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ABSTRACT 
 
According to official statistics, a large percentage of crashes are reported in Portuguese 
urban areas. For instance, from 2004 to 2007, about 70% of all injury accidents and 43% 
of the fatalities occurred inside urban agglomerations. This important safety problem has 
also been observed on the urban network located in and around Lisbon. Understanding 
this significant problem, the Government of the Portuguese Republic via its research 
grant agency – The Foundation for Science and Technology – funded a project whose 
primary objective consists of developing tools that would help estimating the safety 
performance of various components of the urban highway system in Lisbon. This paper 
documents one component of the safety tools that are currently under development. More 
specifically, this paper describes the steps that were taken to develop predictive models 
for estimating the safety performance of signalized and unsignalized intersections located 
in Lisbon. Several crash predictive models (CPMs) were developed using the Poisson-
gamma and Conway-Maxwell-Poisson modeling framework. Two types of models were 
estimated: flow-only and models with covariates. They were estimated using crash and 
other related data collected at 29 three-legged and 30 four-legged intersections for the 
years 2004-2007, inclusively. It was found that some highway geometric design 
characteristics were associated with the crashes occurring at urban three- and four-legged 
intersections in Lisbon. 
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INTRODUCTION 
 
According to official statistics, a large percentage of crashes are reported in Portuguese 
urban areas. For instance, from 2004 to 2007, about 70% of all injury accidents and 43% 
of the fatalities occurred inside urban agglomerations (1 - 4). This important safety 
problem has also been observed on the urban network located in and around Lisbon. On 
the urban network in Lisbon, more than 2,400 crashes occurred during the same time 
period, with about 30% of all crashes involved a pedestrian.  
 
Understanding this significant problem, the Government of the Portuguese Republic via 
its research grant agency – The Foundation for Science and Technology – funded a 
project whose primary objective consists of developing tools that would help estimating 
the safety performance of various components of the urban highway system in Lisbon. 
No such tools exist in Portugal for estimating the safety performance of urban networks, 
hence the funding of this project. The research project titled “IRUMS – Safer Roads in 
Urban Areas” is carried out by the National Laboratory of Civil Engineering (LNEC) 
jointly with the Department of Engineering at the University of Coimbra, Coimbra. This 
project intends to develop methods for managing the safety of urban road networks, 
particularly those applied to Lisbon. The methods focused on estimating the expected 
crash frequencies, the identification of hazardous sites (or sites with promise) and 
subsequently select effective countermeasures to reduce the number and severity of 
crashes.  
 
This paper documents one component of the safety tools that are currently under 
development. More specifically, this paper describes the steps that were taken to develop 
predictive models for estimating the safety performance of signalized and unsignalized 
intersections located in Lisbon. Several crash predictive models (CPMs) were developed 
using the Poisson-gamma and Conway-Maxwell-Poisson modeling framework. Two 
types of models were estimated: flow-only and models with covariates. They were 
estimated using crash and other related data collected at 29 three-legged and 30 four-
legged intersections for the years 2004-2007, inclusively.  
 
The paper is organized as follows. The first section provides a brief background about 
existing statistical models developed in Portugal and elsewhere in Europe. The second 
section describes the methodology used for estimating the CPMs. The third section 
presents the characteristics of the data used in this study. The fourth section summarizes 
the modeling results. The last section provides a summary of the work accomplished so 
far in this project.  
 
BACKGROUND 
 
As discussed in previous work (see 5 and 6), there has been a significant amount of 
research done on the development and application of crash prediction models for various 
types of highway safety analyses. Since design standards and operational characteristics 
(e.g., vehicle size, etc.) are obviously very different between Europe and other places 
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around the world, especially in North America, this background section focuses on 
predictive models that have estimated and applied in European countries.  
 
Hall (7) developed several CPMs for four-arm single carriageway urban signalized 
intersections in the U.K. The models were estimated using 177 intersections with a speed 
limit equal to or above 30 miles/hour in urban areas. The author concluded that wider 
approaching lanes were associated with a larger number of right-angle crashes; a greater 
number of lanes were associated with higher pedestrian accident rates; and the sight 
distance was found to be significantly associated with left turn accidents. The author also 
concluded that the increased displacement of the opposite arm to the left or right was 
associated with lower accident rates. 
 
Mountain and Fawaz (8) developed CPMs using data from 662 intersections with 
different types of traffic control systems in the UK. The authors developed models 
relating crashes with traffic flows and other variables, namely: method of control, road 
class, carriageway type (single or dual), number of arms and speed limit. The authors 
concluded that only the method of control had a significant effect on crash occurrence, 
although the best fitted models were ones with traffic flow as the only explanatory 
variable.  
 
Greibe (9) developed CPMs for road segments and urban intersections with three or four 
legs and with or without traffic signals in Denmark. For the intersections’ models, the 
author found that the geometric variables are not (or less) significantly linked to the 
occurrence of crashes. This was attributed to the complicated internal correlations in the 
intersection design data, or a lack of good descriptive variables.  The estimated accident 
prediction models for road links were capable of describing more than 60% of the 
systematic variation (‘percentage-explained’ value) while the models for junctions had 
lower values. The significant variables found in the study were: speed limit, road width, 
number of exits per km, number of minor side roads per km, parking and land use.   
 
Brüde and Larson (10) developed models for pedestrian and cyclist crashes occurring at 
intersections in Sweden. Data from 285 intersections were used for modeling crashes 
involving pedestrians, and data from 432 intersections were used for modeling crashes 
with cyclists. The purpose of this study was to develop CPMs and illustrate their 
predictive capabilities. They used volumes of motorized vehicles, pedestrians and cyclists 
as explanatory variables. Interestingly, the authors concluded that the models with a low 
R2 value may have high predictive capabilities. 
 
Reurings and Janssen (11) developed CPMs for road segments in The Netherlands. Crash 
data from 524 km of roads on urban and rural areas were used for developing the models. 
The conclusions of this study were: carriageways inside urban areas with AADT< 25000 
generally have a lower crash rate than carriageways outside urban areas; carriageways 
with a speed limit of 50 km/h or 80 km/h and one driving direction have a lower crash 
rate than carriageways with the same speed limit but with two driving directions; the 
average crash rate of urban carriageways with a speed limit of 70 km/h is lower than the 
crash rate of carriageways with a speed limit of 50 km/h; and the average crash rate of 
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rural carriageways with a speed limit of 60 km/h has almost the same crash rate as that of 
rural carriageways with a speed limit of 80 km/h and with two driving directions. 
 
Although crash modeling is widely spread all over the Europe, Portugal have no such 
tools for estimating the safety performance of urban networks. The few models that were 
developed by Lopes and Cardoso (12 - 14) in Portugal were related to road segments on 
motorways and rural areas. In their study, they used crash data collected from 1999 to 
2004. Several exploratory variables were considered, such as number of lanes, type and 
condition of shoulders and medians, and the presence of an additional lane. The authors 
concluded that on Portuguese motorways all the variables except the number of lanes 
were significant. However, for single carriageway rural roads with a median, the number 
of lanes had a significant effect on crash occurrences. 
 
 
DATA DESCRIPTION 
 
The data collected at signalized and unsignalized intersections included the following: 
geometric design characteristics, crash data (severity, manner of collision, etc.) and traffic 
volumes. With the exception of the crash data, all the data were obtained from on-site 
visits. All the intersections which had missing traffic flow volumes were excluded from 
the analysis. Thus, given the costs associated with the data collection process, only 59 
intersections were finally used (29 three-legged and 30 four-legged). Note that since four 
years of crash data were considered as distinct observations, there were 116 observations 
for three-legged intersections and 120 observations for four-legged intersections (those 
were considered repeated measurements).  
 
Figure 1 shows the graphical representation of the Lisbon road network and the location 
of the intersections used in this study. The three-legged intersections are shown with a 
‘triangle’ whereas four-legged intersections with a ‘square’. The dark colored 
intersections indicate that traffic flows were either counted manually or using an 
automated system (see below). The light colored intersections have the traffic flows that 
were estimated by the models developed by Martinez (15). 
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Figure 1 - Location of the intersections used in the study 
 
Injury accident data were collected from the official Portuguese accident statistics 
database and police reports. The crashes were then geocoded in a GIS database. The main 
reason for using both sources of crash data is that the official accident statistics database 
includes only the street names, but not the exact location where the accident occurred 
within or near the intersection. To overcome this problem, the sketch of the accident 
location from the police report was projected onto the road network (intersections and 
segments). This allowed for identifying the location of each accident for most of the 
cases.  
 
Figure 2 presents the spatial distribution of all injury accidents that occurred in Lisbon 
between 2004 and 2007. Each dot represents an accident. From the figure, it can be seen 
that crashes were concentrated at intersections and segments located on major arterial 
roads (Av. Gen. Norton Matos and Eixo Norte-Sul are the major expressways of Lisbon, 
with a speed limit of 80 km/h and Av República and Av. Almirante Reis are two of the 
major arterial roads, located right in the heart of the city). 
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Figure 2 - Spatial distribution of injury accidents in Lisbon between 2004 and 2007. 

 
Given the scope for this part of the study, only crashes that were classified as 
intersection-related were considered in the development of the statistical models. 
Unfortunately, there is no exact definition about the radius from the center of the 
intersection to classify a crash as intersection-related. Previous studies have used 
different criterion. For instance, Mountain, et al. (16) considered that the accidents are 
intersection related if they occur at a distance of 20m from the curb line. Sayed and 
Rodriguez (17) considered a distance of 30m from the intersection (without specifying 
the point from which it is measured); Lord (18) found that this influence is significant up 
to 15m, measured from the center of the intersection, and Turner et al. (19) used a 
distance of 50m without specifying the point from which it is measured. For this study, it 
was decided to use a radius of 40m from the center of the intersection to classify crashes 
as intersection-related. 
 
Traffic flow counts at intersections were collected using three different sources:  
 
− Automated: with a system that records traffic images and then processes it with a 

movement detection device; 
− Manual: with several operators that counted the inflow on each leg; 
− By estimates: Martinez (15) developed a traffic assignment model for Lisbon, which 

covered about 55% of the road network length (see Figure 3), all local roads were 
excluded from the model. Ten intersections of each type were included in the sample. 

 
All the three sources for counting the traffic flow defined above had some limitations. 
The automated and manual counts were only done for a single day for each intersection. 
Since they were all collected in week days, it was assumed that the values obtained 
represented the Average Annual Daily Traffic (AADT). The changes in AADT over time 
were considered to be practically null, and so, the same value of AADT was adopted for 
all four years. The output data obtained from the traffic assignment model estimated by 
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Martinez (15) was not fully adjusted to real traffic movements in some of the 
intersections included in the modeling sample. However, since the variables used relate to 
total inflow in each intersection, these values were still considered in the model 
development. Also, the estimated traffic data was supplied in Peak Hour Volume (PHV) 
from 8:00 to 9:00 am. From the manual and automated counts a conversion factor was 
calculated in order to transform the PHV into AADT (ratio between the number of 
vehicles from 8:00 to 9:00 over the AADT). 
 

 
Figure 3 – Road network used by Martinez in comparison with the total road 

network of Lisbon. 
 
Table 1 summarizes important data characteristics for crash data occurring at three-
legged and four-legged intersections. During the study period, a total of 140 crashes 
occurred at three-legged intersections, and 211 occurred at four-legged intersections. 
 

Table 1 - Summary Statistics of the crash dataset 
Type of 

intersection Year Accidents Major Road Flow Minor Road Flow 
(min – max – total) (min – max) (min – max) 

3 Legged 

2004 0 – 8 – 42 

7140 - 77082 474 - 20956 2005 0 – 4 – 27 
2006 0 – 10 – 37 
2007 0 – 15 – 25 

4 Legged 

2004 0 – 12 – 67 

5038 - 56066 1691 - 31627 2005 0 – 15 - 74 
2006 0 – 13 – 91 
2007 0 – 7 - 62 

 
Table 2 summarizes the key variable statistics of the intersections used in this study. The 
minimum and maximum AADT values ranged from about 400 to 77,000 vehicles per 
day. Among the variables collected, they included number of legs, number of lanes per 
leg, average lane width, median width, number of left turn lanes, number of right turn 
lanes and type of traffic control device (signalized or unsignalized).  
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Table 2 - Summary Statistics of the Dataset 

Variable Description 
3 Legged Intersections 4 Legged Intersections 

Min. Max. Average 
(std. dev) Frequency Min. Max. Average 

(std. dev) Frequency 

F1 AADT on major 7140 77082 20632 
(13925) 29 5038 56066 21939 

(13811) 30 

F2 AADT on minor 474 20956 5409 
(4816) 29 1691 31627 11722 

(7542) 30 

FT F1+F2 8793 78977 26041 
(15319) 29 9340 80211 33661 

(19716) 30 

FR F2/FT 0,02 0,48 0,21 
(0,13) 29 0,08 0,50 0,35 

(0,10) 30 

FQ F2/F1 0,02 0,92 0,31 
(0,26) 29 0,09 0,98 0,59 

(0,24) 30 

LB Lane balance 
1 – yes - - - 9 

(31,03%) - - - 5 
(17,24%) 

0 - no - - - 20 
(68,97%) - - - 24 

(82,76%) 

LMAJT2 

Total number of 
entering lanes 
on major = 4 or 
5 

1 – yes - - - 11 
(37,93%) - - - 8 

(27,59%) 

0 - no - - - 18 
(62,07%) - - - 21 

(72,41%) 

LMAJT5 

Total number of 
entering lanes 
on major = 6 or 
more 

1 – yes - - - 8 
(27,59%) - - - 11 

(37,93%) 

0 - no - - - 21 
(72,41%) - - - 18 

(62,07%) 

LMINT2 

Total number of 
entering lanes 
on minor = 4 or 
5 

1 – yes - - - 1 
(3,45%) - - - 5 

(17,24%) 

0 - no - - - 28 
(96,55%) - - - 24 

(82,76%) 

LMINT5 

Total number of 
entering lanes 
on minor = 6 or 
more 

1 – yes - - - 3 
(10,34%) - - - 9 

(31,03%) 

0 - no - - - 26 
(89,66%) - - - 20 

(68,97%) 

LWMAJ Average lane width on 
major (m) 2,85 4,60 3,58 

(0,48) 29 2,40 5,20 3,67 
(0,58) 29 

LWMIN Average lane width on 
minor (m) 2,50 7,03 3,86 

(1,08) 29 2,55 5,84 3,83 
(0,68) 29 

MMAJ 
Median  
presence on 
major 

1 – yes - - - 16 
(55,17%) - - - 22 

(75,86%) 

0 – no - - - 13 
(44,83%) - - - 7 

(24,14%) 

MMIN 
Median 
presence on 
minor 

1 – yes - - - 12 
(41,38%) - - - 19 

(65,52%) 

0 – no - - - 17 
(58,62%) - - - 10 

(34,48%) 

LTPMAJ 
Left turn 
presence on 
major  

1 – yes - - - 13 
(44,83%) - - - 8 

(27,59%) 

0 – no - - - 16 
(55,17%) - - - 21 

(72,41%) 

LTPMIN 
Left turn 
presence on 
minor  

1 – yes - - - 7 
(24,14%) - - - 6 

(20,69%) 

0 – no - - - 22 
(75,86%) - - - 23 

(79,31%) 

RTPMAJ 
Right turn 
presence on 
major  

1 – yes - - - 10 
(34,48%) - - - 10 

(34,48%) 

0 – no - - - 19 
(65,52%) - - - 19 

(65,52%) 

RTPMIN 
Right turn 
presence on 
minor  

1 – yes - - - 11 
(37,93%) - - - 13 

(44,83%) 

0 – no - - - 18 
(62,07%) - - - 16 

(55,17%) 

TCD Traffic control 
device 

1 - 
signals - - - 15 

(51,72%) - - - 22 
(75,86%) 

0 – all 
others - - - 14 

(48,28%) - - - 7 
(24,14%) 
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METHODOLOGY 
 
This section provides a brief description of the characteristics of the two models used for 
estimating the crash prediction models: the Poisson-gamma and the COM-Poisson 
models, respectively. A small note on Generalized Estimating Equations (GEE) method 
and the goodness-of-fit (GOF) statistics are also given in later part of this section. 
 
Poisson-gamma Model 
 
The Poisson-gamma (or negative binomial or NB) model has the following modeling 
structure (20): the number of crashes ‘ itY ’ for a particular thi  site and time period t  when 
conditional on its mean itμ  is Poisson distributed and independent over all sites and time 
periods 
 

)(~| ititit PoY μμ  i = 1, 2, …, I and t = 1, 2, …, T   (1) 
 
The mean of the Poisson is structured as: 
 

)exp();( itit eXf βμ =        (2) 
 
where, 

(.)f  is a function of the covariates (X); 
β  is a vector of unknown coefficients; and, 

ite  is the model error independent of all the covariates. 
 
With this characteristic, it can be shown that itY , conditional on itμ  and α , is distributed 

as a Poisson-gamma random variable with a mean itμ  and a variance 2
itit αμμ +  

respectively. (Note: other variance functions exist for the Poisson-gamma model, but they 
are not covered here since they are seldom used in highway safety studies. The reader is 
referred to 21 and 22 for a description of alternative variance functions. The probability 
density function (PDF) of the Poisson-gamma structure described above is given by the 
following equation:  
 

( ) ( )
( )

11 1

1 11
; ,

!

ity
it it

it it
it itit

y
f y

y

αα μαα μ
μ α μ αα

−− −

− −−

Γ + ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟+ +Γ ⎝ ⎠ ⎝ ⎠

   (3) 

 
Where, 
 ity  = response variable for observation i  and time period t ; 
 itμ = mean response for observation i  and time period t ; and, 
 α = dispersion parameter of the Poisson-gamma distribution. 
  



Vieira Gomes et al.   9 
 

Note that if α → 0, the variance equals the mean and this model converges to the standard 
Poisson regression model  
 
The term α  is usually defined as the "dispersion parameter" of the Poisson-gamma 
distribution or model (Note: that in some published documents, the variable α  has also 
been defined as the “over-dispersion parameter”). This term has traditionally been 
assumed to be fixed and a unique value applied to the entire dataset in the study. As 
described above, the dispersion parameter plays an important role in safety analyses, 
including the computation of the weight factor for the Empirical Bayes method and the 
estimation of confidence intervals around the gamma mean and the predicted values of 
models applied to a different dataset than the ones employed in the estimation process. 
 
 
COM-Poisson model 
 
The COM-Poisson distribution is a generalization of the Poisson distribution and was 
first introduced by Conway and Maxwell (23) for modeling queues and service rates. 
Shmueli et al. (24) further elucidated the statistical properties of the COM-Poisson 
distribution using the formulation given by Conway and Maxwell (23), and Kadane et al. 
(25) developed the conjugate distributions for the parameters of the COM-Poisson 
distribution. Its probability mass function (PMF) can be given by Equations (4) and (5). 
 

( ) ( ) ( )
1

, !

y

P Y y
Z y ν

λ
λ ν

= =        (4) 

 ( )
( )0

,
!

n

n

Z
n ν

λλ ν
∞

=

=∑         (5) 

 
where,  Y  is a discrete count; λ  is a centering parameter that is approximately the mean 
of the observations in many cases; and, ν  is defined as the shape parameter of the COM-
Poisson distribution . 
 
The COM-Poisson can model both under-dispersed (ν > 1) and over-dispersed (ν < 1) 
data, and several common PMFs are special cases of the COM with the original 
formulation. Specifically, setting  ν = 0  yields the geometric distribution; λ < 1 and ν→∞ 
yields the Bernoulli distribution in the limit; and ν = 1 yields the Poisson distribution. 
This flexibility greatly expands the types of problems for which the COM-Poisson 
distribution can be used to model count data. 
 
With the original formulation, the first two central moments of the COM-Poisson 
distribution are given by Equations (6) and (7) below. 
 

[ ] log
log

ZE Y
λ

∂
=
∂

        (6) 
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[ ]
2

2

log
log

ZVar Y
λ

∂
=
∂

        (7) 

 
The COM-Poisson distribution does not have closed-form expressions for its moments in 
terms of the parameters λ and ν. However, the mean can be approximated through a few 
different approaches, including (i) using the mode, (ii) including only the first few terms 
of Z when ν is large, (iii) bounding E[Y] when ν is small, and (iv) using an asymptotic 
expression for Z in Equation (1). Shmueli et al. (24) used the last approach to derive the 
approximation in Equation (8). 
 

[ ] 1 1 1
2 2

E Y νλ
ν

≈ + −         (8) 

 
Using the same approximation for Z as in Shmueli et al. (24), the variance can be defined 
as 

 

[ ] 11Var Y νλ
ν

≈         (9) 

 
Care should be taken in using these approximations. In particular, they may not be 
accurate for ν>1 or 101 <νλ  (24). 
 
Sellers and Shmueli (26) derived the likelihood function for the COM-Poisson GLM 
where the centering parameter ‘λ’ is made dependent on the covariates. This derivation 
greatly simplifies the estimation of GLMs, as opposed to the Bayesian estimating method 
(27).  
 
The COM-Poisson was used for three-legged intersections, since the regression analyses 
indicated that the modeling output of the Poisson-gamma showed signs of under-
dispersion. 
 
Generalized Estimating Equations  
 
The GEE method was introduced as a method for handling correlated discrete data among 
observations that generated the data (28). The GEE method is an extension of the 
Generalized Linear Model (GLM) to enable correlated data be analyzed appropriately. 
The GLM method is based on the maximum likelihood theory for independent 
observations (29), whereas the GEE method is based on the quasi-likelihood theory (30) 
where the response observations may not be independent. The difference between GLM 
and GEE is related to the standard errors of the coefficients when the dataset does not 
contain missing values. The standard errors are usually underestimated when temporal 
effects are not included in the modeling framework (see 31 and 32 for additional 
information). The first-order autoregressive covariance structure was used in this study. 
For further information on the application of GEE method, the reader is referred to 31. 
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Goodness-of-fit statistics 
 
Different methods were presented for evaluating the GOF of the models. The two 
methods used in this study include the following: 
 
Akaike Information Criterion (AIC) 
 
The AIC is a measure of the goodness of fit of an estimated statistical model and is 
defined as (33) 
 
                pLAIC 2log2 +−=        (10) 
 
Where L is the maximized value of the likelihood function for the estimated model, and p 
is the number of parameters in the statistical model. The AIC methodology attempts to 
find the model that best explains the data with a minimum of free parameters and thus it 
penalizes models with a large number of parameters. The model with the lowest AIC is 
considered to be the best model among all available models.  
 
Quasilikelihood under the Independence model Criterion (QIC) 
 
The QIC statistic proposed by Pan (34) and further discussed by Hardin and Hilbe (32) is 
analogous to the AIC statistic used for comparing models fit with likelihood-based 
methods. Since the GEE method is not a likelihood-based method, the AIC statistic 
cannot be used. The QIC is defined as (34) 
 

pQQIC 2+=                                 (11) 

Where Q is the quasilikelihood value and p is the number of parameters in the statistical 
model. When the QIC is used to compare two models, the model with the smaller statistic 
is preferred. 

ANALYSIS RESULTS 
 
This section presents the estimation results of the models that were developed for three- 
and four-legged intersections. Flow-only models and models with covariates were 
developed for each of the intersection type.  
 
Flow-Only models 
 
Flow-only models were developed for the three- and four-legged intersections. Since 
disaggregated data were used in the study, the GEE were also estimated in addition to the 
GLM framework.  These models reflect the average conditions found in the data. They 
can be used for cases where the user has limited information about the geometric design 
features for the particular project under study. For this type of model, accident 
modification factors (AMFs) can be used to adjust for changes in geometric design 
features, if they are subsequently known. However, the AMFs need to be re-calibrated or 
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adjusted to reflect the average conditions found in the data (For detailed information 
about the models and AMFs, the interested reader is referred to 35).  
 
The functional form used for estimating flow-only models for intersections was the 
following: 
 

21 )/()( 12210
βββμ ititititit FFFF +=       (12) 

  
Where, 
 itμ  = estimated number of crashes for intersection i  and year t ; 
 1itF  = entering traffic flows in vehicles per day (AADT) on the major approaches 

for intersection i  and year t ; 
 2itF  = entering traffic flows in vehicles per day (AADT) on the minor approaches 

for intersection i  and year t ; 
0β , 1β , 2β  = estimated coefficients. 

 
Table 3 summarizes the modeling results for the flow-only models for three- and four-
legged intersections. As seen in this table, there is no significant difference for mean 
estimate of the coefficients, but the difference exists with the standard errors estimated 
using the GLM and GEE. Usually, GLMs underestimates the standard errors (as shown 
by t-values) when correlation exists in the data (see 31). For three-legged intersection, the 
dispersion parameter (α) tends towards zero, which means that the data are Poisson 
distributed (when conditional upon the mean). 
 
 

Table 3 - Estimates for Four Legged Intersections 
   Ln(β0) F1+F2 (β1) F2/F1 (β2) α AIC/QIC

Three-
legged 
Intersections 

GLM 
Estimates -13.8213    

(1.732)† 
1.3711      
(0.166) -- 0.0221     

(0.081) 
304.1 

t-value -7.98 8.26 -- --  

GEE 
Estimates -13.7682   

(1.995) 
1.3664   
(0.191) -- 0.0221     

(0.081) 
155.04 

t-value -6.9 7.16 -- --  

Four-legged 
Intersections 

GLM 
Estimates -8.0771      

(1.448) 
0.8872      
(0.139) 

0.3430      
(0.163) 

0.2980     
(0.099) 

472.4 

t-value -5.58 6.38 2.1 --  

GEE 
Estimates -9.0533   

(2.746) 
0.9746   
(0.259) 

0.3663   
(0.191) 

0.2980     
(0.099) 

394.43 

t-value -3.3 3.77 1.92 --  

† Standard error 
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Models with covariates 
 
For the model with covariates, the relationship between crashes and geometric design 
features is captured via the covariates inside the statistical model.  The selection of the 
covariates to be included into the model can be governed by various statistical criteria, 
such as the statistical significance of each variable and Akaike Information Criterion 
(AIC), as well as the statistical significance of the coefficients.  
 
The functional form used for estimating the models with covariates for intersections is the 
following: 

∑
+= =
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k
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ititititit eFFFF 321 )/()( 12210

β
βββμ          (13) 

  
Where, 
 itμ , 1itF and 2itF  are as defined above. 
 kx  = model covariates (e.g., right-turning lanes, median, etc.); and, 

0β , 1β , 2β , kβ  = estimated coefficients. 
 
In the initial step, a Poisson-gamma model was estimated with all the variables 
documented in Table 2 for three-legged intersections. Most of the variables were found to 
be insignificant or counterintuitive. This was attributed to small sample size problem 
(29*4= 116 observations). In the end, only six variables were found to be significant at 
the 15% confidence level. Since a slight under-dispersion was observed with the Poisson-
gamma model (negative dispersion parameter in Table 4), a COM-Poisson model was 
used to see if it would improve the model fit (COM-Poisson outperforms NB model when 
the crash data are under-dispersed, for more details on this issue, the reader is referred to 
36). Due to the recent introduction of COM-Poisson model to the statistical community, 
the GEE modeling framework for this model type is not yet available. Thus, the standard 
errors are probably slightly underestimated.     
 
Table 4 presents the estimation results for three-legged intersections. The variables that 
were found to be significant were the total traffic flow entering the intersection, the total 
number of entering lanes equal to four or five on the major direction, the total number of 
entering lanes equal to four or five on the minor direction, the total number of entering 
lanes equal to six or more on the minor direction, the average lane width on minor 
direction and the presence of a median in the major direction. There was no major 
difference in the significance of variables between NB and COM-Poisson models. When 
correlation was taken into account, the model output with GEE showed that there was a 
major difference in the significance of variables. The COM-Poisson output showed that 
the data (conditional upon the mean) is under-dispersed. 
 
 
 
 
 



Vieira Gomes et al.   14 
 

 
Table 4 - Estimates for Three Legged Intersections 

Variable 

GLM 
 GEE (NB) 

NB COM-Poisson 
Estimates t-value Estimates t-value Estimates t-value 

Ln(β0) 
-13.2376 
(1.8182)† -7.28 -14.6939 

(2.8917) -5.08 -13.2061 
(2.2806) -5.79 

F1+F2 (β1) 
1.4062 

(0.1662) 8.46 1.5796 
(0.3046) 5.18 1.4042 

(0.1951) 7.20 

LMAJT2 (β2) 
-0.2514 
(0.1930) -1.30 -0.2946 

(0.2150) -1.37 -0.2547 
(0.1539) -1.65 

LMINT2 (β3) 
-0.2468 
(0.3951) -0.62 -0.2915 

(0.4423) -0.66 -0.2432 
(0.1719) -1.41 

LMINT5 (β4) 
-0.5938 
(0.3476) -1.71 -0.6746 

(0.3855) -1.75 -0.5953 
(0.1614) -3.69 

LWMIN (β5) 
-0.1535 
(0.0902) -1.70 -0.1809 

(0.1014) -1.78 -0.1557 
(0.0985) -1.58 

MMAJ (β6) 
-0.3474 
(0.2096) -1.66 -0.3925 

(0.2350) -1.67 -0.3496 
(0.1919) -1.82 

Shape 
parameter‡ 

-0.0309 
(0.0561) -- 1.2169 

(0.2778) -- -0.0309 
(0.0561) -- 

AIC/QIC 303.1 -- 302.3 -- 138.03 -- 
† Standard error 
‡ ‘α’ for NB model and ‘ν’ for COM-Poisson model 
 
Similar to the three-legged intersections analysis, a Poisson-gamma model was developed 
with all the variables documented in Table 2 for the four-legged intersections. Only four 
variables were found to be significant at 15% confidence level. Table 5 presents the 
estimation results for four-legged intersections. The significant variables were the total 
traffic flow in the intersection, the ratio between minor direction and major direction 
flow, the total number of entering lanes equal to four or five on the minor direction, and 
the presence of a median in the minor direction. As seen in Table 5, the results by GEE 
showed a major difference in the significance of variables when correlation is taken into 
account while modeling. 
 
 
 
 
 
 
 
 
 
 
 
 



Vieira Gomes et al.   15 
 

Table 5 - Estimates for Four Legged Intersections 

Variable 
GLM (NB) GEE (NB) 

Estimates t-value Estimates t-value 

Ln(β0) 
-8.8252 

(1.4565) † -6.06 -9.4219 
(2.5150) -3.75 

F1+F2 (β1) 
0.9967 

(0.1442) 6.91 1.0408 
(0.2346) 4.44 

F2/F1 (β2) 
0.4322 

(0.1697) 2.55 0.4178 
(0.2199) 1.90 

LMINT2 (β3) 
-0.6737 
(0.2353) -2.86 -0.6043 

(0.2172) -2.78 

MMIN (β4) 
-0.3831 
(0.1801) -2.13 -0.2972 

(0.2515) -1.18 

α 0.2390 
(0.0882) -- 0.2390 

(0.0882) -- 

AIC/QIC 464.4 -- 424.61 -- 
† Standard error 

 
Although it is usually believed that the use of signals as traffic control devices is safer, 
this variable was not significant for this dataset. The same happened with the variables 
left/right turn lane presence (on major or minor direction). Again, this was attributed to 
the small sample size problem. 
 
    
SUMMARY AND CONCLUSIONS 
 
The purpose of this study was to develop crash prediction models for urban intersections 
located in Lisbon, Portugal which would describe the expected number of accidents as a 
function of a range of explanatory variables, namely traffic flow counts and highway 
geometric design features. Flow-only models and models with covariates were estimated 
using data collected at 29 three-legged intersections and 30 four-legged intersections. The 
coefficients were estimated using two modeling approaches: the GLM (Poisson-gamma 
and COM-Poisson) and the GEE. Traffic flow was found to be highly significant both for 
three- and four-legged intersections, as expected.  Some highway design geometric 
variables influenced safety. For three-legged intersections, the total number of entering 
lanes equal to four or five on the major direction, the total number of entering lanes equal 
to four or five on the minor direction, the presence of a median on the major direction, the 
total number of entering lanes on the minor direction equal to six or more and the average 
lane width on minor direction were found to have a positive effect on the number of 
crashes occurring at three-legged intersections. For four-legged intersections, only the 
total number of entering lanes equal to four or five on the minor direction and the 
presence of a median on the minor direction were found to reduce accident occurrence. 
 
It is recognized that a statistically significant association between crash frequency and 
explanatory variables does not necessarily explain a cause-effect relationship. However, 
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this study can be considered a good starting point about gaining knowledge for better 
understanding the relationships between crashes and roadway characteristics in Lisbon. 
The overall project lead by the LNEC is still on-going and other predictive models for 
estimating the safety performance of roadway links and roundabouts as well as for 
estimating pedestrian collisions are currently under development. 
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