voltage to match
point C because of the strong transverse modulation of
the dark beam at high bias field.
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Numerical simulations by beam propagation methods
for coupling-decoupling of a dark–dark soliton pair are
presented in Fig. 6, where Fig. 6(a) depicts each dark
component from a coupled soliton pair, Fig. 6(c) shows the
same component after the pairing component is removed,
and Fig. 6(c) is the input (solid curve) and output (dashed
curve) intensity profiles corresponding to Fig. 6(b). The
parameters used for these figures are as follows: the
FWHM of each dark notch is 16 mm (which diffracts to 38
mm after propagating through the crystal), the negative
trapping voltage is 2199.3 V (over 5.3 mm), and the total
intensity ratio is I` /Id 5 0.8, where the two input beams
are of equal intensity. When one of the dark beams is
turned off (for the same other parameters), each beam
does not maintain a constant width while propagating.
Instead, it diffracts to 21 mm, as illustrated in Fig. 6(b)
and Fig. 6(c). These results agree well with experimen-
tal results of Fig. 5. We note that in our experiment with
a coupled dark–dark soliton pair, the bias field used is
somewhat higher than that predicted from theory. We
attribute this to two reasons: One is the residual gray-
ness in the dark solitons. Because the step mirrors used
in experiments do not provide an ideal p phase jump in
the wave fronts of the dark beams, dark solitons are
formed with some grayness. The other reason is partial
guidance of the background beam under the dark soliton,
i.e., guidance by the waveguide induced by the soliton.
This latter effect modulates the background illumination
locally so that it is no longer uniform, as assumed in the
theory.5,19,20

As expected, the decoupling behavior becomes less pro-
nounced as we reduce (or eliminate) the background illu-
mination and work in the region of high intensity ratio
(I` /Id @ 1). When we set the total intensity of the dark
beams much higher than the effective dark irradiance
(e.g., remove the background illumination and use the

Fig. 5. Experimental results showing coupling–decoupling of a
dark–dark soliton pair obtained in the region of low intensity ra-
tio. Photographs are taken at (a) the input and (b)–(d) the out-
put faces of the crystal: (b) diffraction output from the crystal,
(c) coupled output when the pairing beam is present, and (d) de-
coupled output when the pairing beam is absent.
natural dark irradiance in the crystal, thus I` @ Id), we
observe that two beams couple to a dark–dark soliton pair
by applying a lower voltage (in accordance with the exis-
tence curve for dark solitons), but we cannot observe any
change on either one of the beams after its mate is
blocked. From the soliton existence curve of Fig. 1(b)
this corresponds to moving the operating point on the far

Fig. 6. Numerical simulations corresponding to Figs. 5(c) and
5(d): (a) propagation of one of the dark beams from a coupled
dark–dark soliton pair; (b) propagation of one of the dark beams
when the pairing beam is absent, and (c) input (solid) and output
(dashed) intensity profiles corresponding to (b).
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right side of the curve, which is nearly a flat line. There-
fore, as one component is blocked, the remaining compo-
nent still sits on the curve and forms a dark soliton. This
robustness of the dark-soliton pair in the region of high-
intensity ratio is also found in our numerical simulations,
which confirms that the coupled dark-soliton pair is not
affected by the decoupling at I` /Id @ 1.

8. DARK–BRIGHT PAIRS
The experiments with dark–bright pairs are performed in
the same crystal as used for bright–bright pairs (codoped
SBN:61). The peak intensity of the dark beam (I`) is
made slightly larger than that of the bright beam (I0), re-
sulting in a small dip (;36-mm FWHM) in the combined
intensity (I` /Id 5 1.197, I0 /Id 5 1.088). The width of
the dark notch is 14 mm, and that of the bright beam is 11
mm (Fig. 7). In the absence of an external field, each
beam diffracts while propagating through the crystal.
By applying a (negative) voltage of 400 V between the two
electrodes, we observe that the output beams are coupled
into a steady-state fundamental dark–bright soliton pair.
Two beams are monitored separately by the same method
explained earlier. Figure 7(c) shows photographs of the
output dark and bright components taken immediately
after the pairing beam is blocked. Again, when the two
components are decoupled, each remaining beam alone
cannot survive as a fundamental soliton. This is shown
in Fig. 7(d), where the photographs are taken after the
pairing beam is blocked for a time much longer than the
crystal response time and a single-beam steady state is
established. Since the polarity of the applied voltage is
not appropriate for the bright soliton, the bright beam
alone diffracts and experiences self-defocusing. In the
case of a dark beam alone, since the effective intensity ra-
tio is increased and the voltage is not adjusted, the non-
linearity becomes too high to maintain the fundamental
dark soliton. Instead, the dark beam evolves into a
triple-soliton structure when the bright beam is absent,
and all other conditions are unchanged. Interestingly
enough, as we unblock the bright beam after the triple
dark-soliton structure is formed (a steady-state is estab-

Fig. 7. Experimental results showing coupling–decoupling of a
dark–bright soliton pair. Photographs are taken at (a) the in-
put and (b)–(d) the output faces of the crystal: (b) diffraction
output from the crystal, (c) coupled output when the pairing
beam is present, and (d) decoupled output when the pairing
beam is absent.
lished), we observe first the guidance of the bright beam
into the triple-channel waveguide induced by the multiple
dark soliton26 and then the time evolution and reestab-
lishment of a single-channel coupled dark–bright soliton
pair toward steady state.41

The numerical simulations of coupled dark–bright
pairs are shown in Fig. 8. The parameters used are close
to those of the experiment. The input intensity FWHM
of both the bright beam and the dark notch are 14 mm.
A bright–dark pair solution is found at I` /Id 5 1.2,
I0 /Id 5 0.8, and a negative voltage V 5 2400 volts (over
4.5 mm). Figure 8 depicts the intensity profiles of the
bright–dark components when they propagate in the
crystal as a coupled pair. When the pairing beam is ab-
sent, the bright beam self-defocuses [Fig. 8(c)], while the
dark component evolves into a dark triplet [Fig. 8(d)].
This agrees very well with experimental observations.

9. DISCUSSION
Several issues merit further discussion. The first is the
longitudinal stability properties of these photorefractive
soliton pairs. Experimentally, we find that both bright–
bright and dark–dark pairs are stable against small per-
turbations such as slight displacement. These soliton
pairs exhibit properties similar to those of a steady-state
photorefractive screening soliton; thus they are stable
just like a single steady-state bright24 or dark25 screening
soliton. Numerically, this is investigated by beam propa-
gation methods, and it is also found that the bright–
bright and dark–dark pairs are stable even if the inten-
sity or width of one of the components is perturbed up to
20%. Figure 9 shows examples for a stable bright–bright
(a) and a stable dark–dark (b) pair, where the intensity of
one dark beam is perturbed by 20%. However, for the
case of dark–bright pairs we find in both experiments and
simulations that they are stable only for negative bias but
not for positive bias. As an example, we set the peak in-
tensity of the bright beam higher than that of the dark
beam (I` /I0 ' 0.8), obtaining a small peak in the total

Fig. 8. Numerical simulations corresponding to Figs. 7(c) and
7(d): (a), (b) propagation of the bright and dark components of a
coupled soliton pair; (c), (d) corresponding propagation when the
pairing component is absent.
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intensity, and we use a positive bias field so that it favors
trapping of bright solitons.5,37 The two beams are un-
stable, and we cannot generate a coupled soliton pair by
adjusting the applied voltage. Figure 10 shows a typical
example for an unstable dark–bright pair obtained from
experiments. Numerical simulations of this case are
shown in Fig. 11, obtained at parameters of I` /I0 5 0.8
and V 5 1400 volts. In the range of positive bias fields
that we used, each component of the pair suffers from
modulation instability.

Transverse instability is the second issue. In all ex-
periments described here, we observe that the coupled
pairs are stable against transverse modulation instabil-
ity. Although it is commonly accepted that any
(1 1 1)-dimensional beams propagating in a three-
dimensional (bulk) medium should be transversely
unstable,56 from all our experiments with photorefractive
solitons it is apparent that as long as the parameters of
the beam and nonlinearity are on or close to the existence
curve, the transverse modulation instability is arrested to
a certain degree that it is not observed even within a
propagation length of 1 cm or longer (see Fig. 5). How-
ever, if the parameters deviate considerably from the ex-
istence curve, transverse instabilities become dominant
for either bright or dark solitons, single beams, or coupled
pairs.24,39 In fact, this is what happens to the decoupled
bright–bright soliton pair: as one component is blocked,
the remaining component is severely distorted by the

Fig. 9. Numerical simulations showing stable propagation of (a)
a bright–bright and (b) a dark–dark soliton pair when the inten-
sity of one of the components is perturbed by 20% at the input.
transverse modulation instability. Based on our obser-
vations, we conjecture that, for all (1 1 1)-dimensional
solitons propagating in a three-dimensional (bulk) satu-
rable nonlinear medium, transverse instabilities are ar-
rested when (a) the beam parameters correspond to
points on the existence curve (i.e., a soliton forms), and (b)
the soliton is in the saturated intensity regime. Obvi-
ously, it is very interesting to investigate theoretically
and experimentally the transverse stability properties of
photorefractive solitons and soliton pairs. We leave
these issues for future studies.

Third, we would like to elaborate on the master–slave
relation between coupled solitons. In both cases of
bright–bright and dark–dark pairs we observe the
master–slave relation when the intensity of one compo-
nent is much higher than that of the other. For bright–

Fig. 10. Experimental results showing output (a) dark and (b)
bright components from an unstable dark–bright pair.

Fig. 11. Numerical simulations showing unstable propagation
of a dark–bright pair corresponding to Fig. 10: (a) the dark
component and (b) the bright component.
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bright pairs, when one beam is much stronger than the
other, mutual self-trapping is observed at proper condi-
tions. But removing the weak beam does not affect the
strong beam (the strong beam alone remains to be a soli-
ton), whereas removing the strong beam does affect the
weak beam (the weak beam alone cannot remain as a soli-
ton). Since the waveguide is mainly created by the
strong beam, it cannot be sustained after the strong beam
is removed, and thus the weak beam is distorted because
of the high bias field. For dark–dark pairs, similar be-
havior is observed in the region of low intensity ratio (i.e.,
when the combined intensity of the two beams is lower
than the effective dark irradiance); removing the weak
beam does not affect the strong beam, whereas removing
the strong beam causes broadening of the dark notch
borne in the weak beam. In this case the refractive-
index modulation is dominated by the strong beam.
Once it is removed, the weak one diffracts. Experimental
results and numerical simulations of this case for a dark–
dark pair are shown in Fig. 12 and Fig. 13, respectively,
where the intensity of the strong beam is approximately
15 times higher than that of the weak beam. For the
dark–bright case, coupled soliton pairs are obtained only
when their peak intensities are nearly equal. When the
bright beam is too weak compared with the dark one, we
observe a master–slave relation. The bright beam is
guided in the dark soliton-induced waveguide, but it does
not affect the dark soliton; i.e., nothing happens to the
dark soliton when the bright component is removed.
This master–slave relation is directly related to the opti-
cal guiding properties of waveguides induced by screening
solitons, as the weak component is guided by the wave-
guide induced by the strong component.

Finally, we want to point out that the observed spatial
soliton pairs are actually analogous to vector solitons57–59

involving two optical beams with orthogonal polariza-
tions, and in particular, to the Manakov solitons50 dis-
cussed in Section 4. It is also worth noting that all our

Fig. 12. Experimental results showing the master–slave rela-
tion in a dark–dark pair when the intensity of one of the compo-
nents is much higher than that of the other. Photographs are
taken at (a) the input and (b)–(d) the output faces of the crystal:
(b) diffraction output, (c) output when both beams are present,
and (d) output when the other beam is absent. Beam 1 is the
weak beam, and beam 2 is the strong beam.
experiments with photorefractive spatial soliton pairs are
performed with low-power cw laser beams, whereas pre-
vious experiments with spatial soliton pairs13 or Manakov
spatial solitons51 had to use high-power laser pulses.

10. CONCLUSION
We have presented a comprehensive experimental and
theoretical study on incoherently coupled photorefractive
spatial soliton pairs, including all three different realiza-
tions: bright–bright, dark–dark, and dark–bright.
These soliton pairs involve two steady-state photorefrac-
tive screening solitons coupled to each other through their
nonlinear intensity superposition, which can be under-
stood intuitively from the standpoint of the soliton exis-
tence curve. We show that, in general, a coupled photo-
refractive soliton pair is analogous to Manakov solitons,
in which both beams are mutually trapped and cannot
survive as solitons after decoupling.

Our study can be further extended in several direc-
tions. First, the system of two incoherently coupled
equations (4) may possess more general solutions for
coupled solitary waves, e.g, those with different widths of
the coupled solitons. Such localized solutions are not
possible in the limit of Manakov solitons,50 even for the
case of dark-bright soliton pairs.53 However, we expect

Fig. 13. Numerical simulations corresponding to Fig. 12(d).
Shown are (a) the strong beam and (b) the weak beam after re-
moving the pairing beam.
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that nonintegrability of the system may bring some new
features in the structure of the incoherently coupled soli-
tons. Second, the stability of the incoherently coupled
solitons described by the system [Eqs. (4)] is still an open
problem. Finally, it is also important to study different
types of interactions between the soliton coupled states.
For instance, as was recently mentioned,60 the interaction
of coupled dark–bright soliton pairs can differ drastically
from the interaction of uncoupled solitons.
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