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Abstract

Language-based information-flow analysis is promising in pro-
tecting data confidentiality. Although much work has been carried

out in this area, relatively little has been done for assembly code.f tion flow 1231 d t add Il th blem f bl
Techniques at a source level do not generalize straightforwardly formation flow [23] does not address well the problem for assembly

to assembly code, because assembly code does not readily preser‘ﬁOde: The_challenge therg, as we will elabc_)rate later, Iargel_y lies in
certain abstraction about the program structure that is crucial to Wotrklng ‘;‘I"th.g.‘ﬁ Ia(;fk ofglgh-level att)nlstra%tlons and managing the
information-flow analysis. Nonetheless, low-level information- ©X'€Me Nexibility oiered by assembly code. .

flow analysis is desirable, because it yields a small trusted com- Nonetheless, it is desirable to.enforce noninterference directly
puting base. Furthermore, many (untrusted) applications are dis_atalow-level. On the one hand, high-level programs must be trans-

tributed in native code:; their verification should not be overlooked. 'atéd into low-level code before executed on a real machine; com-
We present a simple yet effective solution for this problem. Our pilation or optimization bugs may invalidate the security guarantee

observation is that the missing abstraction in assembly code can befStablished for the source programs. On the other hand, some ap-

restored using annotations. Following the philosophy of certifying plications_are distri_butecé(g.,nativ_e coc_ie for mobile computation)
compilation, these annotations are generated by a compiler, used®’ €ven directly writtend.g.,core libraries for embedded systems)
for static validation, and erased before execution. In particular, we ' @Sembly code; enforcement at a low-level is a must for them.
propose a type system for low-level information-flow analysis. Our . T NiS Paper presents some important steps of a project tackling
system is compatible with Typed Assembly Language, and models information flow at the assembly level. The contributions are:

key features including a call stack, memory tuples and first-class
code pointers. A noninterference theorem articulates that well-
typed programs respect confidentiality. We also present a security-
type preserving translation that targets our system, together with
its soundness theorem. This illustrates the application of certifying
compilation for noninterference.

and implementation. These techniques are promising, because they
directly inspect or instrument the program code, and hence have the
potential of learning all possible run-time behavior of the program.

Unfortunately, the vast amount of language-based research on in-

e We propose a Typed Assembly Language for Confidentiality
(TAL ¢) for information-flow analysis and present its proof of
noninterference. Our abstract machine is generic and close to
real architectures. To reuse existing results on low-level veri-
fication, our system is designed to be compatible with Typed
Assembly Language (TAL) [18]. It thus approaches a unified
framework for conventional type safety and security.

1. Introduction Our system models key features of an assembly language, in-

With the growing reliance on networked information systems, the
protection of confidential data becomes increasingly important.
The problem is especially subtle for a computing system which

cluding heap, call stack and register file, memory tuples (alias-
ing), and first-class code pointers (higher-order functions). Be-
cause assembly code is often arduous to work with, we present

both manipulates sensitive data and requires access to public infor- ~our formal result with a core language supporting the above
mation channels. Simple policies that restrict the access to either ~ features for ease of understanding, but also informally discuss
the sensitive data or the public channels (or a combination there- ~ €xtensions such as polymorphic and existential types.
from) often prove too restrictive. A more desirable policy isthatno e Although desirable to directly verify at an assembly level, it is
information about the sensitive data can be inferred from observing  more practical to develop programs in high-level languages. We
the public channels, even though a computing system is granted ac-  present a translation from a security-typed imperative source
cess to both. Such a regulation of the flow of information is often language with first-order procedures to TALThis illustrates
referred to asnformation flow and the policy that sensitive data the application of certifying compilation for noninterference.
should not affect public data is often calledninterference We also present a type-preservation theorem for our translation.

Whereas it is relatively easy to detect and prevent naive viola-
tions that directly give out sensitive data, it is much more difficult to This paper does not address covert channelg.,(termina-
prevent applications from sending out information that is sophisti- tion [28, 1] and timing [30, 2]) or abstract-violation attaclksq(,
catedly encoded. Conventional security mechanisms such as accessache [3]). Section 2 provides background on language-based ap-
control, firewalls, encryption and anti-virus fall short on enforcing proaches for information flow, places our work in the context of
the noninterference policy [23]. On the one hand, noninterference existing researches, and points out the extra difficulties for nonin-
posts seemingly conflicting requirements: it allows the access to terference at an assembly level. An informal overview of our ap-
sensitive information, but restricts the flow of it. On the other hand, proach is given in Section 3. Sections 4 and 5 present thecTAL
the violation of noninterference cannot be observed from monitor- system and a certifying compilation scheme, focusing on core fea-
ing a single execution of the program [25], yet such execution mon- tures that illustrate ideas pertinent to information flow. Section 6
itoring is the basis of many conventional mechanisms. helps better understand TALin comparison with previous work

In recent years, much effort has been put on enforcing noninter- on linear continuations. Orthogonal issues and practical extensions
ference using techniques based on programming language theoryare discussed in Section 7. Section 8 concludes.



2. Background (Typ)  t,pc ::=1low|high
2.1 Information Flow (Var) V o=v]x
The problem of information flow can be abstracted as a program (Env) $ u=o|V:t,&|f:(pc)(t1,...,tn)—void, 2
that operates on data of different security levelg,, lowandhigh. (Exp) E u=1i|V|E; +Es
Low (low security) data are public data that may be observed by all )
principals; high (high security) data are secret data whose access is (Comm € ==V:=E|[Ci;Cz|if EthenC; elseCy
restricted. An information-flow policy requires that no information |whileEdo C|£(Vy,...,Vn)
about high inputs can be inferred from observing low outputs. In  (Fun) F u=f(pc)(x1:t1,...,%n:tn){C}
general, the security levels can be generalized to a lattice [29]. (Prog) P = {Fi;...;Fn;C}
Such a policy concerns tracking the flow of information inside
a target system. Whereas it is easy to detect explicit fl@g.,( [E1-2] ¢+ E:high dhi:t

through an assignment from a sedreb a publicl with I=h ), itis
much harder to detect various forms of implicit flow. For example,  [E3-4] (V) = low FEi:low FEp:low
the statement0; if h then I=1 involves an implicit flow $FV:low FE; +Ez: low

from h to | . At run-time, if thethen branch is not taken, a

; . . ; 2 $(V) = high (V) =1low ¢FE:low
conventional security mechanism based on execution monitoring [C1-2] e T 3 oW FV =E
will not detect any violation. However, information abdutcan i [pe] T 3 [Low] T
indeed be inferred from the result lof $FE:pc & [pc]-Ci1 & [pc|t Cao

Instead of observing a single execution, language-based tech- [C3] %; [pc| F if E then C; else Cy
niques derive assurance about a program’s behavior by examin-
ing, and possibly instrumenting, the program code. In the above -4 5 %; [high| - C #; [pc] - C1 & [pc] - Co
example, the information essentially leaks through the program $; [low] F C #; [pc] F C1;C2

counter (often referred to g&)—the fact that a branch is taken re-
flects information about the guard of the conditional. In response, a [C6]
security-type system typically tags the program counter with a se-

$FE:pc & [pc]kC
#; [pc|] - while Edo C

curity label. If the guard of a conditional concerns high data, then 8(£) = (pc)(t1,...,tn) —void
the branches are verified under a program counter with a high secu- $FV, i t; Vie{l...n}
rity label. Furthermore, assignments to low variables are prohibited [C7] F ] F E(Vi,. V)
under such a high program counter. ’ e
[F1] X1:t1,. .., Xnitn, & [pc] F C
2.2 Security Types $F f(pc)(x1:t1,...,xn:tn){C}
Figure 1 shows a two-level security-type system for a simple im- F; = £;(pc;) (X1 :t14, -+, Xngi 1 tn,i){Ci}
perative language with first-order procedures. It is extended from a &(F;) = (pc)(t1is. .., tnye) —~void
demonstrative system of Sabelfeld and Myers’ [23], and will serve P1] $FF; #; [low] - C vie{l...n}

as the source of our translation. A program comprises a list of pro-
cedure declarations; and a main command. A procedure dec-
laration documents the security level of the program counter with
pc, indicating that the procedure body will only update variables
with security levels no less thar. A procedure also declares a list
of argumentsk; under call-by-reference semantics. Commagds
consist of assignments, sequential compositions, conditional state-
ments, while-loops, and procedure calls. Variablesover both
global variablesr and procedure arguments Expressiong are
formed by constantsij, variables, and their additions.

Rules [E1-4] relate expressions to security types (levels). Any
expression may have typeigh (it is secure to treat any data as
sensitive). Constants and low variables may have type An
addition expression may have typew if both sub-expressions may
have typelow.

Rules [C1-7] track the security level of the program counter
(pc) when verifying the commands. Assignments to high variables
aP;e always valid (Rule [C1]). However, an assignment to a low 2.3 Related Work
variable is valid only if both the expression and the are low Although there has been much work applying language-based tech-
(Rule [C2]). For a conditional (Rule [C3]), the security level of the niques to information flow [23], most of it focused on high-level
sub-commands must match the security level of the guard expres-languages. Many high-level abstractions have been formally stud-
sion; together with Rule [C2], this guarantees that low variables ied, including functions [11], exceptions [22], objects [6], and
are not modified within a branch under a high guard. After a con- concurrency [27, 1, 12], and practical implementation is within
ditional, it is useful to reset thec to low, avoiding a form of label reach [19]. Nonetheless, enforcing information flow at only a high
creep [10] where monotonically increasing security labels are too level puts the compiler into the trusted computing base (TCB) [24].
restrictive to be generally useful. Such a context reset is achieved Furthermore, we should not overlook the verification of software
with a subsumption rule (Rule [C4]); intuitively, if it is secure to  distributed (or written) directly in low-level code. For example, a
execute a command in a sensitive context, then it is also secureuser may wish to verify that a GPS software, downloaded from an
in an insensitive one. A sequential composition is verified so that untrusted party in the form of native code to a mobile device, does
both sub-commands are valid under the giger{Rule [C5]). The not send out the location information through the network.

$F {Fi;...;Fn;C}

Figure 1. A simple security-type system

handling of a while-loop is similar to that of a conditional statement
(Rule [C6]). A procedure call is valid fc matches the expected se-
curity level, and the arguments have the expected types (Rule [C7]);
note that only variabless(or x) may server as the arguments, which
are handled by reference (also know as “in-out” arguments in the
previous work of Volpano and Smith [29]).

Finally, a procedure declaration is valid if the body can be veri-
fied under the expectest and arguments (Rule [F1]). A program
is valid if all procedure declarations and the main command are
valid (Rule [P1]).



Bartheet al. [7] presented a security-type system for a byte- Walker’'s system cannot enforce noninterference. Besides the work
code language and a translation that preserves security types. Theion security-type preserving compilation by Bartteal.[7] as dis-
stack-based language is much different from the RISC architecturecussed above, Honda and Yoshida [12] also studied related issues
that we model. More importantly, their verification circumvents a for 7-calculus with security types.
main difficulty—the lack of program structures at a low-level—
by introducing a (currently trusted) component that computes the 2.4 Assembly Code
dependence regions and postdominators [5] for conditionals. The\hereas enforcing information flow for assembly code is impor-
separate checking of these information is under investigation. tant, it poses many new challenges.

Avvenuti et al. [4] applied abstract interpretation to enforce First, high-level languages make use of a virtually infinite num-
information flow for a stack-based bytecode language. Besides thepyg; of variables, each of which can be assigned a fixed security
difference in the machine models, their work also relied on the |3pe| |n assembly code, the use of memory cells is similar. How-
(trusted) computation of control flow graphs and postdominators. eyer, a finite number of registers are reused for different source-

Zdancewic and Myers [33] used linear continuations to enforce |gyg| variables. As a result, one cannot assign a fixed security label
noninterference at a low-level. Their language is based on vari- i 5 register.

ables and still much different from assembly language. In partic- Second, the control flow of an assembly program is not as struc-
ular, linear continuations, although useful in enforcing a stack dis- {red. The body of a conditional is often not obvious, and generally
cipline that helps information-flow analysis, are absent from con- ngecidable, from the program code. Hence the idea of using a se-
ventional assembly code. Hence further (trusted) compilation to na- ¢ty context to prevent implicit flow through conditionals cannot
tive code is required. Nonetheless, we borrowed some ideas frompq easily carried out.

Zdancewic and Myers, including the handling of memory aliasing Third, assembly languages are very expressive. Aliasing be-
and code p_ointers, although these features are mod_eled as differenfyeen memory cells are difficult to reason about [26]. The support
constructs in our system. A more thorough discussion of the con- fo first-class code pointers (the reflection of higher-order functions
nection between linear continuations and our solution is given in 4 the assembly level) is very subtle. A code pointer may direct a

Section 6, after presenting our system. , o program to different execution paths, even though no branching in-
Bonelli et al. [8] explored the realization of linear continuations iy ction is present.
in an assembly language SIFTAL. Two new instructions are intro- Fourth, since it is not practical to always directly program in

o_luced in correspondence with ;he operations on linear continpa-an assembly language, a low-level type system must be designed
tions as proposed by Zdancewic and Myers [33]. These two in- g that the type annotations can be generated automatiealy,
structions enforce structured control flows that are missing from through certifying compilation. The type system must be at least
normql assembly code with the help of a continuation stack (thls as expressive as a high-level type system, so that any well-typed
stack is different from the one for function calls). One instruction g ;rce program can be translated into well-typed assembly code.
pushes a linear continuation onto the stack, the other pops a lin- Finajly it is desirable to achieve an erasure semantics where
ear continuation off the stack and transfers the control to it. Such type annotations have no effect at runtime. A security mechanism
a mechanlsm maintains structured. control flow in assembly ‘code, can not be generally applied in practice if it incurs too much over-
thus helps information-flow analysis. Unfortunately, conventional peaq. Similarly, it is also undesirable to change the programming
assembly programming and machine models do not contain such ayde| for accommodating the verification needs. Such a model

special continuation stack and the instructions manipulating it.  change indicates either a trusted compilation process or a different
Recently, Medekt al. [16] improved SIFTAL to SIF, using a target machine.

stack of labels to simplify the above approximation of linear con-
tinuations. Unlike SIFTAL, SIF resorts to static type annotations
to enforce noninterference, and no longer requires a stack of lin- 3-  Our Approach
ear continuations during execution. This is in spirit similar to our 3.1 Explicit Assignment
solution of TALc. However, SIF supports only a minimal set of
language features (arithmetic, memory update, branching and di-
rect jumps), and does not address how the type annotations can b
produced. In contrast, our language TAlfurther supports code
pointers and a call stack. We also present a type-preserving trans
lation to TAL< from a security-typed source language, where the
support for procedure calls introduces extra subtleties for noninter-
ference. We will discuss this in more detail in Section 6.

This paper targets RISC-style assembly code. We introduce
a type system to verify the unstructured control flow, which in
turn helps information-flow analysis. Type annotations are used to
recover information about high-level program structures, and no )
trusted component is required for computing postdominators. This sembly level, one can not eaS|I_y base the enforcement upon that.
contrasts with the above work on bytecode languages. Furthermore, 1 fact, a similar problem arises even for normal type safety. A
we do not rely on extra constructs such as linear continuations or aregisterin TAL can have different types at different program points.

continuation stack. An erasure semantics trivially reduces programs-":—he.Se ttypes are essgg_ttl_ally_ |nfterretq frgm the coThputathnt itself.
in our language to normal assembly code. or instance, in an addition instructiadd r4, rs, ¢, the register

We also provide a formal model of a certifying compiler for a IS given the typeint, because onlyint can be valid here.
noninterference. Certifying compilation [14] has mostly been S_lmllarly, when loading from a memory cell, the_ target register is
studied for conventional type safetg.¢., Typed Assembly Lan-  diven the type of the source memory cell. Adapting such inference
guage [18], Proof-Carrying Code [21, 20] and Efficient Code for security labels is straightforward. In the additiedd rq, 7s, 7+,
Certification [13]). Walker [31] applied certifying compilation the label ofr4 is obtained by joining the labels ef andr;, because

to security policies. However, being based on security automata, the result inrq refl_ect§ mform_atlon from both, a_nd_ re. Moving
and memory reading instructions are handled similarly.

An obvious kind of information flow is through assignment. As
iscussed in Section 2.2, variables in a high-level language can
e “tagged” with security labels; the security-type system prevents

label mismatch for assignments. At an assembly level, memory

cells can be tagged similarly. When storing into a memory cell,

a typing rule ensures that the security label of the source matches

that of the target.

Registers need to be regulated differently, because they can be
reused for different variables with different security labels (regis-
ters cannot be aliased, which makes it safe to update their types).
Since variable and liveness information is not available at an as-



(* suppose p_h alias p_| *) .
Jins S ime if (h=0) then p_h=new cell P /
*p_h:]_; h
(* now *p_| reveals h ) P_
bnz
l Figure 3. Flow through aliasing
A
Conditional  While-loop  Indirect fun fO () = (1:=0; ()
fun f1 () = (I:=1; ()

Figure 2. Flow through program structure

let f = (if h then f1 else f0) in f()

3.2 Program Structure

A conditional statement in a high-level program can be verified
so that both sub-commands respect the security level of the guard
expression. Such verification becomes difficult in assembly code,
where the “flattened” control flow provides little help in identifying

Figure 4. Flow through code pointer

fun fO () = (h:=0; ()

fun f1 () = (h:=1; () ...

if h then f ;= f1 else f := fO;
I=1; (); I:=l *2 .

the program structure. A conditional is typically translated into a
branching instructionthz r,l) and some code blocks, where the
postdominator of the two branches are no longer apparent.

We use annotations to restore the program structure by point-

Figure 5. Context coercion without branching

The problem lies in the assignment through the high pointer

ing out the postdominators whenever they are needed. Note thatp_h, because it reveals information about the aliasing relation.
high-level programs provide sufficient information for deciding the The solution, following previous work [6, 33], is to tag pointers
postdominators, and these postdominators can always be staticallyvith two security labels. One is for the pointer itself, and the other
determined. For instance, the end of a conditional command is theis for the data being referenced. Assignments to low data through
postdominator of the two branches. Hence a compiler can generatehigh pointers are not allowed. This is a conservative approach—all
the annotations automatically based on a securely typed source propointers are considered as potential aliases.

gram. In our system, our postdominator annotation is essentially a
static code label paired with a security label.

Since branching instructionsdfz r, [) are the only instructions
that could directly result in different execution paths, it would ap-
pear that one should enhance branching instructions with postdom-
inators. The typing rule then checks both branches under a proper

3.4 Code Pointers

Code pointers further complicate information flow. Figure 4 shows
a piece of functional code wheferepresents different functions
based on a high variable. In its reflection at an assembly level,
different code blocks will be executed based on the valué.of

security context that takes into account the guard expression. SuchNaturally,f contains sensitive information and should be labeled

a security context terminates when the postdominator is reached.
Although plausible, this approach is awkward. Figure 2 demon-
strates three scenarios. Besides the conditional scenario, branch
ing instructions are also used to implement while-loops, where the
postdominator is exactly the beginning of one of the branches. In

high. However, the actual functiori® andfl can only be exe-
cuted under a low context, because they modify a low variable
In this case, the invocation foshould be prohibited.

In our system, similar to data pointers, code pointers are also
given two security labels. The typing rules ensure that no low

this case, only the other branch should be checked under a newfunction is called through a high code pointer.

security context. If we directly annotate the branching instruction,
the corresponding typing rule would be “overloaded.” More im-
portantly, an assembly program may contain “implicit branches”
where no branching instruction is present. The third scenario illus-
trates that an indirect jump may lead the program to different paths
based on the value of its operand register. A concrete example will
appear in Section 3.5.

Inspiration of a better solution lies in the simple system of
Figure 1. Note that the subsumption rule [C4] is not tied to any
particular commands. It essentially marks a region of computation
where the security level is raised from low to high. The end of the
region is exactly a postdominator. Following this, our approach is to
mimic the high-level subsumption rule with two low-levalising
and lowering operations that explicitly manipulate the security
context and mark the beginning and the end of the secured region.

3.3 Memory Aliasing

Aliasing of memory cells present another channel for information
transfer. In Figure 3, a low pointgr | and a high pointep_h are
aliases of the same cell. This is useful if a high principal wishes to
observe a low computation. The code in this figure may change the
aliasing relation based on some high varidbley lettingp_h point

to another cell. Further modification throughh may or may not
change the value in the original cell. As a result, observing through
the low pointemp_| reveals information about the high variatle

3.5 Security Context Coercion

Finally, Figure 5 shows a piece of code where a mutable code
pointer complicates the flow analysis. Functids andfl only
modify high data. A reference cell is assigned different code
pointers within a high conditional. Latef, is dereferenced and
invoked in a low context.

This code is safe with respect to information flow. At a high
level, a subsumption rule like Rule [C4] in Figure 1 allows calling
the high functionif()  in a low context. However, in its assembly
counterparts, both the calling fo and the returning froni are
implemented as indirect jumps. The calling sequence transfers the
control from a low context to a high context, whereas the returning
sequence does the opposite. Since the function invocation is no
longer atomic at an assembly level, one cannot directly devise
a subsumption rule. Furthermore, there is no explicit branching
instruction present wheh is dereferenced and invoked (the third
scenario of Figure 2).

In our system, the raising and lowering operations explicitly
mark the boundary of the subsumption rule. During certifying com-
pilation, the source-level typing and program structure provide
sufficient information for generating the target-level annotations.
When a subsumption rule is applied in the source code, the cor-
responding target code is generated within a pair of raising and
lowering operations.



(contexty r ==e|f>w [ Judgment | Meaning
(pre-typg 7 :=int | {o1,...,0n) | V[A].(k)T AFk  is a valid context
(typeg o =79 |ns AT 7 is a valid pre-type
(stackty X u=p|nil|o:X AFo o is a valid type
(vareny A :=o]pA|aA AFX 3 is a valid stack type
(typearg 1 ==X |w o v is a valid heap type
(heapty W :={l1:01,...1n: 00} AFT I' is a valid register file type
(regfilety T =={ri:01,...7n:0n,8p: 2} AFT; CTe Register file typd™; weakend >
. FH:U HeapH has typel
(registerg r u=ri|r2 ... -
wordva) w t=o 1]i]ns |l ¥R T Regsier iR has e
(smallva) v =7 |w]v[y] UFh:o Heap valugh has typer
(heapva) A ::=(wi,...,wn) | code[A](m)I".] U,AFw:o | Word valuew has types
r(h?‘ﬁlps g = {r = hyo b hn} g U;A;TFo:o | Smallvaluev has typer
( l(egtaciss) o {Tll |'_> wé,’ oo Tn = W, 8P = S} U;A;T;xF I | Iisavalid sequence of instructions
R v, I'- P P is a valid program
(instr) ¢ ==addrg,rs,v | 1dr4,7s(7) | st ra(i), rs ; .
| mov rq,v | bnz r,v | salloc i | sfree Figure 8. TAL ¢ typing judgments
| s1d rq, sp(i) | sst sp(i),rs | raise k
(instrseq I :=u; 1| lower w | jmp v |halt [o] Note that the type constructs provide two layers of security
(prog) P u=(H,R,I)x labels for a data pointee(g.,(ints, ), ; See Section 3.3) or a code
pointer €.9.,(V[o].(62 > 1) '), ; see Section 3.4)—oné) for the
Figure 6. Syntax of TALc pointer itself, the otherd) for the data or code being referenced.
Value constructs The middle portion of Figure 6 shows the value
4. TALo constructs. A word valuev is either a variable, a heap lalielan
. immediate integet, a nonsense value for an uninitialized stack
4.1 Abstract Machine slot, or another word value instantiated with a type argument.

Our language TAL is designed to resemble TAL [18] for ease of Small valuesv serve as the operands of some instructions; they
understanding. We introduce some new constructs for confidential- are either registers, word valuesw, or instantiated small values.
ity, and accommodate a stack following STAL [17] for support- Heap values are either tuples or typed code sequences; they are
ing procedure calls. In the interest of simplicity, we maintain just the building blocks of the heali. Note that a value does not carry a
enough features for demonstrating the certifying compilation of se- security label. This is consistent with the philosophy that a value is
curity types from our source language in Figure 1, removing from never intrinsically sensitive—it is sensitive only if it comes from a
TAL and STAL features that are orthogonal to it. sensitive location [29], which is documented in the corresponding
We assume that security labels form a lattiteWe used to types @ andT’). Finally, a register fileR stores the contents of
range over elements @f. We usel and T as the bottom and top ~ all registers and the stack, where the stack is a (possibly empty)
of the lattice,U andn as the lattice join and meet operations, and sequence of word values.
C as the lattice ordering. The syntactic constructs of #Adan be

understood in three steps as follows. Code constructs Code constructs are given in the bottom portion

of Figure 6. We retain a minimal set of instructions from TAL and
Type constructs The top portion of Figure 6 presents the type STAL, and introduce two new instructionsaise x andlower [)
constructs. Security contextsfollow the idea of Section 3.2. An  for manipulating the security context as discussed in Section 3.
empty security contexis] represents an program counter with the A program is the usual triple tagged with a security context. The
lowest security label. A concrete contexXt{w) is made up of a security context facilitates the formal soundness proof, but does not
security labeld (the current security level) and a postdominator affect the computation.

w. The postdominatotv has the syntax of a word value, but its . . )

use is restricted by the semantics to be eventually an instantiated _In the operational semantics (Figure 7), there are only two cases
code labelj.e., the ending point of the current security level. The that modify the security contextaise ' updates the security

postdominatorw could also be a variable;; this is useful for context tox’, andlower w picks up a new security context from
compiling procedures, which can be called in different contexts the interface of the target code. In all other cases, the security
with different postdominators. context remains the same, and the semantics is standard. It is easy

Pre-types ) reflect the normal types as seen in TAL, including 0 See that this operational semantics mimics the behavior of a
integer types, tuple types, and code types. In comparison with TAL, €@l machine, and does not prohibit bad flows. One can obtain
our code type requires an extra security conteytas part of the a conventional machine by removing the security contexts and
interface. A type ¢) is either a pre-type tagged with a security label Taise « instructions, and replacintpwer w with jmp w.
or a nonsense typen§) for uninitialized stack slots. A stack type
(X) is either a variabled), or a (possibly empty) sequence of types.
The variable contextX) is used for typing polymorphic code; it  The static semantics consists of judgment forms summarized in
documents stack type variables) (@and postdominator variables  Figure 8. A security context appears in the judgment of a valid in-
(«). Stack types and postdominators are also generally referred tostruction sequence. Heap and register file types are made explicit in
as type arguments. Finally, heap types¥) or register file types the judgment of a valid program for facilitating the noninterference
(") are mappings from heap labels or registers to typessphia theorem. All other judgment forms closely resemble those of TAL
the register file represents the stack. and STAL.

4.2 Typing Rules



(H,R,I). — P where

if I = [ thenP =
add rq,rs,v; I’ | (H,R{ra— (i+i)},I')w whereR(r,) = i andR(v) = ¢’
ldrg,rs(i); I | (H,R{ra— wi}, 1 )x whereR(r;) =landH () = (wo,...,wp—1) With0 <7 <n
mov 74, v; I’ (H, R{rq — R(v)}, 1)«
bnz r,v; I’ (H,R,T"). whenR(r) =0
bnz r,v; I’ (H,R,I"[{)/A]).. whenR(r) = i wherei # 0 andR(v) = ([1)] and H(l) = code[A](x')T.1"
stra(i),rs; I (H{l — (wo, ..., wi—1, R(Ts), Wit1,- -y Wn—1)}, By I )
whereR(rq) = landH(l) = (wo, ..., wp—1) With0 <i < n
salloci; I’ (H,R{sp—ns:...uns:R(sp)}, I«
sfree¢; I’ (H, R{sp — S}, IZ)H whereR(sp) = wi:i...ciw; i S
sldrq,sp(i); I’ | (H,R{ra — w;}, I')h whereR(sp) = wo::...:w;::Sandi > 0
sst sp(i),7s; 1 | (H,R{sp— wo::...:w;—1:R(rs) =S}, I"),, whereR(sp) = wo::...::w;:: S andi > 0
raise k'; I (H,R,T),.
lower w (H,R, I [w/A]) wherew = I[¢)] and H (1) = code[A](x/).I'
jmp v (H,R, I'[)/A]) whereR(v) = I[¢)] andH (I) = code[A](x/)T.1’
R R(r) whenv = r
whereR(v) = { w whenv = w

R()[y] whenv =v'[)]

Figure 7. Operational semantics of TAL

The typing rules are given in Figures 9 and 10. A type construct a secured region be enclosed withinai se-1lower pair. The rule
is valid (top six judgment forms in Figure 8) if all free type vari- also makes sure that the codesis safe to execute, which involves
ables are documented in the type environment. Heap values andchecking the security labels (Section 3.4) and the register file types.
integers may have any security label. The types of heap labels and The rule forjmp checks that the target code is safe to execute.
registers are as described in the heap type and the register file typeSimilar checks also appeared in the ruledags. In these two rules,
respectively. All other rules for non-instructions are straightforward the security context of the target code is always the same as the

extensions of those in TAL and STAL. current one. This is because context changes are separated from
We useSL(k) to refer to the security label component «of conventional instructions in our system. For example, one may
SL(e) is defined to belL. The typing rules foradd, 1d andmov enclose high target code withiraise andlower before calling

instructions infer the security labels for the destination registers; it in a low context.
they take into account the security labels of the source and target  Finally, halting is valid only if the security context is empty, and
operands and the current security context. the value inr; has the expected type
The rule forbnz first checks that the guard registeris an Interested readers are referred to Appendix B for a simple ex-
integer and the target valueis a code label. It then checks that ample that demonstrates the use of security labels and contexts.
the current security context is high enough to cover the security
levels of the guard (preventing flows through program structures; 4.3 Soundness
Section 3.2) and the target code (preventing flows through code TAL  enjoys conventional type safety (memory and control-flow
pointers; Section 3.4). Lastly, the checks on the register file and the safety), which can be established following the preservation and
remainder instruction sequence make sure that both branches argrogress lemmas. The proofs of these lemmas are similar to those
securr]e to IeXfecute. f abels. The label of th of TAL and STAL and omitted.
The rule forst concerns four security labels. The label of the . ,
target cell must be higher than or equal to those of the context Le.mmall (Preservatlgn)lf }IJ;F =P andP+— P’ then there
(Section 3.2), the containing tuple (Section 3.3), and the source EXIStSL” such thatl; I" + P~
value (Section 3.1). Lemma 2 (Progress)If ¥; T + P then either:
The rules for the stack instructions follow similar ideas. In (1) there existd”’ such that? — P’, or
essence, the stack can be viewed as an infinite number of registers. (2) P is of the form(H, R{ri — w}, halt [0])e

Instructionsalloc or sfree add new slots to or remove existing where- H : ¥ and¥;o - w: 0.

slots from the slot, so the rules check the remainder instruction ) ) )
sequence under an updated stack type. The rule for instrugtibn E_%efore presenting the nonlr_lterference theorem,_we define the
or sst can be understood following that of thev instruction. equivalence of two programs with respect to a security lével

The rule forraise checks that the new security context is  pefinition 1 (Heap Equivalence)¥ - H; g Ho <= for
hlgherthan the current one. Moreover, itlooks at the postdominator every; € dom(¥), if ¥(1) = 7o and®’ C 6 then
w of the new context, and makes sure that the security context atf7, (1) = Hy(l). -
w’ matches the current one. The remainder instruction sequence is
checked under the new context. Definition 2 (Stack Equivalence)X - S1 =~ S2 <= for every
Since the rule forraise already checked the validity of the  slot: € dom(X), if (i) = 7o andd’ C 6 thenS:(z) = Sa(3).
ending label of a secured region, the task for ending the region is
relatively simple. The rule fotower checks that its operand label ~ Definition 3 (Register File Equivalence)l' - Ry ~¢ Ry <=

matches that dictated by the security context. This guarantees tha{1) I'(sp) = Ri1(sp) = R2(sp), and (2) for every € dom(T"), if
['(r) = 7o and®’ C 6, thenRy(r) = Ra(r).



freevar(w) C A SL(k) =10 I (rs) = intyg, U; A;T ot intg,

Ale AFO>w AF int \P;A;F{Td :intguglu%};li}—]
Ak o, AF K AET U AT kb addrg, rs, vy 1
AF(o1,...,0n) AFV[A](k)T SL(k) =10 D(rs) =(o1,...,0n), i = To,
AFT \I’;A;F{TdiTguslugz};Hl—I
AF 7 Ak ns U ATk 1drg,rs(i); T

peEA A b nil Ato AFX SL(k) =10 U;TFwv: 7y U AsT{rq : mouer }; e H 1

Atp AkFo:X W ATk Emovrg,v; 1

ok i Aboi AR SL(k) =0  T(r)=ints, WATFov: (Vo].(k) 1),

F{li:o1...ln:0n} AbF{riio1...1n:0n,sp: 2} 01 U0y C 0 AFT' CT U AT kb T
AFo; AFX m<n U, ATk Fbnz r,v; 1
AF{ri:o1...1m:0m,sp: X} C{ri:01...r:0n,sp: 2} SL(k) =0 D(ra) = (01,--,0u)p, P —

FO U ={l:01,...ln:0,} Wkhi:o L(ro) =70, 0U0UBCO  WATiRET
F{li—=hi,....ln— hn}t: ¥ WA T kst ra(i),rs; 1
'={r:01,...7n : 0n,sp: X} i
U w; o YES: 3 I'(sp) =X U A;T{sp:ms:...onsuXh k-1

Uk {ri— wi,...,7n — Wp,sp— S}: T W A; Tk F salloci; [
Wb w; o I'(sp) =01::...::04:: % U A;T{sp: X}, T
Uk (Wi,...,Wn) 1 (01,...,0n0), WU A;T; k- sfreed; [
AFk AFRT WAk T SL(k) =20 I'(sp) =00:...1i03:% oi =Ty
U F code[A](k)T.T : (V[A].(k)T), U AT {ra s Toue Jsm E T
w(l) U, ATk F sld rq,sp(i); 1
y 1 . . = o—
;A ki intg ;A Fns:ns U:AFl:o SL(k)=10 I(sp) =00:i...:104: % [(rs) = 7o
, U, AT {sp:oo:...ioi—1:Touer 0k E T
AFY \IJ;A'_/U}:V['DAM@F U ATk F sstsp(i),rs; 1
T AT wlS] VAT (RIS IS ] st ,
, Kk=0>w K =0>w 6Co
AFY I\II;A}jw:V/[aA](/@)/F ‘P;Al—w':(V[o}.(n)F/)gl U AT T
U A Fww'] : VA (k[w'/a]) Tw' /o] U, A T;kFraise i 1
[()=0o LiAtw:o k=0bw  WAFw: (Vol.()T"),
AT Fr:o U A TFw: o 6, C SL(k') AFT' CT
AFY U ATFv:VY[pA](k) I’ W AT K F lower w
U AT oY) : V[A](k[Z/p]) T2/ p] SL(K)=0 W ATFu: (Vol.(k) 1Y),
AEY WA TFv:VeA] (k)T 00C0 AFT'CT
U AT - ofw] : VA k[w/a]) T [w/a] VAT K E jmp o
obFk FH:¥ WFR:T  Wolkk1 K=e Abo T(n)=o
U;TF (H,R, ) U; A;T; k - halt [o]

Figure 9. TAL ¢ typing rules (non-instructions) Figure 10. Typing rules of TAL: instructions
Definition 4 (Program Equivalence) U;T' - Py ~g P> <— lower mark the beginning and the end of a secured region. We
Py = (H1i,R1, 1)y, Po = (H2,R2,I2),, Y F Hy ¢ Ho, relate the program states before theise and after thelower,
T'F R;1 =9 R2, and either: circumventing directly relating two executions under high steps.

(1) k1=K2, SL(k1) C 0, andI; = I», or We give the formal details in three lemmas and a noninterfer-
(2) SL(k1)Z 0, SL(k2)Z 6. ence theorem. Lemma 3 indicates that a security context in a high

step can be changed only withise or lower. Lemma 4 says that

It is easy to see that the above relations are all reflexive, sym- a terminating program must reduce to a step that discharges the cur-
metrical, and transitive. Our noninterference theorem relates the ex-rent security context with aower. Lemma 5 articulates the lock
ecutions of two equivalent programs that both start in a low security step relation between two equivalent programs in a low step. Theo-
context (relative to the security level of concern). If both executions rem 1 of noninterference then follows. In the following,~* rep-
terminate, then the result programs must also be equivalent. resents the reflexive and transitive closure-ef. 3 =4 ¥’ means

The idea of the proof is intuitive. Given a security level of thatX(:) = '(4) for everyi such that>' (i) = 7o andd’ C 0.
concern, the executions can be phased into “low steps” and “high T" =4 I means thaf'(sp) =¢ I'(sp) andl'(r) = I"'(r) for every
steps.” It is easy to relate the two executions under a low step, r such thafl”(r) = 75 and@’ C 6. We useQ in addition toP to
because they involve the same instructions. Under a high step, thedenote programs when comparing two executions. The proofs are
two executions are no longer in lock step. Recall thatse and given in Appendix A.



Lemma 3 (High Step)If P = (H, R, )., SL(k)Z 6, V;T I P, [TREconst] |i| =mov r,i||r
then either: (1) there exisid, and P, = (Hi, R1, I1)« such that

/ ’
Pr— P, W:Ty F P,,T =4 Ty, andW; Ty - P =, Py, 0r (2) ] [TREvar] |v| = movr, lu; 1d ", r(0) || r
is of the form(raise «'; I') or (Lower w). [TREarg] |xi| = s1d r,sp(i);1d /,7(0) || 7'
- ’ 7 / 7

Lemma 4 (Context Discharge)lf P = (H, R, I)gpw, 0Z 0, [TREadd] Bl =7l r ; B ‘;f L7 ,, L ,doeinot use
;' P, P —"* (Ho, Ro,halt [0]), then there exists’ and [E+E|=zd5addr” ' |[r
P’ = (H', R, lower w)gpw, Such thatt; T + P', P —* P,
Iz IV, andW; I - P =g P’ Figure 11. Expression translation
Lemma 5 (Low Step) If P = (H, R,I)x, SL(k) C 0, ¥;I'F P, The translation details are given in Figures 11, 12 and 13, based
WIEQ, I PryQ, Pr— P1,Q— @, then existd™, on the structure of the typing derivation of the source program.
such thatl; 'y = P, U Ty = Q1 and ;T = Py =g Q. Which translation rule to apply is determined by the last typing rule

used to check the source construct (program, procedure, or com-
Theorem 1 (Noninterference)lf P = (H, R, I),., SL(x) C 6, mand). We us&D to denote (possibly multiple) typing derivations.
U I'EP,WI'EQ, ¥ I'EPrQ, ~ We define expression translation of the fofe} = || r in
P +—* (H,, Rp,halt [0,))e, and Figure 11. The instruction vectatcomputes the value df and
Q —"* (Hy, Ry, halt [o4]), then existd™ such that the result is put in the registet For a global variable, the value
U; T & (Hp, Rp,halt [0,])e ~o (Hy, Ry, halt [og))e. is loaded from the heap using its corresponding heap label. For a

procedure argument, the location of the actual entity is loaded from
. S the stack, and the value is then loaded from the heap.

5. Certifying Compilation In Figure 12, when translating a program (Rule [TRP1]), we
Certifying compilation for a realistic language typically involves a  translate all the procedure declarations, add halting code as the
complex sequence of transformations, including CPS and closureending point of the program, and proceed to translate the main
conversion, heap allocation, and code generation [18, 15]. In this command. The result triple contains the updated heap type and
paper, we choose the simple security-type system of Figure 1 as outheap, and a starting labélwhich leads to the starting point of
source language. This allows a concise presentation, yet sufficesthe program. Procedure translation (Rule [TRF1]) takes care of
in demonstrating a main contribution: the separation of security- part of the calling convention. It adds epilogue code that loads the
context operationsréise andlower) from conventional instruc- return pointer, deallocates the current stack frame and transfers the
tions and mechanisms.g.,stack convention for procedure calls). ~ control to the return pointer. It then resorts to command translation

The low-high security hierarchy of Figure 1 defines a simple to translate the procedure body, providing the label to the epilogue
lattice consisting of two elementsd: and T. We use|t| to denote code as the ending point of the procedure body.

the translation of source type in TALc: |low| = int, and In Figure 13, we define command translation of the form
|lhigh| = int+. We also translate the procedure types from the U
source language into TAkas follows: ‘ TD ‘ [ I -| _ { o’ }
(P (b1, . ., tn) —void| = (V[A].(k) {sp: B}), L I N I
where(A, k) = (po, ')_l_ !; pe = }ll?wh This command translation takes 7 arguments: a code heap type
(apo, TP a) if pc = hig (), a code heapH), starting and ending labels. (..« andlc,q)
andX = (V[A].(k) {sp: p}) | = ([tal) Lo (fEn])  ip for the computation o€, a type environmentX), a security con-

This procedure type translation assumes a calling convention wheretext (), and a stack typeX). It generates the extended code heap
the caller pushes a return pointer and the location of the argumentstype (2’) and code heapH"). Unsurprisingly, this translation ap-
(implementing the call-by-reference semantics of the source lan- Pears complex, because it provides a formal model of a certifying
guage) onto the stack, and the callee deallocates the current stackompiler. Nonetheless, it is easy to follow if we remember some
frame upon return. The stack typerefers to a variable because ~ invariants maintained by the translation:

the procedure may be called under different stacks, as long as the 7 js well-typed under and contains entries for all source
current stack frame is as expected. The security contéxempty variables and procedures:

if pc is low, or T > « if pc is high. Postdominator variable is . . . .
used because the procedure may be called in security contexts with ® ¥ @ndH already contain the continuation code labeled;

different postdominators. The type environménsimply collects e The new code labeleld:.+ will be putinto ¥’ andH';
all the needed type variables. e The security context must matchpc;

We assume that the program translation starts in a fagnd e The stack typet contains entries for all procedure arguments,
a heap typel, which satisfyt- Hy : o and contain entries for if the command being compiled is in the body of a procedure;

all the variables and procedures of the source program. For any

; . -9 The environmeni\ contains all free type variables inandX.
source variabler that$(v) = t, there exists a locatiohy in the

heap such tha¥(l,) = (|t]), . For any source procedutethat Most of the command translation rules simply pht x and

3(f) = (pc)(t1,...,tn) — void, there exists a locatioh in the Y in place for the generated code types, and further propagate
heap such tha¥ (l:) = |(pc)(t1,. .., tn) —void|. We uset ~ ¥ them to the translation of sub-components. The only rule that non-
to refer to this correspondence. trivially manipulates the security context is Rule [TRC4]—when

The above heafl, can be constructed with dummy slots forthe a subsumption rule is used for typing a source command, the
procedures—the code in there simply jumps to itself. This suffices translation generates code that is enclosedzaizse-lower pair.
for typing the initial heap, thus facilitating the type-preservation The translation of the sub-component is carried out in an updated
proof. It creates locations for all source procedures and allows the heap with a new ending lab&l. The code at; restores the security
translation of the actual code to refer to them. context and transfers the control to the given ending I&bélfter



TDi \I/i, \I/z . .
‘ iFF [ Hi—i ] = [ H } vie{l...n} lhait is a fresh label
‘ o ‘ ??Z’l : (V[O]'<.[>]{<S§{: ml}hl}} 1;halt [int. ]} v
nilhalt — code|o]|(®){sp : nil}.mov r1,1;halt [int = [ ]
TRP1 Bl I; lhate; 0; @ mil a
e i viefl A v v
srr, ettt ghggre o |:HO:|:|:H'Z:|
&F {F1;...;Fn;CJ 0 ’
U{l: (V[A] (k) {sp: X})  }
TD H{l — code[A](k){sp : X}. [
x1:t1,...,Xnitn, & [pc] F C sld r,sp(0); sfree (n+1);jmpr} | — | H’
le; Ay ks X
_f (po,e) if pc = low .
where(A, k) = (apo, Toa) if pc — high lis a fresh label
Ry 2= (1AL b s ph) a5 s (el 5p

D ;
X1:t1,...,%n tn, ¥ [pc] F C []\I;]:[I\I;/]
$F £(pc)(x1:t1,...,xn:tn){C}

Figure 12. Program and procedure declaration translation

the translation of the sub-component, code is added at the startingTheorem 2 (Program Translation) If & ~ ¥, & - P,
labell to raise the security context to the expected level. TD U [ \\ thens ~ ¥ and
$-P| | Ho : ~

“prologue” code that allocates a stack frame, pushes the return; {sp : nil} - (H, {sp : nil}, jmp 1).

pointer and the arguments onto the stack, and jumps to the proce-

dure label. Note that the corresponding epilogue code is generated ) )

by the procedure declaration translation in Rule [TRF1]. 6. Discussions

The translation of while-loopsis also interesting (Rule [TRCE]). | jhear continuations zdancewic and Myers [33] introduced a

Whek?l tr?(nslﬁpnhghthe loop bobdy,k\]/ve nge(z to rﬁ)relpare the Cont'nulf'notion of ordered linear continuations to facilitate the information-

tion focd,w Ic b?piﬁ”zt?d;t e coce Ot:t e loop test. Wb? ml? € flow analysis at a low level (we use ZM to refer to their system). An

ushe ora ”Imfny hocb abe hi oblser\klg ast 3(:0”5'?”6‘“0'.1 oc important requirement of such analysis is that one needs to allow

when translating the body. This block is introduced for maintain- 3 high_security conditional to be surrounded by low-security com-

ing the above invariants. It facilitates the type-preservation proof of , yiation. 1n zM, before the conditional statement, a linear contin-

the translation. After the translation of the loop body, this dummy 1i0n is created to capture the computation after the conditional.

blockis replaced with the actual code thatimplements the loop test, g,ch 5 inear continuation must be called exactly once at the end of

as shown on the bottom right side of Rule [TRCE]. either branch of the conditional. Furthermore, the linear continua-
tion records the security context in which it is created, allowing the

Procedure call translation is given as Rule [TRC7]. It creates = Ho : Wo, ~ | H;l

Lemma 6 (Expression Translation)If & ~ U, 3 - E : t, security context to be reset properly when the branches meet.
[E| =7|| r,and¥; A; {r: |t|,sp: Z};k F I, then As a higher-order analog to postdominators in a control-flow
U A;{sp: Zh kT 1. graph, ordered linear continuations enforce a stack discipline that

allows security contexts to be reset at the join points of program
branches. The static semantics ensures that the linear continuations

Lemma 7 (Command Translation) If & ~ ¥, &; [pc] - C, are properly nested, and at any time only the top continuation on the

TD [ 1%/[ -| o’ (virtual) continuation stack is available. The linearity is enforced
‘W [ ; A '2J - [ H' ] because the continuation is essentially popped off the stack when
start; bend; 2 K3 used. In particular, every value in ZM is tagged with a security
W(lena) = (V[A].(r) {sp: Z}) , SL(k) = |pc|, - H : ¥, then label. The operational semantics keeps track of the security context
¢~ U FH U andU A E Lgare 2 (V[A](k) {sp: Z}) . during the execution, and ensures that security labels of the values

) are propagated correctly.

The proofs for the above two lemmas are straightforward by |t may help to view our solution as an adaptation of linear con-
structural induction on the derivation of the translation. Type tinyations for the RISC architecture (we emphasize that there is not
preservation of procedure translation can be derived from Lemma 7 5 |oss of expressiveness; interested readers are referred to Appen-
based on Rule [TRF1]. Type preservation of program translation gix C for some details). A postdominator of program branches is

then follows based on Rule [TRP1]. essentially expressed as a static code label. The security operations
raise andlower correspond to the creation and elimination of lin-

Lemma 8 (Procedure Translation) If ¢ ~ ¥, & -F, + H : U, ear continuations. At any program point, our static semantics keeps
D N o’ , ., track of only the top element of the (virtual) continuation stack.
‘m [ H ] =| g | thend ~ ¥ and- H': W' The typing rule forraise ensures that the security context at the

postdominator matches the current one, thus enforcing the stack
discipline.
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— { Wil (V[A].(k) {sp: Z}) , } ]
H'{l — code[A](k){sp : Z}.5'bnz 7, 11 [A]; jmp I'[A]}
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. v /
LUsA RS

%; [pc] F £(Vq,...,Vy)

Figure 13. Command translation



int double(x:int) { x=x *2, } .. in a context if only the security level of the input matches that
if h<10 then double(h); of the context. In a security polymorphic TAtlike type system,
double(l); ... double can be given the type

(V[0, a]. (0> a){r: : inte, 7o : (V[].(@>a){r1 : inte})L})1.

Herery is the argument register, stores the return pointer, and
] ) ] ] the meta-variablé is reused as a variable.

We wish to point out, nonetheless, that such an adaptationyields |t jg straightforward to support this kind of polymorphism. In
problem of information-flow analysis for assembly code. In partic- \\,e omitted such polymorphism simply because it complicates the
ular, it bridges the gap between the functional abstraction of linear presentation without providing additional insights. Nonetheless,
continuations and the raw assembly code running on actual ma-the expressiveness of such polymorphism is still limited. Since the
chines. In comparison with ZM, our system TAlmodels the use  |apel o is not known until instantiated, the code d@buble has
of registers and assembly instructions, and hence is closer to the,q knowledge about. Hence the security contet> o cannot be
actual RISC architecture. We do not attach security labels to val- discharged within the body afouble .

ues; this makes it trivial to see that security annotations do not |t is not obvious why one would wish to discharge the security
affect computation. In fact, the enforcement of noninterference in cgntext within a polymorphic function. Indeed, it is always pos-
TAL ¢ is cleanly separated from normal program executidtris sible to wrap a function call inside a secured region by symmet-
also obvious that security operations in TAlare orthogonal from  ric raise andlower operations from the caller's side. However,
conventional instructionse(g.,branching and jumping) and mech-  the asymmetric discharging of security context may be desirable
anisms €.9.,call stack), which allows our approach to be carried for certifying optimizationFor instance, in Figure 14louble is
further with other language extensions. Consequently, we considerca|led as the last statement of the body of a high conditional. In
TAL ¢ as a good first step toward a scaled-up typed assembly lan-thjs case, directly discharging the security context wtienble
guage for noninterference. returns would remove a superfluolswer from the caller’s side.

SIF  SIF[16] is developed independently from TAL These two Such a discharging requiraswer to operate on small values—

systems are similar in spirit—both use static types for information- Since the return label is not statically fixed, it must be passed in

flow analysis. However, SIF is based on a minimal language where through a register. ) )

relatively simple annotations, namely a stack of static code labels, ~ 'tmay require singleton and intersection types to support such a

suffice. In a more realistic language, a single function (even if Lower operation. For example,double function that discharges

monomorphic with respect to security levels) can be called at differ- 1tS Sécurity context can have type

ent program points. The security contexts of these program points <V[9 105 ) {7"1 Cintg })

may be different with respect to (1) the postdominator of the cur- 0. (0> i . .

ren¥context (SIF tracks thFi)s with t(hg top s‘,)tack element), and (2) the ro : sint(a)L A (Vl]{e)}{rs : into}). 1

“enclosing contexts” (SIF tracks these with the stack tail). Since the Atthe end of the functior,ower r( discharges the security context

label stack of SIF is made up of static code labels, one cannot reuseand transfers the control to the return code. For type checking, the

the same code at different program points with different contexts.  singleton integer typeint(a) matches the register, with the
TAL ¢ only maintains the current security context at any pro- |abel in the security context, and the code type ensures that the

gram point, and we show that it suffices for establishing noninter- control flow to the return point is safe.

ference. With such a treatment, the code types are naturally poly-

morphic with respect to enclosing contexts. We also allow post- Full erasure With the powerful type constructs above, one can

dominators to be polymorphic. The certifying compilation scheme achieve a full erasure for thewer operation. Instead of treating

further demonstrates that TALis expressive enough for support- lower as an instruction, one can treat it as a transformation on

Figure 14. Security-polymorphic function

ing the source language. small values. This is in spirit similar to thpack operation of
existential types in TAL. Such &ower transformation bridges the
7. Extensions and Future Work gap between the current security context and the security level of

the target label. The actual control flow transfer is then completed
with a conventional jump instructior(g., jmp (lower ro)).

One can also achieve a full erasure fower even without sin-
gleton types. The idea is to separate the jump instruction into direct
jump and indirect jump. This is also consistent with real machine
architectures. Theower operation transforms word values (even-
tually, direct labels). Lowered labels, similar to packed values, may
serve as the operand of direct jump. Indirect jump, on the other
hand, takes normal small values. This is expressive enough for cer-
tifying compilation, yet may not be sufficient for certifying opti-
Security polymorphism TAL ¢ relies on a security contegit w mization as discussed above.
to identify the current security levéland its ending point. It is ] ]
monomorphic with respect to security, because the security level of Other future work It is a challenging task to study how the fea-
a code block is fixed. In practice, security-polymorphic code can tures above yield a system expressive enough for certifying opti-

Orthogonal features For ease of understanding, TALfocuses

on a minimal set of language features. Nonetheless, polymorphic
and existential types, as seen in TAL, are orthogonal and can be
introduced with little difficulty. Furthermore, since TALis com-
patible with TAL, it is also possible to accommodate other features
of the TAL family. For instance, alias types [26] may provide a
more accurate alias analysis, improving the current conservative
approach that considers every pointer as a potential alias. In the
following, we will also discuss the use of singleton types [32].

also be useful. mization. In TAL-, lower erases to a direct jump, hence consec-
Figure 14 gives an example. The functidouble can be utive lower operations result in superfluous jumps. Ideally, these
invoked with either low or high input. It is safe to invokeuble should be combined into a single jump whose operand is a nested
lowered value. Similarly, it is also desirable to combir&er with
1The extra subscript of security context in a progrRris only for facilitat- an adjacent jump instruction. In practice, certifying optimization

ing the noninterference proof; it can be completely ignored for computation. are sometimes considered for conventional type safety [9].



A security-type preserving translation for a full-fledged source
language is another challenging task. The formal translation and

type-preservation theorem in this paper are based on a concise
source language for demonstrative purposes. Practical embodi-

ment requires much further work. Existing work on type-preserving
translation [18, 15] and high-level information-flow analysis [23]

may shed light on the support of more advanced language features.

8. Conclusion

We have presented a language TAfor enforcing data confiden-
tiality in assembly code. The main idea is to use type annotations to
restore high-level abstractions that are crucial to information-flow
analysis. In TAlc, operations related to security are kept orthog-
onal from other language features. As a result, it is possible to ac-
commodate existing results on low-level verification, such as the
TAL family. We have also presented a translation from a high-level
security language with first-order procedures to FAIA sound-

[12] K. Honda and N. Yoshida. A uniform type structure for secure
information flow. InProc. 29th ACM Symposium on Principles of
Programming Languagegages 81-92, Portland, OR, Jan. 2002.

[13] D. Kozen. Efficient code certification. Technical Report TR98-1661,
Cornell University, Jan. 1998.

[14] D. Kozen. Language-based security. Rroc. 24th International
Symposium on Mathematical Foundations of Computer Science
volume 1672 ofLNCS pages 284-298, Szklarska Poreba, Poland,
Sept. 1999.

[15] C. League, Z. Shao, and V. Trifonov. Precision in practice: A type-
preserving Java compiler. IRroc. 12th International Conference
on Compiler Constructignvolume 2622 o.NCS pages 106-120,
Warsaw, Poland, Apr. 2003.

[16] R. Medel, A. Compagnoni, and E. Bonelli. Non-interference for a
typed assembly language. Pmoc. 2005 Workshop on Foundations of
Computer SecurityChicago, IL, June 2005.

[17] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed
assembly languagelournal of Functional Programmindl2(1):43—
88, Jan. 2002.

ness theorem shows that the translation preserves security typesjig] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F

We consider this as a useful step toward a certifying compiler for
noninterference.

Acknowledgments

We wish to thank Eduardo Bonelli, Adriana Compagnoni, Ricardo
Medel, Greg Morrisett, Steve Zdancewic and the anonymous refer-
ees for helpful comments on previous drafts of this paper.

References

[1] M. Abadi, A. Banerjee, H. Heintze, and J. G. Riecke. A core calculus
of dependency. IfProc. 26th ACM Symposium on Principles of
Programming Languagegages 147-160, San Antonio, TX, Jan.
1999.

[2] J. Agat. Transforming out timing leaks. IRroc. 27th ACM
Symposium on Principles of Programming Languagegjes 40—
53, Boston, MA, Jan. 2000.

[3] J. Agat. Type Based Techniques for Covert Channel Elimination and
Register Allocation PhD thesis, Chalmers University of Technology
and Gothenburg University, Gothenburg, Sweden, Dec. 2000.

[4] M. Avvenuti, C. Bernardeschi, and F. Francesco. Java bytecode
verification for secure information flowWACM SIGPLAN Notices
38(12):20-27, Dec. 2003.

[5] T. Ball. What's in a region? Or computing control dependence
regions in near-linear time for reducible control floACM Letters
on Programming Languages and Syste®{(4—4):1-16, Mar.—Dec.
1993.

[6] A. Banerjee and D. A. Naumann. Secure information flow and pointer
confinement in a Java-like language. Rroc. 15th IEEE Computer
Security Foundations Workshgpages 253-267, June 2002.

G. Barthe, A. Basu, and T. Rezk. Security types preserving
compilation. InProc. 5th International Conference on Verification,
Model Checking and Abstract Interpretatiorolume 2937 o NCS
pages 2—15, Venice, Italy, Jan. 2004.

E. Bonelli, A. Compagnoni, and R. Medel. SIFTAL: A typed
assembly language for secure information flow analysis. Technical
report, Stevens Institute of Technology, Hoboken, NJ, July 2004.

[9] J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound
TAL for back-end optimization. IfProc. 2003 ACM Conference on
Programming Language Design and Implementatjzages 208-219,
San Diego, CA, June 2003.

[10] D. E. R. DenningCryptography and Data Securithddison-Wesley,
Boston, MA, 1982.

[11] N. Heintze and J. G. Riecke. The SLam calculus: Programming with

security and integrity. IfProc. 25th ACM Symposium on Principles

of Programming Languagegages 365-377, San Diego, CA, Jan.

1998.

[7

—

8

—_

to typed assembly languagéACM Transactions on Programming
Languages and Systen2d (3):527-568, Nov. 1999.

[19] A. C. Myers. JFlow: Practical mostly-static information flow control.
In Proc. 26th ACM Symposium on Principles of Programming
Languagespages 228-241, San Antonio, TX, 1999.

[20] G. C. Necula.Compiling with Proofs PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, Sept. 1998.

[21] G. C. Necula and P. Lee. The design and implementation of a
certifying compiler. InProc. 98 ACM Conference on Programming
Language Design and Implementatjgrages 333-344, Montreal,
Canada, June 1998.

[22] F. Pottier and V. Simonet. Information flow inference for MACM
Transactions on Programming Languages and Systes4):117—
158, Jan. 2003.

[23] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. |IEEE Journal on Selected Areas in Communicatjons
21(1):5-19, Jan. 2003.

[24] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systemsRroc. of the IEEE63(9), Sept. 1975.

[25] F. B. Schneider, G. Morrisett, and R. Harper. A language-based
approach to security. Imformatics: 10 Years Back, 10 Years Ahead
volume 2000 oLNCS pages 86-101, 2001.

[26] F. Smith, D. Walker, and G. Morrisett. Alias types. Bmoc. 9th
European Symposium on Programminglume 1782 ofLNCS
pages 366-381, Berlin, Germany, Apr. 2000.

[27] G. Smith and D. Volpano. Secure information flow in a multi-threaded
imperative language. IRroc. 25th ACM Symposium on Principles of
Programming Languagepages 355-364, San Diego, CA, Jan. 1998.

[28] D. Wolpano and G. Smith. Eliminating covert flows with minimum
typings. In10th IEEE Computer Security Foundations Workshop
pages 156-169, Washington, DC, June 1997.

[29] D. Volpano and G. Smith. A type-based approach to program security.
In Proc. 7th International Joint Conference CAAP/FASE on Theory
and Practice of Software DevelopmghNCS, pages 607—621, Lille,
France, Apr. 1997.

[30] D. Volpano and G. Smith. Probabilistic noninterference in a
concurrent language. IRroc. 11th IEEE Computer Security
Foundations Workshgopages 34-43, Washington, DC, June 1998.

[31] D. Walker. A type system for expressive security policiesPtac.
27th ACM Symposium on Principles of Programming Languages
pages 254-267, Boston, MA, Jan. 2000.

[32] H. Xi and R. Harper. A dependently typed assembly language. In
Proc. 6th ACM International Conference on Functional Program-
ming pages 169-180, Florence, Italy, Sept. 2001.

[33] S. Zdancewic and A. C. Myers. Secure information flow via linear
continuations. Higher-Order and Symbolic Computatioh5(2—
3):209-234, Sept. 2002.



A. Noninterference Proof of TAL~

Lemma 3 (High Step)If P = (H, R, )., SL(k)Z 6, ¥;T" - P,
then either: (1) there exisiy, and P, = (Hi, R1, I1), such that
P+ Py, \I/;F1 F P, T =0 I'1, and\Il;F1 = P =y Py, o0r (2)]
is of the form(raise «'; I') or (Lower w).

Proof sketch: By case analysis on the first instructionfofl

cannot benalt, because the typing rule fanlt requires the
context to bes. If I is nothalt, raise or lower, by the

operational semantics and inversion on the typing rules, one can
getl'; and P; for the next step. The typing rules prohibit writing
into a low heap cell, hence low heap cells remain the same after
the step. When a register or stack slot is updafedyives it a type
whose security label take$L () into account, hence that register
or stack slot has a high type Ih . As a result’ =4 I'; and

\IJ;F1|_P%9P1. O

Lemma 4 (Context Discharge)lf P = (H, R, I)gpw, 0Z 0,
U:T + P, P+—"* (Hop, Ro,halt [0])., then there existE’ and
P’ = (H', R, lower w)gpw, Such thatt;; T + P', P —* P,
I tg/ F/,and\If;F/ = P%g/ P/.

Proof sketch: By generalized induction on the number of steps of
the derivationP —"* (Ho, Ro,halt [o])e.

The base case of zero step is not possible, because the securit
contexts do not match. In the inductive case, suppose the execution

consists ofn steps and the proposition holds for any step number
less tham. There are two cases to consider, following Lemma 3.

In the case where the first instruction 6fis not raise or
lower, by Lemma 3, there exisfs; and P, such thatP —— P,
U P, T = T, ;71 P =4 Py, and the security
context of P; is the same as that éf. P, must be a step in between
P and (Ho, Ro,halt [0])s because the operational semantics is
deterministic. Hence by induction hypothesisi@n there existg"”
and P’ such that¥; IV + P/, P, —* P/, T'1 =¢ IV and¥; TV -
P, =~, P'. Putting the above togetheP? ——* P/, T =4 I
because-, is transitive by definition, andr; TV - P =~y P’
by definition and the fact thdt; >,/ I".

Casel raise 61 >wi;I1. By definition of the opera-
tional semanticsP — P; where 1 = (H, R, I1)0,5w,- BY
inversion on¥;T"' - P and the typing rule ofraise, 6 C 6,
and ¥;T'; 0, >wy F ;. By definition of well-typed programs,
U:T' - P;. By induction hypothesis o, there exists'> and
P, = (I‘IQ7 RQ, lower w1)91b’w1 such thaﬂl; 'y - Py, Py — Ps,
Iy =0 s, \I’;FQ P g’ Ps. ‘If;Fz = P g/ P then follows
because the heaps and register file®iand P, are the same.

Further by the operational semanti¢%, — Ps; whereP; =
(Ha2, R2,1I3),. and I5 is the instantiated code af; whose se-
curity context isk. By inversion on the well-typedness df
(i.e.,raise 01 >w1; 1), K = 6> w. By induction hypothesis on
Ps, there exists” and P’ = (H', R',lower w)gs, Such that
\I/;F/ F P/, Ps — P/, Ty =g F/, and\I/;F’ F P g/ P

maintain that the security context is lower thtarinspection on

the typing rules shows that low locations in the heap can only be
assigned low values. Once a register or stack slot is given a high
value, its type in"; will change to high. In the case of branching,
the guard must be low, so bothand@ branch to the same code.
Hence the two programs remain equivalent after one stepO

Theorem 1 (Noninterference)lf P = (H, R, I)., SL(x) C 0,
U I'FP, U, THQ U, TEFP=Q,

P +——" (Hp, Rp,halt [0,])e, and

Q —* (Hyq, Rq,halt [og4])e, then existd” such that

U: T + (Hp, Rp,halt [op])e ~¢ (Hy, Rg,halt [0¢])e.

Proof sketch: By generalized induction on the number of steps
of the derivationP —* (Hp, Rp,halt [0,])s. The base case of
zero step is trivial. The inductive case is done by case analysis on
the first instruction of .

Consider the case whete = raise 6, >wi;1; and 6, Z 6.
By definition of the operational semantics and the typing rules,
P +—— P, where P, (H,R,I1)¢,pw, and ;" P;. By
Lemma 4, there existf, and P> = (Hz, Rz, lower w1)g,pw,
such thaﬂ’; o+ P, Py — P, T =9 T2, and\I/; I's P =9
,. HenceWl - H =~y Hs andl's - R ~¢ Rs. .

By the operational semantic®, — Ps wherew; = I1[¢],

P = (HQ, RQ, Ig[w/A]),ﬁs, andH(ll) = COde[A]</€3>F3.Ig. By
inversion on the derivation of; I's - P>, I's C ' andW; I's - Ps.
It follows thatT's - R ~¢ R2. By inversion on the derivation of
W; I' = P where the instruction sequencefsraise 61 > ws; I1,
K3 = K.

By similarly reasoning@) —* Qs whereQs = (Hj3, R5, I3) s,
U H =~y Hy,, T3 - R~ R,and¥; '3 - Q3. By transitivity of
the equivalence relationsly - Hy ~¢ H} andI's - Ra =~ R5.
HenceU;T' + P; =g Q3. The case then follows by induction
hypothesis.

All other cases remain low after a step. By Lemma 5, the two
programs in the next step are equivalent and well-typed. The proof
then follows by induction hypothesis. ad

B. Example

Figure 15 gives a simple example to demonstrate the use of security
labels and contexts. The high-level pseudo-code program involves
a low variablea and two high variables andc. In a corresponding
TAL - program, we use heap cells labelgdl, andi. to represent
these variables. The TAk program starts from the code labeled

lop in a low security context. After the initial setup, it raises the
security context toT >[3. The control is then transferred to the
code labeled;, which contains a test on the high variablend
directs the execution to two separate branches. In either branch of
the conditional, the high variable is updated, and the security

Putting the above together, the original proposition holds for case context is restored withiower I3. The code ats is then free to

I =raise 61 >wi; 4.
Casel = lower ws. By inversion on the typing rule dfower,
w = w;. Let P' = P, the proposition holds. O

Lemma5 (Low Step)If P = (H,R,I)., SL(k) C0,¥;T I P,
\I’;F [ Q, \IJ;F =P =y Q, P+ Py, Q — Ql, then exists’Fl
suchthatV;T'y - P, U; Ty F Qrand¥; Ty F P~ Q1.

Proof sketch: By case analysis on the first instruction/ofBy
SL(x) C 0 and the definition ofcy, P and@ contain the same
instruction sequence. The case of raising does not change the
state, hence trivially maintains the equivalence. All other cases

update the low variable again.

A closer look at the code labeldd reveals several interest-
ing issues. When checking the first load instructipa €4, 72(0)),
the security level for4 is inferred to be highT). The following
branching instructionthz 74, l2) type-checks because the current
security context > I3) is high enough to cover the security level
of r4. The next store instructios€ r3(0), ro) is also valid, because
it is ok to update a high variable in a high context. In compari-
son, the store instruction would fail to type-checkifvas a low
variable. Finally, the high security context is ended with a lower
instruction (Lower [3) that directs the control flow to the postdom-
inator of the conditional.



A pseudo-code program: a=0;
if (b <> 0) then c =1 else ¢ =0;
a=1
A corresponding TAk program:  (H,{sp : nil}, jmp lo)e WhereH ={
lo —
lb [ad
le —

lo — code[o](e){sp : nil}.

mov 7o, 0; % 1o« 0
mov 71, la; %r1—l,
mOVTg,lb; %7‘2 <—lb
mov 73, l¢; % rs — e
st 7’1(0),7“(); %la — 0
raise T b l3; % raise security context
jmp iy

li— code[o[(Tpi3){ro: (inty) ,r1:(inty) ,re: (intT) ,r3: (intT), ,sp: nil}.
1d r4,72(0);
bnz 14, l2; % go tols if content ofl, is not zero
st r3(0), 7o; % theelse branchi. — 0
lower I3 % restore security context and golitp

la — code[o](T > l3){ro: (intL), ,r1: (inty) ,r2: (intT) ,73: (intT),,sp: nil}.
mov 7o, 1;
st r3(0), 7o; % thethen branch:l. — 1
lower I3 % restore security context and golitp

I3 +— code[o](e){r: : int,sp : nil}.
mov 7o, 1;
st 71(0), 7o; Do lo — 1
halt [int, ]

}
Figure 15. TAL ¢ example
C. Translating Linear Continuations declared usingetlin is assigned the heap lalglduring closure

¢ conversion, the elimination expressibgoto y v can be translated

It may appear that TAL is not as expressive as the language o , preceded with appropriate code computing the argu-

Zdancewic and Myers' [33] (ZM), because the security context of &S alower !
TAL ¢ uses static labels. Nonetheless, these static labels are onl entv. . . . . .
used to refer to code (e.g., that of linear continuations in zM) o better understanding the relationship between linear contin-
whose locations can be statically determined. Indeed, their sourceuat'OnS in ZM and securlgy contexts n T’?‘LWG further look into
level counterparts are the ending points of conditional structures, an example of nesterkt1lin declarations:

which are always statically known. Therefore, there is not a loss letliny; = vy in letlinys = lvs ine.

of expressiveness. We demonstrate this by speculating a translatio
from ZM to TAL¢.

In ZM, there are two expressions manipulating linear continu-
ations: creation and elimination. The creation of a linear continua-
tion essentially has the forietlin y = Apc)(z:0).cine’. A
corresponding elimination has the folrgoto y v.

nOnce the secontetlin is declared, the first linear continuatign
should be accessible only from insitle. Therefore, ZM requires
that e type checks undeg., andlv. type checks undey,. This
essentially enforces a stack discipline.

TAL - has a similar mechanism. Suppose the current secu-

: : ; : ity context is #, >1; and the current instruction sequence is
The translation can be carried out following Morrigettal. [18]. nty

The step of CPS conversion is not needed because ZM is already*2:8¢ 02 > l2; I. The type system of TAL checksl undert; > I,
in CPS. During closure conversion, the abstractidpc) (z : o).e and checks that the code typelatrespects)s > 1. This enforces
(which corresponds to the code at a postdominator) will be assignedals'm'lar. stack discipline as in ZM’ note that only the top stack
a static code label. This code label is exactly the static postdomi- €'€MeNt IS apparent at any given time. .
nator needed for raising the security context in FALn a formal In summary, it is possible to con_duct a formal tr_anslatlon frqm
translation, this label can be used to generateise instruction ZM to TAL c. Nonetheless, we believe that the simple security-

when a corresponding branching point is reached. The typing (in ']Eyp.‘:l"_ system ijn Figurg_l ofv?/ecltion 2.2fis molre acclestsiblfe andzllz/letter
particular, the security labels) of a ZM program is sufficient for 'acliitates understanding. We leave a formal translation from ZM to

identifying the branching point. TAL ¢ as future work.
The elimination of linear continuationgoto y v) is relatively
straightforward. Suppose the code wf(the lambda abstraction)



