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Abstract.As a form of knowledge acquisition from data, we consider the problem
which, given a partially defined Boolean function with missing data (pBmd) (T’, 1:"),
where T C {0,1,%}™ and FC {0, 1, %}™, respectively, represent “positive examples”
and “negative examples” and “x” represents missing bits in the data, establishes a
Boolean function (extension) f such that f is true (resp., false) in every given true
(resp., false) vector. In particular, we study extensively three types of extensions
called consistent, robust and most robust extensions for various classes of Boolean
functions such as general, positive, regular, k-DNF, h-term DNF, Horn, self-dual,
threshold, read-once, and decomposable. For certain classes we shall provide poly-
nomial algorithms, and for other cases we prove their NP-hardness.
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1 Introduction

Knowledge acquisition in the form of Boolean logic has been intensively studied in the recent
research (e.g., [3, 5, 8, 12, 18]): given a set of data, represented as a set T of binary “true n-
vectors” (or “positive examples”) and a set F' of “false n-vectors” (or “negative examples”),
establish a Boolean function (extension) f in a specified class C, such that f is true (resp.,
false) in every given true (resp., false) vector; ie., T C T(f) and F C F(f), where T(f)
(resp., F'(f)) denotes the set of true vectors (resp., the set of false vectors) of f. A pair of
sets (T, F') is called a partially defined Boolean function (pdBjf) throughout this paper.

For instance, data = represent the symptoms to diagnose a disease, e.g., ©; denotes
whether temperature is high (#; = 1) or not (z; = 0), and 5 denotes whether blood presure
is high (zs = 1) or not (z5 = 0), etc. Establishing an extension f, which is consistent
with the given data, amounts to finding a logical diagnostic explanation of the given data.
Therefore, this may be considered as a form of knowledge acquisition from given examples.

In this process, some knowledge or hypothesis about the extension f is usually avail-
able beforehand. Such knowledge may be obtained from experience or from the analysis of
mechanisms that may or may not cause the phenomena under consideration. In the above
example of diagnosing diseases, it would be natural to assume that we somehow know the
direction of each variable that tends to cause the disease to appear. By changing the po-
larities of variables if necessary, therefore, the extension f(z) can be assumed to be positive
in all variables. In this paper, we discuss several classes of functions such as positive (also
called monotone), regular, k-DNF, Horn and dual-comparable, which respectively arise in
different context of applications.

Unfortunately, the real-world data might not be complete. As for the above examples,
for some data ¢, temperature might not be measured, that is, it is not known whether z; = 0
or 1. For another instance, we have a battery of 45 biochemical tests for carcinogenicity.
However, we do not usually apply all tests, since all tests cannot be checked in a laboratory
or some tests are very expensive. When a test is not applied, we say that the test result is
missing. A set of data (T, ﬁ'), which includes the missing results, is called a partially defined
Boolean function with missing data(pBmd), where T (resp., F') denotes the set of “positive
examples” (resp., “negative examples”) of such vectors. To cope with such situations, we
introduce in this paper three types of complete Boolean functions called consistent, robust
and most robust extensions, respectively. More precisely, given a pBmd (T, ﬁ') and a class
of Boolean functions C, (i) a consistent extension is a Boolean function f in C such that,
for every @ € T (resp., ﬁ'), there is a 0-1 vector a obtained from a by fixing missing data
appropriately, for which f(a) =1 (resp., f(a) = 0) holds, (ii) a robust extension is a Boolean
function f in C such that, for every a € T (resp., F) any 0-1 vector a obtained from a by
fixing missing data arbitrarily satisfies f(a) = 1 (resp., f(a) = 0), and (iii) a most robust
extension is a Boolean function f in C which is a robust extension of a pBmd (77, F'),
where (T, F') is obtained from (T, F') by fixing a smallest set of missing data appropriately
(the remaining missing data in 7" U F” are assumed to take arbitrary values). All of these
extensions provide logical explanations of a given pBmd (T F ) with varied freedom given
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to the missing data in T and F. By definition, if (T,ﬁ') has a robust extension, it is also
a most robust extension and is a consistent extension, and if (T,ﬁ') has a most robust
extension, it is a consistent extension. In case of most robust and consistent extensions, they
also provide information such that some missing data must take certain values if (T, ﬁ') can
have a consistent extension in class C. This type of information is also useful in analyzing
incomplete data sets.

In this paper, we study the problems of deciding the existence of (and constructing)
these extensions for a given pBmd (T, ﬁ') and class C, mainly from the view point of their
computational complexity. We obtain computationally efficient algorithms in some cases,
and prove NP-completeness in some other cases. For a summary of the results obtained, see

Tables 1-5.

2 Preliminaries

2.1 Boolean functions

A Boolean function, or a function in short, is a mapping f : B" — B, where B = {0,1},
and z € B" is called a Boolean vector (or a wector in short). If f(z) = 1 (resp., 0), then
x is called a true (resp., false) vector of f. The set of all true vectors (resp., false vectors)
is denoted by T'(f) (resp., F(f)). Two special functions with T(f) = 0 and F(f) = 0 are
respectively denoted by f = L and f = T. For two functions f and g on the same set of
variables, we write f < g if f(x) = 1 implies g(z) = 1 for all z € B", and we write f < g if
f<gand f#g.

A function f is positive if & < y (ie., ; < y; for all ¢ € {1,2,...,n}) always implies
f(z) < f(y). A positive function is also called monotone. For a subset R C {1,2,...,n}, let
z|R denote the vector obtained from « by switching the values 0 and 1 of all ;, 5 € R. Then
f is called unate if there is a subset R such that z|R < y|R always implies f(z) < f(y).
The variables x, s, ..., %, and their complements Z1, Zs, ..., T, are called literals. A term
is a conjunction of literals such that at most one of x; and Z; appears for each ¢. The
constant 1 (viewed as the conjunction of an empty set of literals) is also considered as a
term. A disjunctive normal form (DNF) is a disjunction of terms. Clearly, a DNF defines a
function, and it is well-known that every function can be represented by a DNF (however,
such a representation may not be unique). Throughout this paper, unless otherwise stated,
we usually do not distinguish a DNF ¢ from the function it represents.

It is also well-known that a Boolean function f is positive if and only if f can be repre-
sented by a DNF, in which all the literals of each term are uncomplemented. A function is
called a k-DNF if it has a DNF with at most k literals in each term, h-term DNF'if it has
a DNF with at most h terms, and Horn if it has a DNF with at most one complemented
literal in each term. Furthermore, a function f is called renamable Horn (or sometimes
disquised Horn) if there exists a subset R C {1,2,...,n} such that function f(x|R) is Horn.
Obviously, a positive function is a special case of a Horn function, and a unate function is a
special case of a renamable Horn function.
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A Boolean expression is called read-once [1] if it contains at most one occurrence of
each variable, where an expression can be given by using conjunctions, disjunctions and
complementations. For instance, &; V @s(23 V #4Z5) is a read-once expression. Read-once
expressions are also called p-formulas [20] or Boolean trees. A function is called read-once if
it has a read-once expression.

The dual of a function f, denoted f9, is defined by
fi(e) = f(2),

where f and Z denote the complement of f and z, respectively. As is well-known, a Boolean
expression defining f¢ can be obtained from an expression representing f by exchanging V
(or) and - (and), as well as the constants 0 and 1. Tt is easy to see that (fV g)¢ = fi¢¢, and
so on. A function f is called dual-minorif f < f¢, dual-magjor if f > f2, dual-comparable if
f < flor f> f% and self-dual if f¢ = f. It is known [5] that a function f is dual-minor
(resp., dual-major, self-dual) if and only if at most (resp., at least, exactly) one of f(a) =1
and f(a) =1 holds for every a € B".

An assignment A of binary values 0 or 1 to k variables z; ,%,,,...,;

is called a k-

k
assignment, and is denoted by

A= (2 — a1,®i, — ag,..., %, — ap),

where each of a1, as, . ..ay is either 1 or 0. Let the complement of A, denoted by A, represent
the assignment obtained from A by complementing all the 1’s and 0’s in A. When a function
f of n variables and a k-assignment A are given,

fA - f(z-,l AL, Tig A2, Ty, —ay)

denotes the function of (n L k) variables obtained by fixing variables z;,,®;,,...,®; as
specified by A. Let f be a function of n variables. If either f4 < fz or fa > fz holds for
every k-assignment A, then f is said to be k-comparable. If f is k-comparable for every k
such that 1 < k < m, then f is said to be m-monotonic. (For more detailed discussion on
these topics, see [16] for example.) In particular, f is l-monotonic if fi,,1) > fu;e0) or
fwic1) < faio) holds for every i € {1,2,...,n}. A function f is positive if and only if f is
1-monotonic and f(4;—1) > f(s;—0) holds for all <.
Now consider a 2-assignment A = (z; «— 1,z; < 0). If

fa = fa (xesp., fa> fa)

holds, this is denoted ; = @; (resp., #; > x;). Variables ; and x; are said to be comparable
if either z; > x; or z; <¢ x; holds. When z; > ¢ z; and z; < z; hold simultaneously, 1t is
denoted as x; ~f x;. If fis 2-monotonic, this binary relation >; over the set of variables is
known to be a total preorder [16]. A 2-monotonic positive function f of n variables is called
reqular if

L1 if Lo if"'if L. (1)
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Any 2-monotonic positive function becomes regular by permuting variables. It is known
that f is regular if and only if f(z) > f(y) holds for all z,y € B" with >, z; > 354 95,
k =1,2,...n. The 2-monotonicity and related concepts have been studied under various
names in the fields such as threshold logic [16] and hypergraph theory [6]. It was originally
introduced in conjunction with threshold functions (e.g., [16]), where a positive function f
1s threshold if there exist n 4+ 1 nonnegative real numbers oy, as, ..., a, and t such that:

. 1, if Eaixi Z t
fz) = { 0, if Y oz <t

As a; > a; implies x; = z; and a; = «; implies z; ~; x;, a threshold function is always
2-monotonic, although the converse is not true [16].

Let V = {1,2,...,n} denote the index set of variables. For a vector # € IB" and
S C V., z[S] denotes the projection of z on S. To simplify notation, for a Boolean function
h depending only on variables of S C V, we write h(S) instead of h(z[S]). A function f is
called g(So, h1(S1), ha(S2), ..., he(Sk))-decomposable [3, 14] if it satisfies the following three

conditions:

(1)  h; depends only on variables in S;, i =1,..., k,

(ii) ¢ depends on the variables in Sy and on the binary values h;(S;) for
i=1,..,k (ie., g:{0,1}%H+* - 10 1}),

(i) f = g(So, h1(S51), h2(S2), ..., hi(Sk))-

Let us note that Sg, Si,..., 5, are not necessarily assumed to be disjoint. Also, a func-
tion f is called positive g(So, h1(S1), ..., he(Sk))-decomposable it f is g(So, h1(S1), ..., hi(Sk))-
decomposable and functions g, h;, ¢ = 1,2,...,k are all positive.

2.2 Partially defined Boolean functions (with missing data) and
their extensions

A partially defined Boolean function (pdBjf) is defined by a pair of sets (T, F') such that
T,F C B". A function f is called an estension (or theory) of the pdBf (T, F) if T C T'(f)
and F' C F(f). We shall also say in this case that the function f correctly classifies all the
vectors @ € T and b € F'. Evidently, the disjointness of the sets 7" and F' is a necessary and
sufficient condition for the existence of an extension. It may not be evident, however, how to
find out whether a given pdBf has a extension in C, where C denotes a subclass of Boolean
functions, such as the class of positive functions, the class of k-DNF’s, etc. Therefore, we
have considered in [5] the following problems.

Problem EXTENSION(C)
Input: a pdBf (T, F'), where T, F C IB".
Question: Is there an extension f € C of (T, F')?
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Problem BEST-FIT(C)

Input: a pdBf (T, F'), where T, F C IBB", and a positive weight function
w:TUF—R,.

Output: Subsets T and F* such that T*NF* =0 and T*"UF*=TUF,
for which the pdBf (T, F*) has an extension in C, and w(T' N F*) +

w(F NT*) is minimum.

Let us add that, in case the answer is YES in problem EXTENSION(C), we expect to be
able to specify an extension f € C as a justification. Hence, if EXTENSION(C) is solvable in
polynomial time, we also provided such an extension f € C, either by a direct algebraic form,
or by a polynomial time membership oracle [5]. Similarly, for BEST-FIT(C), an extension
f € C of the pBmd (T, F*) has also to be specified [5]. Note that w(T N F*) + w(F N T*)
in the problem statement denotes the minimum weight sum of the vectors in T'U F' which
are erroneously classified by the obtained extension.
As a pdBf does not allow missing data, we then introduce set

]M = {07 ]‘7 *}7

and interpret the asterisk components * of v € IM"™ as missing bits. For a vector v € IM",
let ON(v)={j|lv;=1,7=1,2,....,n} and OFF(v) = {j|v; =0,5=1,2,...,n}. Fora
subset S C IM™, let AS(S’) = {(v,j)lv € S, jev\ (ON(v) UOFF(v))} be the collection
of all missing bits of the vectors in S. If S is a singleton {v}, we also denote AS({v}) as
AS(v). Cleatly, B C IM", and v € B" if and only if AS(v) = 0. Let us consider binary
assignments o € BB to subsets Q C AS(S’) of the missing bits. For a vector v € S and an
assignment o € B?, v denotes the vector obtained from v by replacing the % components
which belong to ) by the binary values assigned to them by «, i.e.,

:{w if (v,) & Q
a(v,g) if (v,7) € Q.

(a7
Y

For vectors v,w € IM", we shall write v w (resp., vSw) if there exists an assignment

a € BA%W Y for which v® > w” (resp., v < w*) holds, and we say that v is potentially
greater (resp., smaller) than w. If both v;w and v;w hold then we write v ~ w, and say
that v is potentially identical with w. Note that v &~ w holds if and only if there is an
assignment « € AS({v,w}) such that v* = w®.

A pdBf with missing data (or in short pBmd) is a pair (T, F), where T, F C M™. To a
pBmd (T, ﬁ') we always associate the set AS = AS(Z~1 U ﬁ') of all missing bits. A function f
is called a robust extension of the pBmd (T, ﬁ') if

~
~

f(a®*)=1and f(b*) =0 forall a € T, b € F and for all o € B4%.

We first consider the problem of deciding the existence of a robust extension of a given pBmd

(T, ﬁ') in a specified class C.
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Problem RE(C) o
Input: A pBmd (7', F'), where T', F C IM".

Question: Does (T, ﬁ') have a robust extension in class C?

In case of a YES answer, we normally assume that a robust extension f € C can also be
provided, either by a direct algebraic form, or by a polynomial time membership oracle. It
may happen that a pBmd (T ﬁ') has no robust extension in C, but it has an extension if we
change some (or all) * bits to appropriate binary values. A functlon f 1s called a consistent
extension of pBmd (T F) if there exists an assignment o € B*° for which f(a®) = 1 and
f(d*) = 0 for all @ € T and b € F. In other words, a pBmd (T F) is said to have a
consistent extension in C if, for some assignment « € ]BAS, the pdBf (T“,ﬁ'o‘) defined by
T* = {a®|a € T} and F* = {b* |b € F'} has an extension in C. This leads us to the problem
of deciding the existence of a consistent extension of a given pBmd (T, ﬁ') in a specified class

C.

Problem CE(C) o
Input: A pBmd (7', F), where T, F C IM".

Question: Does (T, F) have a consistent extension in class C?

Again in case of a YES answer, we normally assume that an assignment o € IB4%,
for which the pdBf (TO‘, ﬁ'o‘) has an extension in C, is also specified together with such an
extension f € C (f is described either by a direct algebraic form, or by a polynomial time
membership oracle).

It may also happen that not all missing bits should be specified in order to have a
robust extension. In this case, call an assignment o € B for a subset Q C AS as a
robust assignment if the resulting pBmd (TO‘, ﬁ'o‘) has a robust extension in class C. We are
interested in finding a robust assignment with the smallest size |@|. Such an extension is
called a most robust extension of the given pBmd (T, ﬁ') in the specified class C.

Problem MRE(C)

Input: A pBmd (T, F), where T, F C IM".

Output: NO if (T,ﬁ') does ot have a consistent extension; otherwise a
robust assignment a € B? for a subset Q C AS, which minimizes |Q)|.

Similarly to the previous problems, a robust extension f € C of pBmd (TO‘,F“) is also
normally required to output. Let us define
p(C; (T, F)) = min Q) (2)

JaeB@ s.t. (To Fo)
has a robust extension in ¢

where p(C;(T,F)) = oo if there is no Q satisfying the stated condition. To simplify
notation, we sometimes use p(T, F) in place of p(C; (T, F')), unless confusion arises. Observe
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that a pBmd (7', F') has a robust extension if and only if p(T', ) = 0, and it has a consistent
extension if and only if p(T, F) < |AS).

It follows therefore that if RE(C) or CE(C) are NP-complete, then MRE(C) is NP-hard,
and conversely, if MRE(C) is solvable in polynomial time, then both RE(C) and CE(C) are
polynomially solvable. It seems also that RE(C) is, in general, easier than CE(C). Indeed,
this is the case for many classes. NP-complete, Let us also note that, if AS = 0 (i.e.,
(T, ﬁ') is a pdBf), then the notions of extension, robust extension and consistent extension
all coincide. Thus, RE(C) and CE(C) are both at least as difficult as EXTENSION(C).

Let us add that we shall also consider various restricted variants of the above problems,
in which the input pBmd (T, ﬁ') is restricted to satisfy certain conditions such as

(a) |AS| < k, where k = O(log(n + |T| + |F])).

(b) |AS(a)| < k for every a € TUF, where k is a given constant, or k = O(log(n+|T|+|F])).

3 Relations to EXTENSION and BEST-FIT

In this section, we examine more carefully the relation between our problems CE(C), RE(C),
MRE(C) and those problems EXTENSION(C) and BEST-FIT(C) studied in [5]. As a result,

we see that many complexity results follow from the results in [5].

3.1 Implications of EXTENSION

First of all, as we mentioned earlier, EXTENSION(C) is a special case of problems RE(C)
and CE(C), since all these problems coincide if a pBmd (T, F') satisfies AS = 0. Hence we

have the following theorem.

Theorem 1 If problem EXTENSION(C) is NP-complete, then problem CE(C) is NP-comp-
lete, and problem RE(C) is NP-hard. Furthermore, if the considered pBmds (T,ﬁ') are
restricted to those satisfying |AS(a)| = O(log(n + |T| + |F|) for all a € T U F, then RE(C)
ts NP-complete. a

The slight difference between the conclusions for CE(C) and RE(C) comes from the fact
that, although it is easy to see that CE(C) is in class NP, problem RE(C) may not belong to
class NP, since the condition “for all &« € B#” is involved in the definition of RE(C). For
instance, given a pBmd (T, ﬁ') and a cubic DNF f € C3_pyF, the problem of deciding if f
is a robust extension of (T, ﬁ'), or not, can be shown to be co-NP-complete.

The second half of the theorem statement can be shown as follows. For a given pBmd

(T, F), define

T+ = {a®|aeT,ac B}
n ; AS(b) (3)
Ft = {b*|be F,a e BV}
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Then by the definition of a robust extension, a pBmd (T, }~7') has a robust extension in C if
and only if a pdBf (T't, F') has an extension in C. Furthermore,

T*] 4+ [F* = O((IT| + | F) x 200 +THED),

which is polynomial in |T|, |F'| and n. Thus, RE(C) is obviously in NP in this case.
Therefore, we immediately have the following corollary from the results in [5].

Corollary 1 Problem CE(C) is NP-complete and problem RE(C) is NP-hard for the follow-
ing classes of functions C: (1) (positive) k-DNF, (2) (positive) h-term-DNF, (3) (positive)
h-term-DNF with fized h > 2, (4) (positive) h-term-k-DNF, (5) (positive) h-term-k-DNF
with fited h > 1, (6) (positive) h-term-k-DNF with fized k > 1, (7) renamable Horn,
(8) 2-monotonic positive, (9) (positive) read-once, and (10) unate. Furthermore, problem
RE(C) for these classes is NP-complete if pBmds (T,ﬁ') are restricted to those satisfying
|AS(a)| = O(log(n + |T| + |F|) for alla € TUF. O

However, we also have the following positive results.

Theorem 2 Let a pBmd (T, F) satisfy |AS(a)| = O(log(n + |T| + |F|)) for alla € TUF,
where T, F C M". If problem EXTENSION(C) can be solved in polynomial time, then
problem RE(C) is also polynomially solvable.

Proof. As noted after Theorem 1, a pBmd (T, ﬁ') has a robust extension in C if and only if
pdBf (T*, F*) has an extension in C, where Tt and F'* are defined by (3). This and the
polynomiality of EXTENSION(C) imply the polynomiality of RE(C). O

Corollary 2 Let a pBmd (T, F) satisfy |AS(a)| = O(log(n + |T| + |F|)) for alla € TU F,
where T, F C M™. Then problem RE(C) can be solved in polynomial time for the following
classes of functions C: (1) general, (2) positive, (3) reqular, (4) (positive) k-DNF with fized
k, (5) (positive) 1-term-DNF, (6) (positive) h-term-k-DNF with fized h and k, (7) (positive)
self-dual, (8) (positive) dual-minor, (9) (positive) dual-major, (10) (positive) g(So,h1(S1))-
decomposable, (11) Horn, and (12) threshold.

Proof. Combine Theorem 2 and the results in [5]. O

Theorem 3 Let a pBmd (T, F) satisfy |AS| = O(log(n + |T| + |F|)), where T, F C IM™.
If problem EXTENSION(C) can be solved in polynomial time, then problem MRE(C) is also

polynomially solvable.

Proof. Let (T,ﬁ') be such a pBmd. Then, for each assignment o € IM#® (note that this
may not be a binary assignment), check if the pBmd (TO‘, ﬁ'o‘) has a robust extension. In this
case, since (T, F'*) satisfies |AS| = O(log(n+|T|+|F|)), RE(C) can be solved in polynomial
time by Theorem 2. Therefore we find an assignment o € IM#® that maximizes |AS(a”)|
among those having robust extensions. Then set ) = AS \ AS(«”) and binary assignment
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B € BY such that B; = a; for all j € Q provide a solution of MRE(C). As the number of

assignments o € IM#® is 3145 that is, polynomial in |T|, |F| and n, we can find such an
assignment o € IM#% in polynomial time. a

Corollary 3 Let a pBmd (T,ﬁ’) satisfy |AS| = O(log(n + IT| + |ﬁ’|)), where T, F C IM™.
Then problem MRE(C) can be solved in polynomial time for the following classes of functions
C: (1) general, (2) positive, (3) regular, (4) (positive) k-DNF with fized k, (5) (positive)
1-term-DNF, (6) (positive) h-term-k-DNF with fized h and k, (7) (positive) self-dual, (8)
(positive) dual-minor, (9) (positive) dual-major, (10) (positive) g(So, h1(S1))-decomposable,
(11) Horn, and (12) threshold.

Proof. Combine Theorem 3 and the results in [5]. O

3.2 Implications of BEST-FIT
Let us recall problem BEST-FIT(C) described in Subsection 2.2, and denote by (7', F') the

required minimum weight sum of error vectors:

e(T,F)= min w(TNF)+w(FNT).
T*NF*=0,T*UF*=TUF
(T*,F*) has an extension in ¢

For subsets A, B C IM", let A x B denote the set of vectors obtained as concatenations of
vectors from A and B, i.e.,

Ax B={(a,b)|a € A,bec B}.
We introduce the following properties for binary vectors p, ¢, € B for some k.

PA(p): (T, F') has an extension in C if and ounly if (T x {p}, F' x {p}) has an

extension in C.

PB(p,q,7): (T, F) has an extension in C if and only if ((T' x {p}) U (IB" x {¢}), (F %
{p}) U (B"™ x {r})) has an extension in C.

Lemma 1 Let (T ,F) be a pdBf with T,F C B" and w(a) = 1 for all a € TUF (i.e.,
w(T NF)Y+wFNTY =|TnNF|+ |F NT*|), and let us assume that class C satisfies
1

properties PA((1,0)) and PB((1,0),(1,1),(0,0)). Then

5(T7F) = p(T X {(17*)}7F X {(*70)})7

where p is defined by (2).
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Proof. Let T = T x {(1,%)} and F = F x {(¥,0)}. Thus T, F C M"*?. Let (T*, F*) be
the solution of BEST-FIT(C) with input (7', F'), i.e., (T, F) = |T N F*| + |F N T*|. Define

=T\ F* and F' = F\ T*. Obviously, the pdBf (7", F') has an extension in C. Then
by property PA((1,0)) the pdBf (7" x {(1,0)}, F" x {(1,0)}) has an extension in C, and
furthermore by property PB((1,0),(1,1), ), the pdBf (T", F"), where

(0,0)
T = (1% (L) U(T x {(1,1)})
Foo= (F'x{(1,0)}) U (F x {(0,0)}),
also has an extension in C, since 7' C B" and F' C B". Now, define the sets
Qr = AS((T N F7) x{(L,%)})
Qs = AS((FNT7) x{(x,0)}),
and the assignment o on Q = Q1 U@z by a(g) = 1forall ¢ € Q1 and a(g) = 0 for all g € Q».
Then we conclude that the pBmd (T“,Ff‘) has a robust extension in C, since any vector

a € B"*? obtainable from a € T (resp., F'*) by an assignment satisfies a € T" (resp., F").
This implies that

e(T.F) = [T OV F*| + |F N T| = Q] + Qs 2 p(T, F).

_ For the converse inequality, let us assume next that a subset ) C AS of the above pBmd
(T, F) and an assignment a € B? satisty |Q| = p(T, F), and that the resulting pBmd
(T*, F*) has a robust extension f in C. Define

:{QET| ((avlv*)7n+2) QQ}
={be F|((b,*0),n+1) < Q}.

Then f(a,1,0) =1 and f(b,1,0) = 0 hold for all @ € T* and b € F*, by the definition of a
robust extension. Thus, the pdBf (7% x {(1,0)}, F* x {(1,0)}) has an extension in C. This,
by property PA((1,0)), implies that (7" F') has also an extension f’ in C. Then applying
this extension f’ to (T, F'), f' can misclassify only vectorsin 7'\ T* and in F \ F*¥. Therefore,

(T, F) < |IT\TH+|F\FY = |Q| = p(T. F),

since |[AS(a)| = 1 holds for every a € T U F. O

This lemma implies immediately the following theorem.

Theorem 4 If a class of functions C satisfies properties PA((1,0)) and PB((1,0), ( 1),
(0,0)), and problem BEST-FIT(C) is NP-hard when all a € T U F satisfy w(a) = 1, then
problem MRE(C) is NP-hard, even if |AS(a)| <1 holds for all a € TUF. O

We shall show later in Theorem 31 that Theorem 4 implies the NP-hardness of MRE(C)
for the class C;(So,hl(Sl))‘
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3.3 Positive extensions

Let us consider problems with subclasses of positive functions C € C*. Given a vector
v € M™, let us denote by 1 € BA5®) (resp., by 0 € ]BAS(“)) the assignment of ones (resp.,
zeros) to all (v,7) € AS(v).

Lemma 2 Consider a class of functions C C C*. For a pBmd (T,F), let us associate a
pdBf (T~, F*) by defining
~={a’lac T}
Ft={b'|be F}.

Then, the pBmd (T, F) has a robust extension in the class C if and only if the pdBf (T~, Ft)

has an extension in class C.

Proof. Let us assume first that the pBmd (T,ﬁ') has a robust extension f € C. Then,
by definition, f is an extension of the pdBf (T, F'*). For the converse direction, let us
assume that the pdBf (T, F7) has an extension g in class C. For any assignment 3 € B4
and a € T, the vector ao € T satisfies a® < «®, and hence g(aﬁ) = 1 is implied by
g(a?) > g(a®) = 1. Similarly, for any assignment 8 € B*° and b € F, the vector b* € F'*
satisfies b > 8P, and hence g(#°) = 0 follows analogously. Therefore, g is a robust extension

of the pBmd (T F) in the class C. O

Lemma 3 Consider a class of functions C C C*. For a pBmd (T,F), let us associate the
pdBf (T*, F~) defined by
Tt ={a'|a € T}
~={|be F}.

Then, the pBmd (T,ﬁ') has a consistent extension in the class C if and only if the pdBf
(T, F~) has an exstension in the same class.

Proof. Let us assume first that the pBmd (T ﬁ') has a consistent extension f € C, i.e. that
there exists an assignment 3 € B#% such that f is an extension of the pdBf (Tﬁ Fﬁ) Since
C CCt, forany a € T (resp be F), f(a®) = 1 (resp., f(b°) = 0) implies f(a') = 1
(resp., f(bo) = 0) by a® < a' (resp., ¥° > b°). This implies that f is also an extension of
the pdBf (T't, F'~). The converse direction is immediate, since (T, F~) = (TO‘, ﬁ'o‘) for the
assignment a € B4° defined by a(v,i) = 1if v € T, (v,i) € AS(v) and a(u,j) = 0 for all
w e F, (u,5) € AS(u). O

The following theorem and its corollary are immediate by Lemmas 2 and 3, and by the
results of [5].

Theorem 5 IfC C C" and problem EXTENSION(C) can be solved in polynomial time, then
problems RE(C) and CE(C) can also be solved in polynomial time. O
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Corollary 4 Problems RE(C) and CE(C) can be solved in polynomial time for the following
classes of functions C: (1) positive, (2) reqular, (3) positive k-DNF with fized k, (4) positive
1-term-DNF (5) positive h-term-k-DNF with fized h and k, (6) positive self-dual, (T) positive
dual-minor, (8) positive dual-major, and (9) positive g(So, h1(S51))-decomposable. O

Furthermore, we have the following result.

Theorem 6 IfC C Ct and problem BEST-FIT(C) can be solved in polynomial time, then
MRE(C) can be solved in polynomial time for any pBmd (T, F) that satisfies |AS(a)| < 1
forallae TUF.

Proof. Let us consider a pBmd (T, F) with [AS(a)| < 1 for all @ € T U F. Define a pdBf
(T', F') by

T = {a',a®|ac T}
F'o= {b1,1°|be FY.

Let us define the weights of the above vectors by

(a') = ifacT
(b°) + itbeF
w(a®) =1 if a € T and AS(a) #0
(b') =1 if b€ F and AS(a) # 0.
We claim that
p(T,F) =e(T', F')

holds, which will prove the theorem.

First, if (7", F') < +oo, then clearly, there is a consistent extension of (T, F) by the
definition of w. Conversely, if there is a consistent extension f of (T,ﬁ'), then f(a') =1
holds for all @ € T and f(0°) = 0 holds all b € F by the positivity of f, which implies
e(T", F') < +oo.

Let us assume next that there is a solution of MRE(C) for (T, F); i.c., a subset Q C AS
with |Q] = p(T, }~7') and an assignment 8 € B® for which (Tﬁ, ﬁ'ﬁ) has a robust extension f
in C. Then f correctly classifies all vectors in T"U F’, except for a® € T'U F’ with AS(a) £ 0
(where 3 denotes the complement of 3). Hence

pT ) =10l= Y wla) + X wb) > (T, F),

a€T’ s.t. f(a)=0 bEF s.t. f(b )

For the converse inequality, consider a solution (7%, F*) to BEST-FIT(C) for the pdBf
(T",F'), ie., T*NF* =0, T*U F* = T"U F', the pdBf (T*, F*) has an extension f in
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C,and e(T", F') = w(T" N F*) + w(F' N T*) < +00. Then, by the positivity of f, we have
a' € T* for all a € T and b° € F* for all b € F. Thus define Q = Q; U Q», where

Q1 = {(a,j)]ac T (a,j)€ AS(a) and a® € F*}
Q2 = {(bvj)|b€F/7(b7.7)€AS(b) a‘ndbleT*}v

and an assignment (3 € B by 8(a,j) = 1 for (a,j) € Q1, and B(b,5) = 0 for (b,7) € Qs.
The resulting (7%, F#) has a robust extension f € C. Consequently,

(T, F') = |Qa] + Q2| = |Q| = p(T. F).

Corollary 5 Let a pBmd (T, F) satisfy |AS(a)| < 1 for all a € T U F. Then problem
MRE(C) is polynomially solvable for the following classes of functions C: (1) positive, (2)
reqular, and (3) positive h-term-k-DNF with fized h and k. O

In the rest of paper, we discuss complexity results of CE(C), RE(C) and MRE(C), which
are not immediately derivable from the results for EXTENSION(C) and BEST-FIT(C) dis-

cussed in [5].

4 General functions

4.1 Problems RE and CE
Let Cay denote the class of all functions We first consider Problem RE(Cuy).

Theorem 7 Problem RE(C.y) can be solved in polynomial time.

Proof. A pBmd (T ﬁ') has a robust extension if and only if there exists an index j such
that a; # b; and {a;,b;} = {0,1} (i.e., either a; = 0 and b; = 1, or a; = 1 and b; = 0) for
every pair of a € T and b € F. Obviously, this can be checked in O(n|T||F|) time. O

Let us now turn to problem CE(Cyy). First, we note that CE(Cquy) can be trivially solved
if |AS(a)| > 0 holds for every a € T U F. This is so, because (T, F') always has a consistent
extension f. Indeed, let us consider an assignment o € B*° such that |ON(a®)| is odd for
all @ € T, and |ON(b¥)| is even for all b € F, and let f be the parity function such that
f(v) =1if |ON(v)] is odd, and f(v) = 0 if [ON(v)| is even. Furthermore, CE(C,y;) can be
solved in polynomial time by Corollary 3 if [AS| = O(log(n + |T| + |F])). Problem CE(C,y)
becomes more difficult when not all input vector has missing bits, but the number of missing
bits in total is large, although, it remains polynomially solvable if no input vector contains
more than one missing bit.
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Theorem 8 Problem CE(Cay) can be solved in polynomial time for a pBmd (T, F) for which
every a € T U F satisfies |AS(a)| < 1.

Proof. Let j, be the index of the x in each vector a € TUF (ie., AS(a) = {(a,34)}), if
any. Then (7', F') has a consistent extension if and only if (i) there is no pair of a € T' and
b € F such that a,b € B" and a = b, and (ii) there is an assignment a € B“% satisfying the

conditions

a(a, ja) # b, if a ¢ IB" and b € B"” (
) # aj, if a € B" and b ¢ IB"” (
a(a,ja) # b;, or a(b, p) # aj, if a,b ¢ B" and j, # J (

a(a,jq) # a(b, ) if a,b ¢ B" and j, = 7. (

for every pair of @ € T and b € F with « = b. Obviously, condition (1) can be checked in
O(n|T||F|) time. To check (ii), let us observe that each of the conditions (4)(7) can equiv-
alently be expressed as clauses in the variables a(v,7) for (v,7) € AS. Namely, conditions
(4) and (5) are equivalent with linear clauses, (6) can be represented by a clause containing
two variables, and condition (7) can be represented by the conjunction of two clauses, each
of which contains two variables. E.g. (7) is equivalent with the condition

(@, ja) V (b, v)) (@, ja) V (b, 53)) = 1.

In total, we have a 2-SAT problem containing at most 2|T||F| clauses, which is solvable in
time linear in its input size (see e.g., [2]). This shows that problem CE(C,y) can be solved
in O(n|T||F|) time. 0

Example 1. Let us define T, F C {0,1}3 by

a’(l) = (1717*) b(l) — (1 1 1)
- a® = (0,0,1) ~ e
T — (] F — b(2) = ( * ]_)

a® = (0,1,%) [’ pd = 7()7()

a® = (%,0,0) = (0.0

Then we have the following 2-SAT:

a(a®,3) a(d?,2)(a(a®,3) vV a(d®,2))(a(a, 1) v a(b®, 1))(a(a®,1) V a(b®), 1)) = 1.

For this, the assignment a € B#% given by a(aV,3) = a(a®,3) = a(a®,1) = 0 and
a(b?2) = a(b® 1) = 1, is a satisfying solution. O

In general, however, we have the following negative result.

Theorem 9 Problem CE(Cuu) is NP-complete, even if |AS(a)| < 2 holds for all a € TUF.
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Proof. Given an assignment o € IBB#®, we can check in polynomial time if (T B ) has an
extension in Cyy, [5]. Hence problem CE(Cu;) is in NP. Hence problem CE(Cu;) belongs to
NP.
Let us now consider a cubic CNF
3 = AG
C, = (uk Vaop V wk),
where ug, v and wy, for k = 1,2, ...,m are literals from set L = {z1,%q,...,2,,%Z,}. The

3-SAT problem, i.e., deciding the existence of a binary vector y € {0, 1}" for which ®(y) =1,
is one of the well-known NP-complete problems (see [11]). We shall associate to ® a pBmd
(T, ﬁ'), as follows, which has a consistent extension in C,y if and only if the 3-SAT ¢ =1
has a solution.

Let us introduce subsets A, = {p.1,p.2}, z € L and By, = {q1, @r2, @3}, k= 1,2,....m
such that A,NL =B, NL=A,NB,=0,A,NA, =0{for z # 7, and B;N B; =0 for
i # 7. Let

V=Lu({JA,)u(l Bk).
z€L =
S) the vector v € M” for which ON(v) = R and AS(v) = {(v,j)|j €
=V\(RU S) i.e. if § =0, then v denotes a binary vector.)
T F c MV by setting T = T1 U T2 and F = F1 U Fz, where

S}. (Then OFF(v

Let us denote by (R;
)
Let us construct

Ty = {(L\{=i, &} {ws, i}) | e € Ly U{((L\ {2}) U{ps};0) |z € L,j = 1,2}

a* = ((L\ {ur, @, Vi, Ok, Wi, Wi }) U {qr1 }; {qr2, qrst)

a'*t = ((L\ {ur}) U Au; {am})

a'¥® = (L \ {ur, @y, vi}) U Au, U {gra}; {or})

a'¥® = (L \ {ur, @, vi, O, wi}) U Au, U {gia }; {wr})
X a"* = ((L\ {ug, @y, vy, O, Wi, @ }) U {puya} U {@ra }; {Pus1})
T, = a*t = ((L\ {vi.}) U {qr2}; {qr1}) k=1,2,...,m

a**? = ((L \ {vk, O, wi}) U {qr1, gra}; {wr})

a’* = (L \ {vk, Og, wr, W, ur }) U {qr1, qra}; {ur})

a“ = ((L\ {wi}) U {ars}; {ar1})

a“ * = ((L \ {wk, g, ur}) U {qr1, grs}; {ur})

a“ = ((L \ {wk, Wk, wr, G, v }) U {qr1, qua}s {vr})
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Fro= (L0 UL\ {wi, 2:}:0) [2: € LY UL\ {z}; 42) | 2 € L}

v* = (L \ {wg, @k, vy, Bg, wy, O }) U By; 0)
bt = ((L\ {ug, @ }) U Ay U{gra }s {tn})
b? = ((L\ {uk, @, vr, O }) U Ay, U {gra}; {01 })
b% = ((L\ {u, g, vk, Oy W, W }) U Ay U {qra }; {01 })
b = ((L\ {un, @, v, O, Wi, W }) U {gra b5 {Pry2})
i bt = ((L\ {or}); {ara})
Fy = b = ((L\{vkvﬁk}) U{lekaz};{'Bk}) k= L2,....m (8)
b = ((L\ {vx, O, Wi, @ }) U {1, gra}; {0n})
bt = ((L \ {vkvﬁkvwkvwkvukvﬂk}) U {lea ka}; {ﬂk})
bt = ((L\ {wi}); {ars})
b%* = ((L\ {wr, 0 }) U {qr1, grs}; {or})
br2 = ((L\ {wg, 0, u, @r}) U {qr1, qrs}; {0 })
bkt = ((L\ {wg, @, wr, T, v, U }) U {qr1, qrs}; {0 })

It is casy to see that |[AS(a)| < 2 holds for all a € T U F.

Let us first assume that there is a consistent extension f of ( ) and show that & is
satisfiable. Now (L \{x;, Z}; {:, %;}) € Ty and (L; 0), (L\ {x;, Z;};0) € F; imply that either
F(LN\{z:};0) =1 or f(L\{z:};0) =1 (or both) holds for each of i = 1,2,...n. Let us
define a binary vector y € B™ by

y@:{ L if (L {z:}:0) =

0 otherwise,

and show that this y satisfies ®(y) = 1. By the definition of y, y; = 1 (resp., y; = 0)
implies f(L \ {Z;};0) = 1 (vesp., f(L \ {z;};0) = 1). Assuming that there exists a clause
Cr = (ug V vg V wy), which is 0, we derive a contradiction.

(i) If u, = 0, then f(L\ {ur};0) = 1. Therefore ((L \ {ur}); Au,) € Fyand ((L\ {uz})U
{pu,j};0) € Ty for j = 1,2 implying

FULN {ur}) U Ay,; 0) = 0. (9)
Let us consider the sequence
a“kl (E Tz), bukl (E Fz), ceey a“k4 (E Tz), buk4 (E Fz)

The equation (9) and a*! € Ty, imply FULN\A{ur}) U Ay, U{gr1};0) = 1, which also yields
FULN {ur, @ }) U Ay, U{qr1};0) = 0 by b“+! € F,. By applying a similar argument, we have

f((L \ {ukvﬂkvvkvﬁkvwkvwk}) U {le}a 0) = 0. (10)
(i) If v, = 0, then f(L \ {vg};0) = 1 must hold. Let us consider the sequence
b (€ Fy),a" (€ Ts), ..., a"° (€ Ty), b"* (€ F).
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Then f(L \ {v;};0) = 1 and b**' € F, imply FUL N {vr}) U {gre};0) = 0, from which
FULN {vi}) U {1, qr2};0) = 1 follows by a**' € T,. By applying a similar argument, we
have

FULN {ug, @, vk, Or,y wi, 01 }) U {qra, qra}; 0) = 0. (11)

(iii) If ws, = 0, then similarly to (ii), we have
f((L \ {Uk, ﬂk? Uk, 1_)k7 W, u_)k}) U {lea QkS}; 0) = 0. (12)

The three equations (10), (11) and (1 ) and the fact that b* € F, together imply that no
binary assignment to the missing bits of a* € Ty can make it a true vector of f, contradicting
the fact that f is a consistent extension of (T, F').

For the converse direction, let y* € B™ be a satisfying solution to @, and let

Po={(L\{2:};0}) |y =0,i=1,2,... .0y UL\ {z:};0}) |y; = 1,i = 1,2,...,n}
U{((LN\{z}) U{p:}:0) |z € L,j =1,2}.

For each clause Cy, = (ug V v, V wy), let us define sets Pyy, Pre and Pis as follows. If ug, = 1
holds for the assignment y*, then

ak)
ug,

/

( (L \ {u, @, V&, Or, wi, Or}) U {qra1 }; 0)

(@) = ((L\ {ur}) U Ay,; 0)

P =13 (a“?) = (L \ {ur, tr}) U Ay, U{qra}; 0) Ek=1,2,....m ;;
(a¥?)" = ((L\ {un, @y, vr, O }) U Ay, U {gia }; 0)

(") = ((L \ {wr, G, vi, O, wy, W ) U Ay U {@ia }; 0)

II/—\

1y/

a

otherwise let

(a')" = ((L\ {ur}) U Au, U{qra};0)

P = (%) = ((L\ {ur, T, vr}) U Au, U{ara}; 0) L 19
(CLUk3)/ ((L \ {Uk,Uk,vk,vk,wk}) U Auk U {le} 0) T b, M
(@) = ((L \ {wn, @k, Ok, Op, Wi, Wi }) U {puy2} U {qr1}; 0)

Eak) ) (((%L\\{T{Lka;;ka{a vk?}wg)v wk}) U {Qk1,qkz} 0)

_ a’!) = Vi) U 1qr2 ‘

Pl =1 (@) = (L {or}) U{aut. aua}: 0) E=12m
(a"?)" = ((L \ {vk, Op, wr, 01 }) U {qr1, qra}; 0)

a”?) = ((L\ {vr, U, we}) U {qr1, qrz}; 0) E=1,2,...
(a”®) = (L \ {vr, O, W, Wg, ur}) U {qr1. gra}s 0)

{ (a”)" = ((L\ {oe}) U{ @1, qr2}; 0) }
sz = ,m .
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Finally, if wj, = 1 holds for the assignment y*, then let

a")" = ((L\ {un, e, v, O, we, Wi }) U {@irs qrats 0)

a”)" = ((L\ {wi}) U {qrs}; 0) s |
a”?) = (L \ {wr, ©}) U {qi1, qra}; 0) —1,2,....m (;
a?) = ((L\ {wg, Or, up, 1 }) U {qr1. grs}: 0)

(
Prs = E
(

otherwise set

(a*2)’
Pk3 = (a“’k )

(as2)

(L N\ {wr, g, ur}) U {qra, qrs}; 0) k=12,...
(L \ {wr, g, wr, g, v }) U {qr1, qus}; 0)

((L\A{wi}) U {1, qis}; 0) }

Let us define a function f by

1 facP
Fla) = { 0 otherwise,
where P = Py U (Ui (Pr1 U Pia U Pr3)). We claim that this function f is a consistent
extension of (T, F).

It is easy to see that for every a € Ty, there exists an assignment « € B45@ such that
a® € Py, and for every a € Ty \ {a¥ |k = 1,2,...m}, there exists an assignment o € B45(@
such that a® = (a)’. Finally, since y* satisfies Cj, = 1 for each a* € Ty, at least one of (a*)’,
(a*)" or (a*)" belongs to P, and hence f is a consistent extension of pBmd (T, 0).

Let us show next that f is a consistent extension of (0; F) Let

Qo ={(L;0)} U{(L\{=i,2:};0) [ € L}
U{((L\{wi}) U Aa30), (L\{2:};0) |97 = 0,i =1,2,...,n}
UL\ A{2:3:0), (L\{Z:}) U As30) |97 = 1,i = 1,2,... ,n}
U{bF € By |k =1,2,...,m}.

For each clause Cj, = (ug, V vg V wy), let us define sets Qr1, Qre and Qs as follows. If ug, =1
holds for the assignment y*, then

(o) = (L \ {ur}) U Ay, U{gia};0)

Ot = (0"2)" = (L \ {up, @g, vx}) U Ay, U{qra }; 0) r—192  m L.

(6"°)" = (L \ {ur, @r, vk, Op, i }) U Ay, U{qra };0) e '
(6“4) = ((L\ {ur, G, vk, Ok, W, W }) U {puya}t U {ar1}; 0)

bukl / —

I

bukl /

(o) = ((L\ {ur, @ }) U Auy, U{@ra};0)

O = (8*2) = (L \ {as, Tk, v, O 1) U A U {@ra }30)
(buk?’)/ ((L\{uk,uk,vk,vk,wk,wk}) UAuk U {Qk1} 0) T
(b“+*) = ((L \ {wk, G, vi, O, wy, Wi ) U {qr1 }; 0)
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If v;, =1 holds for the assignment y*, then

() (L ford)
- Vi 2 V) U k1, Qe 53 _ )
Qr2 = Ebvk3;/ EEL\{vk7’l—)k7wk}) U g, qi}; 0) Ek=12....m ;;

pordy L\ {vg, 0, wi, Wr, wg ) U {qr1, Qe }; 0)

/

otherwise,

(1) = (L\ {oi}) U {gia}:0)
00 = 4 07 = ((L\ {0 0}) U, a0 N
=

bka ! L\{vkvﬁkvwkvu_)k})U{Qk17q1<:2} 0) = HSe
bvk4) ((L \ {vkvvkvwkvwkvukvuk}) U {lea ka} 0)

Finally, if wj, = 1 holds for the assignment y*, then let

o o
_ W 2 Wi U qr1, Qk3 s B ‘
Qrs = EbwkS;/ — EEL \ {wk,wk,uk}) U {(Zk1, ka}; @) Ek=12....m ;;

bwk4 [ L \ {wk,’u_)kyu'k7ﬂ'k7vk}) U {qk17 qk3}7 0)

I

otherwise set

((L \ {we}) Udgrsts 0)
((L\{wkvwkvukvuk})U{qk17Qk3} 0) T
((L\ {wr, W, up, U, vk, Or}) U {qr1, qrs}; 0)

It is easy to see that for every b € Fy U {F |k = 1,2,...,m}, there exists an assignment
a € B*%@ such that a® € Qo, and for every a € Fy \ {b¥ |k = 1,2,...m}, there exists an
assignment a € B45@ such that a® = (a). Hence f is a consistent extension of the pBmd
(0, F).

Finally, let Q@ = Qo U (Up1(Qr1 U Qra U Qrs3)). It is easy to check that PN Q = 0

holds. Therefore, by combining the above two results, we can conclude that f is a consistent
extension of the pBmd (T, F'). O

4.2 Problem MRE

We consider problem MRE(C,;) in this subsection. By Corollary 3 and Theorem 9, this
problem is NP-hard, even if the number of missing bits is not more than 2 in each input
vector. Therefore, we only consider the case in which

|AS(a)| < 1foralla e TUF,

and show that MRE(Cquy) can be solved in polynomial time in such a case.
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Let us remark first that any assignment o € AS for which (TO‘,F“) has an extension
must satisfy the conditions (i) and (ii) in the proof of Theorem 8. Hence, some components
of such an a may be forced to take a uniqe binary value by conditions (4) and (5) of (ii). Let
us assume that we fix all such missing bits in advance, and let us consider only conditions
(6) and (7) in the sequel.

Let us define a bipartite graph Gas = (V, E) by

V = AS(T) U AS(F), ~ ~
E={(q,7;0)|q = (a,5) € AS(T),r = (b,j) € AS(F), (13)

and there exists an assignment o € B9} such that a® = b},

where the label c¢(e) of each edge e = (¢, 7;¢(e)), as defined in (13), is called the configuration
of e. If there are more than one assignments o € B} for some ¢ € AS(T) and r € AS(F),
for which a® = b* (this occurs if ¢ = (a,¢) and 7 = (b, 5) satisfy ¢ = j), then the graph Gus
has parallel edges corresponding to such different configurations. Let us note that, since
|AS(a)| <1 holds for all a € T U F, every pair of ¢ = (a,4) € AS(T) and r = (b, j) € AS(F)

has at most two assignments a € ]B{q "} such that a® = b*.

Example 2. Let us define T, F C {0,1}° by

CLl

223 = (*,1,1,1,1) p(V) (1,%,1,1,1)
i a = (1,1,1,1,%) . p(2) — (1,1,1,1,%)
T=4qa® = (LLLx1) ¢, F=¢ 6 _ (1.1, 1,0)

a® = (1,1,%1,1) b(4) (17170717*)

a® = (1,%,0,1,0) R

Then graph Gus 1s given in Figure 1, Although the configurations of the edges are not
indicated, they are easy to find out. For example, edge e = (¢, b)) has ¢(e) = (agl) =
1, b(zl) = 1), and double edges ¢/ = (a¥,b?) and ¢’ = (a¥, b)) have ¢(e') = (a(52) =0, b(52)

0) and c(e”) = (a(52) =1, b(52) = 1), respectively.

o |

Lemma 4 Given a pBmd (T F) an assignment f € B for a subset Q C AS is a robust
asszgnment of (T F) (i.e (Tﬁ Fﬁ) has a robust extension) if and only if, for every edge

= (gq,r;) of Gas, we hcwe either ¢ = (a,1) € Q and a® # a®, orr = (b,j) € Q and
bﬁ # b, or both.

Proof. Let us first show the only-if-part. Let f be a robust extension of (Tﬁ, Fﬁ), and let
e = (q,7; ) be an edge of G45. We can assume without loss of generality, that ¢ = (a,7) €
AS(T).

Let us assume that either ¢ € Q or a® = a®. Let us show first that f(a®) = 1 is implied
then. Indeed, if ¢ = (a,i) € Q, then (a®)® = a®, and since § € B? is a robust assignment,
f(a*) = 1 must hold. On the other hand, if a® = a®, then obviously f(a®) = f(a?) =1

must hold, since a € T.



PAGE 22 RRR 6-96

GAS
T F
(a™,1) (6™),2)
(al?,5) (6¢),5)
(al®,4) (6),3)
(al*,3) (6),5)

Figure 1: The graph Gas of the pBmd (T, }~7') in Example 2

We then show that f(a®) = 1 implies r = (b,j) € Q and V¥ # b*. If r ¢ Q, then
(b9)* = b = a®, and hence f(a®) = f(b*) = 0 by b € F, which is a contradiction. Similarly,
b = b leads to the same contradiction. Hence r € Q and b° # b* must hold.

To prove the if-part, assume that § € B? for a subset Q C AS is not a robust assignment
of (T, ﬁ') Then, by the definition of robustness, we have a pair of vectors « € T and b € F
such that a® ~ b°. Then the edge ¢ = (¢, 7; @) with ¢ = (a,7) and r = (b, j) does not satisfy
the statement of the lemma. O

For a vector d € B", let E(d) denote the set of edges e = (¢,7; @) € E with a® = b* = d,
where ¢ = (a,¢) and 7 = (b,j), and let E = UzE(d). Let us define a coherent domain D(d)
as the set of vertices incident to some edges of E(d), and let Dy denote the set of isolated
vertices (i.e., incident to no edge e € E). (Vertices in Dy do not belong to any coherent
domain.) In the following discussion, we only consider nonempty coherent domains D(d)
Figure 2 shows all nonempty coherent domains of the graph G4g of (T F ) in Example 2

Lemma 5 FEvery coherent domain D(d) CV of Gas induces a complete bipartite subgraph
Of GAS .

Proof. Take any pair ¢ = (a,?) € AS(T) and 7 = (b,7) € AS(F) that satisty ¢,7 € D(d).
Then there exist assignments a € B% and g € B} such that d = a* = 1°. We concatenate
these assignments to have an assignment v = (a, 3) € B!} for which a” = b7 = d, implying
that there is an edge (¢,7) € E(d). O

Lemma 6 Let D(d) and D(d') be two coherent domains of Gas, where d,d" € B" and
d#d. If D(d)ND(d) #£0, then || d L d ||=1 holds, where || z ||= X7, |-
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GAS
7 P
p(11111)a® QW@”(”
22 Db
D(11110)
4 o)

—(Op@ | |D(11011)

O
&
D(11010]4(5) Q/

Figure 2: Coherent domains of the graph Gag of (T, ﬁ') in Example 2

Proof. Let ¢ = (a,7) € D(d)ND(d"). Then there exist two assignments «, 3 € B (={0,1})
such that a® = d and o = d'. Since |AS(a)| < 11is assumed, || d L d' ||= 1 is implied. O

Lemma 7 Let D(d) and D(d') be two coherent domains of Gas, where d,d" € B" and
d # d. Then |D(d) N D(d')| < 2 holds. Furthermore, if D(d) N D(d') = {q,r}, then the
graph G s has two parallel edges between q and r.

Proof. If ¢ = (a,¢),7 = (b,j) € D(d) N D(d’), then by assigning 0 and 1 to ¢ and r, each
of @ and b can become both d and d'. Since | d L d ||= 1 by Lemma 6, this can only
happen if the vectors a and b are identical, missing the same component ¢ = j. Therefore
|D(d) N D(d') N AS(T)| < 1 and |D(d) N D(d') N AS(F)| < 1, and hence [D(d) N D(d')| < 2.
Finally, if D(d) N D(d') = {q,7}, where ¢ = (a,i) € AS(T ) and r = (b,7) € AS(F), then
g = r implies that there are two assignments «,( € B!} such that a® = »* = d and
a? = b = d' i.e. the graph G 5 has two parallel edges between ¢ and r. O

Let us now color the edges of Gas by “yellow” and “blue”, so that all edges of a set E(d)
get the same color, and for every pair E(d) and E(d’) with D(d) N D(d’') # 0 the edges in
E(d) get different colors from the edges of E(d'). We call such a two coloring alternating.
The following lemma shows that an alternating coloring is always possible. Furthermore, it
can be uniquely completed after fixing a color of a set E(d) in each connected component of

Gas.

Lemma 8 Let D(d©®)), D(d ), D(dW) denote a cycle of coherent domains such that
A1 £ 40 gnd D(dE~Y) N D(dC ) 7E 0 hold for all i =1,2,...,1 L1, and D(dV) = D(d).

Then [ s even.
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Proof Lemma 6 tells that || d~Y L d® ||= 1 holds for all i = 1,2,...,1 L 1. Since
| d© @) ||= 0 is even, I must be even. O

Finally let us orient the edges of G 45 according to a given alternating coloring, as follows.
Every yellow edge (g, ) is oriented from ¢ € AS(T) to r € AS(F), and every blue edge (g,7)
is oriented from r € AS(F) to g € AS(T). Let G'y5 denote the resulting directed graph. For
example, Figure 3 shows the directed graph G;¢ for the pBmd (T, ﬁ') of Example 2. Let us
observe that every directed path of this graph is alternating in colors, and every alternating
undirected path is either forward directed or backward directed.

!
GAS

D(11111

D(11110)

|D(11011)

D(11010) 4(5)

Figure 3: The directed graph G;¢ of (T, ﬁ') in Example 2

The next lemma characterizes a robust assignment by a directed path of G/,5.

Lemma 9 Let (T,F) be a pBmd, and let ¢(© b g b A (Gl + qW be a directed
path in G'ys. Then B € BC for Q C AS is a robust assignment if and only if the following
properties hold, where ¢ = (a9, 5;) and a; = ¢(e;) for all 4.

(i) If ¢ € Q or (a\9)? = (aD) holds, then ¢V € Q and (a'D)? #£ (aD)* hold for all
i=1,2,....1.

(i) If ¢© ¢ Q or (aD)? = (aW)™ for some I > 0, then ¢ € Q and ()P # (aV)xi+
hold for allv=0,1,...,1 L 1.

Proof. We first prove the only-if-part. For condition (), we first consider er = (¢, ¢qM).
By Lemma 4, ¢ ¢ Q or (a!”)? = (a®)* implies that ¢) € Q and (a™V)? £ (a¥)*1. Now,
since e; = (¢, ¢M) € E(d) and ey = (¢, ¢'¥) € E(d') have different colors, we must have
d # d" and ¢V € D(d) N D(d'), and hence || d L d' ||= 1 by Lemma 6. Therefore, (a(*))? +#
(aM)* (= d) implies (aM)? = ()2 (= '), and hence ¢ satisfies (a?)? # (a¥)*2 by
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Lemma 4. This assignment can proceed in a similar manner to ¢, i = 2,3,...,1. Case (ii)
is similar to (i).

Conversely, if conditions (i) and (i) hold, then, by Lemma 4, § € B? is a robust
assignment. O

Let C5, ¢+ = 1,2,...,s, denote all the strongly connected components of this directed
graph G'j5. Furthermore, let G% ¢ denote the transitive closure of G'y5 (i.e., (s,t) is an arc
in G g if there is a s-t directed path in G')5), and let Gy denote the directed subgraph of
G induced by

W = Ujsi.jci1=1 Ci. (14)
It 1s easy to see that the set of isolated vertices Dy in G g satisfies Dy C W. Figure 4

contains the graph Gy of (T,ﬁ') in Example 2, where, for simplicity, arcs (u,v), for which
there is a directed path of length at least 2 from w to v, are not indicated.

Figure 4: The graph Gy corresponding to G4 of (T, ﬁ') in Example 2.

Lemma 10 Let (T, ﬁ') be a pBmd, and let o € BC for some Q C AS be a robust assignment,
and let C; and W be defined as above. Then the following two conditions hold:

(1) C; C Q for all C; with |C;| > 1, and

(i) W\ Q is an antichain in Gy (i.e., for any pair of v € W\ Q, there is no directed
path from q and r in Go, and vice versa).

Proof. Consider a robust assignment a € B?. Assume g € C;\ Q for some C; with |C;| > 1.
Then there is a directed cycle ¢° (= q),q®, ¢®, ... ¢V (= q) of length [ > 1 in G',5, and
q ¢ @ implies ¢ € @ by Lemma 9, which is a contradiction. Hence condition (i) holds. To
prove condition (ii), let us assume that for some pair of ¢, € W \ @, there exists a directed

path from g and » in G';5. This is again a contradiction since ¢ € @) implies r € () by Lemma
9. O

Lemma 11 Let (T, F) be a pBmd, and let S C W be any mazimal antichain in Go. Then
for Q = AS\ S, there is a robust assignment o € B9 of (T, F).
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Proof. For the above @ = AS \ S, we shall construct a robust assignment o € BB?. In the
following, we shall consider the directed graph G';¢, and lat us note that, by definition, S is
also an antichain in G’45. Lemma 9 tells that, starting from a vertex ¢ € S (i.e., ¢ € Q), a
robust assignment  for all vertices ¢ which are either reachable from ¢ or reachable to q is
uniquely determined, unless the following cases of conflicts are encountered.

(i) For g, € S, there is a vertex t for which there are two directed paths P; = q(o) (=
q) — q(l) — ... q(k) (=t) and P, = 7(0) (=71) — r - O (= t) such that
t* £t where a = ¢(¢*Y,t) and of = ¢(r¢-V¢).

(ii) For q,r € S, there is a vertex ¢ for which there are two directed paths P, = ¢(¥ (=
t)— g —> ... = g™ (=¢)and P, =1 (=¢t) - r® — .. — ¢ (= r) such that
t* £ t' where a = c(t, q(l)) and of = c(tﬂa(l))‘

If one of these conflicts occurs, Lemma 9 tells us that ¢ must be assigned in different ways,
and hence we cannot construct an appropriate robust assignment .

However, we now show that none of these conflicts can occur. Let us consider case (i)
only, since case (ii) can be analogously treated. Now t* # t* implies (¢*V,s) € E(d)
and (rlY s) € E(d') for some d # d'. Thus (¢*~Y,¢) and (r(~1) #) have different colors,
since D(d) N D(d") # 0. By the rule of orienting edges (yellow edges are oriented from
AS(T) to AS(F), and blue edges are oriented from AS(F) to AS(T)), this means that one
of (¢, t) and (r~Y), t) is oriented towards ¢, and the other is away from ¢, a contradiction
to the assumption in (i).

Let us denote by R the set of all vertices ¢ ¢ S such that either ¢ is reachable from
some ¢ € S or some ¢ € S is reachable from ¢. The above argument says that a robust
assignment (3 for R is uniquely determined by Lemma 9. Finally, we consider an assignment
v € BAS\5YE) By the maximality of S, every vertex t € AS \ (S U R) has an incoming
arc ¢ = (r,t) € E(d). Therefore, determine the robust assignment 3 of this ¢ so that ¥ = d
holds. This is well-defined because all incoming arcs to ¢ belong to the same E(d) by the
definition of G'; 5. It is easy to see that the resulting 3 over AS is in fact a robust assignment.

O

Lemmas 10 and 11 tell that problem MRE(C,y;) is equivalent to the problem of finding a
maximum antichain of Gy. Since Gy 1s acyclic, we can find such an antichain in polynomial
time by Dilworth’s theorem (see e.g. [10]). Finally, we have the following theorem.

Theorem 10 Problem MRE(Cay) can be solved in polynomial time for a pBmd (T,ﬁ') in
which all a € T U F satisfy |AS(a)| < 1. O

5 DPositive and regular functions

Let C* and C. denote the classes of positive functions and regular functions, respectively.

Corollary 4 tells that problems RE(CT), RE(Cr), CE(CT) and CE(CL) can be solved in
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polynomial time. Also by Corollaries 3 and 5, problems MRE(CT) and MRE(CL) can be
solved in polynomial time for the restricted instances.

Let us show first that problem MRE(C™) is, in general, NP-hard.

Theorem 11 Problem MRE(C™) is NP-hard, even if |AS(a)| < 2 holds for all a € T U

F.
Proof. Let G = (V, E) be a graph, where V = {1,2,...,n}, and let us define T, F C MV
as follows.

T = ) = 040D i) € £)

F o= {9 =0:03u{0"=0:{})|ieV}

where (R; S) denotes the vector v € MY such that ON(v) = Rand AS(v) = {(v,j)|j € S}
It is easy to see that |AS(a)| < 2 holds for all @ € T'U F. We claim that

p(T.F) = |E| +7(G)

holds, where p(T, F') is defined by (2), and 7(G) denotes the cardinality of a minimum vertex
cover of G. This will complete the proof of the theorem, since finding 7(G) is known to be
NP-hard [11].

Let us first observe that, if (Tﬁ ﬁ'ﬁ) has a robust positive extension for some § € B@,
Q C AS, then either B(al" ), ) =1 or 5( ),7) = 1 (or both) holds for every (i,j) € E,

since otherwise we have b(0) = (a (”))B € F Whlch is a contradiction. Let

E, = {(i,j) € E| exactly one of f(a'*?,4) = 1 and B(a"?, j) = 1 holds }
E, = {(ivj) € E|p(a",4) = p(a"9), 5) = 1}.
If (¢,7) € E; and 5( 1 (resp., B(a®), ) = 1), then B(b@, i) = 0 (resp., B(b, ) =

i) =
0) (otherwise (a(#9))? ~ ( bi))s (resp (a®))? =~ (b)) and B is not a robust assignment).
This implies that C = {i| B(b%),4) = 0}yU{i|i < 4, (i, ) € Es} is a vertex cover of G. Hence
Ql > |Ea|+2/Es| + [{i | p(01Y,0) = }|
= (|Bu] + |Bal) + (|1 Bo| + [{i | B, 0) = 0}])
— |E|+1C| > Bl +(G).
For the converse direction, let C' C V' be a minimum vertex cover, and let us define a set
Q C AS and an assignment 3 € B? by

Q = {(a"9,4)| cither (i € C,j @z C)or (i,j € C,i < j)}U{(b%,4)]i € C},

B(a) i) =1 for (a9, 5) € Q and B(?,4) = 0 for (b),4) € Q. It is easy to see that §is a
robust assignment, and Q| = |E|+ (G ) holds. 0

Let us next consider problem MRE(C':) For a vector v € IM™, an assignment a € BA5)
is called (j-)left-shifted if there is an index j such that a(v,i) =1 for all ¢ < j,and a(v,7) =0
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for all ¢ > j. Analogously, « is called (j-)right-shifted if there is an index j for which
a(v,i) =0for all ¢ < j, and a(v,?) =1 for all ¢ > j. For example, if v = (10 % 0 % *1), then
an assignment o € BA%®) with a(v,3) =1 and a(v,5) = a(v,6) = 0 is left-shifted, and an
assignment 8 € B4 with B(v,3) = B(v,5) =0 and B(v,6) = 1 is right-shifted. It is easy
to see that if « is n-left-shifted (or O-right-shifted), then a = 1, while if 3 if 0-left-shifted
(or n-right-shifted), then 8 = 0. (see the definition at the beginning of Subsection 3.3).

We can show the following result.

Theorem 12 Problem MRE(CL) can be solved in polynomial time.
Proof. For a pBmd (T, ﬁ'), let us define a pdBf (T, F*) by

= {a*|a € T, a left-shifted assignment o € B45®)}
= {b*|b € F, a right-shifted assignment o € B45®)},

and define the weights of the above vectors by

(a*) =+ if eithera € TNB" or a =1 € BAS@),
(b*) = 400 if either b ¢ F N IB" ora:0€]BAS(b),

w(a®) =1 if a € T\ B" and a € BA%® is left-shifted, a # 1,
(b*)=1 if be I\ B" and a € B4® is right-shifted, a # 0.

We claim that o
p(T,F)=¢e(T", F) (15)

holds, where p(T, ﬁ') = 400 means that there is no consistent extension of (T, }~7') This will
prove the theorem, since BEST-FIT(C) can be solved in polynomial time [5].

If p(T, ﬁ') = +o00 holds, then by Lemma 3, for any function f € C, there exists either a
vector a € T with f(a') =0, or a vector b € F with f(0°) =1 (or both). By the definition
of w, this means that e(7*, F*) = 4+o00. Similarly, we can show that (7™, F*) = 400 implies
p(T, ﬁ') = +4o00. o

Let us continue with the case in which (7™, F*), p(T', F') < 400, and Let us assume that
B € B9 for a subset Q C AS is a robust assignment, an optimal solution of MRE(Cr). Let
Q1 = QN AS(T) and Qy = Q N AS(F). Then,

(i) B(a,i) =1 holds for all (a,7) € B?, and £(b,7) = 0 holds for all (b,4) € B®2.

This is because, if 3(a,7) = 0 holds for some (a,7) € B9, the positivity of f implies that the
restriction of 3 to the subset Q' = (Q1\ {(a,7)}) U Q2 (i-e., a; keeps *)would also be a robust
extension, contradicting the optimality of #. . Similarly, 8(b,¢) = 1 for some (b,7) € B>
would also lead to a contradiction.

Furthermore, the regularity of f implies that () satisfies the following conditions:

(ii) for every a € T, there exists an index j, € {0,1,...,n} such that all (a,i) € AS(a)
with ¢ < j, (resp., i > j,) satisfy (a,) € Q (resp., (a,%) € @), and
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(iii) for every b € F, there exists an index j, € {0,1,...,n} such that all (b,i) € AS(b)
with ¢ < g (resp., ¢ > jp) satisfy (b,7) € Q (resp., (b,7) € Q).

For example, assume that (ii) does not hold; i.e., some a* € T and i < j satisfy (a*,1) €
AS(a*)\ Q and (a*,7) € AS(a*) N Q. Then let Q' = Q] U Q2, where Q) = (Q1\ {(a*,j)}) U
{(a*,7)}, and let us define an assignment v € B?' by v(a,i) = 1 for all (a,i) € Qf, and
v(b,3) = 0 for all (b,7) € Q2. Then it follows from the regularity of f that v is also a robust
assignment. Condition (iii) can be similarly treaded. Thus by repeating this procedure, we
have a Q € B4® with |Q| = p(T, ﬁ') that satisfies (ii) and (iii).

Now, we prove claim (15). Let a subset Q € B#® with |Q| = p(T, F') and an assignment
B € B satisty (i),(ii) and (iii), and let f be a robust extension of (T, F#) in Cr (i.e., these
give a solution to MRE(Cr)). We shall show that

(iv) |F(f) N {a®]| a left-shifted assignment a € BA%®}| = |Q N AS(a)] for every a € T
(v) |T(f) N {b*| a right-shifted assignment o € B45®}| = |Q N AS(D)] for every b € F,
which will imply that
p(T,F) = [Q| =3 1QN AS(a)l+ 3 1Q N AS(b)|

a€T beF
= > |F(f)n{a®| aleft-shifted assignment o € BAS@1Y
acT*
+ Y IT(f) N {b*| a right-shifted assignment o € BASO
beF*
> e(T", F7).

To see (iv) let us observe that if a € T satisfies QN AS(a) = 0, then obviously F(f)N{a® |
a left-shifted assignment « € ]BAS(G)} = (. Otherwise, let j, be the index of the above
condition (ii). Then the j,-left-shifted assignment v € B45@) satisfies f(a”) = 1 by the
definition of f. However, an [-left-shifted assignment +" € B4%®) satisfies f(a”l) = 0 if
[ < ja, since otherwise the regularity of f implies that @' = Q \ {(a, )} is also a solution to
MRE(CL) (which is a contradiction to the minimality of @), and f(a”) =1if I > j, by the
positivity of f. Hence (iv) holds since there are |Q N AS(a)| such left-shifted assignments '
with [ < j,.

Equality (v) can be treated similarly.

For the converse inequality, consider a best-fit extension f € Cp of pdBf (T, F*). For a
vector v € IM", let AS(v) = {(v,11(v)), (v,12(v)),..., (v, l(v))} with [;(v) < l;(v) for ¢ < j.
Define ) = Q1 U Qs C AS by

Q1 = {(a.lia(a)) € AS(a) |a € T, f(a")) = 0}
Q> = {(b.la(b) € AS(D) [b € F, f("*)) =1},

where, for a € T, a¥® is the vector obtained from « by the l;(a)-left-shifted assignment, and
for b € F, b%®) is the vector obtained from b by the I;(b)-right-shifted assignment. Note that
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f(a%@) =0 (resp., f(B®)) = 1) implies f(a%®) = 0 (vesp., f(B¥®) = 1) for all j < i by
the regularity of f. Let us define g € B? by B(a,i) = 1 for all (a,7) € Q1, and B(b,7) = 0
for all (b,7) € Q2. Then f is a robust extension of (T, F#) in Cr, implying

e(T", F*) = Q1] + Q2| = Q| = p(T, F).

6 Hereditary classes

A family & of DNF expressions is called hereditary if V;crt; € S implies V;ept; € S for
any I' C I, where t; denote a term, i.e., an elementary conjunction. It is easy to observe
that families of k-DNFs, h-term DNFs and Horn DNFs are all hereditary. For a family of
expressions S, let us define the corresponding class of functions by Cs = {f | f has a DNF
expression in S}. A class Cs of functions is then called hereditary if S is hereditary. In the
following subsections we shall consider hereditary families, such as k-DNFs, h-term DNFs

and Horn DNFs.

6.1 E£-DNF functions
A DNF

<3

o=\ II = II 2
JEP; JEN;

is called a k-DNF if |N; U P;| < k for ¢ = 1,...m. It is a positive k-DNF if, in addition,
N; =0 fori = 1,....m. Let Cr-pyr and Ci pyp, respectively, denote the corresponding

2

Il
=

classes of Boolean functions. In this section, we sometimes do not distinguish a DNF ¢ from
the function it represents.

Let us first consider robust and consistent extensions in the classes Cr-pnrF and C,;"_DNF.
For a general k, Corollary 1 tells that problems RE(Ci-pyr), RE(C pyr)s CE(Ci-DNF)
and CE(C{_pyr) are all NP-complete. However, for a fixed k, by Corollary 4, problems
RE(C{- pnr) and CE(C{. pxr) can be solved in polynomial time.

Among the remaining problems, we start with problem RE(Cy-pyr) for a fixed k. For a
vector v € IM", let A(v) denote the assignment to the variables z; defined by

A(v) = (m; — v |v; # %), (16)

e.g.,v = (1,%,0,0,%), then A(v) = (1 «— 1,25 « 0,24 < 0). Recall that fa.) (resp., a(w))
denotes the function (resp., DNF) obtained by fixing the variables z; as specified by A(v).

Lemma 12 Consider a vector v € M" and a term t = [[;ep #;[Ljen ;. Then t(v*) = 0
holds for all assignments a € BA5®) if and only if ON(v)NN#£0Q or OFF(v) NP #0.
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Proof. It is easy to see that the if-part holds. For the only-if-part, assume ON(v) N N =
OFF(v) N P =0, and define an assignment « € B45®) by

[ 1, ifi€ P (v,i) € AS(v)
0 =10, ific N, (v,i) € AS(v).

This assignment o € BA%() obviously satisfies t(v®) = 1. O

Lemma 13 Let ¢ be a DNF of n variables, and let v € IM". For a subset @ C AS(v) and

an assignment o € B9,

(i) (v ) =1 holds for all assignments 3 € BASONC if and only if Qawey =T, and

ii v @)Y = 0 holds for all assignments B € BASON\C if and only i Awa) = L.
¥ ¥

Proof. (i) We claim that a subset @ C AS(v) and an assignment o € B9 satisfy that
o(v@P)) = 1 for all assignments § € B*5N\? if and only if [Licone) i llicorrwe) T <
¢ holds. It is clear that the if-part holds. To show the only-if-part, let us assume that
[Liconwes) Ti llicorrwe) Zi £ @ holds. Then @(v(@P) = 0 for some assignment 3 € B45N\Q
The condition [[;con(ve) Zi [licorrwe) Ti < ¢ is equivalent to @40y = T.

(i) is similar to (i). O

For a k-DNF ¢, the problem of checking if ¢ # T is called --NONTAUTOLOGY [11].
It 1s known that its complexity is the same as of k-SAT. For £ < 2, k-SAT can be solved in
polynomial time, but for & > 3, k-SAT is NP-complete [11]. The problem of checking ¢ = T
1s called k-TAUTOLOGY. It follows from the result about k-SAT that .-TAUTOLOGY is
co-NP-complete for k£ > 3.

Theorem 13 If k < 2, then problem RE(Cr-pnr) can be solved in polynomial time.

Proof. The following algorithm solves problem RE(Cr-pnr).

Algorithm CHECK-RE(Cy- DNF)
Input: a pBmd (T, F) where T, F C IM"™.

Output: If a pBmd (T F) has a robust extension in Cr-pnr, then output such a DNF ¢;
otherwise, NO.

Step 1. Generate all possible terms ¢ with at most k literals. Let ¢ be the disjunction of
all those terms for which ¢(b*) = 0 holds for all b € F' and « € BA5®).

Step 2. If py() =T forall a € T, then output ¢; otherwise, output NO.
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It is easy to see that the ¢ obtained in Step 1 i1s a k-DNF, and furthermore it is the
maximum k-DNF (with respect to T'(¢)) such that o(b*) = 0 for all b € F and o € B45®),
By Lemma 13 (the case of @ = 0), if ¢ passes the test of Step 2, then p(a®) = 1 must
hold for any a € T and a € BA5@ . Hence this @ represents a robust extension of (T F)
otherwise there is no robust extension.

Let us next consider its time complexity. In Step 1, by Lemma 12, checking of each
term ¢ can be done in O(n|F|) time. Since there are at most M = E] 0 ( ) = O(n") such
terms, Step 1 can be done in O(n**1|F|) time. In Step 2, we solve a k-SAT for cach a € T
to check whether ¢4, = T holds. Hence if k < 2, this can be solved in O(|pa(y)|) time
[2], where |p| denotes the number of literals in ¢. Since @ 4(,) can be constructed in O(|ep|)
time and |p4()| < || = O(kn*) holds, Step 2 can be done in O(kn*|T|) time. Totally,
CHECK-RE(Ci-pyr) can be executed in O(n*(k|T| + n|F|)) time. 0

For k > 3, however, CHECK-RE(Ci-pnr) does not run in polynomial time since it must
check if ¢4,y = T, which is co-NP-complete. In fact, RE(Ci-pnr) for k > 3 can be shown
to be co-NP-complete.

Theorem 14 For a fized k > 3, problem RE(C-pnF) is co-NP-complete.
Proof. Apply algorithm CHECK-RE(C-pnr) given in the proof of Theorem 13. Step 1 is

carried out in polynomial time as noted therein. Step 2 comsists of checking if pp,) = T
for polynomially many a, each of which is obviously a computation in co-NP. Therefore,
RE(Ci-pnr) for k > 3 belongs to co-NP.

To prove its co-NP-hardness, let H = (V, E) be a 3-uniform hypergraph, where V =
{1,2,...,n} and each H € E satisfies H C V and |H| = 3. We may assume n > 4
without loss of generality. Let Vi = {n + 1,n+2,....2n}, Vo = {2n + 1,2n +2,. 3n}
Va={3n+1,3n+2,....3n+ (kL3)} and V' = Vuvluvzuv?, DeﬁneT FC MY 2

follows.

— F()UF1UF2UF3,

e ST

Fo = {(V5:0)}

Fy, = {(VULV,UW)|ICVs,I+#Vs}

({i1,82,93} U {2n + 41, n + i2,n + i3} U V3;0)
({i1,i2,i3}U{n—l—i1,2n—|-i27n_|_z'3}uv3;®)
({i1, 92,45} U{n + i1, + 42, 2n + s} U Va3 0) t1,82,13 € V,
({in,dn is} U{2n + i1, 20 + iz, m i} U Vas0) | dy # da,da # ds,ds # 4
(

Fy, =
{i1,92,i3} U {2n + i1, n + i3,2n + i3} U V5;0)
({i17i27i3}U{n‘|’i172n+i2,2n—|—i3}UV3;(]))

By = {TUVs0)|I CVUVs|I|=3.{n+i2n+i} ¢ I foralli €V, and

I#{n+i,n+is,n+is},{2n +141,2n + 4y, 2n + i3} for all {i;,4s,43} € E},
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and (R; S) denotes again the vector y € MY’ for which ON(y) = Rand AS(y) = {(y,7)|j €
S}. We claim that (T, ﬁ') has a robust extension in Cj-pyr if and only if H is not 2-colorable,
which will complete the proof because deciding if H is 2-colorable is NP-complete [11].

To prove the claim, we first show that a k-DNF

p = VHeE(HjeH Tryj(Thev, 1) V [Licn Tonti([lev, iBl)) vV

(17)
Vie, ($n+i$2n+i(HlGV3 1) V 2iTptiTanti(Iliev, iﬂl))

satisfies the following conditions:
(i) Every term ¢ in ¢ has an assignment o € B*% such that t(a®) = 1 for a € T.
(i) The equation (b*) = 0 holds for all b € F and o € IB45.
(iii) The cardinality |T'(p)| is maximum among all the k-DNF's satisfying (i) and (ii).

Conditions (i), (i) and (iii) imply that if (T, F') has a robust extension in Cy-py, then ¢ is
such an extension.

Let us consider conditions (i), (ii) and (iii). It is easy to see that (i) holds. For (i), every
term ¢ = [[;cp z; [[;en T; satisfies

PN(VUWKUW) #
>

0
p Vs (19)

Since OFF(b) 2 VU V4 UV, holds for b € ﬁb, (18) implies that e(b*) =0 for all b € Fy and
a € ]BAS. Since OFF(b) N V3 # 0 holds for all b € F, €19) implies that ¢(b%) = 0 for all
be Fyand a € B4, For b e F5, we can see that b € BY and

[ON@) NV, [ON(B) O Ve[ < 2. (
n+i1 € ONb NV, = 2n+ie OFF(b) (
i€ ONDO)NV = {n+1i2n+i} £ OFF(b).

—_

[N T NS T )
N = O
— e’ e

Then (20), (21) and (22), respectively, imply

Vaea(Iljen nti(Tliev, 1) V Iljem @20t (Thev, 1)) ()= 0
Vi (Znyitonti(Iliev, 1)) (b)= 0 and
V?zl(wi:in+i:i2n+i(nlev3 iBl))(b , = 0

for b € F,. Hence e(b*) =0 for all b € F, and « € B*5. Similatly, b € F; satisfies b € BY,
(20), (21) and (22), and hence p(b*) = 0 for all b € Fy and o € BA5. Therefore, (ii) holds.

For (iii), let us consider a term t = [[;cp z; [[;ex Z; with |P U N| < k satisfying (i) and
(ii). We show that such a term ¢ satisfies t < ¢, which implies (iii). For this, we prove first
the following relations.
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(a) P 2> V5 holds. Otherwise, ¢t(b%) = 1 for some b € Fi and a € B4%, since t(a®) =1
holds for some a € B#% by (i). This means |(P U N)\ V5| < 3 by |t| < k and
V5| =k L 3.

(b) |[N|=0or 2 holds. Otherwise, if [N| = 1, then ¢(b) = 1 holds for some b € Fy, which
is a contradiction. Furthermore, if |[N| = 3, then ¢(b) = 1 holds for b € Fj.

(c) If [N] =2, then P = V3U {i} and N = {n +4,2n + i} hold for some ¢ € {1,2,...n}.
Otherwise, ¢t(b) = 1 holds for some b € Fy. This means that such a term ¢ is in ¢, i.e.,
t < ¢ holds.

(d) If N =0, then [PNV]| < 1 holds. Otherwise, either |[PNV| = 3 and [PN(V1UV)| = 0,
or [PNV|=2and |PN (V1 UW)| <1 In either case, ¢(b) = 1 holds for some b € F.

() f N =0 and PNV = {j}, then t = 2;2n1i%2m+i(I]1ev, 1) holds for some 7 € V.
Otherwise, ¢t(b) = 1 holds for some b € F,. This means that such a term ¢ satisfies
t < ¢ because ¢ has terms (Znqi%2nti([liey, 1) for all 2 € V.

(f) If N = PNV =0, then by the definition of Fj, ¢ satisfies t = [Lier Tnti([iey, 1) for
some H € E, t = [[;cq 2antj(Iliey, 1) for some H € E, or t = 2nyi®anyi([liey, 1) for
some ¢ € V. Hence, such a term ¢ i1s in ¢, 1.e., £ < ¢ holds.

By (a) ~ (f), we have (iii). o
Now we show the claim. If (T, F') has a robust extension in Cy-pyr, then by the above
argument, ¢ of (17) is such an extension. Assume that H is 2-colorable, i.e., there is a subset

C CV such that HNC # 0 and HN (V' \C) # 0 hold for all H € E. Define an assignment
a e B fora e T by

1 ifeeCandiecV
an+i)=0 ifigdCandiecV
)=1 ifigCandieV
a(a,2n+14)=0 ificCandieV

Then ¢p(a®) = 0 holds, which is a contradiction. Hence H is not 2-colorable.
Conversely, assume that H is not 2-colorable, and take any assignment o € B#%. If
a(a,n + 1) = a(a,2n + i) holds for some ¢ € V, then

k3

V (@ngitongi( [] 20) V 2insiBongi( [] 21))(a®) =1

=1 leVs levs
holds. Otherwise, since H is not 2-colorable,
{i|a(a,n+i)=1,i €V} D Hor {i|a(a,2n+i)=1,i€ V} DO H

holds for some H. This means that such an assignment « satisfies

\/ (H xn-l—j(H 517l) vV H 5172n+j( H iBl))(aa) =1.

HeE jeH €V, jeEH leVs
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Hence combining (i), we see that ¢ of (17) is a robust extension of (T, F). O

We now turn to problem CE(Cy-pnr) for a fixed k.

Let us first consider problem CE(Ci-pyr).

Let V = {1,2,...,n}, and let us consider a pBmd (T, F), where T,F C M". For
a vector v € M and a subset I C V, let v[I] denote the projection of v on I; e.g., if

= (1,0,1,1,%,0,%), w = (1,%,%,0, 0,*,1) and I = {2,3,5}, then v[I] = (0,1,*) and
w[I] = (*,%,0). Furthermore for a set § C MY and a subset I C V, let S[I] denote the
projection of S on I (we assume that this projection keeps its mu1t1p11c1ty), and if T is a
singleton, say I = {5}, we write simply S[j] instead of S[{5}].

We shall show that the following algorithm can solve problem CE(Ci-pyr) in polynomial
time.

Algorithm FIND- CE(C1 DNF)

Input: A pBmd (T F) where T,F CM" and V = {1,2,...,n}.

Output: If the pBmd (T F) has a consistent extension in Ci-pyp, then output an as-
signment « € B*° such that (TO‘ FO‘) has an extension in Ci-pyp and its 1-DNF expression
©; otherwise, NO.

Step 1. Let Iy := {j € V|0 € F[jl.1 ¢ F[j]}, I == {j € V|1 € F[],0 ¢ F[j]},
In :={j € V0,1 € F[j]}, and [ :=V \ ([p UL UIy) (i.e.,F[j] for j € I contains

only #). Define an assignment a by

(a.]) = 1 if either (i) j € Iy, or (ii)a € T and j € Iy, or (iii)a € F and j € I
I 00 if either (ivia € Fand j € Iy, or (v)a € T and j € I,
(23)

1€lp i€l

and 1-DNF

Step 2. Define a pBmd (T’,ﬁ”) with 77, F' C M by

where I was defined in Step 1, and S1={a e T|a; € {1,%} for some j € I} U {a €
T |a; € {0,%} for some j € I;}.

Step 3. For each 5 € I, introduce a binary variable y; (these variables define an assignment
p € BYTM) such that B(a.j) = y; for all (a.j) € AS(I") and f(b,j) = g; for all
(b,5) € AS(F")). Let T" := T' N B’, and construct a CNF (conjunctive normal form)

q)( ) aET”
Ca = Vjcon(a) y] V' Vjcorr(a) Uj-
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Find a solution satisfying ®(y) = 1 (i.e., solve problem SAT). If there exists a solution
y*, then let ©' = Vjconr) 2 V Vicorrr) T, and output ¢ := ¢ V ¢’ and the con-
catenated assignment (a,3), where 3 is obtained by substituting y; = y; in the way
as shown above; otherwise, output NO.

To see the correctness of algorithm FIND-CE(Ci-pyrF), let us show the following lemma.

Lemma 14 A pBmd (T, F) has a consistent extension in Ci-pyr if and only if (T', F')
obtained in Step 2 of FIND-CE(Ci-pnrF) has a consistent extension in Ci-pNF.

Proof. Let ¢ be the 1-DNF of (24), and let ¢’ be a 1-DNF consistent extension of (1", F).
Then we claim that the 1-DNF ¢V ¢’ defines a consistent extension of (T, ﬁ'), which will prove
the if-part. By the assignment « of (23), p(a®) = 1 holds for all a € 51, and ©(b*) = 0 holds
for all b € F. Furthermore, since ¢’ is a consistent extension of (T’,ﬁ”), some assignment
B e BAST'E) gatisfies that (a®) = 1 holds for all « € T”, and ¢(b¥) = 0 holds for all
b € F'. Hence, by the definition of F, o(b®#)) = 0 holds for all b € F', where («, 3) is the
concatenation of « and 3. This implies that ¢ V ¢’ is a 1-DNF extension of (T(O"ﬁ), F(O"B)),
that is, ¢ V ¢’ is a 1-DNF consistent extension of (T, F).
Conversely, let v € B*° be an assignment such that (T”, ﬁw) has a 1-DNF extension

QO*:\/:Bi\/\/:ii.

ieP 1EN
Then the following properties hold:
(i) InN(PUN) =10
(i) LN N =10
(i) NP =0,
since otherwise some vector b € F would satisfy f(b") = 1, a contradiction. Let ¢’ =

Vier\, i V Vien\r, Ti, and let 3 = F[AS(T' U )], ie., B € BAST'F) be the projection
of v on AS(T'U F). By (i), (ii) and (iii), ¢ is defined on I. We now show that go is
an extension of ((1~1 )2, (F }?), which will prove the only-if-part. By the definition of ¢, all
b € F' satisfy ¢'(b%) = 0. Assume that a[I] € T' of some a € T satisfies ¢'(a”) = 0. Then
(Vier, @i V Vier, @i)(a®) = 1 holds. However, by the definition of T = (T\ S1)[I], a; = 0
must hold for j € Iy, and a; = 1 must hold for j € I;, which is a contradiction. Hence ¢’ is
an extension of ((T’)ﬁ, (ﬁ”)ﬁ) O

Let us now consider a consistent extension of the pBmd (T’,ﬁ”), l.e. an assignment

B € BA5TY) fo1 which ((T’)ﬁ, (ﬁ”)ﬁ) has a 1-DNF extension. Note that AS(b) = I holds
for all b € F'. i.e., all vectors in F' are {(*,*,... )} Furthermore, if 3(b,5) = 1 (resp., 0)
holds for some b E F', then any 1-DNF extenswn @ of (T")?, (F")° ) has no term z; (resp.,
z;). Since ¢'(a?) = 1 must holds for all a € 7", we would like to make |T(¢')| as larger as
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possible, under the condition that ¢'(¥*) = 0 holds for all b € F'. This means that we only

need to consider an assignment 8 € B45T'9F) guch that Bla,j) = y; for all a € T’ and
B(b,7) = g; for all b € F', where y € B, and a 1-DNF

o=\ zv \ (25)

FEON(v) FEOFF(y)

as an extension. Then, it is easy to see that all « € T\ B satisfy ¢'(a®) = 1, and all
b € F' satisfy ¢/'(b%) = 0. Hence we must choose a y € B such that ¢'(a®) = 1 for all
a € T'NB!. This condition can be written as ®(y) = 1 in Step 3. Therefore, (T”, F’) has a
1-DNF consistent extension ¢’ of (25) if and only if ®(y) = 1 holds.

Theorem 15 Problem CE(Ci-pnr) can be solved in polynomial time.

Proof. The above discussion shows the correctness of algorithm FIND-CE(Ci-pyr). Let us
consider its time complexity. Obviously, we can execute Steps 1 and 2 in O(n(|T'|+|F|)) time.
In Step 3, we must find a solution of ®(y) = A,.7+Ca =1 (i.e., solve a exact |I|-SAT, where
exact k-SAT 1s a SAT satisfying that each of clauses has exact k literals). Exact k-SAT is in
general NP-complete, but in this case, k = |I|, that is, k is equal to the dimension of SAT.
Hence, this can be solved in O(n|T”|) time by checking if the number of different vectors in
T" is equal to 21! (in this case, ®(y) is not satisfiable), and finding a vector y* € B! such
that y* & T" if not so (by using a binary tree as a data structure [17]) (in this case, y™ is a
solution). In total, we need O(n(|T| + |F|)) time. O

For k > 2, however, we have the following negative result.

Theorem 16 For a fized k > 2, problem CE(Cr-pnrF) is NP-complete, even if |AS(a)] <1
holds for alla € TU F.

Proof. Given an assignment o € B*°, we can check in polynomial time if (TO‘, ﬁ'o‘) has a
E-DNF extension, since EXTENSION(Ci-pnr) can be solved in polynomial time [5]. Hence
this problem is in NP. To show its NP-hardness, let

=1
be a cubic CNF, where u;, v; and w; for ¢ = 1,2,...,m are literals from the set L =
{#1,%1, ... %0, Tp}. We write ©; € C; (resp., &; € C;) if either w; = z; or v; = z;, or

wi = z; holds (resp., either w; = &; or v; = Z;, or w; = &; holds) Let V1 ={1,2,...,n},
={n+1n+2,. n—l—m}Vg,—{n—l—m—l—ln—l—m—l—2 n+m+k L2} and
V ViuV,u Vs, We constructT F C M as follows.

j::{ai (W;u{n+i}0)|i=1,2,...,m}
= {(0;0), (Vl, O)u{{s}0) 5 € W}
U{p® = (W, u{n+i}U{l}0)|i=1,2,...,m,l € V3}
U{cD = (W;U{n+i};0) i =1,2,....,m} U{dY) = (U;; {5}) |5 € Wi},
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where (R; S) denotes the vector v € MY such that ON(v) = R and AS(v) = {(v,5)|j € S},
and W, = {j|:13] S Cl}, W; = {j|:i] S Cl} and U; = {n—l—z|w3 € C; or r; € Cl} It is
easy to see that |AS(a)] < 1 holds for all a € T U F. We claim that this pBmd (T,ﬁ') has
a consistent k-DNF extension if and only if the 3-SAT problem for & has a solution (i.e.,
if there is a binary vector y € {0,1}" for which ®(y) = 1). This will complete the proof,
because 3-SAT is NP-complete [11].

To prove the claim, let « € B#° be an assignment such that (T“,ﬁ'o‘) has a k-DNF
extension ¢, and let ¢; = [[;ep, #; [1jen, T;, where PN N; = 0 and |P; U N;| < k, be a term in
¢ such that t;(a) = 1 for a®¥) € T. Then such terms t;, 7 = 1,2, ..., m, satisfy the following
properties:

(a) N; O V5 holds. Otherwise, ti(b(i)) = 1, which is a contradiction. Since |V3| =k L 2,
this means [(P; U N;) \ V5] < 2.

(b) |(P; U N;) N V3| = 1 holds. Otherwise, we have |(P; U N;) N V3| = 0 or 2 by (a). If
|(P;UN;)NV3| = 0, then at least one vector bin {(0;0), (V4;0)}u{({}:0) |j € 1} (C F)
satisfies ¢;(b) = 1, which is a contradiction. Furthermore, if |(P; U N;) N V3| = 2, then
t;(a) = 1 implies that c¢® ¢ F satisfies t;(c®¥) = 1, which is again a contradiction.

(c) P,NV, = {n + i} holds. Otherwise, (b) implies N; N Vo = {n + h}, where h €
{1,2,...,m} and h # 4, and then at least one vector bin {(0;0), (V1;0)}U{({j};0) |7 €
Wi} (S ﬁ') satisfies t;(b) = 1, which is a contradiction. Therefore t; = #,.4;([T;ev, 1) or
ti = ijn+i(Hl€V3 :il) with Zj € L.

(d) ti = uixn-l-i(HleVg :il), vixn-l—i(HleVg, :il) or wixn-l—i(HleVg, :il) holds. If ti = xn+i(Hl€V3 :il),
then ¢V € F satisfies ti(c®) = 1, which is a contradiction. On the other hand, if
zj € L\ {u;,v;,w;}, then z; must be a negative literal 3, and furthermore k ¢ W;.
This means #;(c?) = 1, which is again a contradiction.

(e) There is no pair of terms ¢, and t, such that t; = z;2,2(Ilicy, 1) and ¢, =
Z;Tnin(Iliev, ). Otherwise, let ¢ and t; be such terms. Then (¢ V th)((d(j))ﬁ) =1
holds for all assignments 3 € B#°, which is a contradiction.

Let us define a binary vector y € B™ by

it = z;Tnti(ITiev, #1) for some i € {1,2,...,m}
9971 0 otherwise.

Then properties (d) and (e) show that this y satisfies ®(y) = 1.
Let us next comsider the converse direction. For a binary vector y € IB" satisfying
®(y) = 1, define an assignment o € B*° by

1 if Yy; = 0
0 otherwise,

a(d(j),j) = {
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and a k-DNF function ¢* by

t; = ziwonu( I ®), (26)

lEVg
where z; € {u;,v;,w;} = C; and z; = 1 is implied by y. Then we can see that * is an
extension of (T, F'*), that is, ¢* is a consistent extension of (T, F'). O

Finally we consider the most robust extensions. By Corollary 3, in the restricted case of
|AS| = O(log(n + |T| + | F])), MRE(Cy-pnr) and MRE(C pyp) are polynomially solvable
for a fixed k. However, if the number of missing bits is not limited, we have the following
theorem.

Theorem 17 For a fized k, problems MRE(C-pyr) and MRE(C{_pyp) are NP-hard, even
if |AS(a)| <1 holds for alla € TUF.

Proof. Let G = (V, E) be a graph, where V' = {1,2,...,n}, and let W = {n + 1,n +
2,...,n+k L1} Let us define T F C MV“% as follows.

(a9 = ({iog} UW:0) [ (3.]) € B}
{0 = (W:0)} U (b = (Wi {i})|i € V}
{9 = ({i. 73U (W \{1}):0) | (i) € B.1€ W},

where (R; S) denotes the vector v € M"Y such that ON(v) = R and AS(v) ={(v,5)]Jj €
S}. Tt is easy to see that |[AS(a)| < 1 holds for all @ € T'U F. We claim that

p(Ciprr: (T, F)) = p(Cif ppi (T, F)) = 7(G) (27)

Py M3

holds, where 7(G) denotes the cardinality of a minimum vertex cover of graph G. This will
complete the proof because finding 7(G) is known to be NP-hard [11].
To prove the claim, we show first that

p(Cipr: (T, F)) < p(Cit pyps (T, F)) < 7(G) (28)

The first inequality follows from Cp-pyr 2 C,;"_DNF. For the second one, let us associate a
E-DNF ¢¢ to any subset C' C V' by defining

o =\ TiTpi1Tnts - Totho1
2eC

and let us consider e, Where C* C V 1s a minimum vertex cover of G. Define ) C AS
and a € B? by Q = {(0?,4)|i € C*} and a((b'¥),7)) = 0 for all (b,7) € Q, respectively.
Then g+ is a robust extenswn of (T, F*), i.e., p(Cit-pyp: (T, F)) < |C*| =7(G).
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Next, we show that
p(Cr-DNF; (Tv F)) > 7(G), (29)
which together with (28) will imply (27). For this end, let a € B for Q C AS be an
assignment such that (TO‘ FO‘) has a robust k-DNF extension, and let

Y = \/ ti7
el
be such a k-DNF with a minimal I, where t; = [[;cp. z; [Ljen, Z;, BNN; =
for all 7 € I. Then the minimality of I implies that for every term t;, there is o) € T* such
that ti(a(h"’l")) = 1. Thus P; O W holds for every ¢ € I, since otherwise the vector plhili) ¢ fre
also satisfies ti(b(h"’l")) = 1, which is a contradiction. This implies |(P; U N;) <
|P, UN;| < k. However, |P, N V| = 1 holds for every ¢ € I; otherwise (i.e., P, NV = 0),
t;(b©®) = 1 holds for b ¢ F which is again a contradiction. Let us now define

C={jl{s}=nnViel} (CV).

Then this set C is a vertex cover, since for every a™! € T there exists a term #; such that
P,NV ={h} or {l}. Hence ¢ = ¢¢ holds for some vertex cover C C V', which implies (29)
by applying a discussion similar to that of (28). O

6.2 h-term DNF functions
A DNF

o=\ 11 = II %
1=1j€P;  jEN;
is called an h-term DNF, if m < h. It is a positive h-term DNF if, in addition, N; = 0
for i = 1,...,m. Let Ch-term and C;-
Boolean functlons.
For a general h and a fixed h > 2, Corollary 1 tells that problems RE(Ch-term), RE(C;'L' torm)s
CE(Ch-term ) and CE(Ci.,..,..) are NP-complete. On the other hand, problems RE(C{.,....) and

CE(Cy ;.rm) can be solved in polynomial time, by Corollary 4. Here we consider the remaining

osermo Tespectively, denote the corresponding classes of

cases.

Theorem 18 Problems RE(Ci-term) and CE(Ci-term) are polynomially solvable. Problems
MRE(Cy-term) and MRE(Ci,.,,,) are however NP-hard, even if |AS(a)| < 1 holds for al
acTUF.

Proof. The problems RE(Ci-term ), CE(Ci-term ), MRE(Ci-term ) and MRE(C{,....) are dual to

RE(C;- DNF) CE(Cs- DNF) MRE(C1 pnF) and MRE(C1 pNF), respectively. In other words,

deﬁnlng T4 = {b|b € F} and F? = {a|a € T}, where @ denotes the vector such that

a; = 1 (rvesp., 0) if a; = 0 (resp., 1), and a; = * if a; = *, the pBmd (T,ﬁ') has a robust
+)

(resp c0n51stent) extension in Cl 2o if and only if (T4, F9) has a robust (resp., consistent)

extension in Cl—DNF' Thus Theorems 13, 15 and 17 imply this theorem. O
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6.3 h-term k-DNF functions
A DNF

o=\ I = II %
1=1jEP;  jEN;
is an h-term k-DNF if m < h and |P; U N;| < k for all 7 = 1,...,m. If, in addition, N; = 0
for 1 = 1,..,m, then ¢ is called a positive h-term k-DNF. Let Cp, r-pnr and C;'L:k_DNF denote
the corresponding classes of h-term k-DNF functions and positive h-term k-DNF functions,
respectively.

By Corollary 1, problems RE(Cp, 1-pnF), RE(C;'L:k_DNF), CE(Chk-pnrF) and CE(C}—lL—,k—DNF)
are all NP-hard, if at least one of h and k is not fixed. We therefore consider only problem
MRE for the classes Cp-pyr and C;'L:k_DNF with fixed h and %k, and show that these can
be solved in polynomial time. This also tells that problems CE and RE are polynomially
solvable in these cases.

Theorem 19 Problems MRE(Ch p-pnF) and MRE(CZk_DNF) can be solved in polynomial
time, if both h and k are fized constants.

Proof. (i) MRE(Cp ¢-pnr): The following algorithm solves MRE(Cy, 1-pnr).

Algorithm FIND—MRE(C}LJQ_DNF)

Input: a pBmd (T, ﬁ'), where T', F C IM".

Output: If (T, ﬁ') has a consistent extension in Cp, x-pnr, then output a subset () C AS,
an assignment o € IB? and an A term k-DNF ¢ such that ¢ represents a robust extension
of (T*, F), for which |Q| is minimum; otherwise output NO.

Step 1. For each h-term k-DNF ¢, we construct a subset ), € AS and an assignment
a, € B¢ as follows.

e For every a € T, find a subset Q, C AS(a) and an assignment « € B? such that
@A) = T (where A(a®)is defined in (16)) and |Q,|is minimum. If there is no such @,
for some a € T, abandon ¢; otherwise, let Qy = Uyer Qa, and let ay(a, j) := a(a,j)
for (a,§) € Qq, a € T.

e For every b € F, find a subset Q, C AS(b) and an assignment « € ]|~3Qb such that
@apey = L and |Qs] is minimum. If there is no such @y for some b € F, abandon ¢;

otherwise, let Q, := Qo U Uycs Qp, and let a,(b, ) := a(b, 7) for (b,j) € Qp, b € F.

Step 2. Among those h-term k-DNFs ¢, which are not abandoned in Step 1, find ¢ = ¢*
with minimum |Q,|. If such o* exists, then output Q-+, a, € B¥* and the DNF ¢*;
otherwise, output NO. STOP.

The correctness of algorithm FIND-MRE(Cy, s-pyr) is immediate from Lemma 13. Let
us consider its time complexity. Let M be the number of terms with at most & literals, i.e.,

M < E?:o (2;”) = O(n*). Then there are 3" _, (An{) = O(n*) h-term k-DNTF expressions.
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In Step 1, for each h-term k-DNF ¢, we check if there exist Q,, @ € T and Qp, b € F,
which satisfy the stated conditions. If there exist @), C AS(a) and a € B9 such that
©a@) = T, then @44 # L, implying that @4, has a term ¢ = [[;cp 2 [Ijen 5 < @aa)-
If we set Q, = {(a,j)|j € PUN}, and «(a,j) = 1 (resp., 0) for j € P (resp., N), then
we have @440y = T. This Q. satisfies |Qq| = |P| 4+ |[N| < k, since @4, is a k-DNF.
Hence the subset @, C AS(a) that minimizes |Q,| also satisfies |@Q,| < k , and there are
E?:o (2;"”) = O(n*) such Qus. Therefore, we apply the above check to all Q, C AS(a).
Checking of p 44y = T (i.e., problem TAUTOLOGY) can be done by dualizing ¢ 4=y and
checking if go‘j(aa) = 1 holds (recall that checking ¢ = L for a DNF is trivial). This can
be done in O(k") time, since @ 4(4a) can be obtained from ¢ in O(|¢|) = O(kh) time, and
go‘j(aa) can be obtained from @4(4e) in O(kh) time, since @4(qe) is a h-term k-DNF. Thus
this computation requires O(K" M) = O(k"n*) time for each h-term k-DNF ¢ and a € T.
Similarly, we require O(khM) = O(khn*) time for each h-term k-DNF @ and b € F' to check
@apey = L for all subsets @y C AS(b) and assignments o € B® with |Qs| < k. Therefore,
Step 1 can be carried out in O(n*+1) (k" T| 4 kh|F|)) time, since there are O(n**) h-term
E-DNF expressions. Step 2 can be carried out in O(n*") time. Totally, algorithm FIND-
MRE(Ch, 1-pnF) requires O(nk(h+1)(kh|f| + kh|ﬁ'|)) time, which is polynomial if & and & are
constants.

(ii) MRE(C;'L:k_DNF): We can solve MRE(C;'L:k_DNF) in polynomial time by modifying
algorithm FIND-MRE(Chi-pnr) as follows. In this case, h-term k-DNFs are restricted
to be positive, and in Step 1, for each a € T (resp., b € ﬁ'), all assignments o € B9
(resp., a € B9) with Q, C AS(a) (resp., Q, C AS(b)) are restricted to be positive (resp.,
negative). Hence for each positive h-term k-DNF ¢ and a € T, we can check in O(kh) time
if a subset Q, C AS(a) and assignment « € B satisfy fa@e) = T, and similarly for each
positive h-term k-DNF ¢ and b € F, we can check in O(kh) time if a subset Q, C AS(b)
and assignment o € BY satisfy fa@ey = L. Therefore, MRE(C;'L:k_DNF) can be solved in

O(khn* "D (|T| + | F|)) total time. 0

6.4 Horn functions

A DNF

p=V Il = Il #

i=1j€P;  jeN;

is called Horn if |N;| <1 for all terms ¢ = 1,...,m. Let us denote by Cgopr the class of Horn
functions.

Theorem 20 Problem RE(Cror,) can be solved in polynomial time.

Proof. Let (T, F) be a pBmd. For each a € T, let us define B(a) = {b € ﬁ'|b;a}. We

claim that (T, F) has a robust Horn extension if and only if for every a € T, there exists
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an index j such that a; = 0 and b; = 1 for all b € B(a). The latter condition can be easily
checked in O(n|T||F|) time.

To prove the claim, let us assume first that for every a € T, there exists an index j such
that a; = 0 and b; = 1 for all b € B(a). Then for any a € B*°, all 5* € B(a)* satisfies

b¢ = 1. Thus, for the Horn term
ta = ( H :Bl) :Ej,
1€ON(a)

we have t,(a®) = 1 and ¢,(b%) = 0 for all a € B4 and b€ F. Hence, the Horn DNF

W:vta

aET

provides a Horn extension of (T, ﬁ') )
For the converse direction, let us assume that for some ¢ € T, every index j with a; =0
has a vector b € B(a) with b; € {0,%}. For such a vector a, consider the assignments

a € BA5@ U BA5(B(@) defined by
a(a,i) = IoeBayss. bz 0 if there‘ is a vector b € B(a) with b; € {0,1}
1 otherwise
for (a,i) € AS(a), and a(b, i) = af for (b,i) € AS(B(a)). Then {b* € F*|b* > a*} = B(a)"
satisfies
a® = /\ ba,
{bacFa |baza)

by the above assumption on ¢ and B(a), where A denotes the componentwise AND operation,
e.g., (010111) A(100101) = (000101). However, it is known [5, 13] that a pdBf (7', F') has an
extension in Cgmy, if and only if

N b#a (30)

beEF s.t.b>a

holds for every a € T. Hence, (TO‘, ﬁ'o‘) has no extension in Cgop,. O

Now, we turn to problem CE(Crorn)-
Theorem 21 Problem CE(Crorn) s NP-complete, even if |AS(a)| < 1 holds for all a €
TUF.
Proof. Similarly to the proof of Theorem 9, CE(Cgopr,) is in NP. To show its NP-hardness,
let H = (V,E) be a 3-uniform hypergraph, i.e., E is a collection of 3 element subsets
of V.= {1,2,...,n}. Let H' = (V',E’) be a copy of H, ie., V' = {1',2,...,n'} and
E' ={H ={i",j’, kY| H = {i,j,k} € E}. Let us define T, F C M"""" as follows.
= {d"" = ((VNH)U(V'\ H');0),a™ =(VU(V'\H');0)| H € E}
= {09 = (V\{Hu (v \{i):{ib) [i e V],

e ST
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where (R; S) denotes the vector v € MY such that ON(v) = Rand AS(v) = {(v,j)|j € S}
It is easy to see that |AS(a)| < 1 holds for all € T U F. We claim that this (7', F') has a
consistent Horn extension if and only if H is 2-colorable, i.e., if there is a partition (C,V'\C),
for which CNH # 0 and (V\ C)N H # 0 hold for all H € E This will complete the proof
because deciding the existence of a 2-coloring of a 3-uniform hypergraph is NP-complete [11].

Let us first consider an assignment a € B#° such that (TO‘ FO‘) has a consistent Horn
extension. Let

C={iecV]|ab?i)=1}.

Then we shall show that (C,V \ C) is a good 2-coloring. For this, let us assume otherwise;
i.e., there is an edge H € E such that either HNC =0 or HN(V\C)=0. HHNC =10
holds, then a'® € T* does not satisfy condition (30) for the existence of a Horn extension,
since {b € F*|b > a'¥} = 1(b N ld € HY and Ajeg(b¥)* = . On the other hand, if
Hn(V\C)= Q) then o € T does not satisfy (30), since {b € F*|b > a®H} = {(b)*|i ¢
HY} and Ajeg(bD)® = a?H,

For the converse direction, let (C,V \ C) be a 2-coloring. Let us define an assignment

a € BA% by
- 1 ifseC
@) 5y =
a0, 1) = { 0 otherwise.
Then (30) holds for every a € T, that is, (T, ﬁ') has a consistent Horn extension. O

7 Dual-comparable functions

Let us recall that a Boolean function f is dual-minor (resp., dual-major, self-dual) if f < f¢
(resp., f > f2, f = f?), where the dual f¢ of f is defined by f¥(z) = f(Z). Let Cparr, Coara
and Csp denote the corresponding classes of dual-minor, dual-major and self-dual functions,
respectively. Analogously, let C3 7, Chara and Cdp denote the classes of dual-minor, dual-
major and self-dual positive functions, respectively. It is known [5] that a function f is
dual-minor (resp., dual-major, self-dual) if and only if at most (resp., at least, exactly) one
of f(a) =1 and f(a) = 1 holds for every a € {0,1}".

Corollary 4 tells that the robust and consistent extensions can be found in polynomial
time for classes of Cyrr, Chara and Cp. Therefore, let us consider the robust and consistent
extensions for classes of Cppsr, Cpyra and Csp. We start with the next lemma.

Lemma 15 (i) A pBmd (T,ﬁ') has a robust extension in Cppyr if and only if there exists
an index 5 such that a; = b; € B for each pair of a,be T.

(ii) A pBmd (T, F) has a robust extension in Cpma if and only if there exists an indez j
such that a; = b; € B for each pair of a,b € F.

(iii) A pBmd (T, F) has a robust extension in Csp if and only if there exists an index j such
that a; = b; € B for each pair of a,b € T and each pair of a,b € F.
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Proof. (i) A pBmd (T, F) has a robust extension in Cpyz if and only if, for any assignment
o € B% there is no pair of a,b € T such that a® = 5. The latter condition is equivalent
to that there exists an index 7 such that a; = b; € B for every pair of a,b & T.

(ii) is similar to (i), and (iii) is obtained by combining (i) and (ii). O

Theorem 22 Problems RE(Cpur), RE(Cpara) and RE(Csp) can be solved in polynomial
time.

Proof. By Lemma 15, it is easy to see thatNRE(CQMI), RE(Cpama) and RE(Csp) can be
solved in time O(n|T'|?), O(n|F'|*) and O(n(|T|? + |F'|?), respectively. O

Theorem 23 Problems CE(Cpmir), CE(Cpma) and CE(Csp) can be solved in polynomial
time for a pBmd (T, F) such that |AS(a)| <1 holds for alla € T U F.

Proof. For a given pBmd (T, ﬁ') with T, F C IM", let us define a pdBf (T, F) by

T ={a"|a €T,a c B4}
F={b*|bc F,a c B*Y}.

Now, for each a € TUF, let us introduce a new binary variable X,, where X, corresponds to
the value f(a) of a consistent extension f of (T, F'). Then the following quadratic equations

must hold. .
1) «a=10 if a €T NB"

| >

(

(i) XgaXga=0if a € T\B"
(i) Xp =0 if be FnB"
(iv) XpaXpa =0 if be F\B"
(v) X, Xo=0 ifaacT
(vi) XX5=0 if bbc F.

1

—

The equations (i), (i), (iii) and (iv) express the conditions that (T, F) has a consistent
extension in C,y. The equations (v) and (vi) express that a consistent extension of (T,ﬁ')
must be dual-minor and dual-major, respectively. Hence in order to solve CE(Cparr) (resp.,
CE(Cpama) and CE(Csp)), we check if the quadratic systems consisting of (i), (ii), (iii), (iv)
and (v) ( resp., (i), (i), (iii), (iv), (vi), and (i), (ii), (iii), (iv), (v), (vi)) has a solution.
Checking if the quadratic systems has a solution (i.e., 2-SAT) can be done in time linear in
its size [2]. Therefore, we can solve CE(Cpasr), CE(Cpara) and CE(Csp) in polynomial time,
if |AS(a)| < 1 holds for every a € T U F. O

In general, however, we have the following negative result.

Theorem 24 All three problems CE~(CD4/H), CE(Cpma) and CE(Csp) are NP-complete,
even if |AS(a)| <2 holds for alla € TUF.
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Proof. These problems are all in NP, similarly to Theorem 9. To show the NP-hardness, for
a given pBmd (7', F') with T', FF C IM", let us define a pBmd (7", F') by

7' = {(a,1)|a € T}
Fr={(b1)|be F},

where T, F' C IM"™*. We show that (T, ﬁ') has a consistent extension f in Cuy if and only
if (T’, ﬁ”) has consistent extensions in Cpasr, Cpya and Csp, respectively.

First, if (T’,}:W’)}las a consistent extension in one of the classes Cparr, Cpya and Csp,
then obviously (7, F') has a consistent extension in C,y. To prove the converse direction, let
f be a consistent extension of (T, ﬁ') in Cqy. Then define f' of n + 1 variables by

fi(dy=1 iff either f(a) =1and d,,4;1 =1, or f(a) =0 and d,,41 = 0,

where d = (a,dn;1) € B™"™. We claim that f’ is a consistent extension in class Csp (i.e.,
Comr N Cpura). It is easy to see that f' is a consistent extension in Chy. Let us show the
self-duality (i.e., dual-minority and dual-majority) of f’.

(1) f'(a,dn41) = 1implies either (i) f(a) =1 and d,,41 = 1, or (ii) f(@) = 0 and d, 41 = 0.
If (i) holds, then f'(a,d,1) = 0, since f(@) = 1 and d,;1 = 0 hold. If (ii) holds, then
f'(a,dny1) = 0, since f(a) = 0 and d,y1 = 1 hold. Similarly, f'(a,dn;1) = 0 implies
f'(a,dn41) = 1. Thus f’is in Csp.

Therefore, the theorem follows from Theorem 9. O

Let us finally consider the problem of most robust extensions for the classes of positive
dual-comparable functions. Recall [5] that

(i) A pdBf (T, F) has an extension in C},,; if and only if (T, F') has a positive extension,
and for all @ € T', there is no a’ € T such that o’ < a.

(ii) A pdBf (T, F) has an extension in C},,, if and only if (7', F) has a positive extension,
and for all b € F, if there is no ¥’ € F such that & > b.

(iii) A pdBf (T, F) has an extension in CZp, if and only if (7, F') has a positive extension,
and for all @ € T', there is no o’ € T such that o’ < @, and for all b € F', if there is no
b € F such that & > b.

Theorem 25 Problems MRE(CPy;), MRE(CDyra) and MRE(C{p) are NP-hard, even if
|AS(a)| <1 holds for alla € TUF.

Proof. MRE(C},,;) and MRE(Cip): Let G = (V,E) be a A-free graph, where V =
{v1,vs,...,0,}, and G is called A-free if G has no clique of size 3, i.e., there is no set of ver-
tices v1,v2, v3 € V such that (vy, vs), (ve, v3), (vs,v1) € E. Let W = {w;; | (vi,v;) € E,i # 5},
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where W NV =0, and let V' be the base set with V/ = VU W. Now define T, F C M"" as

follows.

{a) = (N,, U{w;; € W|v; € VE{w})|i=1,2,....,n}
( (31)

Y

My M3k

where N(v;) = {v; € V|[(v,v;) € E}, and (R;S) denotes the vector y € M"Y such that
ON(y) = R and AS(y) = {(y,7)|j € S}. It is easy to see that |AS(a)| < 1 holds for all
acTUF.
We claim that o o

(CSD7 (TvF)) = p(CBMI; (TvF)) = T(G)v (32)
where 7(G) denotes the cardinality of a minimum vertex cover of graph G. This will prove
the statement because finding 7(G) for a A-free graph G is known to be NP-hard [11]. To
prove the claim, we first show that

p(Cip; ( F)) = p(Churs (Tv F)) (33)
p(Cip: (T, F)) > p(Charr: (T, F)) follows from Cd, C Chyy. For the converse inequality, let
a € Q for Q C AS be a solution of MRE(C},,;), and let (77, F') be a pdBf on V', where

T = {a*P|aeT, B ecB*?}
Fro= 0 (=F).

By the definition of most robust extension, @ € @ for @ C AS is a solution of MRE(C)
if and only if (7, F’) has an extension in C. C = C},,; implies that (T, F’) satisfies the
condition (i) (before this theorem). In case of F’ = (), condition (i) is equivalent to (iii), that
is, (T', F') has an extension in CJp. This means that a € Q for Q C AS is also a solution
to MRE(CZp,). Hence p(Cep; (T, F)) < p(Charr; (T, F)), which will imply (33).

Next we show

(34)

p(Cohur (T, F)) = 7(G), (35)
which will complete the proof. Let a € @ for Q@ C AS be a solution to MRE(Cf,,;)-

By the above argument, a pdBf (T, F’) of (34) has an extension in C},;;. We show that
{(a',v;), (a9, v;)} N Q # 0 holds for all pair of ¢ and j with (v;,v;) € E, which implies

p(Cours (T, F)) = 7(G). (36)

Assume otherwise, i.e., (a9, v;), (a9, v;) € Q holds for some i and j with (v;,v;) € E. Let
a,a’ € T" be the Vectors which are respectively obtained from @ and 9 by assigning
B(aD,v;) = 0 and B(al v]) = (. Then we can see that @’ < @ holds, since G is A-free. By
(i), this implies that (7", F') has no extension in Cf,,;, which is a contradlctlon Hence (36)
holds.

Finally, consider the converse inequality, i.e.,

p(Cours (T, F)) < 7(G). (37)
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Let C C V be a minimum vertex cover of G. Let Q = {(a¥,v;) |7 € C}, and define a € B?
by a(a®,v;) = 1 for all (¢, v;) € Q. For this o, we show that (T“,ﬁ'o‘) has a robust
extension in Cj,,;, that is, (7", F’) of (34) has an extension in Cf ;. This implies (37). By
(1) together with F’ = (), we only have to check if there is no @’ € T” such that o’ < a for all
a€eT.

For every pair of a,a’ € T', which are respectively obtained from a¥ and a9 with
(vi,v;) € B, a(a®,v;) =1 or a(a?,v;) =1 holds (i.e., a,, = 1 or a;j = 1), by the definition
of a. Since a,; = a,, = 1, we have a,, = a,, =1 or a,; = a,; = 1. Hence

a £a (ie., a £ d). (38)

For other pairs of a,a’ € T' (i.e., if a and o’ are respectively obtained from ¢ and a9 with
(vi,v;) € E), (38) also holds since a,,; = a:% = 1. Hence we have (37), which together with
(36) will imply (35).

The case of MRE(CHy,4) is dual to MRE(Cy,;); it can be shown to be NP-hard by
using the instance (% = {b|b € F}, F? = {a|a € T}) constructed from the above instance
(T, F'), where @ denotes the vector such that a; = 1 (resp., 0) if a; = 0 (resp., 1), and a; = *
if a; = *. O

8 Threshold functions

Let us denote by Crg the class of threshold functions.
Theorem 26 Problem RE(Crg) can be solved in polynomial time.

Proof. For a pBmd (T, ﬁ'), where T, F C IM", let us consider the following linear program-
ming problem (LP):

max 5 = E?:l yl J— E?:l 23
subject to
EieON(a) w; + E(a,i)eAS(a) Y, > 1 Va € 1: (39)
YicoNm) Wi + Xpieaspy s StL1l VoeF
yi Swg, i <0 i=1,2,...,n
z 2wy, 2 > 0 i=1,2,...,n.

We claim that the LP problem (39) has a feasible solution with a finite optimum value ¢ if
and only if (T, ﬁ') has a robust extension in Cry.

Let us assume first that (T, ﬁ') has a robust extension f € Crgy, and let w;, e =1,2,... . n,
and t be the coefficients of f. Then by setting y; = min{0, w;} and z; = max{0,w;}, we have
a feasible solution of (39). Since Y0, y; L 3% | z < 0, problem (39) has a feasible solution
with a finite optimum.
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Then assume conversely that w;,y;, 2, ¢ = 1,2,...,n, and ¢ are an optimal solution of
problem (39) (with a finite optimum). Then y; = min{0, w;} and z; = max{0, w; } hold since
otherwise it would not be a optimum. This implies that w;, = 1,2,...,n, are finite, and
hence w;, ¢ = 1,2,...,n, and ¢ define a threshold function, which is a robust extension of

(T, F). O
However, problem CE(Crg) appears to be harder than RE(Crg).

Theorem 27 Problem CE(Crg) is NP-complete, even if |AS(a)| < 1 holds for all a € TUF.

Proof. Similarly to the proof of Theorem 9, this problem is in NP. We now show that it is

NP-hardness.
Let us consider a cubic CNF

® = ACy

C., = (uk Voo V wk),
where uy, vy and wy, for k = 1,2,...,m are literals from set L = {®1,%1,...,2,, %, }. Let
L' ={«},%],...,2,, %}, and deﬁne T,F C M7 as follows.

= {a" = {zi}i{z:}), 0" = ({Z}{z}) [i=1,2,...,n}
= {0 = {z;,7;:};0), bml—({w;,_;} 0),|i=1,2,...,n}
U{(bck = ({ur, vk, Wi, up, vy, W} 0) [k =1,2,...,m}, (40)

where (R; S) denotes the vector v € MX L' such that ON(v) = R and AS(v) = {(v,j)|Jj €
S}. It is easy to see that [AS(a)| < 1 holds for all @ € T'U F. We claim that this pBmd
(T F) has a consistent threshold extension if and only if 3-SAT for ® has a solution, which
completes the proof.

Let us first assume that o € B*° is an assignment such that (TO‘,F“) has a threshold

extension:
1 if EZELUL/ wzdz Z t

0 otherwise,

s - {

where d € BPY. We shall first show that ala™, z;) # a(a®™,Z;) must hold for (a™,z;),
(a*,z;) € AS. If a(a™,z;) = a(a®,z;) = 1 holds, then (¢*)* € T and (a®)* € T?,
respectively, imply wy, + wy; > ¢ and wg; + wg > t, and hence

Wy, + Wy + Wg, + Wg > ot. (41)

However, b% € F* and b% € F“, respectively, implying w,, +wsz, <t and wy + wy < t, and
hence w,, + w, o) T Wa; + wy < 2t follows, which is a contradiction to (41). Furthermore if

a(a®,z;) = a(a®,%;) = 0 holds, then (a®)~ € T and (a®)* € T, respectively, implying
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wy, > t and wgy > ¢, and hence w,; + wy > 2 would follow, which is a contradiction to
f(%) = 0. Hence a(a®, ;) # a(a®,%;) holds. Let us now define a binary vector y € B™ by

1 if a(a®™,z;) =0
A

0 otherwise,

and show that this y satisfies ®(y) = 1. For this, assume otherwise that there is a clause Cj,
that satisfies Cr(y) = 0 (i.e., ur, = v, = wy, = 0 holds by y), that is, a(a™, ui) = a(a’,vs) =
a(a™, wy) = 1. Then taking three vectors (a™)*, (a¥*)*, (a"*)* € T, we have Wy, T Wy > t,
Wy, + Wy >t and w,, + Wy > t, and hence w,, + w,, + Wy, + Wyr + Wyt + Wyt > 3t, which
is a contradiction to f(b%) = 0.

For the converse direction, let us assume that ®(y) = 1 holds for some y € IBB". Let us
define an assignment o € B#° by a(a®,z;) = ; and a(a®, %) = y; for i = 1,2,...,n, and
let
13 if either z=x; and y; =1, or 2 =Z; and y; = 0
+2 if either z =x; and y; =0, or z = Z; and y; = 1
+1 if either z=2,and y; =1, or z=Z, and 3, =0

/ /

11 if either z =) and y; =0, or z = Z; and y; = 1,

2

and ¢ = 1. Then }° cryp w.a, > 1 holds for all a € T, and > erur wzb, <0 holds for all
b € F*. Hence (T, F) has a consistent threshold extension. O

9 Decomposable functions

The decomposability was defined at the end of Subsection 2.1. We only consider the following
fundamental classes of decomposable functions.

Cy(sohu(s)): class of g(So, h1(S1))-decomposable functions,
C.;—(Smhl(sl)): class of positive ¢(So, h1(S1))-decomposable functions,

where $§1,5; € V. It is known that the problems EXTENSION(Cy(syr,(s))) and
EXTENSION(C;(Smhl(Sl))) can be solved in polynomial time [3], and that both of the prob-
lems BEST—FIT(CQ(§O7h1(Sl))) and BEST—FIT(C;(SO’hl(Sl))) are NP-hard [5].

Let us first consider the class Cy(sy n,(s1))-

Theorem 28 Problem CE(Cy(sy,n,(s1))) i NP-complete, even if |AS(a)| < 1 holds for all
acTUF.

Proof. Similarly to the proof of Theorem 9, this problem is in NP. We now show its NP-
hardness. Let H = (V, E) be a 3-uniform hypergraph, where V = {1,2,... ,n} and E =
{H; = {uj,v;,w}|u; < v; < wi = 1,2,....m}. Let S = {0,1,2,....p} and §; =
{p+1,p+2,...,p+q}, and let the base set S be defined by § = SoUS;. Let W; C Sy \ {0},
¢t =1,2,...,m, be subsets such that W; # W; for 7« # 7, and let U; C 51, [ € V, be subsets
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such that U; # Up for [ # I'. This is possible if we use Sy and S satisfying p = O([log m])
and ¢ = O([log n]). Then we define T, F C IM?® as follows:

{a! = (Wi U Ui {0}) | H; = {ui v, wi} € E}

where (P; R) denotes the vector v € IM® such that ON(v) = P and AS(v) = {(v,%)|i € R}.
It is easy to see that |AS(a)| < 1 holds for all a € T U F. We claim that this pBmd (T, F)
has a consistent extension in Cys, 1, (s,)) if and only if H is 2-colorable, which completes the
proof.

Let us first assume that (C, V'\C) is a 2-coloring of H,i.e., CNH # @ and (V\C)NH # 0
for all H € E. Then define an assignment a € BB4° by

qwmnz{lﬁmm”WECMﬂWQCWMw€Omnwem

0 otherwise,

and

1 ifleC

(0 otherwise.

h(vi0) = |
Now we shall show that

(a*[So], ha(a™[51])) 7 (b7[So], 2n (b7[51])) (42)

holds for all pair of vectors a® € T® and b* € F°, which implies that (TO‘ FO‘)
extension in C, (S0, (51))- It is easy to see that (42) holds for every pair of ( ) e T
and (b)) ¢ FO‘, where i # j and k = 1,2. Let us consider the pair of (a())* ¢ T
and (b( )) c F for k = 1,2. Since (C,V \ C) is a 2-coloring, hyi(U,;;0) # hi(Uy,;0) or
hy(Uy;;0) # hl(Uw :0) holds. If hl(Uu :0) # h1(Uy,;; 0) holds, then clearly (42) holds for the
pair of (a)* € T* and (b))* € F*, and by the definition ofa € B4, (a®)*[0] # (5#))=[0],
implying (42) for the pair of (a)* € T* and (b)) € F*. Hence (42) holds for all pair of
(a(i))o‘ c T% and (b(ik))o‘ c ﬁ'o‘, where k = 1,2. Also for the case of hy(U,,;0) = hi(U,,;0) #
h1(Uy,: 0), we can show by a similar argument that (42) holds for all pair of (a()* € T
and (b)) ¢ F* where k =1,2.

For the converse direction, let o € B*® is an assignment such that (T“,ﬁ'o‘) has an

has an

extension in Cy(sy n,(s,)), and let us define
C ={l|hi(U;0) =1}, (43)

Then we claim that (C,V \ C) is a 2-coloring of H. For this, assume that some H; € F is
monochromatic, that is, either H; C C or H; C V \ C holds. Then by (43),

ha((at)*[81]) = Ra((BV)*[S1]) = Ra((B°%)*[S1]) (44)
holds. Since (TO‘, ﬁ'o‘) has a (S0, h1(S1))-decomposable extension,
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((09)7[Sa), (@) [11)) # (6ol ha( (60 (1])
and

(@) [Sal, hal(a)[S11)) 2 ()7 (52 7(S1])
hold. However, by (44), this implies (a(i))a[SO] # (b(il))a[‘go] and (a(i))a[so] 7 (b(iz))a[so]’

which is impossible for any assignment o € B4, a

Next let us consider the robustness of Cy(s, 1, (s,)), Where it is emphasized that So NSy #

0 generally holds. For a subset S C ]IVIV let ASk(S ) = {(v,j) € AS(S )|j € Sy} for
k= 1,2, and ASy = ASO(T U F) Let us define a graph GT7F = (W, E; U E,), with

W C ]lenSO % ]MSl\SO by

W = {w,w'|there exist « € T,b € F,a € BA%@ and g € BA%®
such that w = a®[S;],w’ = bﬁ[Sl] and a®[So] = b°[So]}

E; = {(w,w)]there exist aGT bEF a € BA% (@) andﬁE]BASO()
such that w = a®[S;],w’ = bﬁ[Sl] and a®[So] = bﬁ[SO]}
E, = {(w,w)]there exist a,b € TU F a € BA%® and B e BAS®)

such that w = a®[S;],w’ = VP[S;] and a*[S1] ~ b°[S1]}.

Furthermore, denote by G’ the graph obtained from G (F.F) by contracting all edges in
E,.

Example 3. Let So = {1,2,3,4}, 51 = {4,5,6} and V = So U S (i.e., V ={1,2,...,6}),
and define T, F' C {0,1}V by

~ e = (1,1,1,1,%,0) ) b = (0,1,%,%,0,0)
T=1¢a% = (0,%,1,%,1,%) », F=2¢ b2 = (0,0,1,0,0,%) ».
) = (0,0,0,0,1,0) b3 = (0,0,0,0,0,1)

Graphs G (F.F) and G T F)
(1,%,0) € ]BSmS0 X ]lVISl\S0 which is obtained from oV € T, since there is no b € F such

Y

that (a(W)*[Sy] = ¥P[So] holds for some a € B4% M) 214 B c BAS®), 0

are given in Figure 5. Note that graph G(T ) does not have vertex

Lemma 16 Let (T ﬁ') be a med. Then (T,ﬁ') has a robust g(So, h1(S1))-decomposable
extension if and only if G’ - = 18 bipartite.

Proof. Let us first show the only-if-part. Assume that (T, F') has a robust g(So, h1(S1))-
decomposable extension, but G’ 7 7 is not bipartite. In other words, there is a cycle w(® —

wl — = w® (= w(o)) in G (F.F) = (W, E1 U Es) such that

1By N {(w, w ™YY =0,1,...,1 L1} is odd. (45)



RRR 6-96 PAGE 53

(0,1,0) (0,0,%) (0,1,% (0,0,0)
: (0,1,0) (0,0,x%)
: ©0.0,1) (0,0,1)

B, —

Ely e

Figure 5: Graphs G 5 5) and G;T ) of (T, F) in Example 3.

Let us consider the values of by on {(w®)*|a € B4 (“’(i))}, =
(w0 w)) € By, by the definition of E;, we must have h;((w @)
assignments § € B4 ) and v € B4 (@) " This means that

1,...,1 L 1. For each

0,
PyL h (( (i+1) )7) for all

hi((w)=p  forall B € BAS ™) and

. i+1 46
hl((w(z+1))v): 7 forallye BAS (wli* ))7 (46)

where p € {0,1}. On the other hand, if (w, w(V) € Es,
ha((w )= by (wD)7) (47)

i-l-l))

holds for all g € B4 @) and v E ]B‘L}S1 (wf , because the definition of W and (46) imply
that hy((w®)8)=p for all B € ]BASl(“’(Z)), by ((w D))= ¢ for all v € B4 (“’(ZH)), and p = q
by (w®,w V) € E,. Thus (46) and (47) contradict (45).
Conversely, if GQT,F‘) is bipartite, then there is a partition (Y, W\ Y') of W such that
E, C Yx(W\Y) (48)
E, C (YXxY)U((W\Y)x (W\Y)). (49)

By (49), we can define the value of hy for W by

1 ifweY and B € BAS®)
BY_—
h“W)F{o ifweW\Y and § € BAS™,

Furthermore, define g by

g(a®[So], h1(a®[S1]))=1 for all a € T and a € BA5®
g(b°[So], e (b*[S1]))=0 for all b € F and o € BA5Y),
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If a®[So] = b*[So] holds for some a € T, b € F and o € B4 then w,, wy, € W with
a®[S1] = w, and b*[S1] ~ wy, satisfy (wg,wp) € E7, and we have hy(a®[S1]))# h1(b*[S1])) by
(48) and (50). Hence g is also well-defined. Therefore, by extending this b, to B!, we see
that (T, ﬁ') has a robust g(So, h1(S1))-decomposable extension . O

In general, however, the size of a graph GET ) is exponential in |Sp|, and the above lemma

does not directly lead to an efficient algorithm to RE(Cy(s, n,(s,)))-
Theorem 29 Problem RE(Cy(sy n, (s,))) s co-NP-complete.

Proof. First we show that the problem is in co-NP. For a pBmd (T, ﬁ'), we show that every
simple cycle C' in G;T,F‘) satisfies |C| < |T| + |F|. By the definition of Ey, w[Sy N S4] =
w'[So N S1] holds for all edges (w,w’) € E;. The same condition also holds for all edges
(w,w’) € Ey by the property w[S:] ~ w'[S1]. Thus

w[So N S1] = w'[So N Si] (51)

holds if there is a path from w to w’ in G(T,F)- In particular, all vertices in a cycle C' in

G;T ) have this property, and, by the definition of G;T Fy all vertices w in C have different

w[S1 \ So], implying that they are generated from different vectors in T U F. This proves
|IC| < |T| + |F|. Since (T, F) has a robust g(So, h1(S1))-decomposable extension if and only
if there is no cycle C of odd length in G2T7F)’ we can then conclude that RE(Cy(s,,n,(s,))) 18
in co-NP.

We next show its co-NP-hardness. Let H = (U, E) be a 3-uniform hypergraph, where
U={12,...,n}, E ={H;|i = 1,2,...,m} and m is odd. Let So = {1,2,...,n + m},
S ={12,....n}U{n+m+1,n+m+2...n+ 2m} and the base set =
Obviously, Sy NSy = U = {1,2,...,n} holds in this case. Then define T,F C MV as

follows.

T = {(AU{n+i}U{n+m+i;U\H)|A CH, A #0,1<i<m}}
F o= {(4U{n+i}U{n+m+(i (mod m))+1}; U\ H;) | A; C Hi, A # 0,1 <i <m}},

where C denotes the proper inclusion, and (R;S) denotes the vector v € MY such that
ON(v) = R and AS(v) = {(v,i)|i € S}. We claim that this pBmd (7', F) has a robust
extension in Cy(s, r, (s,)) if and only if H is not 2-colorable, which completes the proof because
deciding if H is 2-colorable is NP-complete (even if |E| is restricted to be odd). For this
(T, ﬁ'), we have Ey = 0, because any (v, ;) € AS satisfies j € Sy NSy, implying that v € B>
holds for any vertex v in G(T,F)- This means that G;T,F) 1s bipartite if and only if so is
G(7 7). Thus Lemma 16 tells that (T, F) has a robust g(So, h1(S1))-decomposable extension
if and only if G5 7 = (W, E1 U Es) is bipartite.

Let us first assume that (C, U\ C) is a 2-coloring of H, i.e., CNH; # 0 and (U\C)NH; £ 0
for all H; € E. Then C can be represented by

¢=U4; (52

=1
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for some 0 # A C H;, and we have

(CU{n+m+1i};0),(CU{n+m+(i (mod m))+1};0))e E; fori=1,2,...,m.

Hence, we have a cycle w® — w® — .. = 0™ — «w® in G(T,F)v where

w? = (CU{n+m+i}0), i=1,2,...,m.

Since m is supposed to be odd, this implies that (T, ﬁ') has no robust extension in Cy(s, 1, (s,))-

For the converse direction, let us assume that G(T,F‘) has a cycle. By property (51), we can
only consider a cycle in G(Tj)[Wc] for some C' € U, where We = {w € W |ON(w[U]) = C}
and G(Tj')[WC] is the subgraph of G4 s induced by W¢. By the definition of the above

(T, F), such a cycle is of the form
(CU{n+m+1}0) — (CU{n+m+2};0) — ... = (CU{n+2m)};0) — (CU{n+m+1};0).

Thus the length of this cycle is odd. This C obviously satisfies (52) and is a 2-coloring of
H. 0

However, if So N S1 = 0, then RE(Cy(sy.r(s,))) 18 polynomially solvable.
Theorem 30 If Sy N Sy =0, problem RE(Cy(sy ny(s,))) can be solved in polynomial time.
Proof. Since Sy N S; = 0, a graph G7p) = (W, E1 U Es} can be represented by

W = {a[5],b[S81]|a c T,b € F and a[So] ~ b[So]},
E = {(q] Si]) la € T,b e F and a[So] ~ b[So]},

Ey, = {(d $i))|a,b e T U F and a[Sy] ~ b[S4]}.

It 1s easy to see that this graph G;T,ﬁ') has polynomially many vertices and can be con-

517]7 b[
S1], b

Y

structed in polynomial time. Then, by applying Lemma 16, RE(Cy(s, 1, (s,))) can be solved
in polynomial time. a

Let us finally consider class C;(So,hl(Sl))‘ Problems RE(C;(Smhl(Sl))) and CE(C;(SO’hl(Sl)))
can be solved in polynomial time, by Corollary 4. For problem MRE(C;( Sosha ( Sl)))7 however,
we have the following negative result.

']Ehe(zrem 31 Problem MRE(C;(Smhl(Sl))) is NP-hard, even if |AS(a)| < 1 holds for all a €
TUF.
Proof. We claim that class C.;—(SOJH(Sl)) satisfies properties PA((1,0)) and PB((1,0), (1,1),

(0,0)) of Subsection 3.2, where we consider that the two added variables of the vectors
(1,0), (1,1) and (0,0) used in PA and PB are in Sy. Combining this with the NP-hardness
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of problem BEST—FIT(C;(SO’hl(Sl))) [5], Theorem 4 will prove the above theorem statement,
since the specification of the added components does not affect Theorem 4. Let us denote
the two added variables by z,,1; and z,,1» in the following.

PA((1,0)): Let f = g(So,h1(S1)) be an extension of a pdBf (T, F'), where T, F C B".
Then f is also an extension of (T x {(1,0)}, F x {(1,0)}) (in this case, just ignore @, and
Tny2). Conversely, let f' = ¢'(So, h1(S1)) be an extension of (7' x {(1,0)}, F x {(1,0)}).
Then f = f{wn+1<—1,wn+z<—0} is obviously a ¢(So, h1(S1))-decomposable extension of (T, F').

PB((1,0),(1,1),(0,0)): It is easy to see that fe,11Zni2 V Trup1%nt2 is a g(So, h1(S1)) de-
composable extension of ((T'x {(1,0)})U(IB" x{(1,1)}), (F'x{(1,0)HU(B" x{(0,0)})) if f is
an extension of (T, F'). Conversely, let f' = ¢'(So, h1(S1)) be an extension of ((T'x {(1,0)})U
(B"  {(L )}), (F % {(L0)}) U (B"  {(0,00})). Then flp,.. 1,00y i5 2 9(S0.hn(S1))-
decomposable extension of (7', F'), since f’is also an extension of (T x {(1,0)}, F x {(1,0)}).

O

10 Conclusion

In this paper, we have considered three types of extensions, consistent, robust and most
robust, for partially defined Boolean functions that contain missing data. In the tables below,
we summarize their complexity for various classes of functions C, which are considered in
this paper. In real-world applications, the sizes of (T,ﬁ') are usually large, and there are
many missing data. Hence it would be important to develop fast heuritic algorithms for

these NP-hard cases.
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Function classes

RE

CE

MRE

|AS(a)] <1foralla€e TUF

|AS(a)] <1 foralla € TUF

|AS(a)] <1foralla e TUF

|AS(a)] <2 foralla € TUF

|AS(a)] <2 foralla € TUF

|AS(a)| <2 foralla e TUF

|AS(a)| = O(log(n + |T| +~|F|Z)
forall a € TUF

|AS(a)| = O(log(n + |T| +~|F|Z)
foralla e TUF

|AS| = O(log(n + |T| + |F]))

General case

General case

General case

P P P
P NPC NPH
General P NPC P
P NPC NPH
P P P
. P P NPH
Positive P P P
P P NPH
P P P
P P P
Regular P P P
P P P
P: Polynomial, NPC: NP-complete, NPH: NP-hard
Table 1: Transitive classes.
RE CE MRE
|AS(a)| <1foralla e TUF |AS(a)| <1 foralla € TUF |AS(a)| <1foralla € TUF
Function classes |AS(a)] <2 foralla € TUF |AS(a)] <2 foralla € TUF |AS(a)] <2 foralla € TUF
AS(a)| = O(log(n + |T| 4+ |F AS(a)| = O(log(n + |T| + |F - .
e e aw e rop | T ORI L E RO F | 1451 = ottortn + 1714 17D)
General case General case General case
NPC NPC NPH
(Positive) NPC NPC NPH
k-DNF NPC NPC NPH
NPH NPC NPH
P P NPH
(Positive) P P NPH
1-DNF P P P
P P NPH
P NPC NPH
P NPC NPH
2-DNF P NPC P
P NPC NPH
P P NPH
Positive P P NPH
2-DNF P P P
P P NPH
P NPC NPH
k-DNF with P NPC NPH
fixed £ > 3 P NPC P
co-NPC NPC NPH
. P P NPH
Positive P P NPH
k-DNF with P P P
fixed £ > 3 P P NPH

P: Polynomial, NPC: NP-complete, NPH: NP-hard, co-NPC: co-NP-complete

Table 2: Hereditary classes (i).
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Function classes

RE

CE

MRE

|AS(a)] <1 foralla € TUF

|AS(a)] <1 foralla € TUF

|AS(a)] <1 foralla e TUF

|AS(a)| <2foralla € TUF

|AS(a)| <2foralla € TUF

|AS(a)| <2 foralla e TUF

|AS(a)] = O(log(n + |T] +~|F|l)
foralla € TUF

|AS(a)] = O(log(n + |7T| +~|F|2)
forall a € TUF

|AS| = O(log(n + |T| + |F]))

General case

General case

General case

NPC NPC NPH
(Positive) NPC NPC NPH
h-term-DNF NPC NPC NPH
NPH NPC NPH
NPC NPC NPH
(Positive) NPC NPC NPH
h-term-DNF with NPC NPC NPH
fixed k > 2 NPH NPC NPH
P P NPH
(Positive) P P NPH
1-term-DNF P P P
P P NPH
NPC NPC NPH
(Positive) NPC NPC NPH
h-term-k-DNF NPC NPC NPH
NPH NPC NPH
NPC NPC NPH
(Positive) NPC NPC NPH
h-term-k-DNF NPC NPC NPH
with fixed b > 1 NPH NPC NPH
NPC NPC NPH
(Positive) NPC NPC NPH
h-term-k-DNF NPC NPC NPH
with fixed £ > 1 NPH NPC NPH
P P P
(Positive) P P P
h-term-k-DNF P P P
with fixed b, k P P P
P NPC NPH
P NPC NPH
Horn P NPC P
P NPC NPH

P: Polynomial, NPC: NP-complete, NPH: NP-hard

Table 3: Hereditary classes (ii).
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RE CE MRE
AS(a)]<1foralla €T UF |AS(a)] <1 foralla € TUF |AS(a)| <1 foralla €T UF
Function classes AS(a)] <2foralla € T UF |AS(a)| <2foralla € TUF |AS(a)| <2foralla €T UF
|AS(a)|] = O(log(n + |T| + |F| |AS(a)|] = O(log(n + |T| + |F| . .
e ana e g | T R e T U R | 1451 = OGog(n + [T+ 1F1)
General case General case General case
P P NPH
P NPC NPH
Self-dunal P NPC P
P NPC NPH
P P NPH
. P NPC NPH
Dual-minor P NPC P
P NPC NPH
P P NPH
. P NPC NPH
Dual-major P NPC P
P NPC NPH
P P NPH
P P NPH
Positive self-dual P P P
P P NPH
P P NPH
P P NPH
Positive dual-minor P P P
P P NPH
P P NPH
P P NPH
Positive dual-major P P P
P P NPH

P: Polynomial, NPC: NP-complete, NPH: NP-hard

Table 4: Dual-comparable classes.
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RE CE MRE
|AS(a)] <1 foralla € TUF |AS(a)] <1 foralla € TUF |AS(a)] <1 foralla € TUF
Function classes |AS(a)] <2 foralla € TUF |AS(a)] <2 foralla € TUF |AS(a)] <2 foralla € TUF
[AS] = O(log(n + 171 ¥ IFD)) | [A5] = O(log(n ¥ [71 ¥ [F)) | [AS] = O(log(n + 171 ¥ IFD)
General case General case General case
P NPC NPH
9(So, h1(571))-decomp- P NPC NPH
osable P NPC P
co-NPC NPC NPH
P P NPH
Positive g(So, k1(51)) P P NPH
-decomposable P P P
P P NPH
NPC NPC NPH
NPC NPC NPH
Renamable Horn NPC NPC NPH
NPH NPC NPH
P NPC NPH
P NPC NPH
Threshold P NPC P
P NPC NPH
NPC NPC NPH
NPC NPC NPH
2-monotonic positive NPC NPC NPH
NPH NPC NPH
NPC NPC NPH
NPC NPC NPH
(Positive) read-once NPC NPC NPH
NPH NPC NPH
NPC NPC NPH
NPC NPC NPH
Unate NPC NPC NPH
NPH NPC NPH

P: Polynomial, NPC: NP-complete, NPH: NP-hard, co-NPC: co-NP-complete

Table 5: Other classes.




