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Abstract
Language-based information-flow analysis is promising in pro-
tecting data confidentiality. Although much work has been carried
out in this area, relatively little has been done for assembly code.
Techniques at a source level do not generalize straightforwardly
to assembly code, because assembly code does not readily present
certain abstraction about the program structure that is crucial to
information-flow analysis. Nonetheless, low-level information-
flow analysis is desirable, because it yields a small trusted com-
puting base. Furthermore, many (untrusted) applications are dis-
tributed in native code; their verification should not be overlooked.

We present a simple yet effective solution for this problem. Our
observation is that the missing abstraction in assembly code can be
restored using annotations. Following the philosophy of certifying
compilation, these annotations are generated by a compiler, used
for static validation, and erased before execution. In particular, we
propose a type system for low-level information-flow analysis. Our
system is compatible with Typed Assembly Language, and models
key features including a call stack, memory tuples and first-class
code pointers. A noninterference theorem articulates that well-
typed programs respect confidentiality. We also present a security-
type preserving translation that targets our system, together with
its soundness theorem. This illustrates the application of certifying
compilation for noninterference.

1. Introduction
With the growing reliance on networked information systems, the
protection of confidential data becomes increasingly important.
The problem is especially subtle for a computing system which
both manipulates sensitive data and requires access to public infor-
mation channels. Simple policies that restrict the access to either
the sensitive data or the public channels (or a combination there-
from) often prove too restrictive. A more desirable policy is that no
information about the sensitive data can be inferred from observing
the public channels, even though a computing system is granted ac-
cess to both. Such a regulation of the flow of information is often
referred to asinformation flow, and the policy that sensitive data
should not affect public data is often callednoninterference.

Whereas it is relatively easy to detect and prevent naive viola-
tions that directly give out sensitive data, it is much more difficult to
prevent applications from sending out information that is sophisti-
catedly encoded. Conventional security mechanisms such as access
control, firewalls, encryption and anti-virus fall short on enforcing
the noninterference policy [23]. On the one hand, noninterference
posts seemingly conflicting requirements: it allows the access to
sensitive information, but restricts the flow of it. On the other hand,
the violation of noninterference cannot be observed from monitor-
ing a single execution of the program [25], yet such execution mon-
itoring is the basis of many conventional mechanisms.

In recent years, much effort has been put on enforcing noninter-
ference using techniques based on programming language theory

and implementation. These techniques are promising, because they
directly inspect or instrument the program code, and hence have the
potential of learning all possible run-time behavior of the program.
Unfortunately, the vast amount of language-based research on in-
formation flow [23] does not address well the problem for assembly
code. The challenge there, as we will elaborate later, largely lies in
working with the lack of high-level abstractions and managing the
extreme flexibility offered by assembly code.

Nonetheless, it is desirable to enforce noninterference directly
at a low-level. On the one hand, high-level programs must be trans-
lated into low-level code before executed on a real machine; com-
pilation or optimization bugs may invalidate the security guarantee
established for the source programs. On the other hand, some ap-
plications are distributed (e.g.,native code for mobile computation)
or even directly written (e.g.,core libraries for embedded systems)
in assembly code; enforcement at a low-level is a must for them.

This paper presents some important steps of a project tackling
information flow at the assembly level. The contributions are:

• We propose a Typed Assembly Language for Confidentiality
(TALC ) for information-flow analysis and present its proof of
noninterference. Our abstract machine is generic and close to
real architectures. To reuse existing results on low-level veri-
fication, our system is designed to be compatible with Typed
Assembly Language (TAL) [18]. It thus approaches a unified
framework for conventional type safety and security.

• Our system models key features of an assembly language, in-
cluding heap, call stack and register file, memory tuples (alias-
ing), and first-class code pointers (higher-order functions). Be-
cause assembly code is often arduous to work with, we present
our formal result with a core language supporting the above
features for ease of understanding, but also informally discuss
extensions such as polymorphic and existential types.

• Although desirable to directly verify at an assembly level, it is
more practical to develop programs in high-level languages. We
present a translation from a security-typed imperative source
language with first-order procedures to TALC . This illustrates
the application of certifying compilation for noninterference.
We also present a type-preservation theorem for our translation.

This paper does not address covert channels (e.g., termina-
tion [28, 1] and timing [30, 2]) or abstract-violation attacks (e.g.,
cache [3]). Section 2 provides background on language-based ap-
proaches for information flow, places our work in the context of
existing researches, and points out the extra difficulties for nonin-
terference at an assembly level. An informal overview of our ap-
proach is given in Section 3. Sections 4 and 5 present the TALC

system and a certifying compilation scheme, focusing on core fea-
tures that illustrate ideas pertinent to information flow. Section 6
helps better understand TALC in comparison with previous work
on linear continuations. Orthogonal issues and practical extensions
are discussed in Section 7. Section 8 concludes.



2. Background
2.1 Information Flow

The problem of information flow can be abstracted as a program
that operates on data of different security levels,e.g., lowandhigh.
Low (low security) data are public data that may be observed by all
principals; high (high security) data are secret data whose access is
restricted. An information-flow policy requires that no information
about high inputs can be inferred from observing low outputs. In
general, the security levels can be generalized to a lattice [29].

Such a policy concerns tracking the flow of information inside
a target system. Whereas it is easy to detect explicit flows (e.g.,
through an assignment from a secreth to a publicl with l=h ), it is
much harder to detect various forms of implicit flow. For example,
the statementl=0; if h then l=1 involves an implicit flow
from h to l . At run-time, if the then branch is not taken, a
conventional security mechanism based on execution monitoring
will not detect any violation. However, information abouth can
indeed be inferred from the result ofl .

Instead of observing a single execution, language-based tech-
niques derive assurance about a program’s behavior by examin-
ing, and possibly instrumenting, the program code. In the above
example, the information essentially leaks through the program
counter (often referred to aspc)—the fact that a branch is taken re-
flects information about the guard of the conditional. In response, a
security-type system typically tags the program counter with a se-
curity label. If the guard of a conditional concerns high data, then
the branches are verified under a program counter with a high secu-
rity label. Furthermore, assignments to low variables are prohibited
under such a high program counter.

2.2 Security Types

Figure 1 shows a two-level security-type system for a simple im-
perative language with first-order procedures. It is extended from a
demonstrative system of Sabelfeld and Myers’ [23], and will serve
as the source of our translation. A program comprises a list of pro-
cedure declarationsFi and a main commandC. A procedure dec-
laration documents the security level of the program counter with
pc, indicating that the procedure body will only update variables
with security levels no less thanpc. A procedure also declares a list
of argumentsxi under call-by-reference semantics. CommandsC
consist of assignments, sequential compositions, conditional state-
ments, while-loops, and procedure calls. VariablesV cover both
global variablesv and procedure argumentsx. ExpressionsE are
formed by constants (i), variables, and their additions.

Rules [E1–4] relate expressions to security types (levels). Any
expression may have typehigh (it is secure to treat any data as
sensitive). Constants and low variables may have typelow. An
addition expression may have typelow if both sub-expressions may
have typelow.

Rules [C1–7] track the security level of the program counter
(pc) when verifying the commands. Assignments to high variables
are always valid (Rule [C1]). However, an assignment to a low
variable is valid only if both the expression and thepc are low
(Rule [C2]). For a conditional (Rule [C3]), the security level of the
sub-commands must match the security level of the guard expres-
sion; together with Rule [C2], this guarantees that low variables
are not modified within a branch under a high guard. After a con-
ditional, it is useful to reset thepc to low, avoiding a form of label
creep [10] where monotonically increasing security labels are too
restrictive to be generally useful. Such a context reset is achieved
with a subsumption rule (Rule [C4]); intuitively, if it is secure to
execute a command in a sensitive context, then it is also secure
in an insensitive one. A sequential composition is verified so that
both sub-commands are valid under the givenpc (Rule [C5]). The

(Typ) t, pc ::= low | high
(Var) V ::= v | x
(Env) Φ ::= ◦ | V :t, Φ | f :〈pc〉(t1, . . . , tn)→void, Φ

(Exp) E ::= i | V | E1 + E2

(Comm) C ::= V := E | C1; C2 | if E then C1 else C2

| while E do C | f(V1, . . . , Vn)

(Fun) F ::= f〈pc〉(x1 :t1, . . . , xn :tn){C}
(Prog) P ::= {F1; . . . ; Fn; C}

[E1–2] Φ ` E : high Φ ` i : t

[E3–4]
Φ(V) = low

Φ ` V : low
` E1 : low ` E2 : low
` E1 + E2 : low

[C1–2]
Φ(V) = high

Φ; [pc] ` V := E

Φ(V) = low Φ ` E : low
Φ; [low] ` V := E

[C3]
Φ ` E : pc Φ; [pc] ` C1 Φ; [pc] ` C2

Φ; [pc] ` if E then C1 else C2

[C4–5]
Φ; [high] ` C

Φ; [low] ` C

Φ; [pc] ` C1 Φ; [pc] ` C2

Φ; [pc] ` C1; C2

[C6]
Φ ` E : pc Φ; [pc] ` C

Φ; [pc] ` while E do C

[C7]

Φ(f) = 〈pc〉(t1, . . . , tn)→void
Φ ` Vi : ti ∀i ∈ {1 . . . n}

Φ; [pc] ` f(V1, . . . , Vn)

[F1]
x1 :t1, . . . , xn :tn, Φ; [pc] ` C

Φ ` f〈pc〉(x1 :t1, . . . , xn :tn){C}

[P1]

Fi = fi〈pci〉(x1i :t1i, . . . , xnii :tnii){Ci}
Φ(Fi) = 〈pc〉(t1i, . . . , tnii)→void
Φ ` Fi Φ; [low] ` C ∀i ∈ {1 . . . n}

Φ ` {F1; . . . ; Fn; C}

Figure 1. A simple security-type system

handling of a while-loop is similar to that of a conditional statement
(Rule [C6]). A procedure call is valid ifpcmatches the expected se-
curity level, and the arguments have the expected types (Rule [C7]);
note that only variables (v orx) may server as the arguments, which
are handled by reference (also know as “in-out” arguments in the
previous work of Volpano and Smith [29]).

Finally, a procedure declaration is valid if the body can be veri-
fied under the expectedpc and arguments (Rule [F1]). A program
is valid if all procedure declarations and the main command are
valid (Rule [P1]).

2.3 Related Work

Although there has been much work applying language-based tech-
niques to information flow [23], most of it focused on high-level
languages. Many high-level abstractions have been formally stud-
ied, including functions [11], exceptions [22], objects [6], and
concurrency [27, 1, 12], and practical implementation is within
reach [19]. Nonetheless, enforcing information flow at only a high
level puts the compiler into the trusted computing base (TCB) [24].
Furthermore, we should not overlook the verification of software
distributed (or written) directly in low-level code. For example, a
user may wish to verify that a GPS software, downloaded from an
untrusted party in the form of native code to a mobile device, does
not send out the location information through the network.



Bartheet al. [7] presented a security-type system for a byte-
code language and a translation that preserves security types. Their
stack-based language is much different from the RISC architecture
that we model. More importantly, their verification circumvents a
main difficulty—the lack of program structures at a low-level—
by introducing a (currently trusted) component that computes the
dependence regions and postdominators [5] for conditionals. The
separate checking of these information is under investigation.

Avvenuti et al. [4] applied abstract interpretation to enforce
information flow for a stack-based bytecode language. Besides the
difference in the machine models, their work also relied on the
(trusted) computation of control flow graphs and postdominators.

Zdancewic and Myers [33] used linear continuations to enforce
noninterference at a low-level. Their language is based on vari-
ables and still much different from assembly language. In partic-
ular, linear continuations, although useful in enforcing a stack dis-
cipline that helps information-flow analysis, are absent from con-
ventional assembly code. Hence further (trusted) compilation to na-
tive code is required. Nonetheless, we borrowed some ideas from
Zdancewic and Myers, including the handling of memory aliasing
and code pointers, although these features are modeled as different
constructs in our system. A more thorough discussion of the con-
nection between linear continuations and our solution is given in
Section 6, after presenting our system.

Bonelli et al. [8] explored the realization of linear continuations
in an assembly language SIFTAL. Two new instructions are intro-
duced in correspondence with the operations on linear continua-
tions as proposed by Zdancewic and Myers [33]. These two in-
structions enforce structured control flows that are missing from
normal assembly code with the help of a continuation stack (this
stack is different from the one for function calls). One instruction
pushes a linear continuation onto the stack, the other pops a lin-
ear continuation off the stack and transfers the control to it. Such
a mechanism maintains structured control flow in assembly code,
thus helps information-flow analysis. Unfortunately, conventional
assembly programming and machine models do not contain such a
special continuation stack and the instructions manipulating it.

Recently, Medelet al. [16] improved SIFTAL to SIF, using a
stack of labels to simplify the above approximation of linear con-
tinuations. Unlike SIFTAL, SIF resorts to static type annotations
to enforce noninterference, and no longer requires a stack of lin-
ear continuations during execution. This is in spirit similar to our
solution of TALC . However, SIF supports only a minimal set of
language features (arithmetic, memory update, branching and di-
rect jumps), and does not address how the type annotations can be
produced. In contrast, our language TALC further supports code
pointers and a call stack. We also present a type-preserving trans-
lation to TALC from a security-typed source language, where the
support for procedure calls introduces extra subtleties for noninter-
ference. We will discuss this in more detail in Section 6.

This paper targets RISC-style assembly code. We introduce
a type system to verify the unstructured control flow, which in
turn helps information-flow analysis. Type annotations are used to
recover information about high-level program structures, and no
trusted component is required for computing postdominators. This
contrasts with the above work on bytecode languages. Furthermore,
we do not rely on extra constructs such as linear continuations or a
continuation stack. An erasure semantics trivially reduces programs
in our language to normal assembly code.

We also provide a formal model of a certifying compiler for
noninterference. Certifying compilation [14] has mostly been
studied for conventional type safety (e.g.,Typed Assembly Lan-
guage [18], Proof-Carrying Code [21, 20] and Efficient Code
Certification [13]). Walker [31] applied certifying compilation
to security policies. However, being based on security automata,

Walker’s system cannot enforce noninterference. Besides the work
on security-type preserving compilation by Bartheet al. [7] as dis-
cussed above, Honda and Yoshida [12] also studied related issues
for π-calculus with security types.

2.4 Assembly Code

Whereas enforcing information flow for assembly code is impor-
tant, it poses many new challenges.

First, high-level languages make use of a virtually infinite num-
ber of variables, each of which can be assigned a fixed security
label. In assembly code, the use of memory cells is similar. How-
ever, a finite number of registers are reused for different source-
level variables. As a result, one cannot assign a fixed security label
to a register.

Second, the control flow of an assembly program is not as struc-
tured. The body of a conditional is often not obvious, and generally
undecidable, from the program code. Hence the idea of using a se-
curity context to prevent implicit flow through conditionals cannot
be easily carried out.

Third, assembly languages are very expressive. Aliasing be-
tween memory cells are difficult to reason about [26]. The support
for first-class code pointers (the reflection of higher-order functions
at the assembly level) is very subtle. A code pointer may direct a
program to different execution paths, even though no branching in-
struction is present.

Fourth, since it is not practical to always directly program in
an assembly language, a low-level type system must be designed
so that the type annotations can be generated automatically,e.g.,
through certifying compilation. The type system must be at least
as expressive as a high-level type system, so that any well-typed
source program can be translated into well-typed assembly code.

Finally, it is desirable to achieve an erasure semantics where
type annotations have no effect at runtime. A security mechanism
can not be generally applied in practice if it incurs too much over-
head. Similarly, it is also undesirable to change the programming
model for accommodating the verification needs. Such a model
change indicates either a trusted compilation process or a different
target machine.

3. Our Approach
3.1 Explicit Assignment

An obvious kind of information flow is through assignment. As
discussed in Section 2.2, variables in a high-level language can
be “tagged” with security labels; the security-type system prevents
label mismatch for assignments. At an assembly level, memory
cells can be tagged similarly. When storing into a memory cell,
a typing rule ensures that the security label of the source matches
that of the target.

Registers need to be regulated differently, because they can be
reused for different variables with different security labels (regis-
ters cannot be aliased, which makes it safe to update their types).
Since variable and liveness information is not available at an as-
sembly level, one can not easily base the enforcement upon that.

In fact, a similar problem arises even for normal type safety. A
register in TAL can have different types at different program points.
These types are essentially inferred from the computation itself.
For instance, in an addition instructionadd rd, rs, rt, the register
rd is given the typeint, because onlyint can be valid here.
Similarly, when loading from a memory cell, the target register is
given the type of the source memory cell. Adapting such inference
for security labels is straightforward. In the additionadd rd, rs, rt,
the label ofrd is obtained by joining the labels ofrs andrt, because
the result inrd reflects information from bothrs andrt. Moving
and memory reading instructions are handled similarly.



Figure 2. Flow through program structure

3.2 Program Structure

A conditional statement in a high-level program can be verified
so that both sub-commands respect the security level of the guard
expression. Such verification becomes difficult in assembly code,
where the “flattened” control flow provides little help in identifying
the program structure. A conditional is typically translated into a
branching instruction (bnz r, l) and some code blocks, where the
postdominator of the two branches are no longer apparent.

We use annotations to restore the program structure by point-
ing out the postdominators whenever they are needed. Note that
high-level programs provide sufficient information for deciding the
postdominators, and these postdominators can always be statically
determined. For instance, the end of a conditional command is the
postdominator of the two branches. Hence a compiler can generate
the annotations automatically based on a securely typed source pro-
gram. In our system, our postdominator annotation is essentially a
static code label paired with a security label.

Since branching instructions (bnz r, l) are the only instructions
that could directly result in different execution paths, it would ap-
pear that one should enhance branching instructions with postdom-
inators. The typing rule then checks both branches under a proper
security context that takes into account the guard expression. Such
a security context terminates when the postdominator is reached.

Although plausible, this approach is awkward. Figure 2 demon-
strates three scenarios. Besides the conditional scenario, branch-
ing instructions are also used to implement while-loops, where the
postdominator is exactly the beginning of one of the branches. In
this case, only the other branch should be checked under a new
security context. If we directly annotate the branching instruction,
the corresponding typing rule would be “overloaded.” More im-
portantly, an assembly program may contain “implicit branches”
where no branching instruction is present. The third scenario illus-
trates that an indirect jump may lead the program to different paths
based on the value of its operand register. A concrete example will
appear in Section 3.5.

Inspiration of a better solution lies in the simple system of
Figure 1. Note that the subsumption rule [C4] is not tied to any
particular commands. It essentially marks a region of computation
where the security level is raised from low to high. The end of the
region is exactly a postdominator. Following this, our approach is to
mimic the high-level subsumption rule with two low-levelraising
and lowering operations that explicitly manipulate the security
context and mark the beginning and the end of the secured region.

3.3 Memory Aliasing

Aliasing of memory cells present another channel for information
transfer. In Figure 3, a low pointerp_l and a high pointerp_h are
aliases of the same cell. This is useful if a high principal wishes to
observe a low computation. The code in this figure may change the
aliasing relation based on some high variableh by lettingp_h point
to another cell. Further modification throughp_h may or may not
change the value in the original cell. As a result, observing through
the low pointerp_l reveals information about the high variableh.

( * suppose p_h alias p_l * )
if (h=0) then p_h=new cell;
* p_h=1;
( * now * p_l reveals h * )

V

V’

p_l

p_h

Figure 3. Flow through aliasing

fun f0 () = (l:=0; ())
fun f1 () = (l:=1; ())
let f = (if h then f1 else f0) in f()

Figure 4. Flow through code pointer

fun f0 () = (h’:=0; ())
fun f1 () = (h’:=1; ()) ...
if h then f := f1 else f := f0;
l:=1; !f(); l:=l * 2; ...

Figure 5. Context coercion without branching

The problem lies in the assignment through the high pointer
p_h , because it reveals information about the aliasing relation.
The solution, following previous work [6, 33], is to tag pointers
with two security labels. One is for the pointer itself, and the other
is for the data being referenced. Assignments to low data through
high pointers are not allowed. This is a conservative approach—all
pointers are considered as potential aliases.

3.4 Code Pointers

Code pointers further complicate information flow. Figure 4 shows
a piece of functional code wheref represents different functions
based on a high variableh. In its reflection at an assembly level,
different code blocks will be executed based on the value ofh.
Naturally, f contains sensitive information and should be labeled
high. However, the actual functionsf0 and f1 can only be exe-
cuted under a low context, because they modify a low variablel .
In this case, the invocation tof should be prohibited.

In our system, similar to data pointers, code pointers are also
given two security labels. The typing rules ensure that no low
function is called through a high code pointer.

3.5 Security Context Coercion

Finally, Figure 5 shows a piece of code where a mutable code
pointer complicates the flow analysis. Functionsf0 and f1 only
modify high data. A reference cellf is assigned different code
pointers within a high conditional. Later,f is dereferenced and
invoked in a low context.

This code is safe with respect to information flow. At a high
level, a subsumption rule like Rule [C4] in Figure 1 allows calling
the high function!f() in a low context. However, in its assembly
counterparts, both the calling tof and the returning fromf are
implemented as indirect jumps. The calling sequence transfers the
control from a low context to a high context, whereas the returning
sequence does the opposite. Since the function invocation is no
longer atomic at an assembly level, one cannot directly devise
a subsumption rule. Furthermore, there is no explicit branching
instruction present whenf is dereferenced and invoked (the third
scenario of Figure 2).

In our system, the raising and lowering operations explicitly
mark the boundary of the subsumption rule. During certifying com-
pilation, the source-level typing and program structure provide
sufficient information for generating the target-level annotations.
When a subsumption rule is applied in the source code, the cor-
responding target code is generated within a pair of raising and
lowering operations.



(contexts) κ ::= •| θ . w
(pre-type) τ ::= int | 〈σ1, . . . , σn〉 | ∀[∆].〈κ〉Γ

(types) σ ::= τθ | ns
(stack ty) Σ ::= ρ | nil | σ ::Σ
(var env) ∆ ::= ◦ | ρ∆ | α∆
(type arg) ψ ::= Σ | w
(heap ty) Ψ ::= {l1 : σ1, . . . ln : σn}

(reg file ty) Γ ::= {r1 : σ1, . . . rn : σn, sp : Σ}

(registers) r ::= r1 | r2 | . . .
(word val) w ::= α | l | i | ns | w[ψ]
(small val) v ::= r | w | v[ψ]
(heap val) h ::= 〈w1, . . . , wn〉 | code[∆]〈κ〉Γ.I

(heaps) H ::= {l1 7→ h1, . . . , ln 7→ hn}
(reg files) R ::= {r1 7→ w1, . . . , rn 7→ wn, sp 7→ S}

(stacks) S ::= nil | w ::S

(instr) ι ::= add rd, rs, v | ld rd, rs(i) | st rd(i), rs

| mov rd, v | bnz r, v | salloc i | sfree i
| sld rd, sp(i) | sst sp(i), rs | raise κ

(instr seq) I ::= ι; I | lower w | jmp v | halt [σ]
(prog) P ::= (H,R, I)κ

Figure 6. Syntax of TALC

4. TAL C

4.1 Abstract Machine

Our language TALC is designed to resemble TAL [18] for ease of
understanding. We introduce some new constructs for confidential-
ity, and accommodate a stack following STAL [17] for support-
ing procedure calls. In the interest of simplicity, we maintain just
enough features for demonstrating the certifying compilation of se-
curity types from our source language in Figure 1, removing from
TAL and STAL features that are orthogonal to it.

We assume that security labels form a latticeL. We useθ to
range over elements ofL. We use⊥ and> as the bottom and top
of the lattice,∪ and∩ as the lattice join and meet operations, and
⊆ as the lattice ordering. The syntactic constructs of TALC can be
understood in three steps as follows.

Type constructs The top portion of Figure 6 presents the type
constructs. Security contextsκ follow the idea of Section 3.2. An
empty security context (•) represents an program counter with the
lowest security label. A concrete context (θ . w) is made up of a
security labelθ (the current security level) and a postdominator
w. The postdominatorw has the syntax of a word value, but its
use is restricted by the semantics to be eventually an instantiated
code label,i.e., the ending point of the current security level. The
postdominatorw could also be a variableα; this is useful for
compiling procedures, which can be called in different contexts
with different postdominators.

Pre-types (τ ) reflect the normal types as seen in TAL, including
integer types, tuple types, and code types. In comparison with TAL,
our code type requires an extra security context (κ) as part of the
interface. A type (σ) is either a pre-type tagged with a security label
or a nonsense type (ns) for uninitialized stack slots. A stack type
(Σ) is either a variable (ρ), or a (possibly empty) sequence of types.
The variable context (∆) is used for typing polymorphic code; it
documents stack type variables (ρ) and postdominator variables
(α). Stack types and postdominators are also generally referred to
as type argumentsψ. Finally, heap types (Ψ) or register file types
(Γ) are mappings from heap labels or registers to types; thesp in
the register file represents the stack.

Judgment Meaning
∆ ` κ κ is a valid context
∆ ` τ τ is a valid pre-type
∆ ` σ σ is a valid type
∆ ` Σ Σ is a valid stack type
` Ψ Ψ is a valid heap type
∆ ` Γ Γ is a valid register file type
∆ ` Γ1 ⊆ Γ2 Register file typeΓ1 weakensΓ2

` H : Ψ HeapH has typeΨ
Ψ ` S : Σ StackS has typeΣ
Ψ ` R : Γ Register fileR has typeΓ
Ψ ` h : σ Heap valueh has typeσ
Ψ;∆ ` w : σ Word valuew has typeσ
Ψ;∆;Γ ` v : σ Small valuev has typeσ
Ψ;∆;Γ;κ ` I I is a valid sequence of instructions
Ψ;Γ ` P P is a valid program

Figure 8. TALC typing judgments

Note that the type constructs provide two layers of security
labels for a data pointer (e.g.,〈intθ2〉θ1

; see Section 3.3) or a code
pointer (e.g.,(∀[◦].〈θ2 . l〉Γ)θ1

; see Section 3.4)—one (θ1) for the
pointer itself, the other (θ2) for the data or code being referenced.

Value constructs The middle portion of Figure 6 shows the value
constructs. A word valuew is either a variable, a heap labell, an
immediate integeri, a nonsense value for an uninitialized stack
slot, or another word value instantiated with a type argument.
Small valuesv serve as the operands of some instructions; they
are either registersr, word valuesw, or instantiated small values.
Heap valuesh are either tuples or typed code sequences; they are
the building blocks of the heapH. Note that a value does not carry a
security label. This is consistent with the philosophy that a value is
never intrinsically sensitive—it is sensitive only if it comes from a
sensitive location [29], which is documented in the corresponding
types (Ψ andΓ). Finally, a register fileR stores the contents of
all registers and the stack, where the stack is a (possibly empty)
sequence of word values.

Code constructs Code constructs are given in the bottom portion
of Figure 6. We retain a minimal set of instructions from TAL and
STAL, and introduce two new instructions (raise κ andlower l)
for manipulating the security context as discussed in Section 3.
A program is the usual triple tagged with a security context. The
security context facilitates the formal soundness proof, but does not
affect the computation.

In the operational semantics (Figure 7), there are only two cases
that modify the security context:raise κ′ updates the security
context toκ′, andlower w picks up a new security context from
the interface of the target codew. In all other cases, the security
context remains the same, and the semantics is standard. It is easy
to see that this operational semantics mimics the behavior of a
real machine, and does not prohibit bad flows. One can obtain
a conventional machine by removing the security contexts and
raise κ instructions, and replacinglower w with jmp w.

4.2 Typing Rules

The static semantics consists of judgment forms summarized in
Figure 8. A security context appears in the judgment of a valid in-
struction sequence. Heap and register file types are made explicit in
the judgment of a valid program for facilitating the noninterference
theorem. All other judgment forms closely resemble those of TAL
and STAL.



(H,R, I)κ 7−→ P where
if I = thenP =

add rd, rs, v; I
′ (H,R{rd 7→ (i+ i′)}, I ′)κ whereR(rs) = i andR̂(v) = i′

ld rd, rs(i); I
′ (H,R{rd 7→ wi}, I ′)κ whereR(rs) = l andH(l) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

mov rd, v; I
′ (H,R{rd 7→ R̂(v)}, I ′)κ

bnz r, v; I ′ (H,R, I ′)κ whenR(r) = 0

bnz r, v; I ′ (H,R, I ′′[~ψ/∆])κ whenR(r) = i wherei 6= 0 andR̂(v) = l[~ψ] andH(l) = code[∆]〈κ′〉Γ.I ′′
st rd(i), rs; I

′ (H{l 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉}, R, I ′)κ

whereR(rd) = l andH(l) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n
salloc i; I ′ (H,R{sp 7→ ns :: . . . ::ns| {z }

i

::R(sp)}, I ′)κ

sfree i; I ′ (H,R{sp 7→ S}, I ′)κ whereR(sp) = w1 :: . . . ::wi ::S
sld rd, sp(i); I

′ (H,R{rd 7→ wi}, I ′)κ whereR(sp) = w0 :: . . . ::wi ::S andi ≥ 0
sst sp(i), rs; I

′ (H,R{sp 7→ w0 :: . . . ::wi−1 ::R(rs) ::S}, I ′)κ whereR(sp) = w0 :: . . . ::wi ::S andi ≥ 0
raise κ′; I ′ (H,R, I ′)κ′

lower w (H,R, I ′[~ψ/∆])κ′ wherew = l[~ψ] andH(l) = code[∆]〈κ′〉Γ.I ′

jmp v (H,R, I ′[~ψ/∆])κ whereR̂(v) = l[~ψ] andH(l) = code[∆]〈κ′〉Γ.I ′

whereR̂(v) =

8<
:

R(r) whenv = r
w whenv = w

R̂(v′)[ψ] whenv = v′[ψ]

Figure 7. Operational semantics of TALC

The typing rules are given in Figures 9 and 10. A type construct
is valid (top six judgment forms in Figure 8) if all free type vari-
ables are documented in the type environment. Heap values and
integers may have any security label. The types of heap labels and
registers are as described in the heap type and the register file type
respectively. All other rules for non-instructions are straightforward
extensions of those in TAL and STAL.

We useSL(κ) to refer to the security label component ofκ.
SL(•) is defined to be⊥. The typing rules foradd, ld andmov
instructions infer the security labels for the destination registers;
they take into account the security labels of the source and target
operands and the current security context.

The rule forbnz first checks that the guard registerr is an
integer and the target valuev is a code label. It then checks that
the current security context is high enough to cover the security
levels of the guard (preventing flows through program structures;
Section 3.2) and the target code (preventing flows through code
pointers; Section 3.4). Lastly, the checks on the register file and the
remainder instruction sequence make sure that both branches are
secure to execute.

The rule forst concerns four security labels. The label of the
target cell must be higher than or equal to those of the context
(Section 3.2), the containing tuple (Section 3.3), and the source
value (Section 3.1).

The rules for the stack instructions follow similar ideas. In
essence, the stack can be viewed as an infinite number of registers.
Instructionsalloc or sfree add new slots to or remove existing
slots from the slot, so the rules check the remainder instruction
sequence under an updated stack type. The rule for instructionsld
or sst can be understood following that of themov instruction.

The rule for raise checks that the new security context is
higher than the current one. Moreover, it looks at the postdominator
w′ of the new context, and makes sure that the security context at
w′ matches the current one. The remainder instruction sequence is
checked under the new context.

Since the rule forraise already checked the validity of the
ending label of a secured region, the task for ending the region is
relatively simple. The rule forlower checks that its operand label
matches that dictated by the security context. This guarantees that

a secured region be enclosed within araise-lower pair. The rule
also makes sure that the code atw is safe to execute, which involves
checking the security labels (Section 3.4) and the register file types.

The rule forjmp checks that the target code is safe to execute.
Similar checks also appeared in the rule forbnz. In these two rules,
the security context of the target code is always the same as the
current one. This is because context changes are separated from
conventional instructions in our system. For example, one may
enclose high target code withinraise andlower before calling
it in a low context.

Finally, halting is valid only if the security context is empty, and
the value inr1 has the expected typeσ.

Interested readers are referred to Appendix B for a simple ex-
ample that demonstrates the use of security labels and contexts.

4.3 Soundness

TALC enjoys conventional type safety (memory and control-flow
safety), which can be established following the preservation and
progress lemmas. The proofs of these lemmas are similar to those
of TAL and STAL and omitted.

Lemma 1 (Preservation) If Ψ; Γ ` P andP 7−→ P ′, then there
existsΓ′ such thatΨ; Γ′ ` P ′.
Lemma 2 (Progress)If Ψ;Γ ` P then either:

(1) there existsP ′ such thatP 7−→ P ′, or
(2)P is of the form(H,R{r1 7→ w}, halt [σ])•

where` H : Ψ andΨ; ◦ ` w : σ.

Before presenting the noninterference theorem, we define the
equivalence of two programs with respect to a security levelθ.

Definition 1 (Heap Equivalence)Ψ ` H1 ≈θ H2 ⇐⇒ for
everyl ∈ dom(Ψ), if Ψ(l) = τθ′ andθ′ ⊆ θ then
H1(l) = H2(l).

Definition 2 (Stack Equivalence)Σ ` S1 ≈θ S2 ⇐⇒ for every
slot i ∈ dom(Σ), if Σ(i) = τθ′ andθ′ ⊆ θ thenS1(i) = S2(i).

Definition 3 (Register File Equivalence)Γ ` R1 ≈θ R2 ⇐⇒
(1) Γ(sp) ` R1(sp) ≈θ R2(sp), and (2) for everyr ∈ dom(Γ), if
Γ(r) = τθ′ andθ′ ⊆ θ, thenR1(r) = R2(r).



∆ ` • freevar(w) ⊆ ∆
∆ ` θ . w ∆ ` int

∆ ` σi

∆ ` 〈σ1, . . . , σn〉
∆ ` κ ∆ ` Γ
∆ ` ∀[∆].〈κ〉Γ

∆ ` τ
∆ ` τθ

∆ ` ns

ρ ∈ ∆
∆ ` ρ ∆ ` nil ∆ ` σ ∆ ` Σ

∆ ` σ ::Σ

◦ ` σi

`{l1 :σ1 . . . ln :σn}
∆ ` σi ∆ ` Σ

∆ `{r1 :σ1 . . . rn :σn, sp :Σ}

∆ ` σi ∆ ` Σ m ≤ n
∆ `{r1 :σ1 . . . rm :σm, sp :Σ}⊆{r1 :σ1 . . . rn :σn, sp :Σ}

` Ψ Ψ = {l1 : σ1, . . . ln : σn} Ψ ` hi : σi

` {l1 7→ h1, . . . , ln 7→ hn} : Ψ

Γ = {r1 : σ1, . . . rn : σn, sp : Σ}
Ψ ` wi : σi Ψ ` S : Σ

Ψ ` {r1 7→ w1, . . . , rn 7→ wn, sp 7→ S} : Γ

Ψ ` wi : σi

Ψ ` 〈w1, . . . , wn〉 : 〈σ1, . . . , σn〉θ
∆ ` κ ∆ ` Γ Ψ;∆; Γ;κ ` I
Ψ ` code[∆]〈κ〉Γ.I : (∀[∆].〈κ〉Γ)θ

Ψ;∆ ` i : intθ Ψ;∆ ` ns : ns
Ψ(l) = σ

Ψ;∆ ` l : σ

∆ ` Σ Ψ;∆ ` w : ∀[ρ∆′].〈κ〉Γ
Ψ;∆ ` w[Σ] : ∀[∆′].〈κ[Σ/ρ]〉Γ[Σ/ρ]

∆ ` Σ Ψ;∆ ` w : ∀[α∆′].〈κ〉Γ
Ψ;∆ ` w[w′] : ∀[∆′].〈κ[w′/α]〉Γ[w′/α]

Γ(r) = σ
Ψ;∆; Γ ` r : σ

Ψ;∆ ` w : σ
Ψ;∆; Γ ` w : σ

∆ ` Σ Ψ;∆; Γ ` v : ∀[ρ∆′].〈κ〉Γ′
Ψ;∆; Γ ` v[Σ] : ∀[∆′].〈κ[Σ/ρ]〉Γ′[Σ/ρ]

∆ ` Σ Ψ;∆; Γ ` v : ∀[α∆′].〈κ〉Γ′
Ψ;∆; Γ ` v[w] : ∀[∆′].〈κ[w/α]〉Γ′[w/α]

◦ ` κ ` H : Ψ Ψ ` R : Γ Ψ; ◦; Γ;κ ` I
Ψ;Γ ` (H,R, I)κ

Figure 9. TALC typing rules (non-instructions)

Definition 4 (Program Equivalence) Ψ;Γ ` P1 ≈θ P2 ⇐⇒
P1 = (H1, R1, I1)κ1 , P2 = (H2, R2, I2)κ2 , Ψ ` H1 ≈θ H2,
Γ ` R1 ≈θ R2, and either:

(1) κ1=κ2, SL(κ1) ⊆ θ, andI1 = I2, or
(2) SL(κ1)⊆/ θ, SL(κ2)⊆/ θ.

It is easy to see that the above relations are all reflexive, sym-
metrical, and transitive. Our noninterference theorem relates the ex-
ecutions of two equivalent programs that both start in a low security
context (relative to the security level of concern). If both executions
terminate, then the result programs must also be equivalent.

The idea of the proof is intuitive. Given a security level of
concern, the executions can be phased into “low steps” and “high
steps.” It is easy to relate the two executions under a low step,
because they involve the same instructions. Under a high step, the
two executions are no longer in lock step. Recall thatraise and

SL(κ) = θ Γ(rs) = intθ1 Ψ;∆; Γ ` v : intθ2

Ψ;∆;Γ{rd : intθ∪θ1∪θ2};κ ` I
Ψ;∆; Γ;κ ` add rd, rs, v; I

SL(κ) = θ Γ(rs) = 〈σ1, . . . , σn〉θ1
σi = τθ2

Ψ;∆; Γ{rd : τθ∪θ1∪θ2};κ ` I
Ψ;∆; Γ;κ ` ld rd, rs(i); I

SL(κ) = θ Ψ;Γ ` v : τθ′ Ψ;∆; Γ{rd : τθ∪θ′};κ ` I
Ψ;∆; Γ;κ ` mov rd, v; I

SL(κ) = θ Γ(r) = intθ1 Ψ;∆; Γ ` v : (∀[◦].〈κ〉Γ′)θ2
θ1 ∪ θ2 ⊆ θ ∆ ` Γ′ ⊆ Γ Ψ;∆; Γ;κ ` I

Ψ;∆; Γ;κ ` bnz r, v; I

SL(κ) = θ Γ(rd) = 〈σ1, . . . , σn〉θ1
σi = τθ′

Γ(rs) = τθ2 θ ∪ θ1 ∪ θ2 ⊆ θ′ Ψ;∆; Γ;κ ` I
Ψ;∆; Γ;κ ` st rd(i), rs; I

Γ(sp) = Σ Ψ;∆; Γ{sp :

iz }| {
ns :: . . . ::ns ::Σ};κ ` I

Ψ;∆;Γ;κ ` salloc i; I

Γ(sp) = σ1 :: . . . ::σi ::Σ Ψ;∆; Γ{sp : Σ};κ ` I
Ψ;∆; Γ;κ ` sfree i; I

SL(κ) = θ Γ(sp) = σ0 :: . . . ::σi ::Σ σi = τθ′

Ψ;∆; Γ{rd : τθ∪θ′};κ ` I
Ψ;∆; Γ;κ ` sld rd, sp(i); I

SL(κ) = θ Γ(sp) = σ0 :: . . . ::σi ::Σ Γ(rs) = τθ′

Ψ;∆; Γ{sp : σ0 :: . . . ::σi−1 ::τθ∪θ′ ::Σ};κ ` I
Ψ;∆;Γ;κ ` sst sp(i), rs; I

κ = θ . w κ′ = θ′ . w′ θ ⊆ θ′
Ψ;∆ ` w′ : (∀[◦].〈κ〉Γ′)θ1

Ψ;∆; Γ;κ′ ` I
Ψ;∆; Γ;κ ` raise κ′; I

κ = θ . w Ψ;∆ ` w : (∀[◦].〈κ′〉Γ′)θ1
θ1 ⊆ SL(κ′) ∆ ` Γ′ ⊆ Γ

Ψ;∆; Γ;κ ` lower w

SL(κ) = θ Ψ;∆; Γ ` v : (∀[◦].〈κ〉Γ′)θ1
θ1 ⊆ θ ∆ ` Γ′ ⊆ Γ

Ψ;∆; Γ;κ ` jmp v

κ = • ∆ ` σ Γ(r1) = σ
Ψ;∆; Γ;κ ` halt [σ]

Figure 10. Typing rules of TALC instructions

lower mark the beginning and the end of a secured region. We
relate the program states before theraise and after thelower,
circumventing directly relating two executions under high steps.

We give the formal details in three lemmas and a noninterfer-
ence theorem. Lemma 3 indicates that a security context in a high
step can be changed only withraise or lower. Lemma 4 says that
a terminating program must reduce to a step that discharges the cur-
rent security context with alower. Lemma 5 articulates the lock
step relation between two equivalent programs in a low step. Theo-
rem 1 of noninterference then follows. In the following,7−→∗ rep-
resents the reflexive and transitive closure of7−→. Σ �θ Σ′ means
thatΣ(i) = Σ′(i) for everyi such thatΣ′(i) = τθ′ andθ′ ⊆ θ.
Γ �θ Γ′ means thatΓ(sp) �θ Γ′(sp) andΓ(r) = Γ′(r) for every
r such thatΓ′(r) = τθ′ andθ′ ⊆ θ. We useQ in addition toP to
denote programs when comparing two executions. The proofs are
given in Appendix A.



Lemma 3 (High Step) If P = (H,R, I)κ, SL(κ)⊆/ θ, Ψ;Γ ` P ,
then either: (1) there existsΓ1 andP1 = (H1, R1, I1)κ such that
P 7−→ P1, Ψ;Γ1 ` P1, Γ �θ Γ1, andΨ;Γ1 ` P ≈θ P1, or (2)I
is of the form(raise κ′; I ′) or (lower w).

Lemma 4 (Context Discharge)If P = (H,R, I)θ.w, θ⊆/ θ′,
Ψ;Γ ` P , P 7−→∗ (H0, R0, halt [σ])•, then there existsΓ′ and
P ′ = (H ′, R′, lower w)θ.w, such thatΨ;Γ′ ` P ′, P 7−→∗ P ′,
Γ �θ′ Γ′, andΨ;Γ′ ` P ≈θ′ P ′.

Lemma 5 (Low Step) If P = (H,R, I)κ, SL(κ) ⊆ θ, Ψ;Γ ` P ,
Ψ;Γ ` Q, Ψ;Γ ` P ≈θ Q, P 7−→ P1,Q 7−→ Q1, then existsΓ1

such thatΨ;Γ1 ` P1, Ψ;Γ1 ` Q1 andΨ;Γ1 ` P1 ≈θ Q1.

Theorem 1 (Noninterference)If P = (H,R, I)κ, SL(κ) ⊆ θ,
Ψ;Γ ` P , Ψ;Γ ` Q, Ψ;Γ ` P ≈θ Q,
P 7−→∗ (Hp, Rp, halt [σp])•, and
Q 7−→∗ (Hq, Rq, halt [σq])•, then existsΓ′ such that
Ψ;Γ′ ` (Hp, Rp, halt [σp])• ≈θ (Hq, Rq, halt [σq])•.

5. Certifying Compilation
Certifying compilation for a realistic language typically involves a
complex sequence of transformations, including CPS and closure
conversion, heap allocation, and code generation [18, 15]. In this
paper, we choose the simple security-type system of Figure 1 as our
source language. This allows a concise presentation, yet suffices
in demonstrating a main contribution: the separation of security-
context operations (raise andlower) from conventional instruc-
tions and mechanisms (e.g.,stack convention for procedure calls).

The low-high security hierarchy of Figure 1 defines a simple
lattice consisting of two elements:⊥ and>. We use|t| to denote
the translation of source typet in TALC : |low| ≡ int⊥ and
|high| ≡ int>. We also translate the procedure types from the
source language into TALC as follows:

|〈pc〉(t1, . . . , tn)→void| = (∀[∆].〈κ〉 {sp : Σ})⊥
where(∆, κ) =

�
(ρ◦, •) if pc = low
(αρ◦,> . α) if pc = high

andΣ = (∀[∆].〈κ〉 {sp : ρ})⊥ ::〈|t1|〉⊥ :: . . . ::〈|tn|〉⊥ ::ρ

This procedure type translation assumes a calling convention where
the caller pushes a return pointer and the location of the arguments
(implementing the call-by-reference semantics of the source lan-
guage) onto the stack, and the callee deallocates the current stack
frame upon return. The stack typeΣ refers to a variableρ because
the procedure may be called under different stacks, as long as the
current stack frame is as expected. The security contextκ is empty
if pc is low, or > . α if pc is high. Postdominator variableα is
used because the procedure may be called in security contexts with
different postdominators. The type environment∆ simply collects
all the needed type variables.

We assume that the program translation starts in a heapH0 and
a heap typeΨ0 which satisfy` H0 : Ψ0 and contain entries for
all the variables and procedures of the source program. For any
source variablev that Φ(v) = t, there exists a locationlv in the
heap such thatΨ(lv) = 〈|t|〉⊥. For any source proceduref that
Φ(f) = 〈pc〉(t1, . . . , tn)→ void, there exists a locationlf in the
heap such thatΨ(lf) = |〈pc〉(t1, . . . , tn)→void|. We useΦ ∼ Ψ
to refer to this correspondence.

The above heapH0 can be constructed with dummy slots for the
procedures—the code in there simply jumps to itself. This suffices
for typing the initial heap, thus facilitating the type-preservation
proof. It creates locations for all source procedures and allows the
translation of the actual code to refer to them.

[TREconst] |i| = mov r, i || r

[TREvar] |v| = mov r, lv; ld r
′, r(0) || r′

[TREarg] |xi| = sld r, sp(i); ld r′, r(0) || r′

[TREadd]
|E| = ~ι || r |E′| = ~ι′ || r′ ~ι′ does not user

|E + E′| = ~ι; ~ι′; add r′′, r, r′ || r′′

Figure 11. Expression translation

The translation details are given in Figures 11, 12 and 13, based
on the structure of the typing derivation of the source program.
Which translation rule to apply is determined by the last typing rule
used to check the source construct (program, procedure, or com-
mand). We useTD to denote (possibly multiple) typing derivations.

We define expression translation of the form|E| = ~ι || r in
Figure 11. The instruction vector~ι computes the value ofE and
the result is put in the registerr. For a global variable, the value
is loaded from the heap using its corresponding heap label. For a
procedure argument, the location of the actual entity is loaded from
the stack, and the value is then loaded from the heap.

In Figure 12, when translating a program (Rule [TRP1]), we
translate all the procedure declarations, add halting code as the
ending point of the program, and proceed to translate the main
command. The result triple contains the updated heap type and
heap, and a starting labell which leads to the starting point of
the program. Procedure translation (Rule [TRF1]) takes care of
part of the calling convention. It adds epilogue code that loads the
return pointer, deallocates the current stack frame and transfers the
control to the return pointer. It then resorts to command translation
to translate the procedure body, providing the label to the epilogue
code as the ending point of the procedure body.

In Figure 13, we define command translation of the form

���� TD

[pc] ` C

����
2
4 Ψ
H
lstart; lend;∆;κ; Σ

3
5 =

�
Ψ′

H ′

�
.

This command translation takes 7 arguments: a code heap type
(Ψ), a code heap (H), starting and ending labels (lstart andlend)
for the computation ofC, a type environment (∆), a security con-
text (κ), and a stack type (Σ). It generates the extended code heap
type (Ψ′) and code heap (H ′). Unsurprisingly, this translation ap-
pears complex, because it provides a formal model of a certifying
compiler. Nonetheless, it is easy to follow if we remember some
invariants maintained by the translation:

• H is well-typed underΨ and contains entries for all source
variables and procedures;

• Ψ andH already contain the continuation code labeledlend;
• The new code labeledlstart will be put intoΨ′ andH ′;
• The security contextκ must matchpc;
• The stack typeΣ contains entries for all procedure arguments,

if the command being compiled is in the body of a procedure;
• The environment∆ contains all free type variables inκ andΣ.

Most of the command translation rules simply put∆, κ and
Σ in place for the generated code types, and further propagate
them to the translation of sub-components. The only rule that non-
trivially manipulates the security context is Rule [TRC4]—when
a subsumption rule is used for typing a source command, the
translation generates code that is enclosed in araise-lower pair.
The translation of the sub-component is carried out in an updated
heap with a new ending labell1. The code atl1 restores the security
context and transfers the control to the given ending labell′. After



[TRP1]

���� TDi

Φ ` Fi

����
�

Ψi−1

Hi−1

�
=

�
Ψi

Hi

�
∀i ∈ {1 . . . n} lhalt is a fresh label

���� TD

Φ; [low] ` C

����
2
4 Ψn{lhalt : (∀[◦].〈•〉 {sp : nil})⊥}
Hn{lhalt 7→ code[◦]〈•〉{sp : nil}.mov r1, 1; halt [int⊥]}
l; lhalt; ◦; •;nil

3
5 =

�
Ψ
H

�
������

TDi

Φ ` Fi
∀i ∈ {1 . . . n} TD

Φ; [low] ` C
. . .

Φ ` {F1; . . . ; Fn; C}
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�
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Ψ
H; l
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[TRF1]

���� TD

x1 :t1, . . . , xn :tn, Φ; [pc] ` C

����
2
64

Ψ{l : (∀[∆].〈κ〉 {sp : Σ})⊥}
H{l 7→ code[∆]〈κ〉{sp : Σ}.

sld r, sp(0); sfree (n+1); jmp r}
lf; l;∆;κ; Σ

3
75 =

�
Ψ′

H ′

�

where(∆, κ) =

�
(ρ◦, •) if pc = low
(αρ◦,> . α) if pc = high

l is a fresh label

Σ = (∀[∆].〈κ〉 {sp : ρ})⊥ ::〈|t1|〉⊥ :: . . . ::〈|tn|〉⊥ ::ρ������
TD

x1 :t1, . . . , xn :tn, Φ; [pc] ` C
Φ ` f〈pc〉(x1 :t1, . . . , xn :tn){C}

������
�

Ψ
H

�
=

�
Ψ′

H ′

�

Figure 12. Program and procedure declaration translation

the translation of the sub-component, code is added at the starting
labell to raise the security context to the expected level.

Procedure call translation is given as Rule [TRC7]. It creates
“prologue” code that allocates a stack frame, pushes the return
pointer and the arguments onto the stack, and jumps to the proce-
dure label. Note that the corresponding epilogue code is generated
by the procedure declaration translation in Rule [TRF1].

The translation of while-loops is also interesting (Rule [TRC6]).
When translating the loop body, we need to prepare the continua-
tion block, which happens to be the code for the loop test. We make
use of a dummy block labeledl to serve as the continuation block
when translating the bodyC. This block is introduced for maintain-
ing the above invariants. It facilitates the type-preservation proof of
the translation. After the translation of the loop body, this dummy
block is replaced with the actual code that implements the loop test,
as shown on the bottom right side of Rule [TRC6].

Lemma 6 (Expression Translation) If Φ ∼ Ψ, Φ ` E : t,
|E| = ~ι || r, andΨ;∆; {r : |t|, sp : Σ};κ ` I, then
Ψ;∆; {sp : Σ};κ ` ~ι; I.

Lemma 7 (Command Translation) If Φ ∼ Ψ, Φ; [pc] ` C,���� TD

Φ; [pc] ` C

����
2
4 Ψ
H
lstart; lend;∆;κ; Σ

3
5 =

�
Ψ′

H ′

�
,

Ψ(lend) = (∀[∆].〈κ〉 {sp : Σ})⊥, SL(κ) = |pc|, ` H : Ψ, then
Φ ∼ Ψ′, ` H ′ : Ψ′ andΨ′;∆ ` lstart : (∀[∆].〈κ〉 {sp : Σ})⊥.

The proofs for the above two lemmas are straightforward by
structural induction on the derivation of the translation. Type
preservation of procedure translation can be derived from Lemma 7
based on Rule [TRF1]. Type preservation of program translation
then follows based on Rule [TRP1].

Lemma 8 (Procedure Translation) If Φ ∼ Ψ, Φ ` F, ` H : Ψ,���� TD

Φ ` F

����
�

Ψ
H

�
=

�
Ψ′

H ′

�
, thenΦ ∼ Ψ′ and` H ′ : Ψ′.

Theorem 2 (Program Translation) If Φ ∼ Ψ0, Φ ` P,

` H0 : Ψ0,

���� TD

Φ ` P

����
�

Ψ0

H0

�
=

�
Ψ
H; l

�
, thenΦ ∼ Ψ and

Ψ; {sp : nil} ` (H, {sp : nil}, jmp l)•.

6. Discussions
Linear Continuations Zdancewic and Myers [33] introduced a
notion of ordered linear continuations to facilitate the information-
flow analysis at a low level (we use ZM to refer to their system). An
important requirement of such analysis is that one needs to allow
a high-security conditional to be surrounded by low-security com-
putation. In ZM, before the conditional statement, a linear contin-
uation is created to capture the computation after the conditional.
Such a linear continuation must be called exactly once at the end of
either branch of the conditional. Furthermore, the linear continua-
tion records the security context in which it is created, allowing the
security context to be reset properly when the branches meet.

As a higher-order analog to postdominators in a control-flow
graph, ordered linear continuations enforce a stack discipline that
allows security contexts to be reset at the join points of program
branches. The static semantics ensures that the linear continuations
are properly nested, and at any time only the top continuation on the
(virtual) continuation stack is available. The linearity is enforced
because the continuation is essentially popped off the stack when
used. In particular, every value in ZM is tagged with a security
label. The operational semantics keeps track of the security context
during the execution, and ensures that security labels of the values
are propagated correctly.

It may help to view our solution as an adaptation of linear con-
tinuations for the RISC architecture (we emphasize that there is not
a loss of expressiveness; interested readers are referred to Appen-
dix C for some details). A postdominator of program branches is
essentially expressed as a static code label. The security operations
raise andlower correspond to the creation and elimination of lin-
ear continuations. At any program point, our static semantics keeps
track of only the top element of the (virtual) continuation stack.
The typing rule forraise ensures that the security context at the
postdominator matches the current one, thus enforcing the stack
discipline.



[TRC1]
|E| = ~ι || r���� Φ(V) = high

Φ; [pc] ` V := E

����
2
4 Ψ
H
l; l′;∆;κ; Σ

3
5 =

�
Ψ{l : (∀[∆].〈κ〉 {sp : Σ})⊥}
H{l 7→ code[∆]〈κ〉{sp : Σ}.~ι; mov r′, lv; st r′(0), r; jmp l′[∆]}

�

[TRC2]
|E| = ~ι || r���� Φ(V) = low Φ ` E : low

Φ; [low] ` V := E

����
2
4 Ψ
H
l; l′;∆; •; Σ

3
5 =

�
Ψ{l : (∀[∆].〈•〉 {sp : Σ})⊥}
H{l 7→ code[∆]〈•〉{sp : Σ}.~ι; mov r′, ll; st r′(0), r; jmp l′[∆]}

�

[TRC3]

|E| = ~ι || r l1, l2 are fresh labels���� TD1

Φ; [pc] ` C1

����
2
4 Ψ
H
l1; l

′;∆;κ; Σ

3
5 =

�
Ψ1

H1

� ���� TD2

Φ; [pc] ` C2

����
2
4 Ψ1

H1

l2; l
′;∆;κ; Σ

3
5 =

�
Ψ2

H2

�
������
Φ ` E : pc

TD1

Φ; [pc] ` C1

TD2

Φ; [pc] ` C2

Φ; [pc] ` if E then C1 else C2

������
2
4 Ψ
H
l; l′;∆;κ; Σ

3
5 =

�
Ψ2{l : (∀[∆].〈κ〉 {sp : Σ})⊥}
H2{l 7→ code[∆]〈κ〉{sp : Σ}.~ι; bnz r, l1[∆]; jmp l2[∆]}

�

[TRC4]

���� TD

Φ; [high] ` C

����
2
4 Ψ{l1 : (∀[∆].〈> . l′[∆]〉 {sp : Σ})⊥}
H{l1 7→ code[∆]〈> . l′[∆]〉{sp : Σ}.lower l′[∆]}
l0; l1;∆;> . l′[∆]; Σ

3
5 =

�
Ψ′

H ′

�
l0, l1 are fresh labels

������
TD

Φ; [high] ` C
Φ; [low] ` C

������
2
4 Ψ
H
l; l′;∆; •; Σ

3
5 =

�
Ψ′{l : (∀[∆].〈•〉 {sp : Σ})⊥}
H ′{l 7→ code[∆]〈•〉{sp : Σ}.raise > . l′[∆]; jmp l0[∆]}

�

[TRC5]

l1 is a fresh label���� TD2

Φ; [pc] ` C2

����
2
4 Ψ
H
l1; l

′;∆;κ; Σ

3
5 =

�
Ψ1

H1

� ���� TD1

Φ; [pc] ` C1

����
2
4 Ψ1

H1

l; l1;∆;κ; Σ

3
5 =

�
Ψ2

H2

�
������

TD1

Φ; [pc] ` C1

TD2

Φ; [pc] ` C2

Φ; [pc] ` C1; C2

������
2
4 Ψ
H
l; l′;∆;κ; Σ

3
5 =

�
Ψ2

H2

�

[TRC6]

|E| = ~ι || r
���� TD

Φ; [pc] ` C

����
2
4 Ψ{l : (∀[∆].〈κ〉 {sp : Σ})⊥}
H{l 7→ code[∆]〈κ〉{sp : Σ}.jmp l[∆]}
l1; l;∆;κ; Σ

3
5 =

�
Ψ′

H ′

�
������
Φ ` E : pc

TD

Φ; [pc] ` C
Φ; [pc] ` while E do C

������
2
4 Ψ
H
l; l′;∆;κ; Σ

3
5 =

�
Ψ′{l : (∀[∆].〈κ〉 {sp : Σ})⊥}
H ′{l 7→ code[∆]〈κ〉{sp : Σ}.~ι; bnz r, l1[∆]; jmp l′[∆]}

�

[TRC7]

|Vi| = ~ιi || ri where~ιi does not userj if j < i ∀i ∈ {1 . . . n}
Ψ′ = Ψ{l : (∀[∆].〈κ〉 {sp : Σ})⊥}

H ′ = Ψ{l 7→ code[∆]〈κ〉{sp : Σ}.~ι1; . . . ~ιn; salloc (n+ 1); sst sp(0), l′[~ψ];

sst sp(1), r1; . . . sst sp(n), rn; jmp lf[~ψ]}
where~ψ =

�
Σ if κ = •
wΣ if κ = > . w������

Φ(f) = 〈pc〉(t1, . . . , tn)→void
TDi

Φ ` Vi : ti
∀i ∈ {1 . . . n}

Φ; [pc] ` f(V1, . . . , Vn)

������
2
4 Ψ
H
l; l′;∆;κ; Σ

3
5 =

�
Ψ′

H ′

�

Figure 13. Command translation



int double(x:int) { x=x * 2; } ...
if h<10 then double(h);
double(l); ...

Figure 14. Security-polymorphic function

We wish to point out, nonetheless, that such an adaptation yields
a simple, practical and well-grounded solution to the identified
problem of information-flow analysis for assembly code. In partic-
ular, it bridges the gap between the functional abstraction of linear
continuations and the raw assembly code running on actual ma-
chines. In comparison with ZM, our system TALC models the use
of registers and assembly instructions, and hence is closer to the
actual RISC architecture. We do not attach security labels to val-
ues; this makes it trivial to see that security annotations do not
affect computation. In fact, the enforcement of noninterference in
TALC is cleanly separated from normal program execution.1 It is
also obvious that security operations in TALC are orthogonal from
conventional instructions (e.g.,branching and jumping) and mech-
anisms (e.g.,call stack), which allows our approach to be carried
further with other language extensions. Consequently, we consider
TALC as a good first step toward a scaled-up typed assembly lan-
guage for noninterference.

SIF SIF [16] is developed independently from TALC . These two
systems are similar in spirit—both use static types for information-
flow analysis. However, SIF is based on a minimal language where
relatively simple annotations, namely a stack of static code labels,
suffice. In a more realistic language, a single function (even if
monomorphic with respect to security levels) can be called at differ-
ent program points. The security contexts of these program points
may be different with respect to (1) the postdominator of the cur-
rent context (SIF tracks this with the top stack element), and (2) the
“enclosing contexts” (SIF tracks these with the stack tail). Since the
label stack of SIF is made up of static code labels, one cannot reuse
the same code at different program points with different contexts.

TALC only maintains the current security context at any pro-
gram point, and we show that it suffices for establishing noninter-
ference. With such a treatment, the code types are naturally poly-
morphic with respect to enclosing contexts. We also allow post-
dominators to be polymorphic. The certifying compilation scheme
further demonstrates that TALC is expressive enough for support-
ing the source language.

7. Extensions and Future Work
Orthogonal features For ease of understanding, TALC focuses
on a minimal set of language features. Nonetheless, polymorphic
and existential types, as seen in TAL, are orthogonal and can be
introduced with little difficulty. Furthermore, since TALC is com-
patible with TAL, it is also possible to accommodate other features
of the TAL family. For instance, alias types [26] may provide a
more accurate alias analysis, improving the current conservative
approach that considers every pointer as a potential alias. In the
following, we will also discuss the use of singleton types [32].

Security polymorphism TALC relies on a security contextθ . w
to identify the current security levelθ and its ending pointw. It is
monomorphic with respect to security, because the security level of
a code block is fixed. In practice, security-polymorphic code can
also be useful.

Figure 14 gives an example. The functiondouble can be
invoked with either low or high input. It is safe to invokedouble

1 The extra subscript of security context in a programP is only for facilitat-
ing the noninterference proof; it can be completely ignored for computation.

in a context if only the security level of the input matches that
of the context. In a security polymorphic TALC -like type system,
double can be given the type

(∀[θ, α].〈θ . α〉{r1 : intθ, r0 : (∀[].〈θ . α〉{r1 : intθ})⊥})⊥.

Herer1 is the argument register,r0 stores the return pointer, and
the meta-variableθ is reused as a variable.

It is straightforward to support this kind of polymorphism. In
fact, most of the required constructs are already present in TALC .
We omitted such polymorphism simply because it complicates the
presentation without providing additional insights. Nonetheless,
the expressiveness of such polymorphism is still limited. Since the
labelα is not known until instantiated, the code ofdouble has
no knowledge aboutα. Hence the security contextθ . α cannot be
discharged within the body ofdouble .

It is not obvious why one would wish to discharge the security
context within a polymorphic function. Indeed, it is always pos-
sible to wrap a function call inside a secured region by symmet-
ric raise andlower operations from the caller’s side. However,
the asymmetric discharging of security context may be desirable
for certifying optimization. For instance, in Figure 14,double is
called as the last statement of the body of a high conditional. In
this case, directly discharging the security context whendouble
returns would remove a superfluouslower from the caller’s side.
Such a discharging requireslower to operate on small values—
since the return label is not statically fixed, it must be passed in
through a register.

It may require singleton and intersection types to support such a
lower operation. For example, adouble function that discharges
its security context can have type�
∀[θ, α].〈θ . α〉

�
r1 : intθ,
r0 : sint(α)⊥ ∧ (∀[].〈•〉{r1 : intθ})⊥

��
⊥
.

At the end of the function,lower r0 discharges the security context
and transfers the control to the return code. For type checking, the
singleton integer typesint(α) matches the registerr0 with the
label in the security context, and the code type ensures that the
control flow to the return point is safe.

Full erasure With the powerful type constructs above, one can
achieve a full erasure for thelower operation. Instead of treating
lower as an instruction, one can treat it as a transformation on
small values. This is in spirit similar to thepack operation of
existential types in TAL. Such alower transformation bridges the
gap between the current security context and the security level of
the target label. The actual control flow transfer is then completed
with a conventional jump instruction (e.g.,jmp (lower r0)).

One can also achieve a full erasure forlower even without sin-
gleton types. The idea is to separate the jump instruction into direct
jump and indirect jump. This is also consistent with real machine
architectures. Thelower operation transforms word values (even-
tually, direct labels). Lowered labels, similar to packed values, may
serve as the operand of direct jump. Indirect jump, on the other
hand, takes normal small values. This is expressive enough for cer-
tifying compilation, yet may not be sufficient for certifying opti-
mization as discussed above.

Other future work It is a challenging task to study how the fea-
tures above yield a system expressive enough for certifying opti-
mization. In TALC , lower erases to a direct jump, hence consec-
utive lower operations result in superfluous jumps. Ideally, these
should be combined into a single jump whose operand is a nested
lowered value. Similarly, it is also desirable to combinelower with
an adjacent jump instruction. In practice, certifying optimization
are sometimes considered for conventional type safety [9].



A security-type preserving translation for a full-fledged source
language is another challenging task. The formal translation and
type-preservation theorem in this paper are based on a concise
source language for demonstrative purposes. Practical embodi-
ment requires much further work. Existing work on type-preserving
translation [18, 15] and high-level information-flow analysis [23]
may shed light on the support of more advanced language features.

8. Conclusion
We have presented a language TALC for enforcing data confiden-
tiality in assembly code. The main idea is to use type annotations to
restore high-level abstractions that are crucial to information-flow
analysis. In TALC , operations related to security are kept orthog-
onal from other language features. As a result, it is possible to ac-
commodate existing results on low-level verification, such as the
TAL family. We have also presented a translation from a high-level
security language with first-order procedures to TALC . A sound-
ness theorem shows that the translation preserves security types.
We consider this as a useful step toward a certifying compiler for
noninterference.
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A. Noninterference Proof of TALC

Lemma 3 (High Step) If P = (H,R, I)κ, SL(κ)⊆/ θ, Ψ;Γ ` P ,
then either: (1) there existsΓ1 andP1 = (H1, R1, I1)κ such that
P 7−→ P1, Ψ;Γ1 ` P1, Γ �θ Γ1, andΨ;Γ1 ` P ≈θ P1, or (2)I
is of the form(raise κ′; I ′) or (lower w).

Proof sketch:By case analysis on the first instruction ofI. I
cannot behalt, because the typing rule forhalt requires the
context to be•. If I is nothalt, raise or lower, by the
operational semantics and inversion on the typing rules, one can
getΓ1 andP1 for the next step. The typing rules prohibit writing
into a low heap cell, hence low heap cells remain the same after
the step. When a register or stack slot is updated,Γ1 gives it a type
whose security label takesSL(κ) into account, hence that register
or stack slot has a high type inΓ1. As a result,Γ �θ Γ1 and
Ψ;Γ1 ` P ≈θ P1. 2

Lemma 4 (Context Discharge)If P = (H,R, I)θ.w, θ⊆/ θ′,
Ψ;Γ ` P , P 7−→∗ (H0, R0, halt [σ])•, then there existsΓ′ and
P ′ = (H ′, R′, lower w)θ.w, such thatΨ;Γ′ ` P ′, P 7−→∗ P ′,
Γ �θ′ Γ′, andΨ;Γ′ ` P ≈θ′ P ′.

Proof sketch: By generalized induction on the number of steps of
the derivationP 7−→∗ (H0, R0, halt [σ])•.

The base case of zero step is not possible, because the security
contexts do not match. In the inductive case, suppose the execution
consists ofn steps and the proposition holds for any step number
less thann. There are two cases to consider, following Lemma 3.

In the case where the first instruction ofI is not raise or
lower, by Lemma 3, there existsΓ1 andP1 such thatP 7−→ P1,
Ψ;Γ1 ` P1, Γ �θ′ Γ1, Ψ;Γ1 ` P ≈θ′ P1, and the security
context ofP1 is the same as that ofP .P1 must be a step in between
P and (H0, R0, halt [σ])• because the operational semantics is
deterministic. Hence by induction hypothesis onP1, there existsΓ′

andP ′ such thatΨ;Γ′ ` P ′, P1 7−→∗ P ′, Γ1 �θ′ Γ′ andΨ;Γ′ `
P1 ≈θ′ P ′. Putting the above together,P 7−→∗ P ′, Γ �θ′ Γ′

because�θ′ is transitive by definition, andΨ;Γ′ ` P ≈θ′ P ′

by definition and the fact thatΓ1 �θ′ Γ′.
Case I = raise θ1 . w1; I1. By definition of the opera-

tional semantics,P 7−→ P1 whereP1 = (H,R, I1)θ1.w1 . By
inversion onΨ;Γ ` P and the typing rule ofraise, θ ⊆ θ1
and Ψ;Γ; θ1 . w1 ` I1. By definition of well-typed programs,
Ψ;Γ ` P1. By induction hypothesis onP1, there existsΓ2 and
P2 = (H2, R2, lower w1)θ1.w1 such thatΨ;Γ2 ` P2,P1 7−→∗ P2,
Γ �θ′ Γ2, Ψ;Γ2 ` P1 ≈θ′ P2. Ψ;Γ2 ` P ≈θ′ P2 then follows
because the heaps and register files inP andP1 are the same.

Further by the operational semantics,P2 7−→ P3 whereP3 =
(H2, R2, I3)κ and I3 is the instantiated code ofw1 whose se-
curity context isκ. By inversion on the well-typedness ofI
(i.e., raise θ1 . w1; I1), κ = θ . w. By induction hypothesis on
P3, there existsΓ′ and P ′ = (H ′, R′, lower w)θ.w such that
Ψ;Γ′ ` P ′, P3 7−→∗ P ′, Γ2 �θ′ Γ′, and Ψ;Γ′ ` P3 ≈θ′ P ′.
Putting the above together, the original proposition holds for case
I = raise θ1 . w1; I1.

CaseI = lower w1. By inversion on the typing rule oflower,
w = w1. LetP ′ = P , the proposition holds. 2

Lemma 5 (Low Step) If P = (H,R, I)κ, SL(κ) ⊆ θ, Ψ;Γ ` P ,
Ψ;Γ ` Q, Ψ;Γ ` P ≈θ Q, P 7−→ P1,Q 7−→ Q1, then existsΓ1

such thatΨ;Γ1 ` P1, Ψ;Γ1 ` Q1 andΨ;Γ1 ` P1 ≈θ Q1.

Proof sketch:By case analysis on the first instruction ofI. By
SL(κ) ⊆ θ and the definition of≈θ, P andQ contain the same
instruction sequence. The case of raising does not change the
state, hence trivially maintains the equivalence. All other cases

maintain that the security context is lower thanθ. Inspection on
the typing rules shows that low locations in the heap can only be
assigned low values. Once a register or stack slot is given a high
value, its type inΓ1 will change to high. In the case of branching,
the guard must be low, so bothP andQ branch to the same code.
Hence the two programs remain equivalent after one step.2

Theorem 1 (Noninterference)If P = (H,R, I)κ, SL(κ) ⊆ θ,
Ψ;Γ ` P , Ψ;Γ ` Q, Ψ;Γ ` P ≈θ Q,
P 7−→∗ (Hp, Rp, halt [σp])•, and
Q 7−→∗ (Hq, Rq, halt [σq])•, then existsΓ′ such that
Ψ;Γ′ ` (Hp, Rp, halt [σp])• ≈θ (Hq, Rq, halt [σq])•.

Proof sketch: By generalized induction on the number of steps
of the derivationP 7−→∗ (Hp, Rp, halt [σp])•. The base case of
zero step is trivial. The inductive case is done by case analysis on
the first instruction ofI.

Consider the case whereI = raise θ1 . w1; I1 and θ1⊆/ θ.
By definition of the operational semantics and the typing rules,
P 7−→ P1 where P1 = (H,R, I1)θ1.w1 and Ψ;Γ ` P1. By
Lemma 4, there existsΓ2 andP2 = (H2, R2, lower w1)θ1.w1

such thatΨ;Γ2 ` P2, P1 7−→∗ P2, Γ �θ Γ2, andΨ;Γ2 ` P1 ≈θ

P2. HenceΨ ` H ≈θ H2 andΓ2 ` R ≈θ R2.
By the operational semantics,P2 7−→ P3 wherew1 = l1[~ψ],

P3 = (H2, R2, I3[~ψ/∆])κ3 , andH(l1) = code[∆]〈κ3〉Γ3.I3. By
inversion on the derivation ofΨ;Γ2 ` P2, Γ3 ⊆ Γ2 andΨ;Γ3 ` P3.
It follows that Γ3 ` R ≈θ R2. By inversion on the derivation of
Ψ;Γ ` P where the instruction sequence ofP israise θ1 . w1; I1,
κ3 = κ.

By similarly reasoning,Q 7−→∗ Q3 whereQ3 = (H ′
2, R

′
2, I3)κ3 ,

Ψ ` H ≈θ H
′
2, Γ3 ` R ≈θ R

′
2 andΨ;Γ3 ` Q3. By transitivity of

the equivalence relations,Ψ ` H2 ≈θ H
′
2 and Γ3 ` R2 ≈θ R

′
2.

HenceΨ;Γ ` P3 ≈θ Q3. The case then follows by induction
hypothesis.

All other cases remain low after a step. By Lemma 5, the two
programs in the next step are equivalent and well-typed. The proof
then follows by induction hypothesis. 2

B. Example
Figure 15 gives a simple example to demonstrate the use of security
labels and contexts. The high-level pseudo-code program involves
a low variablea and two high variablesb andc. In a corresponding
TALC program, we use heap cells labeledla, lb andlc to represent
these variables. The TALC program starts from the code labeled
l0 in a low security context. After the initial setup, it raises the
security context to> . l3. The control is then transferred to the
code labeledl1, which contains a test on the high variableb and
directs the execution to two separate branches. In either branch of
the conditional, the high variablec is updated, and the security
context is restored withlower l3. The code atl3 is then free to
update the low variablea again.

A closer look at the code labeledl1 reveals several interest-
ing issues. When checking the first load instruction (ld r4, r2(0)),
the security level forr4 is inferred to be high (>). The following
branching instruction (bnz r4, l2) type-checks because the current
security context (> . l3) is high enough to cover the security level
of r4. The next store instruction (st r3(0), r0) is also valid, because
it is ok to update a high variable in a high context. In compari-
son, the store instruction would fail to type-check ifc was a low
variable. Finally, the high security context is ended with a lower
instruction (lower l3) that directs the control flow to the postdom-
inator of the conditional.



A pseudo-code program: a = 0;
if (b <> 0) then c = 1 else c = 0;
a = 1

A corresponding TALC program: (H, {sp : nil}, jmp l0)• whereH = {

la 7→ . . .

lb 7→ . . .

lc 7→ . . .

l0 7→ code[◦]〈•〉{sp : nil}.
mov r0, 0; % r0 ← 0
mov r1, la; % r1 ← la
mov r2, lb; % r2 ← lb
mov r3, lc; % r3 ← lc
st r1(0), r0; % la ← 0
raise > . l3; % raise security context
jmp l1

l1 7→ code[◦]〈> . l3〉{r0 : 〈int⊥〉⊥, r1 : 〈int⊥〉⊥, r2 : 〈int>〉⊥, r3 : 〈int>〉⊥, sp : nil}.
ld r4, r2(0);
bnz r4, l2; % go tol2 if content oflb is not zero
st r3(0), r0; % theelse branch:lc ← 0
lower l3 % restore security context and go tol3

l2 7→ code[◦]〈> . l3〉{r0 : 〈int⊥〉⊥, r1 : 〈int⊥〉⊥, r2 : 〈int>〉⊥, r3 : 〈int>〉⊥, sp : nil}.
mov r0, 1;
st r3(0), r0; % thethen branch:lc ← 1
lower l3 % restore security context and go tol3

l3 7→ code[◦]〈•〉{r1 : int⊥, sp : nil}.
mov r0, 1;
st r1(0), r0; % la ← 1
halt [int⊥]

}

Figure 15. TALC example

C. Translating Linear Continuations
It may appear that TALC is not as expressive as the language of
Zdancewic and Myers’ [33] (ZM), because the security context of
TALC uses static labels. Nonetheless, these static labels are only
used to refer to code (e.g., that of linear continuations in ZM)
whose locations can be statically determined. Indeed, their source
level counterparts are the ending points of conditional structures,
which are always statically known. Therefore, there is not a loss
of expressiveness. We demonstrate this by speculating a translation
from ZM to TALC .

In ZM, there are two expressions manipulating linear continu-
ations: creation and elimination. The creation of a linear continua-
tion essentially has the formletlin y = λ〈pc〉(x :σ).e in e′. A
corresponding elimination has the formlgoto y v.

The translation can be carried out following Morrisettet al.[18].
The step of CPS conversion is not needed because ZM is already
in CPS. During closure conversion, the abstractionλ〈pc〉(x : σ).e
(which corresponds to the code at a postdominator) will be assigned
a static code label. This code label is exactly the static postdomi-
nator needed for raising the security context in TALC . In a formal
translation, this label can be used to generate araise instruction
when a corresponding branching point is reached. The typing (in
particular, the security labels) of a ZM program is sufficient for
identifying the branching point.

The elimination of linear continuation (lgoto y v) is relatively
straightforward. Suppose the code ofy (the lambda abstraction)

declared usingletlin is assigned the heap labelly during closure
conversion, the elimination expressionlgoto y v can be translated
as alower ly preceded with appropriate code computing the argu-
mentv.

For better understanding the relationship between linear contin-
uations in ZM and security contexts in TALC , we further look into
an example of nestedletlin declarations:

letlin y1 = lv1 in letlin y2 = lv2 in e.

Once the secondletlin is declared, the first linear continuationy1
should be accessible only from insidelv2. Therefore, ZM requires
that e type checks undery2, and lv2 type checks undery1. This
essentially enforces a stack discipline.

TALC has a similar mechanism. Suppose the current secu-
rity context is θ1 . l1 and the current instruction sequence is
raise θ2 . l2; I. The type system of TALC checksI underθ2 . l2,
and checks that the code type atl2 respectsθ1 . l1. This enforces
a similar stack discipline as in ZM; note that only the top stack
element is apparent at any given time.

In summary, it is possible to conduct a formal translation from
ZM to TALC . Nonetheless, we believe that the simple security-
type system in Figure 1 of Section 2.2 is more accessible and better
facilitates understanding. We leave a formal translation from ZM to
TALC as future work.


