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Abstract.As a form of knowledge acquisition from data, we consider the problemwhich, given a partially de�ned Boolean function with missing data (pBmd) ( ~T; ~F ),where ~T � f0; 1; �gn and ~F � f0; 1; �gn, respectively, represent \positive examples"and \negative examples" and \�" represents missing bits in the data, establishes aBoolean function (extension) f such that f is true (resp., false) in every given true(resp., false) vector. In particular, we study extensively three types of extensionscalled consistent, robust and most robust extensions for various classes of Booleanfunctions such as general, positive, regular, k-DNF, h-term DNF, Horn, self-dual,threshold, read-once, and decomposable. For certain classes we shall provide poly-nomial algorithms, and for other cases we prove their NP-hardness.Acknowledgements: This research was partially supported by ONR (Grants N00014-92-J-1375 and N00014-92-J-4083), and the Scienti�c Grants in Aid by the Ministry of Education,Science and Culture of Japan. The visit of the �rst author to Kyoto University was madepossible by the grant (06044112) of the Ministry of Education, Science and Culture ofJapan. The third author is supported by Research Fellowships of the Japan Society for thePromotion of Science for Young Scientists.
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Page 2 RRR 6-961 IntroductionKnowledge acquisition in the form of Boolean logic has been intensively studied in the recentresearch (e.g., [3, 5, 8, 12, 18]): given a set of data, represented as a set T of binary \true n-vectors" (or \positive examples") and a set F of \false n-vectors" (or \negative examples"),establish a Boolean function (extension) f in a speci�ed class C, such that f is true (resp.,false) in every given true (resp., false) vector; i.e., T � T (f) and F � F (f), where T (f)(resp., F (f)) denotes the set of true vectors (resp., the set of false vectors) of f . A pair ofsets (T;F ) is called a partially de�ned Boolean function (pdBf) throughout this paper.For instance, data x represent the symptoms to diagnose a disease, e.g., x1 denoteswhether temperature is high (x1 = 1) or not (x1 = 0), and x2 denotes whether blood presureis high (x2 = 1) or not (x2 = 0), etc. Establishing an extension f , which is consistentwith the given data, amounts to �nding a logical diagnostic explanation of the given data.Therefore, this may be considered as a form of knowledge acquisition from given examples.In this process, some knowledge or hypothesis about the extension f is usually avail-able beforehand. Such knowledge may be obtained from experience or from the analysis ofmechanisms that may or may not cause the phenomena under consideration. In the aboveexample of diagnosing diseases, it would be natural to assume that we somehow know thedirection of each variable that tends to cause the disease to appear. By changing the po-larities of variables if necessary, therefore, the extension f(x) can be assumed to be positivein all variables. In this paper, we discuss several classes of functions such as positive (alsocalled monotone), regular, k-DNF, Horn and dual-comparable, which respectively arise indi�erent context of applications.Unfortunately, the real-world data might not be complete. As for the above examples,for some data x, temperature might not be measured, that is, it is not known whether x1 = 0or 1. For another instance, we have a battery of 45 biochemical tests for carcinogenicity.However, we do not usually apply all tests, since all tests cannot be checked in a laboratoryor some tests are very expensive. When a test is not applied, we say that the test result ismissing. A set of data ( ~T; ~F ), which includes the missing results, is called a partially de�nedBoolean function with missing data (pBmd), where ~T (resp., ~F ) denotes the set of \positiveexamples" (resp., \negative examples") of such vectors. To cope with such situations, weintroduce in this paper three types of complete Boolean functions called consistent, robustand most robust extensions, respectively. More precisely, given a pBmd ( ~T ; ~F ) and a classof Boolean functions C, (i) a consistent extension is a Boolean function f in C such that,for every ~a 2 ~T (resp., ~F ), there is a 0-1 vector a obtained from ~a by �xing missing dataappropriately, for which f(a) = 1 (resp., f(a) = 0) holds, (ii) a robust extension is a Booleanfunction f in C such that, for every ~a 2 ~T (resp., ~F ), any 0-1 vector a obtained from ~a by�xing missing data arbitrarily satis�es f(a) = 1 (resp., f(a) = 0), and (iii) a most robustextension is a Boolean function f in C which is a robust extension of a pBmd (T 0; F 0),where (T 0; F 0) is obtained from ( ~T; ~F ) by �xing a smallest set of missing data appropriately(the remaining missing data in T 0 [ F 0 are assumed to take arbitrary values). All of theseextensions provide logical explanations of a given pBmd ( ~T; ~F ) with varied freedom given



RRR 6-96 Page 3to the missing data in ~T and ~F . By de�nition, if ( ~T; ~F ) has a robust extension, it is alsoa most robust extension and is a consistent extension, and if ( ~T; ~F ) has a most robustextension, it is a consistent extension. In case of most robust and consistent extensions, theyalso provide information such that some missing data must take certain values if ( ~T; ~F ) canhave a consistent extension in class C. This type of information is also useful in analyzingincomplete data sets.In this paper, we study the problems of deciding the existence of (and constructing)these extensions for a given pBmd ( ~T ; ~F ) and class C, mainly from the view point of theircomputational complexity. We obtain computationally e�cient algorithms in some cases,and prove NP-completeness in some other cases. For a summary of the results obtained, seeTables 1{5.2 Preliminaries2.1 Boolean functionsA Boolean function, or a function in short, is a mapping f : IBn 7! IB, where IB = f0; 1g,and x 2 IBn is called a Boolean vector (or a vector in short). If f(x) = 1 (resp., 0), thenx is called a true (resp., false) vector of f . The set of all true vectors (resp., false vectors)is denoted by T (f) (resp., F (f)). Two special functions with T (f) = ; and F (f) = ; arerespectively denoted by f = ? and f = >. For two functions f and g on the same set ofvariables, we write f � g if f(x) = 1 implies g(x) = 1 for all x 2 IBn, and we write f < g iff � g and f 6= g.A function f is positive if x � y (i.e., xi � yi for all i 2 f1; 2; : : : ; ng) always impliesf(x) � f(y). A positive function is also called monotone. For a subset R � f1; 2; : : : ; ng, letxjR denote the vector obtained from x by switching the values 0 and 1 of all xj, j 2 R. Thenf is called unate if there is a subset R such that xjR � yjR always implies f(x) � f(y).The variables x1; x2; : : : ; xn and their complements �x1; �x2; : : : ; �xn are called literals. A termis a conjunction of literals such that at most one of xi and �xi appears for each i. Theconstant 1 (viewed as the conjunction of an empty set of literals) is also considered as aterm. A disjunctive normal form (DNF) is a disjunction of terms. Clearly, a DNF de�nes afunction, and it is well-known that every function can be represented by a DNF (however,such a representation may not be unique). Throughout this paper, unless otherwise stated,we usually do not distinguish a DNF ' from the function it represents.It is also well-known that a Boolean function f is positive if and only if f can be repre-sented by a DNF, in which all the literals of each term are uncomplemented. A function iscalled a k-DNF if it has a DNF with at most k literals in each term, h-term DNF if it hasa DNF with at most h terms, and Horn if it has a DNF with at most one complementedliteral in each term. Furthermore, a function f is called renamable Horn (or sometimesdisguised Horn) if there exists a subset R � f1; 2; : : : ; ng such that function f(xjR) is Horn.Obviously, a positive function is a special case of a Horn function, and a unate function is aspecial case of a renamable Horn function.



Page 4 RRR 6-96A Boolean expression is called read-once [1] if it contains at most one occurrence ofeach variable, where an expression can be given by using conjunctions, disjunctions andcomplementations. For instance, �x1 _ x2(x3 _ x4�x5) is a read-once expression. Read-onceexpressions are also called �-formulas [20] or Boolean trees. A function is called read-once ifit has a read-once expression.The dual of a function f , denoted fd, is de�ned byfd(x) = �f (�x);where �f and �x denote the complement of f and x, respectively. As is well-known, a Booleanexpression de�ning fd can be obtained from an expression representing f by exchanging _(or) and � (and), as well as the constants 0 and 1. It is easy to see that (f _ g)d = fdgd, andso on. A function f is called dual-minor if f � fd, dual-major if f � fd, dual-comparable iff � fd or f � fd, and self-dual if fd = f . It is known [5] that a function f is dual-minor(resp., dual-major, self-dual) if and only if at most (resp., at least, exactly) one of f(a) = 1and f(�a) = 1 holds for every a 2 IBn.An assignment A of binary values 0 or 1 to k variables xi1; xi2; : : : ; xik is called a k-assignment, and is denoted byA = (xi1  a1; xi2  a2; : : : ; xik  ak) ;where each of a1; a2; : : : ak is either 1 or 0. Let the complement of A, denoted by �A , representthe assignment obtained from A by complementing all the 1's and 0's in A. When a functionf of n variables and a k-assignment A are given,fA = f(xi1 a1; xi2 a2;:::; xik ak)denotes the function of (n � k) variables obtained by �xing variables xi1; xi2; : : : ; xik asspeci�ed by A. Let f be a function of n variables. If either fA � f �A or fA � f �A holds forevery k-assignment A, then f is said to be k-comparable. If f is k-comparable for every ksuch that 1 � k � m, then f is said to be m-monotonic. (For more detailed discussion onthese topics, see [16] for example.) In particular, f is 1-monotonic if f(xi 1) � f(xi 0) orf(xi 1) � f(xi 0) holds for every i 2 f1; 2; : : : ; ng. A function f is positive if and only if f is1-monotonic and f(xi 1) � f(xi 0) holds for all i.Now consider a 2-assignment A = (xi  1; xj  0). IffA � f �A (resp., fA > f �A )holds, this is denoted xi �f xj (resp., xi �f xj). Variables xi and xj are said to be comparableif either xi �f xj or xi �f xj holds. When xi �f xj and xi �f xj hold simultaneously, it isdenoted as xi �f xj. If f is 2-monotonic, this binary relation �f over the set of variables isknown to be a total preorder [16]. A 2-monotonic positive function f of n variables is calledregular if x1 �f x2 �f � � � �f xn: (1)



RRR 6-96 Page 5Any 2-monotonic positive function becomes regular by permuting variables. It is knownthat f is regular if and only if f(x) � f(y) holds for all x; y 2 IBn with Pj�k xj � Pj�k yj,k = 1; 2; : : : n. The 2-monotonicity and related concepts have been studied under variousnames in the �elds such as threshold logic [16] and hypergraph theory [6]. It was originallyintroduced in conjunction with threshold functions (e.g., [16]), where a positive function fis threshold if there exist n+ 1 nonnegative real numbers �1; �2; : : : ; �n and t such that:f(x) = ( 1; if P�ixi � t0; if P�ixi < t:As �i � �j implies xi �f xj and �i = �j implies xi �f xj, a threshold function is always2-monotonic, although the converse is not true [16].Let V = f1; 2; : : : ; ng denote the index set of variables. For a vector x 2 IBn andS � V , x[S] denotes the projection of x on S. To simplify notation, for a Boolean functionh depending only on variables of S � V , we write h(S) instead of h(x[S]). A function f iscalled g(S0; h1(S1); h2(S2); :::; hk(Sk))-decomposable [3, 14] if it satis�es the following threeconditions:(i) hi depends only on variables in Si, i = 1; :::; k,(ii) g depends on the variables in S0 and on the binary values hi(Si) fori = 1; :::; k, (i.e., g : f0; 1gjS0j+k ! f0; 1g),(iii) f = g(S0; h1(S1); h2(S2); :::; hk(Sk)).Let us note that S0; S1; : : : ; Sk are not necessarily assumed to be disjoint. Also, a func-tion f is called positive g(S0; h1(S1); :::; hk(Sk))-decomposable if f is g(S0; h1(S1); :::; hk(Sk))-decomposable and functions g, hi, i = 1; 2; : : : ; k are all positive.2.2 Partially de�ned Boolean functions (with missing data) andtheir extensionsA partially de�ned Boolean function (pdBf) is de�ned by a pair of sets (T;F ) such thatT;F � IBn. A function f is called an extension (or theory) of the pdBf (T;F ) if T � T (f)and F � F (f). We shall also say in this case that the function f correctly classi�es all thevectors a 2 T and b 2 F . Evidently, the disjointness of the sets T and F is a necessary andsu�cient condition for the existence of an extension. It may not be evident, however, how to�nd out whether a given pdBf has a extension in C, where C denotes a subclass of Booleanfunctions, such as the class of positive functions, the class of k-DNF's, etc. Therefore, wehave considered in [5] the following problems.Problem EXTENSION(C)Input: a pdBf (T;F ), where T;F � IBn.Question: Is there an extension f 2 C of (T;F ) ?



Page 6 RRR 6-96Problem BEST-FIT(C)Input: a pdBf (T;F ), where T;F � IBn, and a positive weight functionw : T [ F 7! IR+.Output: Subsets T � and F � such that T � \ F � = ; and T � [ F � = T [ F ,for which the pdBf (T �; F �) has an extension in C, and w(T \ F �) +w(F \ T �) is minimum.Let us add that, in case the answer is YES in problem EXTENSION(C), we expect to beable to specify an extension f 2 C as a justi�cation. Hence, if EXTENSION(C) is solvable inpolynomial time, we also provided such an extension f 2 C, either by a direct algebraic form,or by a polynomial time membership oracle [5]. Similarly, for BEST-FIT(C), an extensionf 2 C of the pBmd (T �; F �) has also to be speci�ed [5]. Note that w(T \ F �) + w(F \ T �)in the problem statement denotes the minimum weight sum of the vectors in T [ F whichare erroneously classi�ed by the obtained extension.As a pdBf does not allow missing data, we then introduce setIM = f0; 1; �g;and interpret the asterisk components � of v 2 IMn as missing bits. For a vector v 2 IMn,let ON(v) = fj j vj = 1; j = 1; 2; : : : ; ng and OFF (v) = fj j vj = 0; j = 1; 2; : : : ; ng. For asubset ~S � IMn, let AS( ~S) = f(v; j)jv 2 ~S; j 2 V n (ON(v) [ OFF (v))g be the collectionof all missing bits of the vectors in ~S. If ~S is a singleton fvg, we also denote AS(fvg) asAS(v). Clearly, IBn � IMn, and v 2 IBn if and only if AS(v) = ;. Let us consider binaryassignments � 2 IBQ to subsets Q � AS( ~S) of the missing bits. For a vector v 2 ~S and anassignment � 2 IBQ, v� denotes the vector obtained from v by replacing the � componentswhich belong to Q by the binary values assigned to them by �, i.e.,v�j = ( vj if (v; j) 62 Q�(v; j) if (v; j) 2 Q:For vectors v;w 2 IMn, we shall write v>�w (resp., v<�w) if there exists an assignment� 2 IBAS(fv;wg) for which v� � w� (resp., v� � w�) holds, and we say that v is potentiallygreater (resp., smaller) than w. If both v>�w and v<�w hold then we write v � w, and saythat v is potentially identical with w. Note that v � w holds if and only if there is anassignment � 2 AS(fv;wg) such that v� = w�.A pdBf with missing data (or in short pBmd) is a pair ( ~T ; ~F ), where ~T; ~F � IMn. To apBmd ( ~T; ~F ) we always associate the set AS = AS( ~T [ ~F ) of all missing bits. A function fis called a robust extension of the pBmd ( ~T ; ~F ) iff(a�) = 1 and f(b�) = 0 for all a 2 ~T ; b 2 ~F and for all � 2 IBAS :We �rst consider the problem of deciding the existence of a robust extension of a given pBmd( ~T; ~F ) in a speci�ed class C.



RRR 6-96 Page 7Problem RE(C)Input: A pBmd ( ~T; ~F ), where ~T; ~F � IMn.Question: Does ( ~T ; ~F ) have a robust extension in class C ?In case of a YES answer, we normally assume that a robust extension f 2 C can also beprovided, either by a direct algebraic form, or by a polynomial time membership oracle. Itmay happen that a pBmd ( ~T; ~F ) has no robust extension in C, but it has an extension if wechange some (or all) � bits to appropriate binary values. A function f is called a consistentextension of pBmd ( ~T ; ~F ), if there exists an assignment � 2 IBAS for which f(a�) = 1 andf(b�) = 0 for all a 2 ~T and b 2 ~F . In other words, a pBmd ( ~T; ~F ) is said to have aconsistent extension in C if, for some assignment � 2 IBAS , the pdBf ( ~T �; ~F �) de�ned by~T � = fa� j a 2 ~Tg and ~F � = fb� j b 2 ~Fg has an extension in C. This leads us to the problemof deciding the existence of a consistent extension of a given pBmd ( ~T; ~F ) in a speci�ed classC. Problem CE(C)Input: A pBmd ( ~T; ~F ), where ~T; ~F � IMn.Question: Does ( ~T ; ~F ) have a consistent extension in class C ?Again in case of a YES answer, we normally assume that an assignment � 2 IBAS,for which the pdBf ( ~T �; ~F �) has an extension in C, is also speci�ed together with such anextension f 2 C (f is described either by a direct algebraic form, or by a polynomial timemembership oracle).It may also happen that not all missing bits should be speci�ed in order to have arobust extension. In this case, call an assignment � 2 IBQ for a subset Q � AS as arobust assignment if the resulting pBmd ( ~T �; ~F �) has a robust extension in class C. We areinterested in �nding a robust assignment with the smallest size jQj. Such an extension iscalled a most robust extension of the given pBmd ( ~T; ~F ) in the speci�ed class C.Problem MRE(C)Input: A pBmd ( ~T; ~F ), where ~T; ~F � IMn.Output: NO if ( ~T; ~F ) does ot have a consistent extension; otherwise arobust assignment � 2 IBQ for a subset Q � AS, which minimizes jQj.Similarly to the previous problems, a robust extension f 2 C of pBmd ( ~T �; ~F �) is alsonormally required to output. Let us de�ne�(C; ( ~T; ~F )) = minQ�AS9�2BQ s.t. ( ~T�; ~F�)has a robust extension in CjQj; (2)where �(C; ( ~T ; ~F )) = +1 if there is no Q satisfying the stated condition. To simplifynotation, we sometimes use �( ~T; ~F ) in place of �(C; ( ~T ; ~F )), unless confusion arises. Observe



Page 8 RRR 6-96that a pBmd ( ~T; ~F ) has a robust extension if and only if �( ~T; ~F ) = 0, and it has a consistentextension if and only if �( ~T; ~F ) � jASj.It follows therefore that if RE(C) or CE(C) are NP-complete, then MRE(C) is NP-hard,and conversely, if MRE(C) is solvable in polynomial time, then both RE(C) and CE(C) arepolynomially solvable. It seems also that RE(C) is, in general, easier than CE(C). Indeed,this is the case for many classes. NP-complete, Let us also note that, if AS = ; (i.e.,( ~T; ~F ) is a pdBf), then the notions of extension, robust extension and consistent extensionall coincide. Thus, RE(C) and CE(C) are both at least as di�cult as EXTENSION(C).Let us add that we shall also consider various restricted variants of the above problems,in which the input pBmd ( ~T; ~F ) is restricted to satisfy certain conditions such as(a) jASj � k, where k = O(log(n+ j ~T j+ j ~F j)).(b) jAS(a)j � k for every a 2 ~T[ ~F , where k is a given constant, or k = O(log(n+j ~T j+j ~F j)).3 Relations to EXTENSION and BEST-FITIn this section, we examine more carefully the relation between our problems CE(C), RE(C),MRE(C) and those problems EXTENSION(C) and BEST-FIT(C) studied in [5]. As a result,we see that many complexity results follow from the results in [5].3.1 Implications of EXTENSIONFirst of all, as we mentioned earlier, EXTENSION(C) is a special case of problems RE(C)and CE(C), since all these problems coincide if a pBmd ( ~T; ~F ) satis�es AS = ;. Hence wehave the following theorem.Theorem 1 If problem EXTENSION(C) is NP-complete, then problem CE(C) is NP-comp-lete, and problem RE(C) is NP-hard. Furthermore, if the considered pBmds ( ~T ; ~F ) arerestricted to those satisfying jAS(a)j = O(log(n + j ~T j+ j ~F j) for all a 2 ~T [ ~F , then RE(C)is NP-complete. 2The slight di�erence between the conclusions for CE(C) and RE(C) comes from the factthat, although it is easy to see that CE(C) is in class NP, problem RE(C) may not belong toclass NP, since the condition \for all � 2 IBAS" is involved in the de�nition of RE(C). Forinstance, given a pBmd ( ~T; ~F ) and a cubic DNF f 2 C3�DNF , the problem of deciding if fis a robust extension of ( ~T; ~F ), or not, can be shown to be co-NP-complete.The second half of the theorem statement can be shown as follows. For a given pBmd( ~T; ~F ), de�ne T+ = fa� j a 2 ~T; � 2 IBAS(a)gF+ = fb� j b 2 ~F ;� 2 IBAS(b)g: (3)



RRR 6-96 Page 9Then by the de�nition of a robust extension, a pBmd ( ~T ; ~F ) has a robust extension in C ifand only if a pdBf (T+; F+) has an extension in C. Furthermore,jT+j+ jF+j = O((j ~T j+ j ~F j)� 2O(log(n+j ~T j+j ~F j)));which is polynomial in j ~T j, j ~F j and n. Thus, RE(C) is obviously in NP in this case.Therefore, we immediately have the following corollary from the results in [5].Corollary 1 Problem CE(C) is NP-complete and problem RE(C) is NP-hard for the follow-ing classes of functions C: (1) (positive) k-DNF, (2) (positive) h-term-DNF, (3) (positive)h-term-DNF with �xed h � 2, (4) (positive) h-term-k-DNF, (5) (positive) h-term-k-DNFwith �xed h � 1, (6) (positive) h-term-k-DNF with �xed k � 1, (7) renamable Horn,(8) 2-monotonic positive, (9) (positive) read-once, and (10) unate. Furthermore, problemRE(C) for these classes is NP-complete if pBmds ( ~T; ~F ) are restricted to those satisfyingjAS(a)j = O(log(n+ j ~T j+ j ~F j) for all a 2 ~T [ ~F . 2However, we also have the following positive results.Theorem 2 Let a pBmd ( ~T; ~F ) satisfy jAS(a)j = O(log(n+ j ~T j+ j ~F j)) for all a 2 ~T [ ~F ,where ~T; ~F � IMn. If problem EXTENSION(C) can be solved in polynomial time, thenproblem RE(C) is also polynomially solvable.Proof. As noted after Theorem 1, a pBmd ( ~T; ~F ) has a robust extension in C if and only ifpdBf (T+; F+) has an extension in C, where T+ and F+ are de�ned by (3). This and thepolynomiality of EXTENSION(C) imply the polynomiality of RE(C). 2Corollary 2 Let a pBmd ( ~T ; ~F ) satisfy jAS(a)j = O(log(n+ j ~T j+ j ~F j)) for all a 2 ~T [ ~F ,where ~T ; ~F � IMn. Then problem RE(C) can be solved in polynomial time for the followingclasses of functions C: (1) general, (2) positive, (3) regular, (4) (positive) k-DNF with �xedk, (5) (positive) 1-term-DNF, (6) (positive) h-term-k-DNF with �xed h and k, (7) (positive)self-dual, (8) (positive) dual-minor, (9) (positive) dual-major, (10) (positive) g(S0; h1(S1))-decomposable, (11) Horn, and (12) threshold.Proof. Combine Theorem 2 and the results in [5]. 2Theorem 3 Let a pBmd ( ~T; ~F ) satisfy jASj = O(log(n + j ~T j + j ~F j)), where ~T ; ~F � IMn.If problem EXTENSION(C) can be solved in polynomial time, then problem MRE(C) is alsopolynomially solvable.Proof. Let ( ~T; ~F ) be such a pBmd. Then, for each assignment � 2 IMAS (note that thismay not be a binary assignment), check if the pBmd ( ~T �; ~F �) has a robust extension. In thiscase, since ( ~T �; ~F �) satis�es jASj = O(log(n+j ~T j+j ~F j)), RE(C) can be solved in polynomialtime by Theorem 2. Therefore we �nd an assignment �� 2 IMAS that maximizes jAS(��)jamong those having robust extensions. Then set Q = AS n AS(��) and binary assignment



Page 10 RRR 6-96� 2 IBQ such that �j = ��j for all j 2 Q provide a solution of MRE(C). As the number ofassignments � 2 IMAS is 3jASj, that is, polynomial in j ~T j, j ~F j and n, we can �nd such anassignment �� 2 IMAS in polynomial time. 2Corollary 3 Let a pBmd ( ~T ; ~F ) satisfy jASj = O(log(n + j ~T j + j ~F j)), where ~T; ~F � IMn.Then problem MRE(C) can be solved in polynomial time for the following classes of functionsC: (1) general, (2) positive, (3) regular, (4) (positive) k-DNF with �xed k, (5) (positive)1-term-DNF, (6) (positive) h-term-k-DNF with �xed h and k, (7) (positive) self-dual, (8)(positive) dual-minor, (9) (positive) dual-major, (10) (positive) g(S0; h1(S1))-decomposable,(11) Horn, and (12) threshold.Proof. Combine Theorem 3 and the results in [5]. 23.2 Implications of BEST-FITLet us recall problem BEST-FIT(C) described in Subsection 2.2, and denote by "(T;F ) therequired minimum weight sum of error vectors:"(T;F ) = minT�\F�=;;T�[F�=T[F(T�;F�) has an extension in Cw(T \ F �) + w(F \ T �):For subsets A;B � IMn, let A � B denote the set of vectors obtained as concatenations ofvectors from A and B, i.e., A�B = f(a; b) j a 2 A; b 2 Bg:We introduce the following properties for binary vectors p; q; r 2 IBk for some k.PA(p): (T;F ) has an extension in C if and only if (T � fpg; F � fpg) has anextension in C.PB(p; q; r): (T;F ) has an extension in C if and only if ((T � fpg) [ (IBn � fqg); (F �fpg) [ (IBn � frg)) has an extension in C.Lemma 1 Let (T;F ) be a pdBf with T;F � IBn and w(a) = 1 for all a 2 T [ F (i.e.,w(T \ F �) + w(F \ T �) = jT \ F �j + jF \ T �j), and let us assume that class C satis�esproperties PA((1; 0)) and PB((1; 0); (1; 1); (0; 0)). Then"(T;F ) = �(T � f(1; �)g; F � f(�; 0)g);where � is de�ned by (2).



RRR 6-96 Page 11Proof. Let ~T = T � f(1; �)g and ~F = F � f(�; 0)g. Thus ~T; ~F � IMn+2. Let (T �; F �) bethe solution of BEST-FIT(C) with input (T;F ), i.e., "(T;F ) = jT \ F �j+ jF \ T �j. De�neT 0 = T n F � and F 0 = F n T �. Obviously, the pdBf (T 0; F 0) has an extension in C. Thenby property PA((1; 0)) the pdBf (T 0 � f(1; 0)g; F 0 � f(1; 0)g) has an extension in C, andfurthermore by property PB((1; 0); (1; 1); (0; 0)), the pdBf (T 00; F 00), whereT 00 = (T 0 � f(1; 0)g) [ (T � f(1; 1)g)F 00 = (F 0 � f(1; 0)g) [ (F � f(0; 0)g);also has an extension in C, since T � IBn and F � IBn. Now, de�ne the setsQ1 = AS ((T \ F �)� f(1; �)g)Q2 = AS ((F \ T �)� f(�; 0)g) ;and the assignment � on Q = Q1[Q2 by �(q) = 1 for all q 2 Q1 and �(q) = 0 for all q 2 Q2.Then we conclude that the pBmd ( ~T �; ~F �) has a robust extension in C, since any vectora 2 IBn+2 obtainable from ~a 2 ~T � (resp., ~F �) by an assignment satis�es a 2 T 00 (resp., F 00).This implies that "(T;F ) = jT \ F �j+ jF \ T �j = jQ1j+ jQ2j � �( ~T ; ~F ):For the converse inequality, let us assume next that a subset Q � AS of the above pBmd( ~T; ~F ) and an assignment � 2 IBQ satisfy jQj = �( ~T ; ~F ), and that the resulting pBmd( ~T �; ~F �) has a robust extension f in C. De�neT ] = fa 2 T j ((a; 1; �); n+ 2) 62 QgF ] = fb 2 F j ((b; �; 0); n+ 1) 62 Qg:Then f(a; 1; 0) = 1 and f(b; 1; 0) = 0 hold for all a 2 T ] and b 2 F ], by the de�nition of arobust extension. Thus, the pdBf (T ] � f(1; 0)g; F ] � f(1; 0)g) has an extension in C. This,by property PA((1; 0)), implies that (T ]; F ]) has also an extension f 0 in C. Then applyingthis extension f 0 to (T;F ), f 0 can misclassify only vectors in T nT ] and in F nF ]. Therefore,"(T;F ) � jT n T ]j+ jF n F ]j = jQj = �( ~T; ~F );since jAS(a)j = 1 holds for every a 2 ~T [ ~F . 2This lemma implies immediately the following theorem.Theorem 4 If a class of functions C satis�es properties PA((1; 0)) and PB((1; 0), (1; 1),(0; 0)), and problem BEST-FIT(C) is NP-hard when all a 2 T [ F satisfy w(a) = 1, thenproblem MRE(C) is NP-hard, even if jAS(a)j � 1 holds for all a 2 ~T [ ~F . 2We shall show later in Theorem 31 that Theorem 4 implies the NP-hardness of MRE(C)for the class C+g(S0;h1(S1)).



Page 12 RRR 6-963.3 Positive extensionsLet us consider problems with subclasses of positive functions C � C+. Given a vectorv 2 IMn, let us denote by 1 2 IBAS(v) (resp., by 0 2 IBAS(v)) the assignment of ones (resp.,zeros) to all (v; i) 2 AS(v).Lemma 2 Consider a class of functions C � C+. For a pBmd ( ~T ; ~F ), let us associate apdBf (T�; F+) by de�ning T� = fa0 j a 2 ~TgF+ = fb1 j b 2 ~Fg:Then, the pBmd ( ~T; ~F ) has a robust extension in the class C if and only if the pdBf (T�; F+)has an extension in class C.Proof. Let us assume �rst that the pBmd ( ~T; ~F ) has a robust extension f 2 C. Then,by de�nition, f is an extension of the pdBf (T�; F+). For the converse direction, let usassume that the pdBf (T�; F+) has an extension g in class C. For any assignment � 2 IBASand a 2 ~T , the vector a0 2 T� satis�es a0 � a�, and hence g(a�) = 1 is implied byg(a�) � g(a0) = 1. Similarly, for any assignment � 2 IBAS and b 2 ~F , the vector b1 2 F+satis�es b1 � b�, and hence g(b�) = 0 follows analogously. Therefore, g is a robust extensionof the pBmd ( ~T ; ~F ) in the class C. 2Lemma 3 Consider a class of functions C � C+. For a pBmd ( ~T ; ~F ), let us associate thepdBf (T+; F�) de�ned by T+ = fa1 j a 2 ~TgF� = fb0 j b 2 ~Fg:Then, the pBmd ( ~T; ~F ) has a consistent extension in the class C if and only if the pdBf(T+; F�) has an extension in the same class.Proof. Let us assume �rst that the pBmd ( ~T; ~F ) has a consistent extension f 2 C, i.e. thatthere exists an assignment � 2 IBAS such that f is an extension of the pdBf ( ~T �; ~F �). SinceC � C+, for any a 2 ~T (resp., b 2 ~F ), f(a�) = 1 (resp., f(b�) = 0) implies f(a1) = 1(resp., f(b0) = 0) by a� � a1 (resp., b� � b0). This implies that f is also an extension ofthe pdBf (T+; F�). The converse direction is immediate, since (T+; F�) � ( ~T �; ~F �) for theassignment � 2 IBAS de�ned by �(v; i) = 1 if v 2 ~T , (v; i) 2 AS(v) and �(u; j) = 0 for allu 2 ~F , (u; j) 2 AS(u). 2The following theorem and its corollary are immediate by Lemmas 2 and 3, and by theresults of [5].Theorem 5 If C � C+ and problem EXTENSION(C) can be solved in polynomial time, thenproblems RE(C) and CE(C) can also be solved in polynomial time. 2



RRR 6-96 Page 13Corollary 4 Problems RE(C) and CE(C) can be solved in polynomial time for the followingclasses of functions C: (1) positive, (2) regular, (3) positive k-DNF with �xed k, (4) positive1-term-DNF (5) positive h-term-k-DNF with �xed h and k, (6) positive self-dual, (7) positivedual-minor, (8) positive dual-major, and (9) positive g(S0; h1(S1))-decomposable. 2Furthermore, we have the following result.Theorem 6 If C � C+ and problem BEST-FIT(C) can be solved in polynomial time, thenMRE(C) can be solved in polynomial time for any pBmd ( ~T ; ~F ) that satis�es jAS(a)j � 1for all a 2 ~T [ ~F .Proof. Let us consider a pBmd ( ~T; ~F ) with jAS(a)j � 1 for all a 2 ~T [ ~F . De�ne a pdBf(T 0; F 0) by T 0 = fa1; a0 j a 2 ~TgF 0 = fb1; b0 j b 2 ~Fg:Let us de�ne the weights of the above vectors byw(a1) = +1 if a 2 ~Tw(b0) = +1 if b 2 ~Fw(a0) = 1 if a 2 ~T and AS(a) 6= ;w(b1) = 1 if b 2 ~F and AS(a) 6= ;:We claim that �( ~T ; ~F ) = "(T 0; F 0)holds, which will prove the theorem.First, if "(T 0; F 0) < +1, then clearly, there is a consistent extension of ( ~T ; ~F ) by thede�nition of w. Conversely, if there is a consistent extension f of ( ~T; ~F ), then f(a1) = 1holds for all a 2 ~T and f(b0) = 0 holds all b 2 ~F by the positivity of f , which implies"(T 0; F 0) < +1.Let us assume next that there is a solution of MRE(C) for ( ~T; ~F ); i.e., a subset Q � ASwith jQj = �( ~T ; ~F ) and an assignment � 2 IBQ for which ( ~T �; ~F �) has a robust extension fin C. Then f correctly classi�es all vectors in T 0[F 0, except for a�� 2 T 0[F 0 with AS(a) 6= ;(where �� denotes the complement of �). Hence�( ~T; ~F ) = jQj = Xa2T 0 s.t. f(a)=0w(a) + Xb2F 0 s.t. f(b)=1w(b) � "(T 0; F 0):For the converse inequality, consider a solution (T �; F �) to BEST-FIT(C) for the pdBf(T 0; F 0), i.e., T � \ F � = ;, T � [ F � = T 0 [ F 0, the pdBf (T �; F �) has an extension f in



Page 14 RRR 6-96C, and "(T 0; F 0) = w(T 0 \ F �) + w(F 0 \ T �) < +1. Then, by the positivity of f , we havea1 2 T � for all a 2 ~T and b0 2 F � for all b 2 ~F . Thus de�ne Q = Q1 [ Q2, whereQ1 = f(a; j) j a 2 T 0; (a; j) 2 AS(a) and a0 2 F �gQ2 = f(b; j) j b 2 F 0; (b; j) 2 AS(b) and b1 2 T �g;and an assignment � 2 IBQ by �(a; j) = 1 for (a; j) 2 Q1, and �(b; j) = 0 for (b; j) 2 Q2.The resulting ( ~T �; ~F �) has a robust extension f 2 C. Consequently,"(T 0; F 0) = jQ1j+ jQ2j = jQj � �( ~T; ~F ): 2Corollary 5 Let a pBmd ( ~T; ~F ) satisfy jAS(a)j � 1 for all a 2 ~T [ ~F . Then problemMRE(C) is polynomially solvable for the following classes of functions C: (1) positive, (2)regular, and (3) positive h-term-k-DNF with �xed h and k. 2In the rest of paper, we discuss complexity results of CE(C), RE(C) and MRE(C), whichare not immediately derivable from the results for EXTENSION(C) and BEST-FIT(C) dis-cussed in [5].4 General functions4.1 Problems RE and CELet Call denote the class of all functions We �rst consider Problem RE(Call).Theorem 7 Problem RE(Call) can be solved in polynomial time.Proof. A pBmd ( ~T ; ~F ) has a robust extension if and only if there exists an index j suchthat aj 6= bj and faj; bjg = f0; 1g (i.e., either aj = 0 and bj = 1, or aj = 1 and bj = 0) forevery pair of a 2 ~T and b 2 ~F . Obviously, this can be checked in O(njT jjF j) time. 2Let us now turn to problem CE(Call). First, we note that CE(Call) can be trivially solvedif jAS(a)j > 0 holds for every a 2 ~T [ ~F . This is so, because ( ~T ; ~F ) always has a consistentextension f . Indeed, let us consider an assignment � 2 IBAS such that jON(a�)j is odd forall a 2 ~T , and jON(b�)j is even for all b 2 ~F , and let f be the parity function such thatf(v) = 1 if jON(v)j is odd, and f(v) = 0 if jON(v)j is even. Furthermore, CE(Call) can besolved in polynomial time by Corollary 3 if jASj = O(log(n+ j ~T j+ j ~F j)). Problem CE(Call)becomes more di�cult when not all input vector has missing bits, but the number of missingbits in total is large, although, it remains polynomially solvable if no input vector containsmore than one missing bit.



RRR 6-96 Page 15Theorem 8 Problem CE(Call) can be solved in polynomial time for a pBmd ( ~T; ~F ) for whichevery a 2 ~T [ ~F satis�es jAS(a)j � 1.Proof. Let ja be the index of the � in each vector a 2 ~T [ ~F (i.e., AS(a) = f(a; ja)g), ifany. Then ( ~T ; ~F ) has a consistent extension if and only if (i) there is no pair of a 2 ~T andb 2 ~F such that a; b 2 IBn and a = b, and (ii) there is an assignment � 2 IBAS satisfying theconditions �(a; ja) 6= bja if a 62 IBn and b 2 IBn (4)�(b; jb) 6= ajb if a 2 IBn and b 62 IBn (5)�(a; ja) 6= bja or �(b; jb) 6= ajb if a; b 62 IBn and ja 6= jb (6)�(a; ja) 6= �(b; jb) if a; b 62 IBn and ja = jb: (7)for every pair of a 2 ~T and b 2 ~F with a � b. Obviously, condition (i) can be checked inO(nj ~T jj ~F j) time. To check (ii), let us observe that each of the conditions (4){(7) can equiv-alently be expressed as clauses in the variables �(v; j) for (v; j) 2 AS. Namely, conditions(4) and (5) are equivalent with linear clauses, (6) can be represented by a clause containingtwo variables, and condition (7) can be represented by the conjunction of two clauses, eachof which contains two variables. E.g. (7) is equivalent with the condition(�(a; ja) _ �(b; jb))(�(a; ja) _ �(b; jb)) = 1:In total, we have a 2-SAT problem containing at most 2j ~T jj ~F j clauses, which is solvable intime linear in its input size (see e.g., [2]). This shows that problem CE(Call) can be solvedin O(nj ~T jj ~F j) time. 2Example 1. Let us de�ne ~T ; ~F � f0; 1g3 by~T = 8>>><>>>: a(1) = (1; 1; �)a(2) = (0; 0; 1)a(3) = (0; 1; �)a(4) = (�; 0; 0) 9>>>=>>>; ; ~F = 8><>: b(1) = (1; 1; 1)b(2) = (0; �; 1)b(3) = (�; 0; 0) 9>=>; :Then we have the following 2-SAT:�(a(1); 3)�(b(2); 2)(�(a(3); 3) _ �(b(2); 2))(�(a(4); 1) _ �(b(3); 1))(�(a(4); 1) _ �(b(3); 1)) = 1:For this, the assignment � 2 IBAS given by �(a(1); 3) = �(a(3); 3) = �(a(4); 1) = 0 and�(b(2); 2) = �(b(3); 1) = 1, is a satisfying solution. 2In general, however, we have the following negative result.Theorem 9 Problem CE(Call) is NP-complete, even if jAS(a)j � 2 holds for all a 2 ~T [ ~F .



Page 16 RRR 6-96Proof. Given an assignment � 2 IBAS , we can check in polynomial time if ( ~T �; ~F �) has anextension in Call, [5]. Hence problem CE(Call) is in NP. Hence problem CE(Call) belongs toNP.Let us now consider a cubic CNF� = m̂k=1CkCk = (uk _ vk _ wk);where uk, vk and wk for k = 1; 2; :::;m are literals from set L = fx1; �x1; : : : ; xn; �xng. The3-SAT problem, i.e., deciding the existence of a binary vector y 2 f0; 1gn for which �(y) = 1,is one of the well-known NP-complete problems (see [11]). We shall associate to � a pBmd( ~T; ~F ), as follows, which has a consistent extension in Call if and only if the 3-SAT � = 1has a solution.Let us introduce subsets Az = fpz1; pz2g, z 2 L and Bk = fqk1; qk2; qk3g, k = 1; 2; : : : ;msuch that Az \ L = Bk \ L = Az \ Bk = ;, Az \ Az0 = ; for z 6= z0, and Bi \ Bj = ; fori 6= j. Let V = L [ ([z2LAz) [ ( m[k=1Bk):Let us denote by (R;S) the vector v 2 IMV for which ON(v) = R and AS(v) = f(v; j) j j 2Sg. (Then OFF (v) = V n (R [ S), i.e. if S = ;, then v denotes a binary vector.)Let us construct ~T ; ~F � IMV by setting ~T = ~T1 [ ~T2 and ~F = ~F1 [ ~F2, where~T1 = f(L n fxi; �xig; fxi; �xig) jxi 2 Lg [ f((L n fzg) [ fpzjg; ;) j z 2 L; j = 1; 2g~T2 = 8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
ak = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1g; fqk2; qk3g)auk1 = ((L n fukg) [Auk ; fqk1g)auk2 = ((L n fuk; �uk; vkg) [Auk [ fqk1g; fvkg)auk3 = ((L n fuk; �uk; vk; �vk; wkg) [ Auk [ fqk1g; fwkg)auk4 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fpuk2g [ fqk1g; fpuk1g)avk1 = ((L n fvkg) [ fqk2g; fqk1g) k = 1; 2; : : : ;mavk2 = ((L n fvk; �vk; wkg) [ fqk1; qk2g; fwkg)avk3 = ((L n fvk; �vk; wk; �wk; ukg) [ fqk1; qk2g; fukg)awk1 = ((L n fwkg) [ fqk3g; fqk1g)awk2 = ((L n fwk; �wk; ukg) [ fqk1; qk3g; fukg)awk3 = ((L n fwk; �wk; uk; �uk; vkg) [ fqk1; qk3g; fvkg)

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;



RRR 6-96 Page 17~F1 = f(L; ;)g [ f(L n fxi; �xig; ;) jxi 2 Lg [ f(L n fzg;Az) j z 2 Lg~F2 = 8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
bk = ((L n fuk; �uk; vk; �vk; wk; �wkg) [Bk; ;)buk1 = ((L n fuk; �ukg) [ Auk [ fqk1g; f�ukg)buk2 = ((L n fuk; �uk; vk; �vkg) [Auk [ fqk1g; f�vkg)buk3 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [Auk [ fqk1g; f �wkg)buk4 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1g; fpuk2g)bvk1 = ((L n fvkg); fqk2g)bvk2 = ((L n fvk; �vkg) [ fqk1; qk2g; f�vkg) k = 1; 2; : : : ;mbvk3 = ((L n fvk; �vk; wk; �wkg) [ fqk1; qk2g; f �wkg)bvk4 = ((L n fvk; �vk; wk; �wk; uk; �ukg) [ fqk1; qk2g; f�ukg)bwk1 = ((L n fwkg); fqk3g)bwk2 = ((L n fwk; �wkg) [ fqk1; qk3g; f �wkg)bwk3 = ((L n fwk; �wk; uk; �ukg) [ fqk1; qk3g; f�ukg)bwk4 = ((L n fwk; �wk; uk; �uk; vk; �vkg) [ fqk1; qk3g; f�vkg)

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>; :(8)It is easy to see that jAS(a)j � 2 holds for all a 2 ~T [ ~F .Let us �rst assume that there is a consistent extension f of ( ~T ; ~F ), and show that � issatis�able. Now (Lnfxi; �xig; fxi; �xig) 2 ~T1 and (L; ;), (Lnfxi; �xig; ;) 2 ~F1 imply that eitherf(L n fxig; ;) = 1 or f(L n f�xig; ;) = 1 (or both) holds for each of i = 1; 2; : : : n. Let usde�ne a binary vector y 2 IBn byyi = ( 1 if f(L n fxig; ;) = 00 otherwise;and show that this y satis�es �(y) = 1. By the de�nition of y, yi = 1 (resp., yi = 0)implies f(L n f�xig; ;) = 1 (resp., f(L n fxig; ;) = 1). Assuming that there exists a clauseCk = (uk _ vk _ wk), which is 0, we derive a contradiction.(i) If uk = 0, then f(L n fukg; ;) = 1. Therefore ((L n fukg);Auk) 2 ~F1 and ((L n fukg)[fpukjg; ;) 2 ~T1 for j = 1; 2 implyingf((L n fukg) [ Auk ; ;) = 0: (9)Let us consider the sequenceauk1 (2 ~T2); buk1 (2 ~F2); : : : ; auk4 (2 ~T2); buk4 (2 ~F2):The equation (9) and auk1 2 ~T2 imply f((L n fukg) [ Auk [ fqk1g; ;) = 1; which also yieldsf((L n fuk; �ukg)[Auk [fqk1g; ;) = 0 by buk1 2 ~F2. By applying a similar argument, we havef((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1g; ;) = 0: (10)(ii) If vk = 0, then f(L n fvkg; ;) = 1 must hold. Let us consider the sequencebvk1 (2 ~F2); avk1 (2 ~T2); : : : ; avk3 (2 ~T2); bvk4 (2 ~F2):



Page 18 RRR 6-96Then f(L n fvkg; ;) = 1 and bvk1 2 ~F2 imply f((L n fvkg) [ fqk2g; ;) = 0; from whichf((L n fvkg) [ fqk1; qk2g; ;) = 1 follows by avk1 2 ~T2. By applying a similar argument, wehave f((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1; qk2g; ;) = 0: (11)(iii) If wk = 0, then similarly to (ii), we havef((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1; qk3g; ;) = 0: (12)The three equations (10), (11) and (12), and the fact that bk 2 ~F2 together imply that nobinary assignment to the missing bits of ak 2 ~T2 can make it a true vector of f , contradictingthe fact that f is a consistent extension of ( ~T ; ~F ).For the converse direction, let y� 2 IBn be a satisfying solution to �, and letP0 = f(L n fxig; ;g) j y�i = 0; i = 1; 2; : : : ; ng [ f(L n f�xig; ;g) j y�i = 1; i = 1; 2; : : : ; ng[ f((L n fzg) [ fpzjg; ;) j z 2 L; j = 1; 2g:For each clause Ck = (uk _ vk _wk), let us de�ne sets Pk1, Pk2 and Pk3 as follows. If uk = 1holds for the assignment y�, thenPk1 = 8>>>>>><>>>>>>: (ak)0 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1g; ;)(auk1)0 = ((L n fukg) [Auk ; ;)(auk2)0 = ((L n fuk; �ukg) [Auk [ fqk1g; ;) k = 1; 2; : : : ;m(auk3)0 = ((L n fuk; �uk; vk; �vkg) [Auk [ fqk1g; ;)(auk4)0 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [Auk [ fqk1g; ;) 9>>>>>>=>>>>>>; ;otherwise letPk1 = 8>>><>>>: (auk1)0 = ((L n fukg) [ Auk [ fqk1g; ;)(auk2)0 = ((L n fuk; �uk; vkg) [Auk [ fqk1g; ;) k = 1; 2; : : : ;m(auk3)0 = ((L n fuk; �uk; vk; �vk; wkg) [Auk [ fqk1g; ;)(auk4)0 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fpuk2g [ fqk1g; ;) 9>>>=>>>; :If vk = 1 holds for the assignment y�, thenPk2 = 8>>><>>>: (ak)00 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1; qk2g; ;)(avk1)0 = ((L n fvkg) [ fqk2g; ;) k = 1; 2; : : : ;m(avk2)0 = ((L n fvk; �vkg) [ fqk1; qk2g; ;)(avk3)0 = ((L n fvk; �vk; wk; �wkg) [ fqk1; qk2g; ;) 9>>>=>>>; ;otherwise,Pk2 = 8><>: (avk1)0 = ((L n fvkg) [ fqk1; qk2g; ;)(avk2)0 = ((L n fvk; �vk; wkg) [ fqk1; qk2g; ;) k = 1; 2; : : : ;m(avk3)0 = ((L n fvk; �vk; wk; �wk; ukg) [ fqk1; qk2g; ;) 9>=>; :



RRR 6-96 Page 19Finally, if wk = 1 holds for the assignment y�, then letPk3 = 8>>><>>>: (ak)000 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1; qk3g; ;)(awk1)0 = ((L n fwkg) [ fqk3g; ;) k = 1; 2; : : : ;m(awk2)0 = ((L n fwk; �wkg) [ fqk1; qk3g; ;)(awk3)0 = ((L n fwk; �wk; uk; �ukg) [ fqk1; qk3g; ;) 9>>>=>>>; ;otherwise setPk3 = 8><>: (awk1)0 = ((L n fwkg) [ fqk1; qk3g; ;)(awk2)0 = ((L n fwk; �wk; ukg) [ fqk1; qk3g; ;) k = 1; 2; : : : ;m(awk3)0 = ((L n fwk; �wk; uk; �uk; vkg) [ fqk1; qk3g; ;) 9>=>; :Let us de�ne a function f by f(a) = ( 1 if a 2 P0 otherwise,where P = P0 [ (Smk=1(Pk1 [ Pk2 [ Pk3)). We claim that this function f is a consistentextension of ( ~T ; ~F ).It is easy to see that for every a 2 ~T1, there exists an assignment � 2 IBAS(a) such thata� 2 P0, and for every a 2 ~T2 n fak j k = 1; 2; : : :mg, there exists an assignment � 2 IBAS(a)such that a� = (a)0. Finally, since y� satis�es Ck = 1 for each ak 2 ~T2, at least one of (ak)0,(ak)00 or (ak)000 belongs to P , and hence f is a consistent extension of pBmd ( ~T; ;).Let us show next that f is a consistent extension of (;; ~F ). LetQ0 = f(L; ;)g [f(L n fxi; �xig; ;) jxi 2 Lg[f((L n fxig) [ Axi; ;); (L n f�xig; ;) j y�i = 0; i = 1; 2; : : : ; ng[ f(L n fxig; ;); ((L n f�xig) [ A�xi; ;) j y�i = 1; i = 1; 2; : : : ; ng[fbk 2 ~F2 j k = 1; 2; : : : ;mg:For each clause Ck = (uk _ vk _wk), let us de�ne sets Qk1, Qk2 and Qk3 as follows. If uk = 1holds for the assignment y�, thenQk1 = 8>>><>>>: (buk1)0 = ((L n fukg) [Auk [ fqk1g; ;)(buk2)0 = ((L n fuk; �uk; vkg) [ Auk [ fqk1g; ;) k = 1; 2; : : : ;m(buk3)0 = ((L n fuk; �uk; vk; �vk; wkg) [Auk [ fqk1g; ;)(buk4)0 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fpuk2g [ fqk1g; ;) 9>>>=>>>; ;otherwise letQk1 = 8>>><>>>: (buk1)0 = ((L n fuk; �ukg) [Auk [ fqk1g; ;)(buk2)0 = ((L n fuk; �uk; vk; �vkg) [Auk [ fqk1g; ;) k = 1; 2; : : : ;m(buk3)0 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [Auk [ fqk1g; ;)(buk4)0 = ((L n fuk; �uk; vk; �vk; wk; �wkg) [ fqk1g; ;) 9>>>=>>>; :



Page 20 RRR 6-96If vk = 1 holds for the assignment y�, thenQk2 = 8>>><>>>: (bvk1)0 = ((L n fvkg); ;)(bvk2)0 = ((L n fvkg) [ fqk1; qk2g; ;) k = 1; 2; : : : ;m(bvk3)0 = ((L n fvk; �vk; wkg) [ fqk1; qk2g; ;)(bvk4)0 = ((L n fvk; �vk; wk; �wk; ukg) [ fqk1; qk2g; ;) 9>>>=>>>; ;otherwise,Qk2 = 8>>><>>>: (bvk1)0 = ((L n fvkg) [ fqk2g; ;)(bvk2)0 = ((L n fvk; �vkg) [ fqk1; qk2g; ;) k = 1; 2; : : : ;m(bvk3)0 = ((L n fvk; �vk; wk; �wkg) [ fqk1; qk2g; ;)(bvk4)0 = ((L n fvk; �vk; wk; �wk; uk; �ukg) [ fqk1; qk2g; ;) 9>>>=>>>; :Finally, if wk = 1 holds for the assignment y�, then letQk3 = 8>>><>>>: (bwk1)0 = ((L n fwkg); ;)(bwk2)0 = ((L n fwkg) [ fqk1; qk3g; ;) k = 1; 2; : : : ;m(bwk3)0 = ((L n fwk; �wk; ukg) [ fqk1; qk3g; ;)(bwk4)0 = ((L n fwk; �wk; uk; �uk; vkg) [ fqk1; qk3g; ;) 9>>>=>>>; ;otherwise setQk3 = 8>>><>>>: (bwk1)0 = ((L n fwkg) [ fqk3g; ;)(bwk2)0 = ((L n fwk; �wkg) [ fqk1; qk3g; ;) k = 1; 2; : : : ;m(bwk3)0 = ((L n fwk; �wk; uk; �ukg) [ fqk1; qk3g; ;)(bwk4)0 = ((L n fwk; �wk; uk; �uk; vk; �vkg) [ fqk1; qk3g; ;) 9>>>=>>>; :It is easy to see that for every b 2 ~F1 [ fbk j k = 1; 2; : : : ;mg, there exists an assignment� 2 IBAS(a) such that a� 2 Q0, and for every a 2 ~F2 n fbk j k = 1; 2; : : :mg, there exists anassignment � 2 IBAS(a) such that a� = (a)0. Hence f is a consistent extension of the pBmd(;; ~F ).Finally, let Q = Q0 [ (Smk=1(Qk1 [ Qk2 [ Qk3)). It is easy to check that P \ Q = ;holds. Therefore, by combining the above two results, we can conclude that f is a consistentextension of the pBmd ( ~T; ~F ). 24.2 Problem MREWe consider problem MRE(Call) in this subsection. By Corollary 3 and Theorem 9, thisproblem is NP-hard, even if the number of missing bits is not more than 2 in each inputvector. Therefore, we only consider the case in whichjAS(a)j � 1 for all a 2 ~T [ ~F;and show that MRE(Call) can be solved in polynomial time in such a case.



RRR 6-96 Page 21Let us remark �rst that any assignment � 2 AS for which ( ~T �; ~F �) has an extensionmust satisfy the conditions (i) and (ii) in the proof of Theorem 8. Hence, some componentsof such an � may be forced to take a uniqe binary value by conditions (4) and (5) of (ii). Letus assume that we �x all such missing bits in advance, and let us consider only conditions(6) and (7) in the sequel.Let us de�ne a bipartite graph GAS = (V;E) byV = AS( ~T) [ AS( ~F );E = f(q; r;�) j q = (a; i) 2 AS( ~T ); r = (b; j) 2 AS( ~F );and there exists an assignment � 2 IBfq;rg such that a� = b�g; (13)where the label c(e) of each edge e = (q; r; c(e)), as de�ned in (13), is called the con�gurationof e. If there are more than one assignments � 2 IBfq;rg for some q 2 AS( ~T) and r 2 AS( ~F),for which a� = b� (this occurs if q = (a; i) and r = (b; j) satisfy i = j), then the graph GAShas parallel edges corresponding to such di�erent con�gurations. Let us note that, sincejAS(a)j � 1 holds for all a 2 ~T [ ~F , every pair of q = (a; i) 2 AS( ~T ) and r = (b; j) 2 AS( ~F )has at most two assignments � 2 IBfq;rg such that a� = b�.Example 2. Let us de�ne ~T ; ~F � f0; 1g6 by~T = 8>>>>>><>>>>>>: a(1) = (�; 1; 1; 1; 1)a(2) = (1; 1; 1; 1; �)a(3) = (1; 1; 1; �; 1)a(4) = (1; 1; �; 1; 1)a(5) = (1; �; 0; 1; 0) 9>>>>>>=>>>>>>; ; ~F = 8>>><>>>: b(1) = (1; �; 1; 1; 1)b(2) = (1; 1; 1; 1; �)b(3) = (1; 1; �; 1; 0)b(4) = (1; 1; 0; 1; �) 9>>>=>>>; :Then graph GAS is given in Figure 1, Although the con�gurations of the edges are notindicated, they are easy to �nd out. For example, edge e = (a(1); b(1)) has c(e) = (a(1)1 =1; b(1)2 = 1), and double edges e0 = (a(2); b(2)) and e00 = (a(2); b(2)) have c(e0) = (a(2)5 = 0; b(2)5 =0) and c(e00) = (a(2)5 = 1; b(2)5 = 1), respectively. 2Lemma 4 Given a pBmd ( ~T ; ~F ), an assignment � 2 IBQ for a subset Q � AS is a robustassignment of ( ~T ; ~F ) (i.e., ( ~T �; ~F �) has a robust extension) if and only if, for every edgee = (q; r;�) of GAS , we have either q = (a; i) 2 Q and a� 6= a�, or r = (b; j) 2 Q andb� 6= b�, or both.Proof. Let us �rst show the only-if-part. Let f be a robust extension of ( ~T �; ~F �), and lete = (q; r;�) be an edge of GAS . We can assume without loss of generality, that q = (a; i) 2AS( ~T ).Let us assume that either q 62 Q or a� = a�. Let us show �rst that f(a�) = 1 is impliedthen. Indeed, if q = (a; i) 62 Q, then (a�)� = a�, and since � 2 IBQ is a robust assignment,f(a�) = 1 must hold. On the other hand, if a� = a�, then obviously f(a�) = f(a�) = 1must hold, since a 2 ~T .
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Figure 1: The graph GAS of the pBmd ( ~T ; ~F ) in Example 2.We then show that f(a�) = 1 implies r = (b; j) 2 Q and b� 6= b�. If r 62 Q, then(b�)� = b� = a�, and hence f(a�) = f(b�) = 0 by b 2 ~F , which is a contradiction. Similarly,b� = b� leads to the same contradiction. Hence r 2 Q and b� 6= b� must hold.To prove the if-part, assume that � 2 IBQ for a subset Q � AS is not a robust assignmentof ( ~T; ~F ). Then, by the de�nition of robustness, we have a pair of vectors a 2 ~T and b 2 ~Fsuch that a� � b�. Then the edge e = (q; r;�) with q = (a; i) and r = (b; j) does not satisfythe statement of the lemma. 2For a vector d 2 IBn, let E(d) denote the set of edges e = (q; r;�) 2 E with a� = b� = d,where q = (a; i) and r = (b; j), and let E = [dE(d). Let us de�ne a coherent domain D(d)as the set of vertices incident to some edges of E(d), and let D0 denote the set of isolatedvertices (i.e., incident to no edge e 2 E). (Vertices in D0 do not belong to any coherentdomain.) In the following discussion, we only consider nonempty coherent domains D(d).Figure 2 shows all nonempty coherent domains of the graph GAS of ( ~T; ~F ) in Example 2.Lemma 5 Every coherent domain D(d) � V of GAS induces a complete bipartite subgraphof GAS .Proof. Take any pair q = (a; i) 2 AS( ~T ) and r = (b; j) 2 AS( ~F ) that satisfy q; r 2 D(d).Then there exist assignments � 2 IBfqg and � 2 IBfrg such that d = a� = b�. We concatenatethese assignments to have an assignment  = (�; �) 2 IBfq;rg for which a = b = d, implyingthat there is an edge (q; r) 2 E(d). 2Lemma 6 Let D(d) and D(d0) be two coherent domains of GAS , where d; d0 2 IBn andd 6= d0. If D(d) \D(d0) 6= ;, then k d� d0 k= 1 holds, where k x k=Pni=1 jxij.
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Figure 2: Coherent domains of the graph GAS of ( ~T ; ~F ) in Example 2.Proof. Let q = (a; i) 2 D(d)\D(d0). Then there exist two assignments �; � 2 IBfqg (= f0; 1g)such that a� = d and a� = d0. Since jAS(a)j � 1 is assumed, k d � d0 k= 1 is implied. 2Lemma 7 Let D(d) and D(d0) be two coherent domains of GAS , where d; d0 2 IBn andd 6= d0. Then jD(d) \ D(d0)j � 2 holds. Furthermore, if D(d) \ D(d0) = fq; rg, then thegraph GAS has two parallel edges between q and r.Proof. If q = (a; i); r = (b; j) 2 D(d) \ D(d0), then by assigning 0 and 1 to q and r, eachof a and b can become both d and d0. Since k d � d0 k= 1 by Lemma 6, this can onlyhappen if the vectors a and b are identical, missing the same component i = j. ThereforejD(d) \D(d0)\AS( ~T)j � 1 and jD(d) \D(d0)\AS( ~F )j � 1, and hence jD(d) \D(d0)j � 2.Finally, if D(d) \ D(d0) = fq; rg, where q = (a; i) 2 AS( ~T ) and r = (b; j) 2 AS( ~F ), thenq = r implies that there are two assignments �; � 2 IBfq;rg such that a� = b� = d anda� = b� = d0, i.e. the graph GAS has two parallel edges between q and r. 2Let us now color the edges of GAS by \yellow" and \blue", so that all edges of a set E(d)get the same color, and for every pair E(d) and E(d0) with D(d) \D(d0) 6= ; the edges inE(d) get di�erent colors from the edges of E(d0). We call such a two coloring alternating.The following lemma shows that an alternating coloring is always possible. Furthermore, itcan be uniquely completed after �xing a color of a set E(d) in each connected component ofGAS .Lemma 8 Let D(d(0));D(d(1)); : : : ;D(d(l)) denote a cycle of coherent domains such thatd(i�1) 6= d(i) and D(d(i�1))\D(d(i)) 6= ; hold for all i = 1; 2; : : : ; l�1, and D(d(l)) = D(d(0)).Then l is even.



Page 24 RRR 6-96Proof. Lemma 6 tells that k d(i�1) � d(i) k= 1 holds for all i = 1; 2; : : : ; l � 1. Sincek d(0) � d(l) k= 0 is even, l must be even. 2Finally let us orient the edges of GAS according to a given alternating coloring, as follows.Every yellow edge (q; r) is oriented from q 2 AS( ~T ) to r 2 AS( ~F ), and every blue edge (q; r)is oriented from r 2 AS( ~F ) to q 2 AS( ~T ). Let G0AS denote the resulting directed graph. Forexample, Figure 3 shows the directed graph G0AS for the pBmd ( ~T; ~F ) of Example 2. Let usobserve that every directed path of this graph is alternating in colors, and every alternatingundirected path is either forward directed or backward directed.
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Figure 3: The directed graph G0AS of ( ~T; ~F ) in Example 2.The next lemma characterizes a robust assignment by a directed path of G0AS .Lemma 9 Let ( ~T ; ~F ) be a pBmd, and let q(0) �!e1 q(1) �!e2 q(2) : : : q(l�1) �!el q(l) be a directedpath in G0AS . Then � 2 IBQ for Q � AS is a robust assignment if and only if the followingproperties hold, where q(i) = (a(i); ji) and �i = c(ei) for all i.(i) If q(0) 62 Q or (a(0))� = (a(0))�1 holds, then q(i) 2 Q and (a(i))� 6= (a(i))�i hold for alli = 1; 2; : : : ; l.(ii) If q(l) 62 Q or (a(l))� = (a(l))�l for some l > 0, then q(i) 2 Q and (a(i))� 6= (a(i))�i+1hold for all i = 0; 1; : : : ; l � 1.Proof. We �rst prove the only-if-part. For condition (i), we �rst consider e1 = (q(0); q(1)).By Lemma 4, q(0) 62 Q or (a(0))� = (a(0))�1 implies that q(1) 2 Q and (a(1))� 6= (a(1))�1. Now,since e1 = (q(0); q(1)) 2 E(d) and e2 = (q(1); q(2)) 2 E(d0) have di�erent colors, we must haved 6= d0 and q(1) 2 D(d) \D(d0), and hence k d � d0 k= 1 by Lemma 6. Therefore, (a(1))� 6=(a(1))�1 (= d) implies (a(1))� = (a(2))�2 (= d0), and hence q(2) satis�es (a2)� 6= (a(2))�2 by



RRR 6-96 Page 25Lemma 4. This assignment can proceed in a similar manner to q(i), i = 2; 3; : : : ; l. Case (ii)is similar to (i).Conversely, if conditions (i) and (ii) hold, then, by Lemma 4, � 2 IBQ is a robustassignment. 2Let Ci, i = 1; 2; : : : ; s, denote all the strongly connected components of this directedgraph G0AS . Furthermore, let G�AS denote the transitive closure of G0AS (i.e., (s; t) is an arcin G�AS if there is a s-t directed path in G0AS), and let G0 denote the directed subgraph ofG�AS induced by W = [i s.t. jCij=1 Ci: (14)It is easy to see that the set of isolated vertices D0 in GAS satis�es D0 � W . Figure 4contains the graph G0 of ( ~T ; ~F ) in Example 2, where, for simplicity, arcs (u; v), for whichthere is a directed path of length at least 2 from u to v, are not indicated.i���	 ���� @@@RBBBBNi ii i?i?i �����b(1)a(1) a(3) a(4) b(3)b(4)a(5)Figure 4: The graph G0 corresponding to G0AS of ( ~T; ~F ) in Example 2.Lemma 10 Let ( ~T; ~F ) be a pBmd, and let � 2 IBQ for some Q � AS be a robust assignment,and let Ci and W be de�ned as above. Then the following two conditions hold:(i) Ci � Q for all Ci with jCij > 1, and(ii) W n Q is an antichain in G0 (i.e., for any pair of q; r 2 W nQ, there is no directedpath from q and r in G0, and vice versa).Proof. Consider a robust assignment � 2 IBQ. Assume q 2 Ci nQ for some Ci with jCij > 1.Then there is a directed cycle q(0) (= q); q(1); q(2); : : : ; q(l) (= q) of length l > 1 in G0AS , andq 62 Q implies q 2 Q by Lemma 9, which is a contradiction. Hence condition (i) holds. Toprove condition (ii), let us assume that for some pair of q; r 2 W nQ, there exists a directedpath from q and r in G0AS . This is again a contradiction since q 62 Q implies r 2 Q by Lemma9. 2Lemma 11 Let ( ~T; ~F ) be a pBmd, and let S � W be any maximal antichain in G0. Thenfor Q = AS n S, there is a robust assignment � 2 IBQ of ( ~T; ~F ).



Page 26 RRR 6-96Proof. For the above Q = AS n S, we shall construct a robust assignment � 2 IBQ. In thefollowing, we shall consider the directed graph G0AS , and lat us note that, by de�nition, S isalso an antichain in G0AS . Lemma 9 tells that, starting from a vertex q 2 S (i.e., q 62 Q), arobust assignment � for all vertices t which are either reachable from q or reachable to q isuniquely determined, unless the following cases of conicts are encountered.(i) For q; r 2 S, there is a vertex t for which there are two directed paths P1 = q(0) (=q) ! q(1) ! : : : ! q(k) (= t) and P2 = r(0) (= r) ! r(1) ! : : : ! r(l) (= t) such thatt� 6= t�0, where � = c(q(k�1); t) and �0 = c(r(l�1); t).(ii) For q; r 2 S, there is a vertex t for which there are two directed paths P1 = q(0) (=t) ! q(1) ! : : : ! q(k) (= q) and P2 = r(0) (= t) ! r(1) ! : : : ! r(l) (= r) such thatt� 6= t�0, where � = c(t; q(1)) and �0 = c(t; r(1)).If one of these conicts occurs, Lemma 9 tells us that t must be assigned in di�erent ways,and hence we cannot construct an appropriate robust assignment �.However, we now show that none of these conicts can occur. Let us consider case (i)only, since case (ii) can be analogously treated. Now t� 6= t�0 implies (q(k�1); s) 2 E(d)and (r(l�1); s) 2 E(d0) for some d 6= d0. Thus (q(k�1); t) and (r(l�1); t) have di�erent colors,since D(d) \ D(d0) 6= ;. By the rule of orienting edges (yellow edges are oriented fromAS( ~T ) to AS( ~F ), and blue edges are oriented from AS( ~F ) to AS( ~T )), this means that oneof (q(k�1); t) and (r(l�1); t) is oriented towards t, and the other is away from t, a contradictionto the assumption in (i).Let us denote by R the set of all vertices t 62 S such that either t is reachable fromsome q 2 S or some q 2 S is reachable from t. The above argument says that a robustassignment � for R is uniquely determined by Lemma 9. Finally, we consider an assignment 2 IBASn(S[R). By the maximality of S, every vertex t 2 AS n (S [ R) has an incomingarc e = (r; t) 2 E(d). Therefore, determine the robust assignment � of this t so that t� = dholds. This is well-de�ned because all incoming arcs to t belong to the same E(d) by thede�nition of G0AS . It is easy to see that the resulting � over AS is in fact a robust assignment.2Lemmas 10 and 11 tell that problem MRE(Call) is equivalent to the problem of �nding amaximum antichain of G0. Since G0 is acyclic, we can �nd such an antichain in polynomialtime by Dilworth's theorem (see e.g. [10]). Finally, we have the following theorem.Theorem 10 Problem MRE(Call) can be solved in polynomial time for a pBmd ( ~T ; ~F ) inwhich all a 2 ~T [ ~F satisfy jAS(a)j � 1. 25 Positive and regular functionsLet C+ and Cj= denote the classes of positive functions and regular functions, respectively.Corollary 4 tells that problems RE(C+), RE(Cj=), CE(C+) and CE(Cj=) can be solved in



RRR 6-96 Page 27polynomial time. Also by Corollaries 3 and 5, problems MRE(C+) and MRE(Cj=) can besolved in polynomial time for the restricted instances.Let us show �rst that problem MRE(C+) is, in general, NP-hard.Theorem 11 Problem MRE(C+) is NP-hard, even if jAS(a)j � 2 holds for all a 2 ~T [ ~F .Proof. Let G = (V;E) be a graph, where V = f1; 2; : : : ; ng, and let us de�ne ~T; ~F � IMVas follows. ~T = fa(i;j) = (;; fi; jg) j (i; j) 2 Eg~F = fb(0) = (;; ;)g [ fb(i) = (;; fig) j i 2 V g;where (R;S) denotes the vector v 2 IMV such that ON(v) = R and AS(v) = f(v; j) j j 2 Sg.It is easy to see that jAS(a)j � 2 holds for all a 2 ~T [ ~F . We claim that�( ~T; ~F ) = jEj+ � (G)holds, where �( ~T ; ~F ) is de�ned by (2), and � (G) denotes the cardinality of a minimum vertexcover of G. This will complete the proof of the theorem, since �nding � (G) is known to beNP-hard [11].Let us �rst observe that, if ( ~T �; ~F �) has a robust positive extension for some � 2 IBQ,Q � AS, then either �(a(i;j); i) = 1 or �(a(i;j); j) = 1 (or both) holds for every (i; j) 2 E,since otherwise we have b(0) = (a(i;j))� 2 ~F , which is a contradiction. LetE1 = f(i; j) 2 E j exactly one of �(a(i;j); i) = 1 and �(a(i;j); j) = 1 holds gE2 = f(i; j) 2 E j�(a(i;j); i) = �(a(i;j); j) = 1g:If (i; j) 2 E1 and �(a(i;j); i) = 1 (resp., �(a(i;j); j) = 1), then �(b(i); i) = 0 (resp., �(b(i); j) =0) (otherwise (a(i;j))� � (b(i))� (resp., (a(i;j))� � (b(j))�) and � is not a robust assignment).This implies that C = fi j �(b(i); i) = 0g[fi j i < j; (i; j) 2 E2g is a vertex cover of G. HencejQj � jE1j+ 2jE2j+ jfi j�(b(i); i) = 0gj= (jE1j+ jE2j) + (jE2j+ jfi j�(b(i); i) = 0gj)= jEj+ jCj � jEj+ � (G):For the converse direction, let C � V be a minimum vertex cover, and let us de�ne a setQ � AS and an assignment � 2 IBQ byQ = f(a(i;j); i) j either (i 2 C; j 62 C) or (i; j 2 C; i < j)g [ f(b(i); i) j i 2 Cg;�(a(i;j); i) = 1 for (a(i;j); i) 2 Q and �(b(i); i) = 0 for (b(i); i) 2 Q. It is easy to see that � is arobust assignment, and jQj = jEj+ � (G) holds. 2Let us next consider problem MRE(Cj=). For a vector v 2 IMn, an assignment � 2 IBAS(v)is called (j-)left-shifted if there is an index j such that �(v; i) = 1 for all i � j, and �(v; i) = 0



Page 28 RRR 6-96for all i > j. Analogously, � is called (j-)right-shifted if there is an index j for which�(v; i) = 0 for all i � j, and �(v; i) = 1 for all i > j. For example, if v = (10 � 0 � �1), thenan assignment � 2 IBAS(v) with �(v; 3) = 1 and �(v; 5) = �(v; 6) = 0 is left-shifted, and anassignment � 2 IBAS(v) with �(v; 3) = �(v; 5) = 0 and �(v; 6) = 1 is right-shifted. It is easyto see that if � is n-left-shifted (or 0-right-shifted), then � = 1, while if � if 0-left-shifted(or n-right-shifted), then � = 0. (see the de�nition at the beginning of Subsection 3.3).We can show the following result.Theorem 12 Problem MRE(Cj=) can be solved in polynomial time.Proof. For a pBmd ( ~T ; ~F ), let us de�ne a pdBf (T �; F �) byT � = fa� j a 2 ~T ; a left-shifted assignment � 2 IBAS(a)gF � = fb� j b 2 ~F ; a right-shifted assignment � 2 IBAS(b)g;and de�ne the weights of the above vectors byw(a�) = +1 if either a 2 ~T \ IBn or � = 1 2 IBAS(a);w(b�) = +1 if either b 2 ~F \ IBn or � = 0 2 IBAS(b);w(a�) = 1 if a 2 ~T n IBn and � 2 IBAS(a) is left-shifted, � 6= 1;w(b�) = 1 if b 2 ~F n IBn and � 2 IBAS(b) is right-shifted, � 6= 0:We claim that �( ~T; ~F ) = "(T �; F �) (15)holds, where �( ~T ; ~F ) = +1 means that there is no consistent extension of ( ~T ; ~F ). This willprove the theorem, since BEST-FIT(Cj=) can be solved in polynomial time [5].If �( ~T ; ~F ) = +1 holds, then by Lemma 3, for any function f 2 Cj=, there exists either avector a 2 ~T with f(a1) = 0, or a vector b 2 ~F with f(b0) = 1 (or both). By the de�nitionof w, this means that "(T �; F �) = +1. Similarly, we can show that "(T �; F �) = +1 implies�( ~T; ~F ) = +1.Let us continue with the case in which "(T �; F �); �( ~T; ~F ) < +1, and Let us assume that� 2 IBQ for a subset Q � AS is a robust assignment, an optimal solution of MRE(Cj=). LetQ1 = Q \AS( ~T ) and Q2 = Q \ AS( ~F ). Then,(i) �(a; i) = 1 holds for all (a; i) 2 IBQ1, and �(b; i) = 0 holds for all (b; i) 2 IBQ2.This is because, if �(a; i) = 0 holds for some (a; i) 2 IBQ1, the positivity of f implies that therestriction of � to the subset Q0 = (Q1 nf(a; i)g)[Q2 (i.e., ai keeps �)would also be a robustextension, contradicting the optimality of �. . Similarly, �(b; i) = 1 for some (b; i) 2 IBQ2would also lead to a contradiction.Furthermore, the regularity of f implies that Q satis�es the following conditions:(ii) for every a 2 ~T , there exists an index ja 2 f0; 1; : : : ; ng such that all (a; i) 2 AS(a)with i � ja (resp., i > ja) satisfy (a; i) 2 Q (resp., (a; i) 62 Q), and



RRR 6-96 Page 29(iii) for every b 2 ~F , there exists an index jb 2 f0; 1; : : : ; ng such that all (b; i) 2 AS(b)with i � jb (resp., i > jb) satisfy (b; i) 2 Q (resp., (b; i) 62 Q).For example, assume that (ii) does not hold; i.e., some a� 2 ~T and i < j satisfy (a�; i) 2AS(a�) nQ and (a�; j) 2 AS(a�) \Q. Then let Q0 = Q01 [Q2, where Q01 = (Q1 n f(a�; j)g) [f(a�; i)g, and let us de�ne an assignment  2 IBQ0 by (a; i) = 1 for all (a; i) 2 Q01, and(b; i) = 0 for all (b; i) 2 Q2. Then it follows from the regularity of f that  is also a robustassignment. Condition (iii) can be similarly treaded. Thus by repeating this procedure, wehave a Q 2 IBAS with jQj = �( ~T; ~F ) that satis�es (ii) and (iii).Now, we prove claim (15). Let a subset Q 2 IBAS with jQj = �( ~T; ~F ) and an assignment� 2 IBQ satisfy (i),(ii) and (iii), and let f be a robust extension of ( ~T �; ~F �) in Cj= (i.e., thesegive a solution to MRE(Cj=)). We shall show that(iv) jF (f) \ fa� j a left-shifted assignment � 2 IBAS(a)gj = jQ \AS(a)j for every a 2 ~T(v) jT (f) \ fb� j a right-shifted assignment � 2 IBAS(b)gj = jQ \AS(b)j for every b 2 ~F ,which will imply that�( ~T; ~F ) = jQj = Xa2 ~T jQ \ AS(a)j+Xb2 ~F jQ \ AS(b)j= Xa2T � jF (f) \ fa� j a left-shifted assignment � 2 IBAS(a)gj+ Xb2F � jT (f) \ fb� j a right-shifted assignment � 2 IBAS(b)gj� "(T �; F �):To see (iv) let us observe that if a 2 ~T satis�es Q\AS(a) = ;, then obviously F (f)\fa� ja left-shifted assignment � 2 IBAS(a)g = ;. Otherwise, let ja be the index of the abovecondition (ii). Then the ja-left-shifted assignment  2 IBAS(a) satis�es f(a) = 1 by thede�nition of f . However, an l-left-shifted assignment  0 2 IBAS(a) satis�es f(a0) = 0 ifl < ja, since otherwise the regularity of f implies that Q0 = Q n f(a; ja)g is also a solution toMRE(Cj=) (which is a contradiction to the minimality of Q), and f(a0) = 1 if l � ja by thepositivity of f . Hence (iv) holds since there are jQ\AS(a)j such left-shifted assignments  0with l < ja.Equality (v) can be treated similarly.For the converse inequality, consider a best-�t extension f 2 Cj= of pdBf (T �; F �). For avector v 2 IMn, let AS(v) = f(v; l1(v)); (v; l2(v)); : : : ; (v; lp(v))g with li(v) < lj(v) for i < j.De�ne Q = Q1 [Q2 � AS byQ1 = f(a; li+1(a)) 2 AS(a) j a 2 ~T ; f(ali(a)) = 0gQ2 = f(b; li+1(b)) 2 AS(b) j b 2 ~F; f(bli(b)) = 1g;where, for a 2 ~T , ali(a) is the vector obtained from a by the li(a)-left-shifted assignment, andfor b 2 ~F , bli(b) is the vector obtained from b by the li(b)-right-shifted assignment. Note that



Page 30 RRR 6-96f(ali(a)) = 0 (resp., f(bli(b)) = 1) implies f(alj(a)) = 0 (resp., f(blj(b)) = 1) for all j < i bythe regularity of f . Let us de�ne � 2 IBQ by �(a; i) = 1 for all (a; i) 2 Q1, and �(b; i) = 0for all (b; i) 2 Q2. Then f is a robust extension of ( ~T �; ~F �) in Cj=, implying"(T �; F �) = jQ1j+ jQ2j = jQj � �( ~T; ~F ): 26 Hereditary classesA family S of DNF expressions is called hereditary if Wi2I ti 2 S implies Wi2I 0 ti 2 S forany I 0 � I, where ti denote a term, i.e., an elementary conjunction. It is easy to observethat families of k-DNFs, h-term DNFs and Horn DNFs are all hereditary. For a family ofexpressions S, let us de�ne the corresponding class of functions by CS = ff j f has a DNFexpression in Sg. A class CS of functions is then called hereditary if S is hereditary. In thefollowing subsections we shall consider hereditary families, such as k-DNFs, h-term DNFsand Horn DNFs.6.1 k-DNF functionsA DNF ' = m_i=1 Yj2Pi xj Yj2Ni �xjis called a k-DNF if jNi [ Pij � k for i = 1; ::;m. It is a positive k-DNF if, in addition,Ni = ; for i = 1; :::;m. Let Ck-DNF and C+k-DNF , respectively, denote the correspondingclasses of Boolean functions. In this section, we sometimes do not distinguish a DNF ' fromthe function it represents.Let us �rst consider robust and consistent extensions in the classes Ck-DNF and C+k-DNF .For a general k, Corollary 1 tells that problems RE(Ck-DNF ), RE(C+k-DNF ), CE(Ck-DNF )and CE(C+k-DNF ) are all NP-complete. However, for a �xed k, by Corollary 4, problemsRE(C+k-DNF ) and CE(C+k-DNF ) can be solved in polynomial time.Among the remaining problems, we start with problem RE(Ck-DNF ) for a �xed k. For avector v 2 IMn, let A(v) denote the assignment to the variables xi de�ned byA(v) = (xi  vi j vi 6= �); (16)e.g., v = (1; �; 0; 0; �), then A(v) = (x1 1; x3  0; x4 0). Recall that fA(v) (resp., 'A(v))denotes the function (resp., DNF) obtained by �xing the variables xi as speci�ed by A(v).Lemma 12 Consider a vector v 2 IMn and a term t = Qj2P xj Qj2N �xj. Then t(v�) = 0holds for all assignments � 2 IBAS(v) if and only if ON(v) \N 6= ; or OFF (v) \ P 6= ;.



RRR 6-96 Page 31Proof. It is easy to see that the if-part holds. For the only-if-part, assume ON(v) \ N =OFF (v) \ P = ;, and de�ne an assignment � 2 IBAS(v) by�(v; i) = ( 1; if i 2 P; (v; i) 2 AS(v)0; if i 2 N; (v; i) 2 AS(v):This assignment � 2 IBAS(v) obviously satis�es t(v�) = 1. 2Lemma 13 Let ' be a DNF of n variables, and let v 2 IMn. For a subset Q � AS(v) andan assignment � 2 IBQ,(i) '(v(�;�)) = 1 holds for all assignments � 2 IBAS(v)nQ if and only if 'A(v�) = >, and(ii) '(v(�;�)) = 0 holds for all assignments � 2 IBAS(v)nQ if and only if 'A(v�) = ?.Proof. (i) We claim that a subset Q � AS(v) and an assignment � 2 IBQ satisfy that'(v(�;�)) = 1 for all assignments � 2 IBAS(v)nQ if and only if Qi2ON(v�) xiQi2OFF (v�) �xi �' holds. It is clear that the if-part holds. To show the only-if-part, let us assume thatQi2ON(v�) xiQi2OFF (v�) �xi 6� ' holds. Then '(v(�;�)) = 0 for some assignment � 2 IBAS(v)nQ.The condition Qi2ON(v�) xiQi2OFF (v�) �xi � ' is equivalent to 'A(v�) = >.(ii) is similar to (i). 2For a k-DNF ', the problem of checking if ' 6= > is called k-NONTAUTOLOGY [11].It is known that its complexity is the same as of k-SAT. For k � 2, k-SAT can be solved inpolynomial time, but for k � 3, k-SAT is NP-complete [11]. The problem of checking ' = >is called k-TAUTOLOGY. It follows from the result about k-SAT that k-TAUTOLOGY isco-NP-complete for k � 3.Theorem 13 If k � 2, then problem RE(Ck-DNF ) can be solved in polynomial time.Proof. The following algorithm solves problem RE(Ck-DNF ).Algorithm CHECK-RE(Ck-DNF )Input: a pBmd ( ~T; ~F ), where ~T; ~F � IMn.Output: If a pBmd ( ~T; ~F ) has a robust extension in Ck-DNF , then output such a DNF ';otherwise, NO.Step 1. Generate all possible terms t with at most k literals. Let ' be the disjunction ofall those terms for which t(b�) = 0 holds for all b 2 ~F and � 2 IBAS(b).Step 2. If 'A(a) = > for all a 2 ~T , then output '; otherwise, output NO.



Page 32 RRR 6-96It is easy to see that the ' obtained in Step 1 is a k-DNF, and furthermore it is themaximum k-DNF (with respect to T (')) such that '(b�) = 0 for all b 2 ~F and � 2 IBAS(b).By Lemma 13 (the case of Q = ;), if ' passes the test of Step 2, then '(a�) = 1 musthold for any a 2 ~T and � 2 IBAS(a). Hence this ' represents a robust extension of ( ~T; ~F );otherwise there is no robust extension.Let us next consider its time complexity. In Step 1, by Lemma 12, checking of eachterm t can be done in O(nj ~F j) time. Since there are at most M = Pkj=0 �2nj � = O(nk) suchterms, Step 1 can be done in O(nk+1j ~F j) time. In Step 2, we solve a k-SAT for each a 2 ~Tto check whether 'A(a) = > holds. Hence if k � 2, this can be solved in O(j'A(a)j) time[2], where j'j denotes the number of literals in '. Since 'A(a) can be constructed in O(j'j)time and j'A(a)j � j'j = O(knk) holds, Step 2 can be done in O(knkj ~T j) time. Totally,CHECK-RE(Ck-DNF ) can be executed in O(nk(kj ~T j+ nj ~F j)) time. 2For k � 3, however, CHECK-RE(Ck-DNF ) does not run in polynomial time since it mustcheck if 'A(v) = >, which is co-NP-complete. In fact, RE(Ck-DNF ) for k � 3 can be shownto be co-NP-complete.Theorem 14 For a �xed k � 3, problem RE(Ck-DNF ) is co-NP-complete.Proof. Apply algorithm CHECK-RE(Ck-DNF ) given in the proof of Theorem 13. Step 1 iscarried out in polynomial time as noted therein. Step 2 consists of checking if 'A(a) = >for polynomially many a, each of which is obviously a computation in co-NP. Therefore,RE(Ck-DNF ) for k � 3 belongs to co-NP.To prove its co-NP-hardness, let H = (V;E) be a 3-uniform hypergraph, where V =f1; 2; : : : ; ng and each H 2 E satis�es H � V and jHj = 3. We may assume n � 4without loss of generality. Let V1 = fn + 1; n + 2; : : : ; 2ng, V2 = f2n + 1; 2n + 2; : : : ; 3ng,V3 = f3n + 1; 3n + 2; : : : ; 3n + (k � 3)g and V 0 = V [ V1 [ V2 [ V3. De�ne ~T; ~F � IMV 0 asfollows. ~T = fa = (V [ V3;V1 [ V2)g~F = ~F0 [ ~F1 [ ~F2 [ ~F3;where~F0 = f(V3; ;)g~F1 = f(V [ I;V1 [ V2) j I � V3; I 6= V3g~F2 = 8>>>>>>>><>>>>>>>>: (fi1; i2; i3g [ f2n+ i1; n+ i2; n+ i3g [ V3; ;)(fi1; i2; i3g [ fn+ i1; 2n + i2; n+ i3g [ V3; ;)(fi1; i2; i3g [ fn+ i1; n+ i2; 2n+ i3g [ V3; ;) i1; i2; i3 2 V;(fi1; i2; i3g [ f2n+ i1; 2n+ i2; n+ i3g [ V3; ;) i1 6= i2; i2 6= i3; i3 6= i1(fi1; i2; i3g [ f2n+ i1; n+ i2; 2n + i3g [ V3; ;)(fi1; i2; i3g [ fn+ i1; 2n + i2; 2n + i3g [ V3; ;) 9>>>>>>>>=>>>>>>>>;~F3 = f(I [ V3; ;) j I � V1 [ V2; jIj = 3; fn + i; 2n+ ig =2 I for all i 2 V; andI 6= fn+ i1; n+ i2; n+ i3g; f2n + i1; 2n+ i2; 2n+ i3g for all fi1; i2; i3g 2 Eg;



RRR 6-96 Page 33and (R;S) denotes again the vector y 2 IMV 0 for which ON(y) = R and AS(y) = f(y; j) j j 2Sg. We claim that ( ~T; ~F ) has a robust extension in Ck-DNF if and only if H is not 2-colorable,which will complete the proof because deciding if H is 2-colorable is NP-complete [11].To prove the claim, we �rst show that a k-DNF' = WH2E�Qj2H xn+j(Ql2V3 xl) _ Qj2H x2n+j(Ql2V3 xl)� _Wni=1�xn+ix2n+i(Ql2V3 xl) _ xi�xn+i�x2n+i(Ql2V3 xl)� (17)satis�es the following conditions:(i) Every term t in ' has an assignment � 2 IBAS such that t(a�) = 1 for a 2 ~T .(ii) The equation '(b�) = 0 holds for all b 2 ~F and � 2 IBAS.(iii) The cardinality jT (')j is maximum among all the k-DNFs satisfying (i) and (ii).Conditions (i), (ii) and (iii) imply that if ( ~T ; ~F ) has a robust extension in Ck-DNF , then ' issuch an extension.Let us consider conditions (i), (ii) and (iii). It is easy to see that (i) holds. For (ii), everyterm t = Qj2P xj Qj2N �xj satis�esP \ (V [ V1 [ V2) 6= ; (18)P � V3 (19)Since OFF (b) � V [ V1 [ V2 holds for b 2 ~F0, (18) implies that '(b�) = 0 for all b 2 ~F0 and� 2 IBAS . Since OFF (b) \ V3 6= ; holds for all b 2 ~F1, (19) implies that '(b�) = 0 for allb 2 ~F1 and � 2 IBAS . For b 2 ~F2, we can see that b 2 IBV 0 andjON(b) \ V1j; jON(b) \ V2j � 2: (20)n+ i 2 ON(b) \ V1 =) 2n + i 2 OFF (b) (21)i 2 ON(b) \ V =) fn+ i; 2n+ ig 6� OFF (b): (22)Then (20), (21) and (22), respectively, implyWH2E(Qj2H xn+j(Ql2V3 xl) _Qj2H x2n+j(Ql2V3 xl))(b);= 0Wni=1(xn+ix2n+i(Ql2V3 xl))(b)= 0 andWni=1(xi�xn+i�x2n+i(Ql2V3 xl))(b);= 0for b 2 ~F2. Hence '(b�) = 0 for all b 2 ~F2 and � 2 IBAS . Similarly, b 2 ~F3 satis�es b 2 IBV 0,(20), (21) and (22), and hence '(b�) = 0 for all b 2 ~F3 and � 2 IBAS. Therefore, (ii) holds.For (iii), let us consider a term t = Qj2P xj Qj2N �xj with jP [ N j � k satisfying (i) and(ii). We show that such a term t satis�es t � ', which implies (iii). For this, we prove �rstthe following relations.



Page 34 RRR 6-96(a) P � V3 holds. Otherwise, t(b�) = 1 for some b 2 ~F1 and � 2 IBAS , since t(a�) = 1holds for some � 2 IBAS by (i). This means j(P [ N) n V3j � 3 by jtj � k andjV3j = k � 3.(b) jN j = 0 or 2 holds. Otherwise, if jN j = 1, then t(b) = 1 holds for some b 2 ~F2, whichis a contradiction. Furthermore, if jN j = 3, then t(b) = 1 holds for b 2 ~F0.(c) If jN j = 2, then P = V3 [ fig and N = fn+ i; 2n+ ig hold for some i 2 f1; 2; : : : ng.Otherwise, t(b) = 1 holds for some b 2 ~F2. This means that such a term t is in ', i.e.,t � ' holds.(d) If N = ;, then jP \V j � 1 holds. Otherwise, either jP\V j = 3 and jP\(V1[V2)j = 0,or jP \ V j = 2 and jP \ (V1 [ V2)j � 1. In either case, t(b) = 1 holds for some b 2 ~F2.(e) If N = ; and P \ V = fjg, then t = xjxn+ix2n+i(Ql2V3 xl) holds for some i 2 V .Otherwise, t(b) = 1 holds for some b 2 ~F2. This means that such a term t satis�est � ' because ' has terms (xn+ix2n+i(Ql2V3 xl) for all i 2 V .(f) If N = P \ V = ;, then by the de�nition of ~F3, t satis�es t = Qj2H xn+j(Ql2V3 xl) forsome H 2 E, t = Qj2H x2n+j(Ql2V3 xl) for some H 2 E, or t = xn+ix2n+i(Ql2V3 xl) forsome i 2 V . Hence, such a term t is in ', i.e., t � ' holds.By (a) � (f), we have (iii).Now we show the claim. If ( ~T ; ~F ) has a robust extension in Ck-DNF , then by the aboveargument, ' of (17) is such an extension. Assume that H is 2-colorable, i.e., there is a subsetC � V such that H \C 6= ; and H \ (V nC) 6= ; hold for all H 2 E. De�ne an assignment� 2 IBAS for a 2 ~T by �(a; n+ i) = 1 if i 2 C and i 2 V�(a; n+ i) = 0 if i 62 C and i 2 V�(a; 2n + i) = 1 if i 62 C and i 2 V�(a; 2n + i) = 0 if i 2 C and i 2 VThen '(a�) = 0 holds, which is a contradiction. Hence H is not 2-colorable.Conversely, assume that H is not 2-colorable, and take any assignment � 2 IBAS . If�(a; n+ i) = �(a; 2n + i) holds for some i 2 V , thenn_i=1(xn+ix2n+i(Yl2V3 xl) _ xi�xn+i�x2n+i(Yl2V3 xl))(a�) = 1holds. Otherwise, since H is not 2-colorable,fi j�(a; n+ i) = 1; i 2 V g � H or fi j�(a; 2n+ i) = 1; i 2 V g � Hholds for some H. This means that such an assignment � satis�es_H2E(Yj2H xn+j(Yl2V3 xl) _ Yj2H x2n+j(Yl2V3 xl))(a�) = 1:



RRR 6-96 Page 35Hence combining (ii), we see that ' of (17) is a robust extension of ( ~T ; ~F ). 2We now turn to problem CE(Ck-DNF ) for a �xed k.Let us �rst consider problem CE(C1-DNF ).Let V = f1; 2; : : : ; ng, and let us consider a pBmd ( ~T; ~F ), where ~T; ~F � IMV . Fora vector v 2 IMV and a subset I � V , let v[I] denote the projection of v on I; e.g., ifv = (1; 0; 1; 1; �; 0; �), w = (1; �; �; 0; 0; �; 1) and I = f2; 3; 5g, then v[I] = (0; 1; �), andw[I] = (�; �; 0). Furthermore, for a set ~S � IMV and a subset I � V , let ~S[I] denote theprojection of ~S on I (we assume that this projection keeps its multiplicity), and if I is asingleton, say I = fjg, we write simply ~S[j] instead of ~S[fjg].We shall show that the following algorithm can solve problem CE(C1-DNF ) in polynomialtime.Algorithm FIND-CE(C1-DNF )Input: A pBmd ( ~T; ~F ), where ~T; ~F � IMV and V = f1; 2; : : : ; ng.Output: If the pBmd ( ~T ; ~F ) has a consistent extension in C1-DNF , then output an as-signment � 2 IBAS such that ( ~T �; ~F �) has an extension in C1-DNF and its 1-DNF expression'; otherwise, NO.Step 1. Let I0 := fj 2 V j 0 2 ~F [j]; 1 62 ~F [j]g, I1 := fj 2 V j 1 2 ~F [j]; 0 62 ~F [j]g,I01 := fj 2 V j 0; 1 2 ~F [j]g, and I := V n (I0 [ I1 [ I01) (i.e., ~F [j] for j 2 I containsonly �). De�ne an assignment � by�(a; j) := ( 1 if either (i) j 2 I01; or (ii) a 2 ~T and j 2 I0; or (iii) a 2 ~F and j 2 I10 if either (iv) a 2 ~F and j 2 I0; or (v) a 2 ~T and j 2 I1; (23)and 1-DNF ' := _i2I0 xi _ _i2I1 �xi: (24)Step 2. De�ne a pBmd ( ~T 0; ~F 0) with ~T 0; ~F 0 � IMI by~T 0 := ( ~T n ~S1)[I]~F 0 := ~F [I];where I was de�ned in Step 1, and ~S1 = fa 2 ~T j aj 2 f1; �g for some j 2 I0g [ fa 2~T j aj 2 f0; �g for some j 2 I1g.Step 3. For each j 2 I, introduce a binary variable yj (these variables de�ne an assignment� 2 IBAS( ~T 0[ ~F 0) such that �(a; j) = yj for all (a; j) 2 AS( ~T 0) and �(b; j) = �yj for all(b; j) 2 AS( ~F 0)). Let ~T 00 := ~T 0 \ IBI , and construct a CNF (conjunctive normal form)�(y) = Va2 ~T 00 CaCa = Wj2ON(a) yj _ Wj2OFF (a) �yj:



Page 36 RRR 6-96Find a solution satisfying �(y) = 1 (i.e., solve problem SAT). If there exists a solutiony�, then let '0 = Wj2ON(y�) xj _ Wj2OFF (y�) �xj, and output ' := ' _ '0 and the con-catenated assignment (�; �), where � is obtained by substituting yj = y�j in the wayas shown above; otherwise, output NO.To see the correctness of algorithm FIND-CE(C1-DNF ), let us show the following lemma.Lemma 14 A pBmd ( ~T; ~F ) has a consistent extension in C1-DNF if and only if ( ~T 0; ~F 0)obtained in Step 2 of FIND-CE(C1-DNF ) has a consistent extension in C1-DNF .Proof. Let ' be the 1-DNF of (24), and let '0 be a 1-DNF consistent extension of ( ~T 0; ~F 0).Then we claim that the 1-DNF '_'0 de�nes a consistent extension of ( ~T; ~F ), which will provethe if-part. By the assignment � of (23), '(a�) = 1 holds for all a 2 ~S1, and '(b�) = 0 holdsfor all b 2 ~F . Furthermore, since '0 is a consistent extension of ( ~T 0; ~F 0), some assignment� 2 IBAS( ~T 0[ ~F 0) satis�es that '(a�) = 1 holds for all a 2 ~T 0, and '(b�) = 0 holds for allb 2 ~F 0. Hence, by the de�nition of ~F 0, '(b(�;�)) = 0 holds for all b 2 ~F , where (�; �) is theconcatenation of � and �. This implies that ' _ '0 is a 1-DNF extension of ( ~T (�;�); ~F (�;�)),that is, ' _ '0 is a 1-DNF consistent extension of ( ~T; ~F ).Conversely, let  2 IBAS be an assignment such that ( ~T ; ~F ) has a 1-DNF extension'� = _i2P xi _ _i2N �xi:Then the following properties hold:(i) I01 \ (P [N) = ;(ii) I0 \ N = ;(iii) I1 \ P = ;,since otherwise some vector b 2 ~F would satisfy f(b) = 1, a contradiction. Let '0 =Wi2PnI0 xi _ Wi2NnI1 �xi, and let � = [AS( ~T 0 [ ~F 0)], i.e., � 2 IBAS( ~T 0[ ~F 0) be the projectionof  on AS( ~T 0 [ ~F 0). By (i), (ii) and (iii), '0 is de�ned on I. We now show that '0 isan extension of (( ~T 0)�; ( ~F 0)�), which will prove the only-if-part. By the de�nition of '0, allb 2 ~F 0 satisfy '0(b�) = 0. Assume that a[I] 2 ~T 0 of some a 2 ~T satis�es '0(a�) = 0. Then(Wi2I0 xi _ Wi2I1 �xi)(a�) = 1 holds. However, by the de�nition of ~T 0 = ( ~T n ~S1)[I], aj = 0must hold for j 2 I0, and aj = 1 must hold for j 2 I1, which is a contradiction. Hence '0 isan extension of (( ~T 0)�; ( ~F 0)�). 2Let us now consider a consistent extension of the pBmd ( ~T 0; ~F 0), i.e. an assignment� 2 IBAS( ~T 0[ ~F 0) for which (( ~T 0)�; ( ~F 0)�) has a 1-DNF extension. Note that AS(b) = I holdsfor all b 2 ~F 0, i.e., all vectors in ~F 0 are f(�; �; : : : ; �)g. Furthermore, if �(b; j) = 1 (resp., 0)holds for some b 2 ~F 0, then any 1-DNF extension '0 of (( ~T 0)�; ( ~F 0)�) has no term xj (resp.,�xj). Since '0(a�) = 1 must holds for all a 2 ~T 0, we would like to make jT ('0)j as larger as



RRR 6-96 Page 37possible, under the condition that '0(b�) = 0 holds for all b 2 ~F 0. This means that we onlyneed to consider an assignment � 2 IBAS( ~T 0[ ~F 0) such that �(a; j) = yj for all a 2 ~T 0 and�(b; j) = �yj for all b 2 ~F 0, where y 2 IBI , and a 1-DNF'0 = _j2ON(y)xj _ _j2OFF (y) �xj (25)as an extension. Then, it is easy to see that all a 2 ~T 0 n IBI satisfy '0(a�) = 1, and allb 2 ~F 0 satisfy '0(b�) = 0. Hence we must choose a y 2 IBI such that '0(a�) = 1 for alla 2 ~T 0 \ IBI . This condition can be written as �(y) = 1 in Step 3. Therefore, ( ~T 0; ~F 0) has a1-DNF consistent extension '0 of (25) if and only if �(y) = 1 holds.Theorem 15 Problem CE(C1-DNF ) can be solved in polynomial time.Proof. The above discussion shows the correctness of algorithm FIND-CE(C1-DNF ). Let usconsider its time complexity. Obviously, we can execute Steps 1 and 2 in O(n(j ~T j+j ~F j)) time.In Step 3, we must �nd a solution of �(y) = Va2 ~T 00 Ca = 1 (i.e., solve a exact jIj-SAT, whereexact k-SAT is a SAT satisfying that each of clauses has exact k literals). Exact k-SAT is ingeneral NP-complete, but in this case, k = jIj, that is, k is equal to the dimension of SAT.Hence, this can be solved in O(nj ~T 00j) time by checking if the number of di�erent vectors in~T 00 is equal to 2jIj (in this case, �(y) is not satis�able), and �nding a vector y� 2 IBI suchthat y� 62 ~T 00 if not so (by using a binary tree as a data structure [17]) (in this case, y� is asolution). In total, we need O(n(j ~T j+ j ~F j)) time. 2For k � 2, however, we have the following negative result.Theorem 16 For a �xed k � 2, problem CE(Ck-DNF ) is NP-complete, even if jAS(a)j � 1holds for all a 2 ~T [ ~F .Proof. Given an assignment � 2 IBAS , we can check in polynomial time if ( ~T �; ~F �) has ak-DNF extension, since EXTENSION(Ck-DNF ) can be solved in polynomial time [5]. Hencethis problem is in NP. To show its NP-hardness, let� = m̂i=1Ci; Ci = (ui _ vi _ wi);be a cubic CNF, where ui, vi and wi for i = 1; 2; : : : ;m are literals from the set L =fx1; �x1; :::; xn; �xng. We write xj 2 Ci (resp., �xj 2 Ci) if either ui = xj or vi = xj, orwi = xj holds (resp., either ui = �xj or vi = �xj, or wi = �xj holds). Let V1 = f1; 2; : : : ; ng,V2 = fn + 1; n + 2; : : : ; n + mg, V3 = fn + m + 1; n + m + 2; : : : ; n + m + k � 2g andV = V1 [ V2 [ V3. We construct ~T; ~F � IMV as follows.~T = fa(i) = (Wi [ fn+ ig; ;) j i = 1; 2; : : : ;mg~F = f(;; ;); (V1; ;)g [ f(fjg; ;) j j 2 V1g[fb(i) = (Wi [ fn+ ig [ flg; ;) j i = 1; 2; : : : ;m; l 2 V3g[fc(i) = (W�i [ fn+ ig; ;) j i = 1; 2; : : : ;mg [ fd(j) = (Uj ; fjg) j j 2 V1g;



Page 38 RRR 6-96where (R;S) denotes the vector v 2 IMV such that ON(v) = R and AS(v) = f(v; j) j j 2 Sg,and Wi = fj jxj 2 Cig, W�i = fj j �xj 2 Cig and Uj = fn + i jxj 2 Ci or �xj 2 Cig. It iseasy to see that jAS(a)j � 1 holds for all a 2 ~T [ ~F . We claim that this pBmd ( ~T ; ~F ) hasa consistent k-DNF extension if and only if the 3-SAT problem for � has a solution (i.e.,if there is a binary vector y 2 f0; 1gn for which �(y) = 1). This will complete the proof,because 3-SAT is NP-complete [11].To prove the claim, let � 2 IBAS be an assignment such that ( ~T �; ~F �) has a k-DNFextension ', and let ti = Qj2Pi xj Qj2Ni �xj, where Pi\Ni = ; and jPi [Nij � k, be a term in' such that ti(a(i)) = 1 for a(i) 2 ~T . Then such terms ti, i = 1; 2; : : : ;m, satisfy the followingproperties:(a) Ni � V3 holds. Otherwise, ti(b(i)) = 1, which is a contradiction. Since jV3j = k � 2,this means j(Pi [Ni) n V3j � 2.(b) j(Pi [ Ni) \ V2j = 1 holds. Otherwise, we have j(Pi [ Ni) \ V2j = 0 or 2 by (a). Ifj(Pi[Ni)\V2j = 0, then at least one vector b in f(;; ;); (V1; ;)g[f(fjg; ;) j j 2 V1g (� ~F )satis�es ti(b) = 1, which is a contradiction. Furthermore, if j(Pi [ Ni) \ V2j = 2, thenti(a(i)) = 1 implies that c(i) 2 ~F satis�es ti(c(i)) = 1, which is again a contradiction.(c) Pi \ V2 = fn + ig holds. Otherwise, (b) implies Ni \ V2 = fn + hg, where h 2f1; 2; : : : ;mg and h 6= i, and then at least one vector b in f(;; ;); (V1; ;)g[f(fjg; ;) j j 2V1g (� ~F ) satis�es ti(b) = 1, which is a contradiction. Therefore ti = xn+i(Ql2V3 �xl) orti = zjxn+i(Ql2V3 �xl) with zj 2 L.(d) ti = uixn+i(Ql2V3 �xl), vixn+i(Ql2V3 �xl) or wixn+i(Ql2V3 �xl) holds. If ti = xn+i(Ql2V3 �xl),then c(i) 2 ~F satis�es ti(c(i)) = 1, which is a contradiction. On the other hand, ifzj 2 L n fui; vi; wig, then zj must be a negative literal xk, and furthermore k 62 W�i.This means ti(c(i)) = 1, which is again a contradiction.(e) There is no pair of terms tk and th such that tk = xjxn+k(Ql2V3 �xl) and th =�xjxn+h(Ql2V3 �xl). Otherwise, let tk and th be such terms. Then (tk _ th)((d(j))�) = 1holds for all assignments � 2 IBAS, which is a contradiction.Let us de�ne a binary vector y 2 IBn byyj = ( 1 if ti = xjxn+i(Ql2V3 �xl) for some i 2 f1; 2; : : : ;mg0 otherwise:Then properties (d) and (e) show that this y satis�es �(y) = 1.Let us next consider the converse direction. For a binary vector y 2 IBn satisfying�(y) = 1, de�ne an assignment � 2 IBAS by�(d(j); j) = ( 1 if yj = 00 otherwise;



RRR 6-96 Page 39and a k-DNF function '� by '� = m_i=1 t�i ;t�i = zjxn+i(Yl2V3 �xl); (26)where zj 2 fui; vi; wig = Ci and zj = 1 is implied by y. Then we can see that '� is anextension of ( ~T �; ~F �), that is, '� is a consistent extension of ( ~T; ~F ). 2Finally we consider the most robust extensions. By Corollary 3, in the restricted case ofjASj = O(log(n + j ~T j + j ~F j)), MRE(Ck-DNF ) and MRE(C+k-DNF ) are polynomially solvablefor a �xed k. However, if the number of missing bits is not limited, we have the followingtheorem.Theorem 17 For a �xed k, problems MRE(Ck-DNF ) and MRE(C+k-DNF ) are NP-hard, evenif jAS(a)j � 1 holds for all a 2 ~T [ ~F .Proof. Let G = (V;E) be a graph, where V = f1; 2; : : : ; ng, and let W = fn + 1; n +2; : : : ; n+ k � 1g. Let us de�ne ~T ; ~F � IMV[W as follows.~T = fa(i;j) = (fi; jg [W ; ;) j (i; j) 2 Eg~F = fb(0) = (W ; ;)g [ fb(i) = (W ; fig) j i 2 V g[fb(i;j) = (fi; jg [ (W n flg); ;) j (i; j) 2 E; l 2 Wg;where (R;S) denotes the vector v 2 IMV [W such that ON(v) = R and AS(v) = f(v; j) j j 2Sg. It is easy to see that jAS(a)j � 1 holds for all a 2 ~T [ ~F . We claim that�(Ck-DNF ; ( ~T ; ~F )) = �(C+k-DNF ; ( ~T; ~F )) = � (G) (27)holds, where � (G) denotes the cardinality of a minimum vertex cover of graph G. This willcomplete the proof because �nding � (G) is known to be NP-hard [11].To prove the claim, we show �rst that�(Ck-DNF ; ( ~T; ~F )) � �(C+k-DNF ; ( ~T; ~F )) � � (G) (28)The �rst inequality follows from Ck-DNF � C+k-DNF . For the second one, let us associate ak-DNF 'C to any subset C � V by de�ning'C = _i2C xixn+1xn+2 : : : xn+k�1;and let us consider 'C�, where C� � V is a minimum vertex cover of G. De�ne Q � ASand � 2 IBQ by Q = f(b(i); i) j i 2 C�g and �((b(i); i)) = 0 for all (b(i); i) 2 Q, respectively.Then 'C� is a robust extension of ( ~T �; ~F �), i.e., �(C+k-DNF ; ( ~T; ~F )) � jC�j = � (G).



Page 40 RRR 6-96Next, we show that �(Ck-DNF ; ( ~T; ~F )) � � (G); (29)which together with (28) will imply (27). For this end, let � 2 IBQ for Q � AS be anassignment such that ( ~T �; ~F �) has a robust k-DNF extension, and let' = _i2I ti;be such a k-DNF with a minimal I, where ti = Qj2Pi xj Qj2Ni �xj, Pi\Ni = ; and jPi[Nij � kfor all i 2 I. Then the minimality of I implies that for every term ti, there is a(hi;li) 2 ~T � suchthat ti(a(hi;li)) = 1. Thus Pi � W holds for every i 2 I, since otherwise the vector b(hi;li) 2 ~F �also satis�es ti(b(hi;li)) = 1, which is a contradiction. This implies j(Pi [ Ni) \ V j � 1 byjPi [ Nij � k. However, jPi \ V j = 1 holds for every i 2 I; otherwise (i.e., Pi \ V = ;),ti(b(0)) = 1 holds for b(0) 2 ~F �, which is again a contradiction. Let us now de�neC = fj j fjg = Pi \ V; i 2 Ig (� V ):Then this set C is a vertex cover, since for every a(h;l) 2 ~T �, there exists a term ti such thatPi \ V = fhg or flg. Hence ' � 'C holds for some vertex cover C � V , which implies (29)by applying a discussion similar to that of (28). 26.2 h-term DNF functionsA DNF ' = m_i=1 Yj2Pi xj Yj2Ni �xjis called an h-term DNF, if m � h. It is a positive h-term DNF if, in addition, Ni = ;for i = 1; :::;m. Let Ch-term and C+h-term, respectively, denote the corresponding classes ofBoolean functions.For a general h and a �xed h � 2, Corollary 1 tells that problems RE(Ch-term), RE(C+h-term),CE(Ch-term) and CE(C+h-term) are NP-complete. On the other hand, problems RE(C+1-term) andCE(C+1-term) can be solved in polynomial time, by Corollary 4. Here we consider the remainingcases.Theorem 18 Problems RE(C1-term) and CE(C1-term) are polynomially solvable. ProblemsMRE(C1-term) and MRE(C+1-term) are however NP-hard, even if jAS(a)j � 1 holds for alla 2 ~T [ ~F .Proof. The problems RE(C1-term), CE(C1-term), MRE(C1-term) and MRE(C+1-term) are dual toRE(C1-DNF ), CE(C1-DNF ), MRE(C1-DNF ) and MRE(C+1-DNF ), respectively. In other words,de�ning ~T d = f�b j b 2 ~Fg and ~F d = f�a j a 2 ~Tg, where �a denotes the vector such that�ai = 1 (resp., 0) if ai = 0 (resp., 1), and �ai = � if ai = �, the pBmd ( ~T; ~F ) has a robust(resp., consistent) extension in C(+)1-term if and only if ( ~T d; ~F d) has a robust (resp., consistent)extension in C(+)1-DNF . Thus Theorems 13, 15 and 17 imply this theorem. 2



RRR 6-96 Page 416.3 h-term k-DNF functionsA DNF ' = m_i=1 Yj2Pi xj Yj2Ni �xjis an h-term k-DNF if m � h and jPi [ Nij � k for all i = 1; :::;m. If, in addition, Ni = ;for i = 1; ::;m, then ' is called a positive h-term k-DNF. Let Ch;k-DNF and C+h;k-DNF denotethe corresponding classes of h-term k-DNF functions and positive h-term k-DNF functions,respectively.By Corollary 1, problems RE(Ch;k-DNF ), RE(C+h;k-DNF ), CE(Ch;k-DNF ) and CE(C+h;k-DNF )are all NP-hard, if at least one of h and k is not �xed. We therefore consider only problemMRE for the classes Ch;k-DNF and C+h;k-DNF with �xed h and k, and show that these canbe solved in polynomial time. This also tells that problems CE and RE are polynomiallysolvable in these cases.Theorem 19 Problems MRE(Ch;k-DNF ) and MRE(C+h;k-DNF ) can be solved in polynomialtime, if both h and k are �xed constants.Proof. (i) MRE(Ch;k-DNF ): The following algorithm solves MRE(Ch;k-DNF ).Algorithm FIND-MRE(Ch;k-DNF )Input: a pBmd ( ~T; ~F ), where ~T; ~F � IMn.Output: If ( ~T; ~F ) has a consistent extension in Ch;k-DNF , then output a subset Q � AS,an assignment � 2 IBQ and an h term k-DNF ' such that ' represents a robust extensionof ( ~T �; ~F �), for which jQj is minimum; otherwise output NO.Step 1. For each h-term k-DNF ', we construct a subset Q' � AS and an assignment�' 2 IBQ' as follows.� For every a 2 ~T , �nd a subset Qa � AS(a) and an assignment � 2 IBQa such that'A(a�) = > (where A(a�) is de�ned in (16)) and jQaj is minimum. If there is no such Qafor some a 2 ~T , abandon '; otherwise, let Q' := Sa2 ~T Qa; and let �'(a; j) := �(a; j)for (a; j) 2 Qa, a 2 ~T .� For every b 2 ~F , �nd a subset Qb � AS(b) and an assignment � 2 IBQb such that'A(b�) = ? and jQbj is minimum. If there is no such Qb for some b 2 ~F , abandon ';otherwise, let Q' := Q' [ Sb2 ~F Qb; and let �'(b; j) := �(b; j) for (b; j) 2 Qb, b 2 ~F .Step 2. Among those h-term k-DNFs ', which are not abandoned in Step 1, �nd ' = '�with minimum jQ'j. If such '� exists, then output Q'�, �'� 2 IBQ'� and the DNF '�;otherwise, output NO. STOP.The correctness of algorithm FIND-MRE(Ch;k-DNF ) is immediate from Lemma 13. Letus consider its time complexity. Let M be the number of terms with at most k literals, i.e.,M � Pkj=0 �2nj � = O(nk). Then there are Phm=0 �Mm� = O(nkh) h-term k-DNF expressions.



Page 42 RRR 6-96In Step 1, for each h-term k-DNF ', we check if there exist Qa, a 2 ~T and Qb, b 2 ~F ,which satisfy the stated conditions. If there exist Qa � AS(a) and � 2 IBQa such that'A(a�) = >, then 'A(a) 6= ?, implying that 'A(a) has a term t = Qj2P xj Qj2N �xj � 'A(a).If we set Qa = f(a; j) j j 2 P [ Ng, and �(a; j) = 1 (resp., 0) for j 2 P (resp., N), thenwe have 'A(a�) = >. This Qa satis�es jQaj = jP j + jN j � k, since 'A(a) is a k-DNF.Hence the subset Qa � AS(a) that minimizes jQaj also satis�es jQaj � k , and there arePkj=0 �2nj � = O(nk) such Qas. Therefore, we apply the above check to all Qa � AS(a).Checking of 'A(a�) = > (i.e., problem TAUTOLOGY) can be done by dualizing 'A(a�) andchecking if 'dA(a�) = ? holds (recall that checking ' = ? for a DNF is trivial). This canbe done in O(kh) time, since 'A(a�) can be obtained from ' in O(j'j) = O(kh) time, and'dA(a�) can be obtained from 'A(a�) in O(kh) time, since 'A(a�) is a h-term k-DNF. Thusthis computation requires O(khM) = O(khnk) time for each h-term k-DNF ' and a 2 ~T .Similarly, we require O(khM) = O(khnk) time for each h-term k-DNF ' and b 2 ~F to check'A(b�) = ? for all subsets Qb � AS(b) and assignments � 2 IBQb with jQbj � k. Therefore,Step 1 can be carried out in O(nk(h+1)(khj ~T j + khj ~F j)) time, since there are O(nkh) h-termk-DNF expressions. Step 2 can be carried out in O(nkh) time. Totally, algorithm FIND-MRE(Ch;k-DNF ) requires O(nk(h+1)(khj ~T j+ khj ~F j)) time, which is polynomial if k and h areconstants.(ii) MRE(C+h;k-DNF ): We can solve MRE(C+h;k-DNF ) in polynomial time by modifyingalgorithm FIND-MRE(Ch;k-DNF ) as follows. In this case, h-term k-DNFs are restrictedto be positive, and in Step 1, for each a 2 ~T (resp., b 2 ~F ), all assignments � 2 IBQa(resp., � 2 IBQb) with Qa � AS(a) (resp., Qb � AS(b)) are restricted to be positive (resp.,negative). Hence for each positive h-term k-DNF ' and a 2 ~T , we can check in O(kh) timeif a subset Qa � AS(a) and assignment � 2 IBQa satisfy fA(a�) = >, and similarly for eachpositive h-term k-DNF ' and b 2 ~F , we can check in O(kh) time if a subset Qb � AS(b)and assignment � 2 IBQb satisfy fA(a�) = ?. Therefore, MRE(C+h;k-DNF ) can be solved inO(khnk(h+1)(j ~T j+ j ~F j)) total time. 26.4 Horn functionsA DNF ' = m_i=1 Yj2Pi xj Yj2Ni �xjis called Horn if jNij � 1 for all terms i = 1; :::;m. Let us denote by CHorn the class of Hornfunctions.Theorem 20 Problem RE(CHorn) can be solved in polynomial time.Proof. Let ( ~T; ~F ) be a pBmd. For each a 2 ~T , let us de�ne B(a) = fb 2 ~F j b>�ag. Weclaim that ( ~T; ~F ) has a robust Horn extension if and only if for every a 2 ~T , there exists



RRR 6-96 Page 43an index j such that aj = 0 and bj = 1 for all b 2 B(a). The latter condition can be easilychecked in O(nj ~T jj ~F j) time.To prove the claim, let us assume �rst that for every a 2 ~T , there exists an index j suchthat aj = 0 and bj = 1 for all b 2 B(a). Then for any � 2 IBAS , all b� 2 B(a)� satis�esb�j = 1. Thus, for the Horn term ta = 0@ Yi2ON(a)xi1A �xj;we have ta(a�) = 1 and ta(b�) = 0 for all � 2 IBAS and b 2 ~F . Hence, the Horn DNF' = _a2 ~T taprovides a Horn extension of ( ~T; ~F ).For the converse direction, let us assume that for some a 2 ~T , every index j with aj = 0has a vector b 2 B(a) with bj 2 f0; �g. For such a vector a, consider the assignments� 2 IBAS(a) [ IBAS(B(a)) de�ned by�(a; i) = ( Qb2B(a) s.t. bi 6=� bi if there is a vector b 2 B(a) with bi 2 f0; 1g1 otherwisefor (a; i) 2 AS(a), and �(b; i) = a�i for (b; i) 2 AS(B(a)). Then fb� 2 ~F � j b� � a�g = B(a)�satis�es a� = ^fb�2 ~F� j b��a�g b�;by the above assumption on a and B(a), where V denotes the componentwise AND operation,e.g., (010111) V(100101) = (000101). However, it is known [5, 13] that a pdBf (T;F ) has anextension in CHorn if and only if ^b2F s.t. b�a b 6= a (30)holds for every a 2 T . Hence, ( ~T �; ~F �) has no extension in CHorn. 2Now, we turn to problem CE(CHorn).Theorem 21 Problem CE(CHorn) is NP-complete, even if jAS(a)j � 1 holds for all a 2~T [ ~F .Proof. Similarly to the proof of Theorem 9, CE(CHorn) is in NP. To show its NP-hardness,let H = (V;E) be a 3-uniform hypergraph, i.e., E is a collection of 3 element subsetsof V = f1; 2; : : : ; ng. Let H0 = (V 0; E 0) be a copy of H, i.e., V 0 = f10; 20; :::; n0g andE0 = fH 0 = fi0; j 0; k0g jH = fi; j; kg 2 Eg. Let us de�ne ~T; ~F � IMV[V 0 as follows.~T = fa1H = ((V nH) [ (V 0 nH 0); ;); a2H = (V [ (V 0 nH 0); ;) jH 2 Eg~F = fb(i) = ((V n fig) [ (V 0 n fi0g); fig) j i 2 V g;



Page 44 RRR 6-96where (R;S) denotes the vector v 2 IMV such that ON(v) = R and AS(v) = f(v; j) j j 2 Sg.It is easy to see that jAS(a)j � 1 holds for all a 2 ~T [ ~F . We claim that this ( ~T ; ~F ) has aconsistent Horn extension if and only if H is 2-colorable, i.e., if there is a partition (C; V nC),for which C \H 6= ; and (V nC) \H 6= ; hold for all H 2 E. This will complete the proofbecause deciding the existence of a 2-coloring of a 3-uniform hypergraph is NP-complete [11].Let us �rst consider an assignment � 2 IBAS such that ( ~T �; ~F �) has a consistent Hornextension. Let C = fi 2 V j�(b(i); i) = 1g:Then we shall show that (C; V n C) is a good 2-coloring. For this, let us assume otherwise;i.e., there is an edge H 2 E such that either H \ C = ; or H \ (V n C) = ;. If H \ C = ;holds, then a1H 2 ~T � does not satisfy condition (30) for the existence of a Horn extension,since fb 2 ~F � j b � a1Hg = f(b(i))� j i 2 Hg and Vi2H(b(i))� = a1H. On the other hand, ifH \ (V nC) = ;, then a2H 2 ~T � does not satisfy (30), since fb 2 ~F � j b � a2Hg = f(b(i))� j i 2Hg and Vi2H(b(i))� = a2H.For the converse direction, let (C; V n C) be a 2-coloring. Let us de�ne an assignment� 2 IBAS by �(b(i); i) = ( 1 if i 2 C0 otherwise:Then (30) holds for every a 2 ~T �, that is, ( ~T; ~F ) has a consistent Horn extension. 27 Dual-comparable functionsLet us recall that a Boolean function f is dual-minor (resp., dual-major, self-dual) if f � fd(resp., f � fd, f = fd), where the dual fd of f is de�ned by fd(x) = �f(�x). Let CDMI, CDMAand CSD denote the corresponding classes of dual-minor, dual-major and self-dual functions,respectively. Analogously, let C+DMI, C+DMA and C+SD denote the classes of dual-minor, dual-major and self-dual positive functions, respectively. It is known [5] that a function f isdual-minor (resp., dual-major, self-dual) if and only if at most (resp., at least, exactly) oneof f(a) = 1 and f(�a) = 1 holds for every a 2 f0; 1gn.Corollary 4 tells that the robust and consistent extensions can be found in polynomialtime for classes of C+DMI , C+DMA and C+SD. Therefore, let us consider the robust and consistentextensions for classes of CDMI , CDMA and CSD. We start with the next lemma.Lemma 15 (i) A pBmd ( ~T; ~F ) has a robust extension in CDMI if and only if there existsan index j such that aj = bj 2 IB for each pair of a; b 2 ~T .(ii) A pBmd ( ~T ; ~F ) has a robust extension in CDMA if and only if there exists an index jsuch that aj = bj 2 IB for each pair of a; b 2 ~F .(iii) A pBmd ( ~T; ~F ) has a robust extension in CSD if and only if there exists an index j suchthat aj = bj 2 IB for each pair of a; b 2 ~T and each pair of a; b 2 ~F .



RRR 6-96 Page 45Proof. (i) A pBmd ( ~T; ~F ) has a robust extension in CDMI if and only if, for any assignment� 2 IBAS , there is no pair of a; b 2 ~T such that a� = b�. The latter condition is equivalentto that there exists an index j such that aj = bj 2 IB for every pair of a; b 2 ~T .(ii) is similar to (i), and (iii) is obtained by combining (i) and (ii). 2Theorem 22 Problems RE(CDMI), RE(CDMA) and RE(CSD) can be solved in polynomialtime.Proof. By Lemma 15, it is easy to see that RE(CDMI), RE(CDMA) and RE(CSD) can besolved in time O(nj ~T j2), O(nj ~F j2) and O(n(j ~T j2 + j ~F j2), respectively. 2Theorem 23 Problems CE(CDMI), CE(CDMA) and CE(CSD) can be solved in polynomialtime for a pBmd ( ~T ; ~F ) such that jAS(a)j � 1 holds for all a 2 ~T [ ~F .Proof. For a given pBmd ( ~T; ~F ) with ~T; ~F � IMn, let us de�ne a pdBf (T;F ) byT = fa� j a 2 ~T; � 2 IBASgF = fb� j b 2 ~F ;� 2 IBASg:Now, for each a 2 T [F , let us introduce a new binary variable Xa, where Xa corresponds tothe value f(a) of a consistent extension f of ( ~T; ~F ). Then the following quadratic equationsmust hold. (i) Xa = 0 if a 2 ~T \ IBn(ii) Xa�Xa�� = 0 if a 2 ~T n IBn(iii) Xb = 0 if b 2 ~F \ IBn(iv) Xb�Xb�� = 0 if b 2 ~F n IBn(v) XaX�a = 0 if a; �a 2 T(vi) XbX�b = 0 if b;�b 2 F:The equations (i), (ii), (iii) and (iv) express the conditions that ( ~T ; ~F ) has a consistentextension in Call. The equations (v) and (vi) express that a consistent extension of ( ~T; ~F )must be dual-minor and dual-major, respectively. Hence in order to solve CE(CDMI) (resp.,CE(CDMA) and CE(CSD)), we check if the quadratic systems consisting of (i), (ii), (iii), (iv)and (v) ( resp., (i), (ii), (iii), (iv), (vi), and (i), (ii), (iii), (iv), (v), (vi)) has a solution.Checking if the quadratic systems has a solution (i.e., 2-SAT) can be done in time linear inits size [2]. Therefore, we can solve CE(CDMI), CE(CDMA) and CE(CSD) in polynomial time,if jAS(a)j � 1 holds for every a 2 ~T [ ~F . 2In general, however, we have the following negative result.Theorem 24 All three problems CE(CDMI), CE(CDMA) and CE(CSD) are NP-complete,even if jAS(a)j � 2 holds for all a 2 ~T [ ~F .



Page 46 RRR 6-96Proof. These problems are all in NP, similarly to Theorem 9. To show the NP-hardness, fora given pBmd ( ~T; ~F ) with ~T ; ~F � IMn, let us de�ne a pBmd ( ~T 0; ~F 0) by~T 0 = f(a; 1) j a 2 ~Tg~F 0 = f(b; 1) j b 2 ~Fg;where ~T 0; ~F 0 � IMn+1. We show that ( ~T; ~F ) has a consistent extension f in Call if and onlyif ( ~T 0; ~F 0) has consistent extensions in CDMI , CDMA and CSD, respectively.First, if ( ~T 0; ~F 0) has a consistent extension in one of the classes CDMI , CDMA and CSD,then obviously ( ~T ; ~F ) has a consistent extension in Call. To prove the converse direction, letf be a consistent extension of ( ~T; ~F ) in Call. Then de�ne f 0 of n+ 1 variables byf 0(d) = 1 i� either f(a) = 1 and dn+1 = 1; or f(�a) = 0 and dn+1 = 0;where d = (a; dn+1) 2 IBn+1. We claim that f 0 is a consistent extension in class CSD (i.e.,CDMI \ CDMA). It is easy to see that f 0 is a consistent extension in Call. Let us show theself-duality (i.e., dual-minority and dual-majority) of f 0.(i) f 0(a; dn+1) = 1 implies either (i) f(a) = 1 and dn+1 = 1, or (ii) f(�a) = 0 and dn+1 = 0.If (i) holds, then f 0(a; dn+1) = 0, since f(��a) = 1 and �dn+1 = 0 hold. If (ii) holds, thenf 0(a; dn+1) = 0, since f(��a) = 0 and �dn+1 = 1 hold. Similarly, f 0(a; dn+1) = 0 impliesf 0(a; dn+1) = 1. Thus f 0 is in CSD.Therefore, the theorem follows from Theorem 9. 2Let us �nally consider the problem of most robust extensions for the classes of positivedual-comparable functions. Recall [5] that(i) A pdBf (T;F ) has an extension in C+DMI if and only if (T;F ) has a positive extension,and for all a 2 T , there is no a0 2 T such that a0 � �a.(ii) A pdBf (T;F ) has an extension in C+DMA if and only if (T;F ) has a positive extension,and for all b 2 F , if there is no b0 2 F such that b0 � �b.(iii) A pdBf (T;F ) has an extension in C+SD if and only if (T;F ) has a positive extension,and for all a 2 T , there is no a0 2 T such that a0 � �a, and for all b 2 F , if there is nob0 2 F such that b0 � �b.Theorem 25 Problems MRE(C+DMI), MRE(C+DMA) and MRE(C+SD) are NP-hard, even ifjAS(a)j � 1 holds for all a 2 ~T [ ~F .Proof. MRE(C+DMI) and MRE(C+SD): Let G = (V;E) be a �-free graph, where V =fv1; v2; : : : ; vng, and G is called �-free if G has no clique of size 3, i.e., there is no set of ver-tices v1; v2; v3 2 V such that (v1; v2); (v2; v3); (v3; v1) 2 E. LetW = fwij j (vi; vj) 62 E; i 6= jg,



RRR 6-96 Page 47where W \ V = ;, and let V 0 be the base set with V 0 = V [W . Now de�ne ~T ; ~F � IMV 0 asfollows. ~T = fa(i) = (Nvi [ fwij 2 W j vj 2 V g; fvig) j i = 1; 2; : : : ; ng~F = ;; (31)where N(vi) = fvl 2 V j (vl; vi) 2 Eg, and (R;S) denotes the vector y 2 IMV 0 such thatON(y) = R and AS(y) = f(y; j) j j 2 Sg. It is easy to see that jAS(a)j � 1 holds for alla 2 ~T [ ~F .We claim that �(C+SD; ( ~T; ~F )) = �(C+DMI; ( ~T; ~F )) = � (G); (32)where � (G) denotes the cardinality of a minimum vertex cover of graph G. This will provethe statement because �nding � (G) for a �-free graph G is known to be NP-hard [11]. Toprove the claim, we �rst show that�(C+SD; ( ~T; ~F )) = �(C+DMI ; ( ~T; ~F )): (33)�(C+SD; ( ~T; ~F )) � �(C+DMI ; ( ~T; ~F )) follows from C+SD � C+DMI. For the converse inequality, let� 2 Q for Q � AS be a solution of MRE(C+DMI), and let (T 0; F 0) be a pdBf on V 0, whereT 0 = fa(�;�) j a 2 ~T; � 2 IBASnQgF 0 = ; (= ~F ): (34)By the de�nition of most robust extension, � 2 Q for Q � AS is a solution of MRE(C)if and only if (T 0; F 0) has an extension in C. C = C+DMI implies that (T 0; F 0) satis�es thecondition (i) (before this theorem). In case of F 0 = ;, condition (i) is equivalent to (iii), thatis, (T 0; F 0) has an extension in C+SD. This means that � 2 Q for Q � AS is also a solutionto MRE(C+SD). Hence �(C+SD; ( ~T; ~F )) � �(C+DMI; ( ~T; ~F )), which will imply (33).Next we show �(C+DMI ; ( ~T; ~F )) = � (G); (35)which will complete the proof. Let � 2 Q for Q � AS be a solution to MRE(C+DMI).By the above argument, a pdBf (T 0; F 0) of (34) has an extension in C+DMI. We show thatf(a(i); vi); (a(j); vj)g \ Q 6= ; holds for all pair of i and j with (vi; vj) 2 E, which implies�(C+DMI; ( ~T; ~F )) � � (G): (36)Assume otherwise, i.e., (a(i); vi); (a(j); vj) 62 Q holds for some i and j with (vi; vj) 2 E. Leta; a0 2 T 0 be the vectors, which are respectively obtained from a(i) and a(j) by assigning�(a(i); vi) = 0 and �(a(j); vj) = 0. Then we can see that a0 � �a holds, since G is �-free. By(i), this implies that (T 0; F 0) has no extension in C+DMI, which is a contradiction. Hence (36)holds.Finally, consider the converse inequality, i.e.,�(C+DMI; ( ~T; ~F )) � � (G): (37)



Page 48 RRR 6-96Let C � V be a minimum vertex cover of G. Let Q = f(a(i); vi) j i 2 Cg, and de�ne � 2 IBQby �(a(i); vi) = 1 for all (a(i); vi) 2 Q. For this �, we show that ( ~T �; ~F �) has a robustextension in C+DMI , that is, (T 0; F 0) of (34) has an extension in C+DMI . This implies (37). By(i) together with F 0 = ;, we only have to check if there is no a0 2 T 0 such that a0 � �a for alla 2 T 0.For every pair of a; a0 2 T 0, which are respectively obtained from a(i) and a(j) with(vi; vj) 2 E, �(a(i); vi) = 1 or �(a(j); vj) = 1 holds (i.e., avi = 1 or a0vj = 1), by the de�nitionof �. Since avj = a0vi = 1, we have avi = a0vi = 1 or avj = a0vj = 1. Hencea0 6� �a (i.e., a 6� �a0): (38)For other pairs of a; a0 2 T 0 (i.e., if a and a0 are respectively obtained from a(i) and a(j) with(vi; vj) 62 E), (38) also holds since awij = a0wij = 1. Hence we have (37), which together with(36) will imply (35).The case of MRE(C+DMA) is dual to MRE(C+DMI); it can be shown to be NP-hard byusing the instance ( ~T d = f�b j b 2 ~Fg; ~F d = f�a j a 2 ~Tg) constructed from the above instance( ~T; ~F ), where �a denotes the vector such that �ai = 1 (resp., 0) if ai = 0 (resp., 1), and �ai = �if ai = �. 28 Threshold functionsLet us denote by CTH the class of threshold functions.Theorem 26 Problem RE(CTH) can be solved in polynomial time.Proof. For a pBmd ( ~T; ~F ), where ~T; ~F � IMn, let us consider the following linear program-ming problem (LP):max � = Pni=1 yi �Pni=1 zisubject to Pi2ON(a)wi +P(a;i)2AS(a) yi � t 8a 2 ~TPi2ON(b)wi +P(b;i)2AS(b) zi � t� 1 8b 2 ~Fyi � wi; yi � 0 i = 1; 2; : : : ; nzi � wi; zi � 0 i = 1; 2; : : : ; n: (39)We claim that the LP problem (39) has a feasible solution with a �nite optimum value � ifand only if ( ~T; ~F ) has a robust extension in CTH.Let us assume �rst that ( ~T; ~F ) has a robust extension f 2 CTH, and let wi, i = 1; 2; : : : ; n,and t be the coe�cients of f . Then by setting yi = minf0; wig and zi = maxf0; wig, we havea feasible solution of (39). Since Pni=1 yi �Pni=1 zi � 0, problem (39) has a feasible solutionwith a �nite optimum.



RRR 6-96 Page 49Then assume conversely that wi; yi; zi, i = 1; 2; : : : ; n, and t are an optimal solution ofproblem (39) (with a �nite optimum). Then yi = minf0; wig and zi = maxf0; wig hold sinceotherwise it would not be a optimum. This implies that wi, i = 1; 2; : : : ; n, are �nite, andhence wi, i = 1; 2; : : : ; n, and t de�ne a threshold function, which is a robust extension of( ~T; ~F ). 2However, problem CE(CTH) appears to be harder than RE(CTH).Theorem 27 Problem CE(CTH) is NP-complete, even if jAS(a)j � 1 holds for all a 2 ~T[ ~F .Proof. Similarly to the proof of Theorem 9, this problem is in NP. We now show that it isNP-hardness.Let us consider a cubic CNF � = m̂k=1CkCk = (uk _ vk _ wk);where uk, vk and wk for k = 1; 2; : : : ;m are literals from set L = fx1; �x1; : : : ; xn; �xng. LetL0 = fx01; �x01; :::; x0n; �x0ng, and de�ne ~T; ~F � IML[L0 as follows.~T = faxi = (fx0ig; fxig); a�xi = (f�x0ig; f�xig) j i = 1; 2; : : : ; ng~F = f(bxi = fxi; �xig; ;); bx0i = (fx0i; �x0ig; ;); j i = 1; 2; : : : ; ng[f(bCk = (fuk; vk; wk; u0k; v0k; w0kg; ;) j k = 1; 2; : : : ;mg; (40)where (R;S) denotes the vector v 2 IML[L0 such that ON(v) = R and AS(v) = f(v; j) j j 2Sg. It is easy to see that jAS(a)j � 1 holds for all a 2 ~T [ ~F . We claim that this pBmd( ~T; ~F ) has a consistent threshold extension if and only if 3-SAT for � has a solution, whichcompletes the proof.Let us �rst assume that � 2 IBAS is an assignment such that ( ~T �; ~F �) has a thresholdextension: f(d) = ( 1 if Pz2L[L0 wzdz � t0 otherwise;where d 2 IBL[L0. We shall �rst show that �(axi; xi) 6= �(a�xi; �xi) must hold for (axi; xi),(a�xi; �xi) 2 AS. If �(axi; xi) = �(a�xi; �xi) = 1 holds, then (axi)� 2 ~T � and (a�xi)� 2 ~T �,respectively, imply wxi + wx0i � t and w�xi + w�x0i � t, and hencewxi + wx0i + w�xi + w�x0i � 2t: (41)However, bxi 2 ~F � and bx0i 2 ~F �, respectively, implying wxi +w�xi < t and wx0i +w�x0i < t, andhence wxi + wx0i + w�xi + w�x0i < 2t follows, which is a contradiction to (41). Furthermore, if�(axi; xi) = �(a�xi; �xi) = 0 holds, then (axi)� 2 ~T � and (a�xi)� 2 ~T �, respectively, implying



Page 50 RRR 6-96wx0i � t and w�x0i � t, and hence wx0i + w�x0i � 2t would follow, which is a contradiction tof(bx0i) = 0. Hence �(axi; xi) 6= �(a�xi; �xi) holds. Let us now de�ne a binary vector y 2 IBn byyi = ( 1 if �(axi; xi) = 00 otherwise;and show that this y satis�es �(y) = 1. For this, assume otherwise that there is a clause Ckthat satis�es Ck(y) = 0 (i.e., uk = vk = wk = 0 holds by y), that is, �(auk ; uk) = �(avk ; vk) =�(awk ; wk) = 1. Then taking three vectors (auk)�; (avk)�; (awk)� 2 ~T �, we have wuk+wu0k � t,wvk +wv0k � t and wwk +ww0k � t, and hence wuk +wvk +wwk +wu0k +wv0k +ww0k � 3t, whichis a contradiction to f(bCk) = 0.For the converse direction, let us assume that �(y) = 1 holds for some y 2 IBn. Let usde�ne an assignment � 2 IBAS by �(axi; xi) = �yi and �(a�xi; �xi) = yi for i = 1; 2; : : : ; n, andlet wz = 8>>><>>>: �3 if either z = xi and yi = 1; or z = �xi and yi = 0+2 if either z = xi and yi = 0; or z = �xi and yi = 1+1 if either z = x0i and yi = 1; or z = �x0i and yi = 0�1 if either z = x0i and yi = 0; or z = �x0i and yi = 1;and t = 1. Then Pz2L[L0 wzaz � 1 holds for all a 2 ~T �, and Pz2L[L0 wzbz � 0 holds for allb 2 ~F �. Hence ( ~T; ~F ) has a consistent threshold extension. 29 Decomposable functionsThe decomposability was de�ned at the end of Subsection 2.1. We only consider the followingfundamental classes of decomposable functions.Cg(S0 ;h1(S1)): class of g(S0; h1(S1))-decomposable functions,C+g(S0 ;h1(S1)): class of positive g(S0; h1(S1))-decomposable functions,where S1; S2 � V . It is known that the problems EXTENSION(Cg(S0;h1(S1))) andEXTENSION(C+g(S0;h1(S1))) can be solved in polynomial time [3], and that both of the prob-lems BEST-FIT(Cg(S0 ;h1(S1))) and BEST-FIT(C+g(S0;h1(S1))) are NP-hard [5].Let us �rst consider the class Cg(S0;h1(S1)).Theorem 28 Problem CE(Cg(S0;h1(S1))) is NP-complete, even if jAS(a)j � 1 holds for alla 2 ~T [ ~F .Proof. Similarly to the proof of Theorem 9, this problem is in NP. We now show its NP-hardness. Let H = (V;E) be a 3-uniform hypergraph, where V = f1; 2; : : : ; ng and E =fHi = fui; vi; wig jui < vi < wi; i = 1; 2; : : : ;mg. Let S0 = f0; 1; 2; : : : ; pg and S1 =fp+1; p+2; : : : ; p+ qg, and let the base set S be de�ned by S = S0[S1. Let Wi � S0 nf0g,i = 1; 2; : : : ;m, be subsets such that Wi 6= Wj for i 6= j, and let Ul � S1, l 2 V , be subsets



RRR 6-96 Page 51such that Ul 6= Ul0 for l 6= l0. This is possible if we use S0 and S1 satisfying p = O(dlogme)and q = O(dlog ne). Then we de�ne ~T ; ~F � IMS as follows:~T = fa(i) = (Wi [ Uui; f0g) jHi = fui; vi; wig 2 Eg~F = fb(i1) = (f0g [Wi [ Uvi ; ;); b(i2) = (Wi [ Uwi ; ;) jHi 2 Eg;where (P ;R) denotes the vector v 2 IMS such that ON(v) = P and AS(v) = f(v; i) j i 2 Rg.It is easy to see that jAS(a)j � 1 holds for all a 2 ~T [ ~F . We claim that this pBmd ( ~T; ~F )has a consistent extension in Cg(S0;h1(S1)) if and only if H is 2-colorable, which completes theproof.Let us �rst assume that (C; V nC) is a 2-coloring of H, i.e., C\H 6= ; and (V nC)\H 6= ;for all H 2 E. Then de�ne an assignment � 2 IBAS by�(a(i); 0) = ( 1 if either (ui 2 C and vi 62 C) or (ui 62 C and vi 2 C)0 otherwise;and h1(Ul; ;) = ( 1 if l 2 C0 otherwise:Now we shall show that (a�[S0]; h1(a�[S1])) 6= (b�[S0]; h1(b�[S1])) (42)holds for all pair of vectors a� 2 ~T � and b� 2 ~F �, which implies that ( ~T �; ~F �) has anextension in Cg(S0;h1(S1)). It is easy to see that (42) holds for every pair of (a(i))� 2 ~T �and (b(jk))� 2 ~F �, where i 6= j and k = 1; 2. Let us consider the pair of (a(i))� 2 ~T �and (b(ik))� 2 ~F � for k = 1; 2. Since (C; V n C) is a 2-coloring, h1(Uui ; ;) 6= h1(Uvi; ;) orh1(Uui ; ;) 6= h1(Uwi ; ;) holds. If h1(Uui ; ;) 6= h1(Uvi ; ;) holds, then clearly (42) holds for thepair of (a(i))� 2 ~T � and (b(i1))� 2 ~F �, and by the de�nition of � 2 IBAS , (a(i))�[0] 6= (b(i2))�[0],implying (42) for the pair of (a(i))� 2 ~T � and (b(i2))� 2 ~F �. Hence (42) holds for all pair of(a(i))� 2 ~T � and (b(ik))� 2 ~F �, where k = 1; 2. Also for the case of h1(Uui ; ;) = h1(Uvi; ;) 6=h1(Uwi; ;), we can show by a similar argument that (42) holds for all pair of (a(i))� 2 ~T �and (b(ik))� 2 ~F �, where k = 1; 2.For the converse direction, let � 2 IBAS is an assignment such that ( ~T �; ~F �) has anextension in Cg(S0;h1(S1)), and let us de�neC = fl jh1(Ul; ;) = 1g: (43)Then we claim that (C; V n C) is a 2-coloring of H. For this, assume that some Hi 2 E ismonochromatic, that is, either Hi � C or Hi � V n C holds. Then by (43),h1((a(i))�[S1]) = h1((b(i1))�[S1]) = h1((b(i2))�[S1]) (44)holds. Since ( ~T �; ~F �) has a g(S0; h1(S1))-decomposable extension,



Page 52 RRR 6-96((a(i))�[S0]; h1((a(i))�[S1])) 6= ((b(i1))�[S0]; h1((b(i1))�[S1]))and ((a(i))�[S0]; h1((a(i))�[S1])) 6= ((b(i2))�[S0]; h1((b(i2))�[S1]))hold. However, by (44), this implies (a(i))�[S0] 6= (b(i1))�[S0] and (a(i))�[S0] 6= (b(i2))�[S0],which is impossible for any assignment � 2 IBAS. 2Next let us consider the robustness of Cg(S0;h1(S1)), where it is emphasized that S0 \ S1 6=; generally holds. For a subset ~S � IMV , let ASk( ~S) = f(v; j) 2 AS( ~S) j j 2 Skg fork = 1; 2, and AS0 = AS0( ~T [ ~F ). Let us de�ne a graph G( ~T ; ~F ) = (W;E1 [ E2), withW � IBS1\S0 � IMS1nS0 byW = fw;w0 j there exist a 2 ~T; b 2 ~F;� 2 IBAS0(a) and � 2 IBAS0(b)such that w = a�[S1]; w0 = b�[S1] and a�[S0] = b�[S0]gE1 = f(w;w0) j there exist a 2 ~T; b 2 ~F;� 2 IBAS0(a) and � 2 IBAS0(b)such that w = a�[S1]; w0 = b�[S1] and a�[S0] = b�[S0]gE2 = f(w;w0) j there exist a; b 2 ~T [ ~F;� 2 IBAS0(a) and � 2 IBAS0(b)such that w = a�[S1]; w0 = b�[S1] and a�[S1] � b�[S1]g:Furthermore, denote by G0( ~T; ~F ) the graph obtained from G( ~T ; ~F ) by contracting all edges inE2.Example 3. Let S0 = f1; 2; 3; 4g, S1 = f4; 5; 6g and V = S0 [ S1 (i.e., V = f1; 2; : : : ; 6g),and de�ne ~T; ~F � f0; 1gV by~T = 8><>: a(1) = (1; 1; 1; 1; �; 0)a(2) = (0; �; 1; �; 1; �)a(3) = (0; 0; 0; 0; 1; 0) 9>=>; ; ~F = 8><>: b(1) = (0; 1; �; �; 0; 0)b(2) = (0; 0; 1; 0; 0; �)b(3) = (0; 0; 0; 0; 0; 1) 9>=>; :Graphs G( ~T ; ~F ) and G0( ~T; ~F ) are given in Figure 5. Note that graph G( ~T ; ~F ) does not have vertex(1; �; 0) 2 IBS1\S0 � IMS1nS0 , which is obtained from a(1) 2 ~T , since there is no b 2 ~F suchthat (a(1))�[S0] = b�[S0] holds for some � 2 IBAS0(a(1)) and � 2 IBAS0(b). 2Lemma 16 Let ( ~T; ~F ) be a pBmd. Then ( ~T; ~F ) has a robust g(S0; h1(S1))-decomposableextension if and only if G0( ~T; ~F ) is bipartite.Proof. Let us �rst show the only-if-part. Assume that ( ~T; ~F ) has a robust g(S0; h1(S1))-decomposable extension, but G0( ~T ; ~F ) is not bipartite. In other words, there is a cycle w(0)!w(1)! : : :! w(l) (= w(0)) in G( ~T; ~F ) = (W;E1 [ E2) such thatjE1 \ f(w(i); w(i+1)) j i = 0; 1; : : : ; l � 1gj is odd: (45)
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Figure 5: Graphs G( ~T; ~F ) and G0( ~T ; ~F ) of ( ~T; ~F ) in Example 3.Let us consider the values of h1 on f(w(i))� j� 2 IBAS1(w(i))g, i = 0; 1; : : : ; l � 1. For each(w(i); w(i+1)) 2 E1, by the de�nition of E1, we must have h1((w(i))�)6= h1((w(i+1))) for allassignments � 2 IBAS1(w(i)) and  2 IBAS1(w(i+1)). This means thath1((w(i))�)= p for all � 2 IBAS1(w(i)); andh1((w(i+1)))= �p for all  2 IBAS1(w(i+1)); (46)where p 2 f0; 1g. On the other hand, if (w(i); w(i+1)) 2 E2,h1((w(i))�)= h1((w(i+1))) (47)holds for all � 2 IBAS1(w(i)) and  2 IBAS1(w(i+1)), because the de�nition of W and (46) implythat h1((w(i))�)= p for all � 2 IBAS1(w(i)), h1((w(i+1)))= q for all  2 IBAS1(w(i+1)), and p = qby (w(i); w(i+1)) 2 E2. Thus (46) and (47) contradict (45).Conversely, if G0( ~T ; ~F ) is bipartite, then there is a partition (Y;W n Y ) of W such thatE1 � Y � (W n Y ) (48)E2 � (Y � Y ) [ ((W n Y )� (W n Y )): (49)By (49), we can de�ne the value of h1 for W byh1((w)�)= ( 1 if w 2 Y and � 2 IBAS1(w)0 if w 2 W n Y and � 2 IBAS1(w): (50)Furthermore, de�ne g byg(a�[S0]; h1(a�[S1]))= 1 for all a 2 ~T and � 2 IBAS(a)g(b�[S0]; h1(b�[S1]))= 0 for all b 2 ~F and � 2 IBAS(b):



Page 54 RRR 6-96If a�[S0] = b�[S0] holds for some a 2 ~T , b 2 ~F and � 2 IBAS(fa;bg), then wa; wb 2 W witha�[S1] � wa and b�[S1] � wb satisfy (wa; wb) 2 E1, and we have h1(a�[S1]))6= h1(b�[S1])) by(48) and (50). Hence g is also well-de�ned. Therefore, by extending this h1 to IBS1 , we seethat ( ~T; ~F ) has a robust g(S0; h1(S1))-decomposable extension . 2In general, however, the size of a graph G0( ~T ; ~F ) is exponential in jS0j, and the above lemmadoes not directly lead to an e�cient algorithm to RE(Cg(S0;h1(S1))).Theorem 29 Problem RE(Cg(S0;h1(S1))) is co-NP-complete.Proof. First we show that the problem is in co-NP. For a pBmd ( ~T; ~F ), we show that everysimple cycle C in G0( ~T ; ~F ) satis�es jCj � j ~T j + j ~F j. By the de�nition of E1, w[S0 \ S1] =w0[S0 \ S1] holds for all edges (w;w0) 2 E1. The same condition also holds for all edges(w;w0) 2 E2 by the property w[S1] � w0[S1]. Thusw[S0 \ S1] = w0[S0 \ S1] (51)holds if there is a path from w to w0 in G( ~T; ~F ). In particular, all vertices in a cycle C inG0( ~T ; ~F ) have this property, and, by the de�nition of G0( ~T ; ~F ), all vertices w in C have di�erentw[S1 n S0], implying that they are generated from di�erent vectors in ~T [ ~F . This provesjCj � j ~T j+ j ~F j. Since ( ~T; ~F ) has a robust g(S0; h1(S1))-decomposable extension if and onlyif there is no cycle C of odd length in G0( ~T ; ~F ), we can then conclude that RE(Cg(S0;h1(S1))) isin co-NP.We next show its co-NP-hardness. Let H = (U;E) be a 3-uniform hypergraph, whereU = f1; 2; : : : ; ng, E = fHi j i = 1; 2; : : : ;mg and m is odd. Let S0 = f1; 2; : : : ; n + mg,S1 = f1; 2; : : : ; ng [ fn + m + 1; n + m + 2; : : : n + 2mg and the base set V = S0 [ S1.Obviously, S0 \ S1 = U = f1; 2; : : : ; ng holds in this case. Then de�ne ~T; ~F � IMV asfollows.~T = f(Ai [ fn+ ig [ fn+m+ ig;U nHi) jAi � Hi; Ai 6= ;; 1 � i � mg g~F = f(Ai [ fn+ ig [ fn+m+(i (mod m))+1g;U nHi) jAi � Hi; Ai 6= ;; 1 � i � mg g;where � denotes the proper inclusion, and (R;S) denotes the vector v 2 IMV such thatON(v) = R and AS(v) = f(v; i) j i 2 Sg. We claim that this pBmd ( ~T ; ~F ) has a robustextension in Cg(S0;h1(S1)) if and only if H is not 2-colorable, which completes the proof becausedeciding if H is 2-colorable is NP-complete (even if jEj is restricted to be odd). For this( ~T; ~F ), we have E2 = ;, because any (v; j) 2 AS satis�es j 2 S0\S1, implying that v 2 IBS1holds for any vertex v in G( ~T; ~F ). This means that G0( ~T; ~F ) is bipartite if and only if so isG( ~T ; ~F ). Thus Lemma 16 tells that ( ~T; ~F ) has a robust g(S0; h1(S1))-decomposable extensionif and only if G( ~T ; ~F ) = (W;E1 [ E2) is bipartite.Let us �rst assume that (C;UnC) is a 2-coloring ofH, i.e., C\Hi 6= ; and (UnC)\Hi 6= ;for all Hi 2 E. Then C can be represented byC = m[i=1A�i (52)



RRR 6-96 Page 55for some ; 6= A�i � Hi, and we have((C [ fn+m+ ig; ;); (C [ fn+m+(i (mod m))+1g; ;))2 E1 for i = 1; 2; : : : ;m:Hence, we have a cycle w(1) ! w(2)! : : :! w(m) ! w(1) in G( ~T ; ~F ), wherew(i) = (C [ fn +m+ ig; ;); i = 1; 2; : : : ;m:Sincem is supposed to be odd, this implies that ( ~T; ~F ) has no robust extension in Cg(S0;h1(S1)).For the converse direction, let us assume that G( ~T ; ~F ) has a cycle. By property (51), we canonly consider a cycle in G( ~T ; ~F )[WC] for some C 2 U , where WC = fw 2 W jON(w[U ]) = Cgand G( ~T ; ~F )[WC] is the subgraph of G( ~T; ~F ) induced by WC . By the de�nition of the above( ~T; ~F ), such a cycle is of the form(C[fn+m+1g; ;) ! (C[fn+m+2g; ;) ! : : :! (C[fn+2m)g; ;)! (C[fn+m+1g; ;):Thus the length of this cycle is odd. This C obviously satis�es (52) and is a 2-coloring ofH. 2However, if S0 \ S1 = ;, then RE(Cg(S0;h1(S1))) is polynomially solvable.Theorem 30 If S0 \ S1 = ;, problem RE(Cg(S0;h1(S1))) can be solved in polynomial time.Proof. Since S0 \ S1 = ;, a graph G( ~T ; ~F ) = (W;E1 [ E2g can be represented byW = fa[S1]; b[S1] j a 2 ~T; b 2 ~F and a[S0] � b[S0]g;E1 = f(a[S1]; b[S1]) j a 2 ~T ; b 2 ~F and a[S0] � b[S0]g;E2 = f(a[S1]; b[S1]) j a; b 2 ~T [ ~F and a[S1] � b[S1]g:It is easy to see that this graph G0( ~T ; ~F ) has polynomially many vertices and can be con-structed in polynomial time. Then, by applying Lemma 16, RE(Cg(S0;h1(S1))) can be solvedin polynomial time. 2Let us �nally consider class C+g(S0;h1(S1)). Problems RE(C+g(S0;h1(S1))) and CE(C+g(S0;h1(S1)))can be solved in polynomial time, by Corollary 4. For problem MRE(C+g(S0;h1(S1))), however,we have the following negative result.Theorem 31 Problem MRE(C+g(S0;h1(S1))) is NP-hard, even if jAS(a)j � 1 holds for all a 2~T [ ~F .Proof. We claim that class C+g(S0;h1(S1)) satis�es properties PA((1; 0)) and PB((1; 0), (1; 1),(0; 0)) of Subsection 3.2, where we consider that the two added variables of the vectors(1; 0), (1; 1) and (0; 0) used in PA and PB are in S0. Combining this with the NP-hardness
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Page 58 RRR 6-96Function classes RE CE MREjAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~FjAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~FjAS(a)j = O(log(n + j ~T j + j ~F j)) jAS(a)j = O(log(n + j ~T j + j ~F j)) jASj = O(log(n + j ~T j + j ~F j))for all a 2 ~T [ ~F for all a 2 ~T [ ~FGeneral case General case General caseGeneral P P PP NPC NPHP NPC PP NPC NPHPositive P P PP P NPHP P PP P NPHRegular P P PP P PP P PP P PP: Polynomial, NPC: NP-complete, NPH: NP-hardTable 1: Transitive classes.Function classes RE CE MREjAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~FjAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~FjAS(a)j = O(log(n + j ~T j + j ~F j)) jAS(a)j = O(log(n + j ~T j + j ~F j)) jASj = O(log(n + j ~T j + j ~F j))for all a 2 ~T [ ~F for all a 2 ~T [ ~FGeneral case General case General case(Positive) NPC NPC NPHk-DNF NPC NPC NPHNPC NPC NPHNPH NPC NPH(Positive) P P NPH1-DNF P P NPHP P PP P NPH2-DNF P NPC NPHP NPC NPHP NPC PP NPC NPHPositive P P NPH2-DNF P P NPHP P PP P NPHk-DNF with P NPC NPH�xed k � 3 P NPC NPHP NPC Pco-NPC NPC NPHPositive P P NPHk-DNF with P P NPH�xed k � 3 P P PP P NPHP: Polynomial, NPC: NP-complete, NPH: NP-hard, co-NPC: co-NP-completeTable 2: Hereditary classes (i).
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Function classes RE CE MREjAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~FjAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~FjAS(a)j = O(log(n + j ~T j + j ~F j)) jAS(a)j = O(log(n + j ~T j + j ~F j)) jASj = O(log(n + j ~T j + j ~F j))for all a 2 ~T [ ~F for all a 2 ~T [ ~FGeneral case General case General case(Positive) NPC NPC NPHh-term-DNF NPC NPC NPHNPC NPC NPHNPH NPC NPH(Positive) NPC NPC NPHh-term-DNF with NPC NPC NPH�xed k � 2 NPC NPC NPHNPH NPC NPH(Positive) P P NPH1-term-DNF P P NPHP P PP P NPH(Positive) NPC NPC NPHh-term-k-DNF NPC NPC NPHNPC NPC NPHNPH NPC NPH(Positive) NPC NPC NPHh-term-k-DNF NPC NPC NPHwith �xed h � 1 NPC NPC NPHNPH NPC NPH(Positive) NPC NPC NPHh-term-k-DNF NPC NPC NPHwith �xed k � 1 NPC NPC NPHNPH NPC NPH(Positive) P P Ph-term-k-DNF P P Pwith �xed h; k P P PP P PHorn P NPC NPHP NPC NPHP NPC PP NPC NPHP: Polynomial, NPC: NP-complete, NPH: NP-hardTable 3: Hereditary classes (ii).
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Function classes RE CE MREjAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~FjAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~FjAS(a)j = O(log(n + j ~T j + j ~F j)) jAS(a)j = O(log(n + j ~T j + j ~F j)) jASj = O(log(n + j ~T j + j ~F j))for all a 2 ~T [ ~F for all a 2 ~T [ ~FGeneral case General case General caseSelf-dual P P NPHP NPC NPHP NPC PP NPC NPHDual-minor P P NPHP NPC NPHP NPC PP NPC NPHDual-major P P NPHP NPC NPHP NPC PP NPC NPHPositive self-dual P P NPHP P NPHP P PP P NPHPositive dual-minor P P NPHP P NPHP P PP P NPHPositive dual-major P P NPHP P NPHP P PP P NPHP: Polynomial, NPC: NP-complete, NPH: NP-hardTable 4: Dual-comparable classes.
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Function classes RE CE MREjAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~F jAS(a)j � 1 for all a 2 ~T [ ~FjAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~F jAS(a)j � 2 for all a 2 ~T [ ~FjASj = O(log(n + j ~T j + j ~F j)) jASj = O(log(n + j ~T j + j ~F j)) jASj = O(log(n + j ~T j + j ~F j))General case General case General caseg(S0; h1(S1))-decomp- P NPC NPHosable P NPC NPHP NPC Pco-NPC NPC NPHPositive g(S0; h1(S1)) P P NPH-decomposable P P NPHP P PP P NPHRenamable Horn NPC NPC NPHNPC NPC NPHNPC NPC NPHNPH NPC NPHThreshold P NPC NPHP NPC NPHP NPC PP NPC NPH2-monotonic positive NPC NPC NPHNPC NPC NPHNPC NPC NPHNPH NPC NPH(Positive) read-once NPC NPC NPHNPC NPC NPHNPC NPC NPHNPH NPC NPHUnate NPC NPC NPHNPC NPC NPHNPC NPC NPHNPH NPC NPHP: Polynomial, NPC: NP-complete, NPH: NP-hard, co-NPC: co-NP-completeTable 5: Other classes.


