
Type-Based Decompilation1(or program reconstruction via type reconstruction)Alan MycroftComputer Laboratory, Cambridge Universitywww.cl.cam.ac.uk/users/amDraft of 28-Sep-98: please reference �nal version onlyAbstractWe describe a system which decompiles (reverse engineers) C programs from targetmachine code by type-inference techniques. This extends recent trends in the converseprocess of compiling high-level languages whereby type information is preserved duringcompilation. The algorithms remain independent of the particular architecture by virtueof treating target instructions as register-transfer speci�cations. Target code expressedin such RTL form is then transformed into SSA form (undoing register colouring etc.);this then generates a set of type constraints. Iteration and recursion over data-structurescauses synthesis of appropriate recursive C structs; this is triggered by and resolvesoccurs-check constraint violation. Other constraint violations are resolved by C's castsand unions. In the limit we use heuristics to select between equally suitable C code|agood GUI would clearly facilitate its professional use.1 IntroductionOver the last 40 years there has been much work on the compilation of higher-level languagesinto lower-level languages. Traditionally such lower-level languages were machine code forvarious processors, but there has been growing widening of the concept of compilation onone hand to permit the lower-level language to be a language like C (often viewed as a `uni-versal assembler language') and on the other to accompany the translation of terms by acorresponding translation of types|good exemplars are many internal phases of the GlasgowHaskell Compiler [3] which is taken to its logical conclusion in Morrisett et al.'s [6] intro-duction of `Typed Assembly Language'. A related strand is Necula and Lee's [7] compilerfor proof-carrying code in which user types (including a richer set of types containing value-or range-speci�cation) and compiler-generated types or invariants accompany target code(`proof-carrying code') to enable code to be safely used within a security domain.Two points which can be emphasised are:� preserving type information increases the reliability of a compiler by allowing it (or sub-sequent passes) often to report on internal inconsistency when an invalid transformationhas occurred instead of merely generating buggy code; and� compilers are in general many-to-one mappings in which the target code is selectedfrom various equivalent target-code sequences by some notion of e�ciency|the more1A preliminary form of this work was presented at the APPSEM'98 workshop in Pisa.1

optimising a compiler, in general, the greater the number of source-code phrases thatmap to a given (generable) target-code sequence.We consider the use of types and type-inference for the reverse process of decompilation,often called reverse engineering. For the purposes of this paper we take the higher-level codeto be C and the lower-level code to be register transfer language (RTL).2 RTL can be usedto express various machine codes in architecture independent manner, but in examples weoften use a generic RISC-like instruction set. Another important application which drovethis work was a large quantity of BCPL [8] legacy code. BCPL was an untyped fore-runnerof C popular at Cambridge for low-level implementation until its replacement with ANSIC around 10 years ago. Being untyped it has a single notion of vector which conates thenotions of array and record types in the same way that assembler code does. BCPL iseasily translatable to RTL code (and indeed source names can be preserved within RTL asannotations) but the challenge was to invent appropriate structure or array types for data-structures just represented by pointers to vectors. Furthermore BCPL semantics requiredpointers to adjacent (typically 32-bit) words to di�er by one. This causes current translatorsfor byte-addressed targets (whether via C or direct to target machine code) to generate largenumbers of shift-left or shift-right by two instructions. We plan to show how the conceptof abstract data-type (here represented by C structs with a unique name) can be used toeliminate many of these in a more systematic method than previously.Clearly extensions of this work to decompile machine code or C to higher-level languageslike Haskell would be most interesting; we have chosen C because it provides a good balanceof problem-statement and tractability.One might wonder where the RTL code comes from. It can be obtained by simple disas-sembly (and macro-expansion of instructions to RTL form) of code from assembler �les, fromobject �les, directly from compiler output or even from DLL's. Note that currently we assumethat code is reasonably identi�ed from data and in particular the current system presumesthat procedure boundaries (and even|but less critically|procedure names) are available.Now we turn to one of the central issues of decompilation|that compilation is a many-to-one map means that we must choose between various plausible alternative high-level repre-sentations of given RTL code. This is instantly obvious for the names of local variables whichare in general lost in compilation and need to be regenerated; although in general we can onlygive these rather boring names, we can also recover information from a relocation or symboltable (e.g. in a ELF executable) or from a GUI-driven database to aid serious redevelopmentof legacy code. However, there are more serious issues. Identifying loops in a reducible ow-graph is fairly easy but since a good compiler will often translate a \while (e) C" loop toa loop of the form if (e) f do C while (e); gwe must be prepared to select between or o�er the user a choice between various alternativesmuch like names above.Note that we do expect to have types [6] or assertions [7] in the machine code (but if we dothese may signi�cantly aid decompilation|it seems unfortunate if aids to program reliabilityand security make the code-breakers task easier too!). See section 6.Justi�cation for decompilation. Apart from the obvious nefarious uses, there are realdesires (e.g. in the telecoms industry) to continue to exploit legacy code with guaranteed2Note the notion of source- and target-language is slightly tangled for a decompiler and so we will stick toC and RTL for concreteness. 2

equivalence to its previous behaviour. Additionally, we expect this project to cast furtherlight on the uses of types of various forms in compilation, including proof-carrying code.Apart from the glib statement that we decompile RTL to C, certain things do need tobe made more precise. We will assume that the RTL has 8-, 16-, 32- and (possibly) 64-bitmemory accesses and additionally a push-down stack for allocating temporaries and localsvia push and pop. Moreover the generated C will assume that char, short, int and longwill represent these types. unsigned can be used as a quali�er as demanded by the code(e.g. triggered by unsigned division, shift or comparison, or by user GUI interaction) butotherwise signed forms of these types are generated. Pointers are currently assumed to be32-bit values and again can only be distinguished from int values by their uses. We will seethat type-inference will be the central driver of this process.2 Intuitive exampleConsider the following straight-line codef: ld.w 4[r0],r0mul r0,r0,r0xor r0,r1,r0retand a procedure calling standard which uses ri as argument and result registers. It is apparentthat f has (at least) two arguments|see later|but for now we assume exactly two arguments.It is clear that f could be expressed asint f(int r0, int r1){ r0 = *(int *)(r0+4);r0 = r0 * r0;r0 = r1 ^ r0;return r0;}However, if we break register uses into live ranges and give each a separate name we get:int f(int r0, int r1){ int r0a = *(int *)(r0+4);int r0b = r0a * r0b;int r0c = r1 ^ r0b;return r0c;}Now it is apparent here that argument r0 could be written as type (int *) instead of (int)which allows *(int *)(r0+4) to be replaced by *(r0+1) or its syntactically equivalent formr0[1].3 Moreover (modulo taking care not to violate any of C's rules concerning side-e�ectsand sequence points), variables only used once can be folded into their referencing expressionsyielding3Note the possibility that r0 alternatively has a type like (struct f int m0, m4, m8; g) which wouldthen yield int r0a = r0->m4;. There is a notion of polymorphism here and we return to this point later.3

int f(int *r0, int r1){ int r0a = r0[1];return r1 ^ (r0a * r0a);}There is now a further issue of stylistic choice as to whether the above code is preferred orthe alternative:int f(int *r0, int r1);{ return r1 ^ (r0[1] * r0[1]);}which simply may have generated the original code as a result of a compiler's common sub-expression phase.We recall the discussion in the introduction in which we observed that the more optimisinga compiler the more pieces of code are mapped into a given, possibly optimal, form. A goodcorrectness-preserving heuristic will select one (hopefully readable) form (a maximum-valuedsolution to various rules). A GUI user interface could select between wide-scale revision(i.e. seeking alternative local|to the constraint solver|maximum) or by demanding a choicebetween syntactic forms on a local|to the generated source code|basis.3 SSA|Single Static AssignmentThe Single Static Assignment (SSA) form (see e.g. [1]) is a compilation technique to enablerepeated assignments to the same variable (in owgraph-style code) to be replaced by codein which each variable occurs (statically) as a destination exactly once. We use the sametechnique for decompilation because we wish to undo register-colouring optimisations wherebyobjects of various types, but having disjoint lifetimes, are mapped onto a single register.In straight-line code the transformation to SSA is straightforward, each variable v is re-placed by a numbered instance vi of v. When an update to v occurs this index is incremented.This results in code like v = 3; v = v+1; v = v+w; w = v*2;(with next available index 4 for w and 7 for v) being mapped tov7 = 3; v8 = v7+1; v9 = v8+w3; w4 = v9*2;On path-merge in the owgraph we have to ensure instances of such variables continue tocause the same data-ow as previously. This is achieved by placing a logical (single static)assignment to a new common variable on the path-merge arcs. Because owgraph nodes(rather than edges) contain code this is conventionally represented by a invoking a so-called�-function at entry to the path-merge node. The intent is that �(x; y) takes value x if controlarrived from the left arc and y if it arrived from the right arc; the value of the �-function isused to de�ne a new singly-assigned variable. Thus considerf if (p) f v = v+1; v = v+w; g else v=v-1; g w = v*2;which would map to (only annotating v and starting at 4)f if (p) f v4 = v3+1; v5 = v4+w; g else v6=v3-1; g v7 = �(v5;v6); w = v7*2;4

; int f(struct A *x); { int r = 0;; for (; x!=0; x = x->tl) r += x->hd;; return r;; };f: mov #0,r1cmp #0,r0beq L4F2L3F2: ld.w 0[r0],r2add r2,r1,r1ld.w 4[r0],r0cmp #0,r0bne L3F2L4F2: mov r1,r0ret Figure 1: Iterative summation of a listIn examples our variable names will be based on those of machine registers r0, r1, etc.|instances of these will be given an alphabetic su�x, thus r0a, r4e, etc.4 Type reconstructionOur type reconstruction algorithm is based on that of Milner's algorithm W [5] for ML; itshares the use of uni�cation but involves a rather more complicated type system and delaysuni�cation until all constraints are available. Uni�cation failure is used to trigger reconstruc-tion of C types in a way which enables the constraint resolution failure to be repaired.4.1 Inventing recursive data-types from loops or recursionConsider the C recursive data typestruct A { int hd; struct A *tl; };and the iterative and recursive procedures for summing its elements given in Figs. 1 and 2.(Note that for convenience the assembler code is given as a compiler might produce (with theoriginal C code as comment and with generated label names) but note that code and typereconstruction only depends on the machine instructions.) Figs. 3 and 4 show the exampleassembler code in SSA form and with generated type constraints. We now turn to the processof resolving the type constraints for f.
5

; int g(struct A *x); { return x==0 ? 0 : x->hd + g(x->tl);; };g: push r8mov r0,r8cmp #0,r8bne L4F3mov #0,r0br L8F3L4F3: ld.w 4[r8],r0jsr gld.w 0[r8],r1add r1,r0,r0L8F3: pop r8ret Figure 2: Recursive summation of a listf: tf = t0! t99mov r0,r0a t0 = t0amov #0,r1a t1a = int _ t1a = ptr(�1)cmp #0,r0a t0a = int _ t0a = ptr(�2)beq L4F2L3F2: mov �(r0a;r0c),r0b t0b = t0a; t0b = t0cmov �(r1a;r1c),r1b t1b = t1a; t1b = t1cld.w 0[r0b],r2a t0b = ptr(mem(0 : t2a))add r2a,r1b,r1c t2a = ptr(�3); t1b = int; t1c = ptr(�3)_t2a = int; t1b = ptr(�4); t1c = ptr(�4)_t2a = int; t1b = int; t1c = intld.w 4[r0b],r0c t0b = ptr(mem(4 : t0c))cmp #0,r0c t0c = int _ t0c = ptr(�5)bne L3F2L4F2: mov �(r1a;r1c),r1d t1d = t1a; t1d = t1cmov r1d,r0d t0d = t1aret t99 = t0dFigure 3: Iterative sum in SSA form with generated type constraints6

g: tg = t0! t99mov r0,r0a t0 = t0apush r8mov r0a,r8a t8a = t0acmp #0,r8a t8a = int _ t8a = ptr(�2)bne L4F3mov #0,r0a t0a = int _ t0a = ptr(�1)br L8F3L4F3: ld.w 4[r8a],r0b t8a = ptr(mem(4 : t0b))jsr g t0 = t0b; t0c = t99ld.w 0[r8a],r1a t8a = ptr(mem(0 : t1a))add r1a,r0c,r0d t1a = ptr(�3); t0c = int; t0d = ptr(�3)_t1a = int; t0c = ptr(�4); t0d = ptr(�4)_t1a = int; t0c = int; t0d = intL8F3: mov �(r0a;r0d),r0e t0e = t0a; t0e = t0dpop r8ret t99 = t0eFigure 4: Recursive sum in SSA form with generated type constraintsType reconstruction (for f using the constraints in Fig. 3) now proceeds by:Occurs check constraint failure:t0c = t0b = ptr(mem(4 : t0c))Breaking cycle with: struct G f t2a m0; t0c m4; ...g(Note that ptr(struct G) is a concrete representation of ptr(mem(0 : t2a; 4 : t0c))an instance of both t0b = ptr(mem(0 : t2a)) and t0b = ptr(mem(4 : t0c)).) Twosolutions: t0 = t0a = t0b = t0c = ptr(struct G)t99 = t1a = t1b = t1c = t1d = t2a = t0d = inttf = ptr(struct G) ! intand t0 = t0a = t0b = t0c = ptr(struct G)t99 = t1a = t1b = t1c = t1d = t2a = t0d = ptr(�3)tf = ptr(struct G)! ptr(�3)The second solution is a parasitic solution which is caused by the fact that a 32-bit integralvalue containing `22' can only really be ascribed type int whereas the value `0' can also be aNULL pointer. This is compounded by the fact that C's addition operator can act on integersand pointers|hence the disjunction of constraints for7

add r2,r1,r1(The unwanted solution would then correspond to creating the variable r in the original codeas char *r = 0;and then adding on the elements x->hd by address arithmetic). We believe that this falsesolution (it corresponds to code which is not strictly ANSI conformant) can be eliminated byenhancing the type system with a weak pointer type which is not suitable for arithmetic (c.f.void * in C); however this awaits experiment or the �nal version of this paper!Having obtained, then, the solution tf = ptr(struct G) ! int withstruct G f t2a m0; t0c m4; ...gwe can set about mapping the assembly code into appropriate C. Note that no informationhas been derived about the size of struct G; the use of the ellipsis above corresponds to thetype \record type unknown apart from having �eld m" obtained for a Standard ML functionsuch as fun f(x) = x.m;We model this in concrete C by creating an optional4 padding type Tpad. It is now simpleto translate the above code into the following C by re-constituting expressions from variablesonly used once and by pattern matching (out of the scope of this paper) for commands toobtain: struct G { int m0; struct G *m4; Tpad m8; };int f(struct G *x){ int r = 0;if (x != 0)do { r += x->m0; x = x->m4; } while (x != 0)return r;}Further pattern matching can reproduce the original for loop.Incidentally, note that the recursive list summation functions g results in an equivalentset of constraints and therefore can be similarly decompiled into:int g(struct G *x){ int r;if (x==0)r = 0;else{ int t = g(x->m4);r = t + x->m0;}return r;}4Unfortunately for us, C does not allow zero-sized types and so we must allow the �eld to be optional orallow the C pre-processor to macro-expand away Tpad if later information (e.g. from uses of the function f)indicate its size to be zero. 8

But why is this not nearly so close to the original (even if it is one of the common codingstyles for this type of recursion)? The issue is that ANSI C allows the compiler to choose,given the expressionx->hd + g(x->tl)whether to evaluate x->hd or the call to g �rst. Clearly the compiler made the sensibledecision to evaluate �rst g(x->tl). Hence we obtain the above decompilation. However, ifwe could show that the call jsr g could not result in side-e�ects on x->hd then the followingsimpli�cations are triggered:� the code for the else-part could be reconstructed tor = x->m0 + g(x->m4);� then, given that both consequents assign to r, the whole body simpli�es to the originalreturn x==0 ? 0 : x->hd + g(x->tl);This shows a short-coming of the present type-based approach which can be remedied byusing a type and e�ect system [Jouvelot] (also known as an annotated type system) insteadof our simple types. Whether the bene�ts would justify the extra cost is currently unclear.4.2 When structs cannot resolve type conictsAlthough our decompiler needs internally a richer set of types than ML (e.g. we have seenthat ld.w 4[r0],r1 leads us to reason that r0 may be a pointer to any type with a 32-bitcomponent at o�set 4, including both structures and arrays) we have exploited constraintgathering and solution by uni�cation much as we might �nd in an ML compiler. In section 5we will discuss the additional ordering on types (and non-Herbrand uni�cation) occasionedby code which can reect either array element or struct member access.(Herbrand) uni�cation may fail for two reasons. Firstly a type variable may need to beuni�ed with a term containing it|this is solved as above by synthesising recursive data types.Secondly we may have a straightforward clash of type-constructors and it is to this case whichwe now turn.Consider the code:h: ld.w 4[r0],r1xor r1,r0,r0retwhere r0 is constrained to be an int because of its appearance as the source of an xorinstruction and as a pointer to store (containing an int at o�set 4) due to the ld.w instruction.(Note that all the uses of r0 except for the destination of the xor instruction form a single liverange and so the transformation to SSA form used in the introduction does not help here.)So we attempt to unify int with ptr(mem(4 : int) and �nd no solution. Such situations aredeferred until the global set of constraint failures are available (here there are no more) andthen the application to typing outlined by Gandhe et al. [2] for �nding maximal consistentsubsets of inconsistent sets is applied. 9

Here we �nd a bene�t of using C as the high-level language for decompilation in thatit can express such code by casts or union types. C's union type can express the solutiontrivially asint h(union {int i; int *p;} x) { return *x.p ^ x.i; }but this is not a very common (nor very readable) form of C and indeed is not strictlyconforming in ANSI C (reading a union at a di�erent type from what it was written isforbidden). We would prefer to restrict the synthesis of unions to within generated structswhich contain also a discriminator. Cast-based alternatives seem better in this case and weget three plausible solutions:int h1(int x) { return *(int *)(x+4) ^ x; }int h2(int *x) { return x[1] ^ (int)x; }int h3(struct { Tpad1 m0; int m; Tpad2 m8; } *x) { return x->m ^ (int)x; }Note we have suppressed the variant of h1 in which x is cast to a new struct type whichcontains an int at o�set 4; clearly a skilled program re-constructor might be able to specifythe *(int *)(x+4)more precisely, but inventing a separate new datatype for each such accesswould clutter code for no clear bene�t. We will prefer option h3 by default (except that thestruct will be named and generated out-of-line so it can be also used by callers), leavingarray creation to be triggered by non-constant indexing (or user GUI interaction); the nextsection investigates the choice between arrays and structs in more detail.Of course, one justi�cation of using C in this paper is that the above assembler code couldnot plausibly be generated by any Haskell compiler.4.3 Arrays versus structsThe approach we have taken so far has been to use structs whenever possible. While these,together with casts and address arithmetic, would su�ce for decompilation, it is more rationalto trigger array synthesis when indexing instructions occur, whether they be manifest:ld.w (r5)[r0],r3or more indirectly coded (a non-constant int value being used for addition or subtraction atpointer type) such asadd r5,r0,r1ld.w 0[r1],r3Such an indexing instruction (for the purposes of this discussion we will assume scaling isnot done in hardware, thus the e�ective address is (r0) + (r5)) generates constraintsld.w (r5)[r0],r3 t0 = ptr(array(�)); t5 = int; t3 = �_t0 = int; t5 = ptr(array(�)); t3 = �where � is constrained to be a 32-bit type, i.e. int or ptr(�).If the constraints for a given pointed-to type are all struct types (resulting from constanto�sets) then the resulting uni�ed type is also struct as in the previous subsection. Otherwise,if all accesses via a pointer are of the same size, e.g. all 32-bit accesses, then the uni�ed typeis array, otherwise a union type is generated, e.g. the constraints for10

ld.b 0[r0],r1ld.b 48[r0],r2ld.w (r5)[r0],r3unify to yieldunion G { struct { char m0; char pad1[47]; char m48; } u1;int u2[];} *r0;Inferring limits for arrays requires, in general, techniques beyond those available to our type-based reconstruction. If presented with proof-carrying code [7] then array bounds could beextracted from code proved to be safe. To a large extent however, C programmers do nottake great care with array size speci�cations, especially when passed as arguments since theC standard requires formal array parameters to be mapped to pointers thereby losing sizeinformation.Although currently not implemented, note that a GUI could be used to direct that theabove union should instead be decompiled asstruct G { char m0; char pad1[3]; int m4[15]; char m48; } *r0;when it is clear to a user that the array is actually part of the struct. We return to this pointin section 5.1.5 The type algebra for pointers, structs and arraysThis is complicated by the fact that C deliberately merges the notions of array and pointer.Consider the instructionsld.w 4[r0],r1xor #1,r1,r2where the xor exists largely to restrict the possible types of r1 (and hence what r0 pointsto) to (possibly unsigned) int. In this situation r0 can be a pointer to an array of ints orto a struct containing an int at o�set 4 as we saw above. It cannot be a pointer to a singleobject of type int. However, were the �rst instruction to have beenld.w 0[r0],r1then a third possibility arises that r0 can simply be a pointer to an int. We observe thatthe type of r0 can make parametric polymorphic sense at the machine code level (describingthe �eld at given o�set from r0) but results in overloading between various parametric typesat the conceptual high-language level in a manner which is imperfectly expressible in C (e.g.ANSI C does not legitimise (int (*)[]) as giving a pointer to an array of unknown size).So, givenld.w n[r0],r1where r1 is constrained to be integer we generate a constraint that the type of r0 is one of:� ptr(array(int)), i.e. int (*)[]; 11

� ptr(mem(n : int)) i.e. struct f char pad[n]; int m; ...g *; and� ptr(int), i.e. int *, provided n = 0.where the second form expresses partial information about a struct|here that only o�setn is known|such structs are mapped to C inventing dummy padding types and members.Because of the di�culty in C in maintaining a proper separation of pointers to arrays andpointers to their elements (and having no type-based form to express restrictions on arraysize) we map the �rst form to the third on output of C.The internal type algebra (for types t, struct members s and register types r) is givenby: t ::= char j short j int j ptr (t) j array (t) j mem(s) j union(t1; : : : ; tk) with k > 0s ::= n1 : t1; : : : ; nk : tk with k > 0r ::= int j ptr(t)where the ni range over natural numbers. Although all of these types are necessary to expressthe full richness of C's types (and as such need to be used by a GUI), the automated type-uni�cation is Herbrand-based with the following additional rules:� mem(s1) and mem(s2) unify to mem(s1 [s2); note that keeping conicting items (e.g.mem(0 : int; 1 : char)) is not an error since this may later be used to replace the memberat o�set zero with a union in the generated C.� array(t) and mem(n1 : t; : : : nk : t) unify to array(t) when only a single type t occurs.� union is asssociative-commutative and can only occur immediately inside a ptr context;ptr (union(t1; t2)) is the result of unifying ptr (t1) and ptr (t2) when this would fail dueto having di�erent type constructors.5.1 Unwelcome choice in reconstructing arrays and structsThe main problem which arises is due to the expressiveness (and de�ned storage layout) ofC's struct and array types compared to those of Java (which may only contain another suchobject via a pointer). As in Fortran it can be hard to distinguish array type int [10][10]from int[100]. Similarly, arrays or structs containing other arrays or structs cannot ingeneral be uniquely decoded, consider distinguishing objects x1, . . . x3 de�ned by:struct S1 { int a; int b[4]; int c; int d[4]; } x1;struct S2 { int a; int b[4]; } x2[2];struct S3 { struct S2 c,d; } x3;We are exploring various options for constraint resolution when array indexing and structselection occurs. Consider code like that discussed in section 4.3:ld.b 0[r0],r1ld.b 48[r0],r2ld.w (r5)[r0],r3There are several possible ways to approximate this data-structure from the above informa-tion, including: 12

union T1 { char a[49 /* or more */]; int b[17 /* or more */]} *r0;struct T2 { char a; char pad[3]; int b[15]; char c; } *r0;The latter is appealing in that additional information, e.g. ald.b 16[r0],r4instruction could cause natural, fuller-information, revision tostruct T2 { char a; char pad[3]; int b[3]; } (*r0)[4];6 Conclusions and further workWe have described a system which can decompile assembler code at the RTL level to C. Itcan successfully create structs both intra- and inter-procedurally and in doing can generatecode close to natural source form.We have not discussed the use of local variables stored on the stack rather than in reg-isters. A simple extension can can manipulate local stacks satisfactorily (essentially at therepresentative power of Morrisett et al.'s [6] Typed Assembly Language) when local variablesare not address-taken. However, there are problems with taking addresses of local stack ob-jects in that it can be unclear as to where the address-taken object ends|a struct of size 8bytes followed by a coincidentally contiguously allocated int can be hard to distinguish froma struct of size 12 bytes.Here it is worth remarking on the assistance given by proof-carrying code [7], particularlywhen the proof has been generated by a compiler, to our decompiler. Many of the ques-tions which gave di�culty for decompilation concerned issues like: where arrays live insidea struct, is the data-structure really an array of structs instead, or simply where a givenarray (determined by variable indexing) begins and ends. In general these are exactly thepoints which an accompanying proof-of-safety must explicitly address. This suggests that wecan probably do much better at decompilation given the proof part|perhaps this shows thatproof-carrying code is not a good idea for secret (or deliberately obfuscated) algorithms!Note that the decompilation process does not depend intrinsically on C. We have chosenC because of its ability to capture most sequences of machine instructions naturally; casts canalso represent type cheating in reconstructed source form. Of course, there are instructionsequences which are not translatable to C|the most obvious example is that C does not havelabel variables and so jmp r0 cannot be decompiled (except possibly as a tail-recursive callto an procedure variable).One could imagine a generalisation of this system where compiler translation rules (e.g. forHaskell) are made available to the decompiler to reconstruct rather more high-level languages.Failure of code to match such rules would in general indicate a call to a native (in the Javasense) procedure or that the pro�ered code cannot be expressed in the source code representedby the translation rules.Finally, we turn to performance: we yet have no experimental results for large bodies ofcode, but the ability to reconstruct datatypes for both iterative and recursive procedures isappealing over other techniques. Since the process of data-structure reconstruction dependsonly on �nding cycles which in reality are likely to be quite short even in large programs, weare optimistic about the scalability of the techniques. In common with several type-basedsystems, interprocedural versions seem to come naturally and without great cost.13

AcknowledgmentsThanks to Pete Glasscock (a student on the Diploma in Computer Science at Cambridge in1997{98) for illustrating, in his dissertation [4], what could be done in the way of decompilationwithout type-based reconstruction of source.References[1] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N. and Zadeck, F.W. E�ciently com-puting static single assignment form and the control dependence graph. ACM Transac-tions on Programming Languages and Systems, 13(4):451-490, October 1991.[2] Gandhe, M., Venkatesh, G., Sanyal, A. Correcting Errors in the Curry System. In Chan-drum V. and Vinay, V. (Eds.): Proc. of 16th Conf. on Foundations of Software Tech-nology and Theoretical Computer Science, LNCS vol. 1180, Springer-Verlag, 1996.[3] Glasgow Haskell Compiler.[4] Glasscock, P.E. An 80x86 to C Reverse Compiler. Diploma in Computer Science Disser-tation, Computer Laboratory, Cambridge University, 1998.[5] Milner, R. A Theory of Polymorphism in Programming, JCSS 1978.[6] Morrisett, G., Walker, D., Crary, K. and Glew, N. From System F to Typed AssemblyLanguage. Proc. 25th ACM symp. on Principles of Programming Languages, 1998.[7] Necula, G.C. and Lee, P. The Design and Implementation of a Certifying Compiler.Proc. ACM conf. on Programming Language Design and Implementation, 1998.[8] Richards, M. and Whitby-Strevens, C. BCPL|The Language and its Compiler, CUP1979.

14

