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Abstract— Control and state estimation of nonlinear sys-
tems satisfying a Lipschitz continuity condition have been
important topics in nonlinear system theory for over three
decades, resulting in a substantial amount of literature. The
main criticism behind this approach, however, has been the
restrictive nature of the Lipschitz continuity condition and the
conservativeness of the related results. This work deals with an
extension to this problem by introducing a more general family
of nonlinear functions, namely one-sided Lipschitz functions.
The corresponding class of systems is a superset of its well-
known Lipschitz counterpart and possesses inherent advantages
with respect to conservativeness. In this paper, first the problem
of state observer design for this class of systems is established,
the challenges are discussed and some analysis-oriented tools
are provided. Then, a solution to the observer design problem
is proposed in terms of nonlinear matrix inequalities which in
turn are converted into numerically efficiently solvable linear
matrix inequalities.
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I. INTRODUCTION

THE observer design problem for nonlinear systems

satisfying a Lipschitz continuity condition has been

a topic of a constant research for the last three decades.

Observers for Lipschitz systems were first considered by

Thau [1] where he obtained a sufficient condition to ensure

asymptotic stability of the observer error. Inspired by Thau’s

work, several authors have studied observer design for Lip-

schitz systems using various approaches [2]–[7]. Lipschitz

systems constitute an important class of nonlinear systems

for which observer design can be carried out using pseudo-

linear techniques.

The Lipschitz constant of such functions is usually region-

based and often dramatically increases as the operating

region is enlarged. On the other hand, even if the nonlinear

system is Lipschitz in the region of interest, it is generally

the case that the available observer design techniques can

only stabilize the error dynamics for dynamical systems with

small Lipschitz constants but, as discussed later, fails to pro-

vide a solution when the Lipschitz constant becomes large.

The problem becomes worse when dealing with stiff systems.
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Stiffness means that the ordinary differential equation (ODE)

admits a smooth solution with moderate derivatives, together

with nonsmooth (“transient”) solutions rapidly converging

towards the smooth one [8, p. 71]. This problem has been

recognized in the mathematical literature and specially in

the field of numerical analysis for some time and a powerful

tool has developed to overcome this problem. This tool is a

generalization of the Lipschitz continuity to a less restrictive

condition known as one-sided Lipschitz continuity which has

become one of the building blocks in numerical analysis and

has been extensively applied to the stability analysis of ODE

solvers [9]–[11].

Inspired by the these advances in the mathematical liter-

ature, in this paper, we extend this concept to the nonlinear

observer design problem and consider stabilization of the

observer error dynamics based on the one-sided Lipschitz

condition. The advantages gained through this approach are

two-fold: i) Generalization: we will show that the one-

sided Lipschitz continuity covers a broad family on nonlinear

systems which includes the well-known Lipschitz systems

as a special case. ii) Reduced conservativism: Observer

design techniques based on Lipschitz functions can guarantee

stability only for small values of Lipschitz constants which

directly translates into small stability regions. All available

results on Lipschitz systems, however, provide only sufficient

conditions for stability and the actual observer might still

work with larger Lipschitz constants, even though the tool

used in the analysis and design are unable to provide theo-

retical evidence. The implication is that there is a significant

degree of conservativeness in the Lipschitz formulation, a

critique that has often been reported by researchers, but that

has been difficult to correct and has produced no valuable

alternative.

In this work we provide this valuable alternative in the

form of the one-sided Lipschitz condition. We will show that

the one-sided Lipschitz condition generalizes the classical

Lipschitz theory in the following sense: any dynamical

system satisfying a Lipschitz condition satisfies also a one-

sided Lipschitz. However, the one-sided Lipschitz constant

is always smaller than its Lipschitz counterpart, a differ-

ence that can be significant even for very simple nonlinear

functions [9]–[11]. Examples are presented illustrating this

property as well as showing cases where a dynamical system

satisfies a one-sided Lipschitz condition even-though it is not

Lipschitz in the classical sense. Specially, when a dynamical

system is stiff, the conventional Lipschitz constant inevitably

becomes very large while one-sided Lipschitz constant is

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

FrA17.3

978-1-4244-7425-7/10/$26.00 ©2010 AACC 5284



still moderate [9]–[11]. As a result, more efficient and less

conservative observers can be developed in this context.

These major advantages come along with a greater degree

of difficulty encountered dealing with one-sided Lipschitz

systems. Unlike Lipschitz functions, which lead to an in-

equality in a rather simple quadratic form, the one-sided

Lipschitz formulation leads to a weighted bilinear form

which imposes significant challenges in manipulating the

Lyapunov derivative. Very recently, the nonlinear observers

for one-sided Lipschitz systems are studied in [12], [13]. In

these references, not only the one-sided Lipschitz constant

is assumed to be known but also the Lyapunov candidate

that stabilizes the observer error dynamics is assumed to

be known apriori. Therefore the results in [12], [13] can

only be used for analysis of a given observer and the design

problem is left as an open problem. Our goal in this paper

is to acknowledge the advantages of the one-sided Lipschitz

formulation over the conventional Lipschitz assumption in

the control and observation theory, and in particular to

formulate the observer design problem based on that. In

this respect, not only do we provide basic analysis tools but

also we address the design problem and present a complete

solution. The remainder of the paper is organized as follows:

Section II introduces the one-sided Lipschitz condition and

study its basis properties. In Section III we consider the

observer problem based on this property and addressed ob-

server stability. Section IV, which contains the main results,

addresses observer design in the form of nonlinear matrix

inequalities (NMIs). In the cycle, in order to use the efficient

readily available numerical solvers, we convert the proposed

NMI problem into linear matrix inequalities (LMIs). Section

V presents an illustrative example.

II. MATHEMATICAL PRELIMINARIES AND PROBLEM

STATEMENT

Throughout the paper R represents the field of real num-

bers, Rn the set of n-tuples of real numbers and R
n×p the

set of real matrices of order n by p. <,> is the (often

called “natural”) inner product in the space R
n, i.e. given

x, y ∈ R
n, then < x, y >= xT y, where xT is the transpose

of the (column vector) x ∈ R
n. ‖.‖ is the vector 2-norm (the

Euclidian norm) in R
n defined by ‖x‖ =

√
< x, x >.

Consider now the following continuous-time nonlinear

dynamical system

ẋ(t) = Ax(t) + Φ(x, u) A ∈ R
n×n (1)

y(t) = Cx(t) C ∈ R
n×p, (2)

where x ∈ R
n, u ∈ R

m, y ∈ R
p and Φ(x, u) represents a

nonlinear function that is continuous with respect to both x

and u. The system (1)-(2) is said to be locally Lipschitz in

a region D including the origin with respect to x, uniformly

in u, if there exist a constant l > 0 satisfying:

‖Φ(x1, u
∗)− Φ(x2, u

∗)‖ 6 l‖x1 − x2‖ ∀x1, x2 ∈ D, (3)

where u∗ is any admissible control signal. The smallest

constant l > 0 satisfying (3) is known as the Lipschitz

constant. The region D is the operational region or our

region of interest. If the condition (3) is valid everywhere

in R
n, then the function is said to be globally Lipschitz.

The following definition introduces one-sided Lipschitz

functions.

Definition 1. [9] The nonlinear function Φ(x, u) is said

to be one-sided Lipschitz if there exist ρ ∈ R such that

∀x1, x2 ∈ D
〈Φ(x1, u

∗)− Φ(x2, u
∗), x1 − x2〉 6 ρ‖x1 − x2‖2, (4)

where ρ ∈ R is called the one-sided Lipschitz constant. As

in the case of Lipschitz functions, the smallest ρ satisfying

(4) is called the one-sided Lipschitz constant. �
Similarly to the Lipschitz property, the one-sided Lipschitz

property might be local or global. Note that while the

Lipschitz constant must be positive, the one-sided Lipschitz

constant can be positive, zero or even negative. For any

function Φ(x, u), we have:

| 〈Φ(x1, u
∗)− Φ(x2, u

∗), x1 − x2〉 |
6 ‖Φ(x1, u

∗)− Φ(x2, u
∗)‖‖x1 − x2‖

and if Φ(x, u) is Lipschitz, then: 6 l‖x1 − x2‖2.
Therefore, any Lipschitz function is also one-sided Lipschitz.

The converse, however, is not true. For Lipschitz functions,

−l‖x1 − x2‖2 6 〈Φ(x1, u
∗)− Φ(x2, u

∗), x1 − x2〉
6 l‖x1 − x2‖2,

which is a two-sided inequality v.s. the one-sided inequality

in (4). If the nonlinear function Φ(x, u) satisfies the one-

sided Lipschitz continuity condition globally in R
n, then

the results are valid globally. For continuously differentiable

nonlinear functions it is well-known that the smallest possi-

ble constant satisfying (3) (i.e., the Lipschitz constant) is the

supremum of the norm of Jacobian of the function over the

region D, that is:

l = lim sup

(∥∥∥∥
∂Φ

∂x

∥∥∥∥
)
, ∀x ∈ D. (5)

Alternatively, the one-sided Lipschitz constant is associated

with the logarithmic matrix norm (matrix measure) of the

Jacobian [11]. The logarithmic matrix norm of a matrix A

is defined as [11]:

µ(A) = lim
ǫ→0

|||I + ǫA||| − 1

ǫ
, (6)

where the symbol |||.||| represents any matrix norm. Then,

we have [11]

ρ = lim sup

[
µ

(
∂Φ

∂x

)]
, ∀x ∈ D. (7)

If the norm used in (6) is indeed the induced 2-norm

(the spectral norm) then it can be shown that µ(A) =

λmax

(
A+AT

2

)
[14]. On the other hand, from the Fan’s

theorem (see for example [15]) we know that for any matrix,

λmax

(
A+AT

2

)
≤ σmax(A) = ‖A‖ [15]. Therefore ρ ≤ l.

Usually one-sided Lipschitz constant can be found to be
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much smaller that than the Lipschitz constant [11]. It is

well-known in numerical analysis that for stiff ODE systems,

ρ << l [10], [11]. See [16] for an example of a nonlinear

function which satisfies one-sided Lipschitz continuity but

not the Lipschitz continuity.

III. OBSERVER STRUCTURE

In this section we consider the observation problem; i.e.

given the dynamical system (1)-(2) we assume that only the

input u and output y are available and study the feasibility

of reconstructing the state x. To this end we consider an

observer of the following form

˙̂x(t) = Ax̂(t) + Φ(x̂, u) + L(y − Cx̂). (8)

The observer error dynamics is given by e(t) , x(t)− x̂(t),

ė(t) = (A− LC)e(t) + Φ− Φ̂ (9)

where Φ , Φ(x, u) and Φ̂ , Φ(x̂, u). Using a Lyapunov

function candidate of the form V (t) = eTPe, the derivatives

along the error trajectories are V̇ = eT [(A−LC)TP+P (A−
LC)]e+2eTP (Φ−Φ̂). Our goal is, assuming that Φ satisfies

a one-sided Lipschitz condition, find an observer gain L such

that the observer error dynamics is asymptotically stable.

A. Motivating problem

Given the form of the Lyapunov derivative, the standard

approach used in the Lipschitz case is to find L such that

(A− LC)TP + P (A− LC) = −Q is negative definite and

eTQe > 2eTP (Φ − Φ̂). This approach, first proposed by

Thau in 1973 [1], has dominated the literature on Lipschitz

systems ever since. The implicit idea behind this approach is

to use of the output injection term in the observer dynamics

to ensure that the linear part of the observer error dominates

the nonlinear terms. This, in turn, is facilitated by the strong

square norm condition (3) satisfied by Lipschitz systems

which leads to the conservative nature of the result. In

other words, in the process of employing the Lipschitz

property (3), the term eTP (Φ−Φ̂) in the Lyapunov derivative

is replaced by a strictly positive term forcing the rest of

the derivative to be sufficiently negative to compensate

the remaining terms. It is important to note that the term

eT [(A−LC)TP +P (A−LC)]e < 0 if and only if A−LC

has eigenvalues with negative real part. Unlike the Lipschitz

constant l, which is positive by definition, the one-sided

Lipschitz constant ρ can be any real number. Thus, the term

2eTP (Φ− Φ̂) can be negative. Hence, a negative Lyapunov

derivative may be guaranteed even with a positive definite

(A−LC)TP+P (A−LC) and consequently the linear terms

in A − LC is not necessarily required to have eigenvalues

with negative real part. This means that the linear terms

not necessarily dominate the nonlinear function Φ, which in

turn can lead to less conservative results. The mathematical

description behind the need of A − LC having eigenvalues

in the left half plane can be traced back through a substantial

body of literature for Lipschitz systems such as [1]–[5] while

the freedom of the one-sided counterpart from such necessity

is established in this article.

B. Challenging Obstacle

We now return to our main objective and endeavor to

find L that makes V̇ < 0. This problem is nontrivial.

Unfortunately, to the best of the authors’ knowledge, there

is no result in mathematics relating the weighted bilinear

form 2eTP (Φ− Φ̂) to the bilinear form 2eT (Φ− Φ̂) which

is required to take full advantage of the properties offered

by the one-sided Lipschitz formulation. This is the main

obstacle to overcome in this work. A very simple first

approach to this problem is to consider P = I . With this

choice, we have:

V̇ = eT [(A− LC)T + (A− LC)]e+ 2eT (Φ− Φ̂)

≤ eT [(A− LC)T + (A− LC) + 2ρI]e.

where we substituted eT (Φ − Φ̂) ≤ ρeT e. Hence, in order

to have V̇ < 0, we must have

(A− LC)T + (A− LC) + 2ρI < 0

⇒ µ(A− LC) < −ρ. (10)

Inequality (10) is an LMI which can be efficiently solved

using any available LMI solver to find the observer gain L.

For the logarithmic matrix norm the following inequality can

be used [14]:

−µ(−A) ≤ ℜλi(A) ≤ µ(A), i = 1, . . . , n. (11)

Therefore, −µ(−(A− LC)) ≤ ℜλi(A− LC). On the other

hand, we want µ(A−LC) < −ρ, so as a necessary condition,

we must have

max
i

ℜλi(A− LC) < −ρ. (12)

Furthermore, suppose A−LC is not stable (not stabilizable).

We can always find α > 0 such that (A−LC−αI) is stable

where α > maxi ℜλi(A − LC). Then the observer error is

asymptotically stable if

(A− LC)T + (A− LC) + 2ρI = (A− LC − αI)T

+ (A− LC − αI) + 2αI + 2ρI < 0 (13)

Now, a sufficient condition for (13) to be true is

α+ ρ < 0 ⇒ ρ < −α < −max
i

ℜλi(A− LC).

The above discussion provides some analysis insight but

does address the fundamental design problem in a satisfac-

tory manner. In the next section we propose a complete

solution to this rather involved design problem.

IV. MAIN RESULTS

In this section, we first introduce the concept of quadratic

inner-boundedness for the function Φ(x, u). Our design

solution will make extensive use of this concept.

Definition 2. The nonlinear function Φ(x, u) is called

quadratically inner-bounded in the region D̃ if ∀ x1, x2 ∈ D̃

there exist β, γ ∈ R such that

(Φ(x1, u)− Φ(x2, u))
T (Φ(x1, u)− Φ(x2, u)) ≤

β‖x1 − x2‖2 + γ 〈x1 − x2,Φ(x1, u)− Φ(x2, u)〉 . � (14)
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It is clear that any Lipschitz function is also quadratically

inner-bounded (e.g. with γ = 0 and β > 0). Thus, Lip-

schitz continuity implies quadratic inner-boundedness. The

converse is, however, not true. We emphasize that γ in (14)

can be any real number and is not necessarily positive. In

fact, if γ is restricted to be positive, then from the above

definition, it can be shown that Φ must be Lipschitz which

is only a special case of our proposed class of systems. From

now on we assume that Φ(x, u) is one-sided Lipschitz in D
and quadratically inner-bounded in D̃. All of our results will

be valid in the intersection D ∩ D̃ (the operational region).

With the above notation, the following inequality holds for

the estimation error.

(Φ− Φ̂)T (Φ− Φ̂) ≤ β‖e‖2 + γeT (Φ− Φ̂). (15)

In the following Theorem, we propose a method for observer

design for one-sided Lipschitz systems.

Theorem 1. Consider a nonlinear system satisfying in-

equalities (4) and (14) with constants ρ, β and γ, along

with the observer (8). The observer error dynamics is

asymptotically stable if there exist positive definite matrix

P , symmetric matrix Q, matrix L and a positive scalar

α > 0 such that the following matrix inequalities problem is

feasible:

(A− LC)TP + P (A− LC) ≤ −Q, (16)

ξλmax(P )− λmin(P ) < αλmin(Q), (17)

γ + 2α > 0, (18)

λmax(P )

λmin(P )
.(α2 − 1) < α2, (19)

where ξ = (β + 1) + ρ(γ + 2α).

Proof: For any nonzero α ∈ R we can write

2eTP (Φ− Φ̂) =
1

α

[
e+ α(Φ− Φ̂)

]T
P
[
e+ α(Φ− Φ̂)

]

− 1

α
eTPe− α(Φ− Φ̂)TP (Φ− Φ̂).

Assuming α > 0, then

2eTP (Φ− Φ̂) ≤
1

α
λmax(P )

[
e+ α(Φ− Φ̂)

]T [
e+ α(Φ− Φ̂)

]

− 1

α
eTPe− α(Φ− Φ̂)TP (Φ− Φ̂). (20)

Using the quadratic boundedness property we have

[
e+ α(Φ− Φ̂)

]T [
e+ α(Φ− Φ̂)

]
≤ (β + 1)eT e

+ (γ + 2α)eT (Φ− Φ̂) + (α2 − 1)‖Φ− Φ̂‖2. (21)

Substituting (21) into (20) leads to

2eTP (Φ− Φ̂) ≤ 1

α
λmax(P )[(β + 1)eT e+ · · ·

· · · (γ + 2α)eT (Φ− Φ̂) + (α2 − 1)‖Φ− Φ̂‖2]

− 1

α
eTPe− α(Φ− Φ̂)TP (Φ− Φ̂). (22)

Based on the Rayleigh’s inequality, for any α > 0 we have

(Φ− Φ̂)TP (Φ− Φ̂) ≥ λmin(P )‖Φ− Φ̂‖2 ⇒
− α(Φ− Φ̂)TP (Φ− Φ̂) ≤ −αλmin(P )‖Φ− Φ̂‖2.

Hence, from (22), using the one-sided Lipschitz inequality

(4) and knowing that γ + 2α > 0, we obtain

2eTP (Φ− Φ̂) ≤[
1

α
λmax(P )(α2 − 1)− αλmin(P )

]
‖Φ− Φ̂‖2

+
1

α
λmax(P ) [(β + 1) + ρ(γ + 2α)] eT e− 1

α
eTPe.

We know that κ(P )(α2 − 1) < α2, where κ(P ) is the

condition number of P or 1

α
λmax(P )(α2−1)−αλmin(P ) <

0. Then,

2eTP (Φ− Φ̂) <
1

α
λmax(P ) [(β + 1) + ρ(γ + 2α)] eT e

− 1

α
eTPe. (23)

Now we substitute (23) into the Lyapunov derivative. We

obtain

V̇ = eT [(A− LC)TP + P (A− LC)]e+ 2eTP (Φ− Φ̂)

< eT
[
(A− LC)TP + P (A− LC)

]
e

+
ξ

α
λmax(P )eT e− 1

α
eTPe, (24)

where ξ , (β +1)+ ρ(γ +2α). Therefore, in order to have

V̇ < 0 it suffices to have:

ξ

α
λmax(P )+

λmax

[
(A− LC)TP + P (A− LC)− 1

α
P

]
< 0. (25)

For any two symmetric matrices A and B, it can be shown

that λi ≤ λi(A)+λi(B), where λis are the sorted eigenval-

ues [15]. Thus,

λmax

[
(A− LC)TP + P (A− LC)− 1

α
P

]
≤

λmax

[
(A− LC)TP + P (A− LC)

]
+ λmax

(
−P

α

)
=

λmax

[
(A− LC)TP + P (A− LC)

]
− 1

α
λmin(P ). (26)

Now without loss of generality we assume that there exists a

symmetric matrix Q, such as (A−LC)TP +P (A−LC) ≤
−Q. Note that Q is not necessarily positive definite (meaning

that (A− LC) is not necessarily stable). Thus,

λmax

[
(A− LC)TP + P (A− LC)

]

≤ λmax(−Q) = −λmin(Q). (27)

Substituting from (27), (26) and (25) into (24), we get

ξ

α
λmax(P )− 1

α
λmin(P )− λmin(Q) < 0. � (28)

5287



A. LMI formulation

Theorem 1, provides a design method for nonlinear ob-

servers for one-sided Lipschitz systems in the form of the

nonlinear matrix inequalities (NMIs) (16)-(19). The dif-

ficulty, however, is that although Theorem 1 provides a

legitimate solution to our problem, there is currently no

efficient solution in the numerical analysis literature capable

of solving NMIs. Unlike the nonlinear case, however, linear

matrix inequalities (LMIs) can be efficiently solved using

commercially available packages such as the Matlab LMI

solver. We now show how to cast the proposed nonlinear

matrix inequalities solution into the LMI framework to take

advantage of the efficient numerical LMI solvers readily

available. Using Fan’s theorem [15], we can write

λmax[(A− LC)TP + P (A− LC)]

≤ 2σmax[P (A− LC)] ≤ 2λmax(P )σmax(A− LC).

Substituting this back to (25) yields to

1

α
λmax(P )ξ − 1

α
λmin(P ) + 2λmax(P )σmax(A− LC) < 0

⇒ σmax(A− LC) <
1

2α

(
1

κ(P )
− ξ

)
,

which by means of Schur’s complement and change of

variable λ = 1

κ
is equivalent to the LMI (29). LMI (31)

represents the condition κ(α2 − 1) < α2.

Based on the above discussion which also serves as the

proof, the following corollary provides an LMI solution to

our observer design problem.

Corollary 1. Consider a nonlinear system satisfying in-

equalities (4) and (14) with constants ρ, β and γ, along with

the observer (8). The observer error dynamics is asymptoti-

cally stable if there exists a matrix L and positive scalars

α > 0 and 0 < λ < 1 such that the following matrix

inequalities problem is feasible:
[

1

2α
(λ− ξ) I (A− LC)T

(A− LC) 1

2α
(λ− ξ) I

]
> 0, (29)

γ + 2α > 0, (30)

λ > 1− 1

α2
, (31)

where ξ = (β + 1) + ρ(γ + 2α).

We now summarize the observer design procedure.

B. Observer Design Procedure

• Step 1: Pick an α > 0 such that 2α+ γ > 0.

• Step 2: Calculate ξ = β + ρ(γ + 2α) + 1.

• Step 3: Check if the condition κ(α2 − 1) < α2 and
1

κ
− ξ > 0 are consistent (each condition provides a

bound on κ). If Yes, go to Step 4 otherwise go to Step

1.

• Step 4: Solve the LMIs in Corollary 1 for L and λ.

Note that if Step 3 is passed, the LMIs in Step 4 are

always feasible meaning that an observer gain L will always

be found. The variable κ calculated in Corollary 1 is the

condition number of the P matrix used in the Lyapunov

function. Any P with such condition number would be

acceptable. Although easy to do, as our goal of finding the

observer gain L is already achieved, this step (finding P ) is

unnecessary except for analysis purposes of the results.

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the proposed observer design

procedure through a numerical example.

Example. Suppose that the equations of motion of a

moving object is given in the polar coordinates as follows:

ṙ = r − r3,

θ̇ = 1,

and the measurements are given as r sin(θ). The goal is to

design an observer to find r and θ. First we convert the

equations into the Cartesian coordinates. We get:

ẋ = x− y − x(x2 + y2),

ẏ = x+ y − y(x2 + y2),

and the measurements are y. We define the state vector as

x =
[
x y

]T
and y as the output, in which the variables

are bolded to avoid ambiguity. We have:

ẋ =

[
1 −1
1 1

]
x +

[
−x(x2 + y2)
−y(x2 + y2)

]
,

y =
[
0 1

]
x.

Knowing that, x1x2 = 1

2
(x2

1 + x2
2)− 1

2
(x1 − x2)

2, we get,

〈Φ(x1)− Φ(x2), x1 − x2〉 = −‖x1 − x2‖2
2

[
‖x1‖2 + ‖x2‖2

]

− 1

2

[
‖x1‖2 − ‖x2‖2

]2 ≤ 0. (32)

This means that the systems is globally one-sided Lipschitz

with the one-sided Lipschitz constant ρ = 0. Now, lets

verify the Lipschitz continuity property. Φ is continuously

differentiable, so an estimate for the Lipschitz constant is the

supremum of the norm of the Jacobian matrix, ‖J‖ = 3r2.

This means that the system is locally Lipschitz and on any

set D = {x ∈ R
2 : ‖x‖ ≤ r}, the Lipschitz constant

l is 3r2, i.e. the Lipschitz constant rapidly increases with

the increase of r. We need to verify the quadratic inner-

boundedness property of the system, as well. After some

algebraic manipulations, the left hand side of the quadratic

inner-boundedness (14) is:

LHS : [Φ(x1)− Φ(x2)]
T
[Φ(x1)− Φ(x2)] =

[
‖x1‖2 − ‖x2‖2

]2
.
[
‖x1‖2 + ‖x2‖2

]
+ ‖x1 − x2‖2‖x1‖2‖x2‖2

The right hand side of (14) is:

RHS : γ〈Φ(x1)− Φ(x2), x1 − x2〉+ β‖x1 − x2‖2 =

‖x1 − x2‖2
[
β − γ

2

(
‖x1‖2 + ‖x2‖2

)]
− γ

2

[
‖x1‖2 − ‖x2‖2

]2

in which (32) is used. We have to find values for β and γ and

a region D̃ such that for all x ∈ D̃, LHS ≤ RHS. Comparing
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the two, it suffices to have:

‖x1‖2 + ‖x2‖2 ≤ −γ

2
,

‖x1‖2.‖x2‖2 ≤ β − γ

2

[
‖x1‖2 + ‖x2‖2

]2 ≤ β +
γ2

4
.

Considering the set D̃ = {x ∈ R
2 : ‖x‖ ≤ r}, it suffices to

have: 2r2 ≤ −γ
2
→ r ≤

√
−γ

4
and r4 ≤ β + γ4

4
→ r ≤

4

√
β + γ2

4
. Hence,

r = min

(√
−γ

4
,

4

√
β +

γ2

4

)
, γ < 0, β +

γ2

4
> 0.

Also, since ρ = 0, ξ = β + 1 and thus according the LMIs

in Corollary 1, since λ < 1, in order to have λ − ξ > 0,

β has to be negative. As the system is globally one-sided

Lipschitz (D = R
2), D∩D̃ = D̃. It is clear that by choosing

appropriate values for γ and β, the region D̃ can be made

arbitrarily large. If we take β = −200, (ξ = −199) and

γ = −141, we get r = 5.9372. Then we take α = 70.6 (to

ensure γ+2α > 0) and solve the LMIs is Corollary 1. We get

λ = 0.999892, L =
[
−1.000000 1.000000

]T
. Figure

1 shows the system trajectories along with their estimates

and the system phase plane. For comparison purposes we
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Fig. 1. The system and observer states and the phase plane

now consider the conventional Lipschitz formulation. With

r = 5.9372, the corresponding Lipschitz constant is l =
3r2 = 105.75 (compare it with the one-sided Lipschitz

constant ρ = 0). It is highly unlikely that an observer

designed based on the conventional Lipschitz approach can

work with such a large Lipschitz constant. The maximum

Lipschitz constant that those observers can handle are nor-

mally at least an order of magnitude less than this. For

example, the maximum admissible Lipschitz constant for the

observer designed using [7] in this case is l = 1.0324. The

advantage of the new approach in this case, is evident. Note

that A − LC =

[
1 0
1 0

]
is indeed unstable, confirming

our finding of A − LC not being necessarily stable. To

verify our result lets calculate the Lyapunov derivative. Any

positive definite matrix P with condition number κ = 1

λ
is

acceptable. Lets take P =

[
1

λ
0

0 1

]
. From (25) we obtain

V̇ ≤ −0.4187 < 0.

VI. CONCLUSIONS

This article introduces a new class of nonlinear systems,

namely the one-sided Lipschitz systems, as a generalization

of the well-known class of Lipschitz systems. The observer

design problem for this class of systems is established.

The advantages of designing observers in this context are

explained and the challenges discussed. A observer design

procedure is given that can be easily applied to the consid-

ered class of system using the available numerically efficient

LMI solvers. The efficiency of the approach is shown through

an illustrative example.
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