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Abstract—In this paper, we investigate physical layer security
in a random wireless network where both legitimate and eaves-
dropping nodes are randomly deployed. In the first scenario, we
study the basic random network without a protected zone around
the source node. The probability density functions (PDF) for the
composite channel gain with both fading and path loss is derived
and used to calculate the probability of secure connection and
ergodic secrecy capacity. In the second scenario, we consider the
use of secrecy protected zone around the source node to enhance
the security in a noise limited network. Here we study the two
cases (i) the eavesdroppers are aware of the secrecy protected
zone; (ii) the eavesdroppers are unaware of the secrecy protected
zone. Moreover, the distribution of the distances between the
origin and random nodes outside the secrecy protected zone
is derived. In the last scenario, the interferer protected zones
around the legitimate receivers are used to improve the physical
layer security by restructuring the interference. The derived
analytical results are verified by the Monte Carlo simulations. It
is shown that the application of secrecy and interferer protected
zones lead to significant improvement in the security depending
on different system parameters.

Index Terms—Ergodic secrecy capacity, interference, physical
layer security, protected zone, stochastic geometry

I. INTRODUCTION

Despite the rapid growth of wireless communication system-
s in recent years, wireless communication faces many security
challenges due to the open nature of the wireless medium
and the dynamic topology of wireless networks. Traditionally,
security in wireless communication has been viewed as an
upper layer issue to be addressed independent of the physical
layer. The most widely used technique for security in wireless
communication is cryptographic protocols, which are based
on secret and public keys by assuming the computational ad-
vantage of legitimate transmission. Potentially, cryptographic
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schemes and channel coding techniques can be combined to
exploit the randomness of wireless channels.

The basic principle of information-theoretic security, also
termed as physical layer security, has been widely accepted as
a promising means to realize security in the wireless networks.
The objective of physical layer security is to ensure that the
legitimate receivers can recover the source information reliably
while the eavesdroppers will not be able to interpret any of
the information. This principle of perfect security was first
proposed by Shannon in his paper with the notion of perfect
secrecy [1], which does not rely on any assumptions of the
computational capability of eavesdroppers.

In recognition of growing security threats in wireless net-
works, great effort has been made to develop physical layer
security schemes, based on the information-theoretical secrecy
concept that explores the possibility of securing communi-
cation links without using cryptography in the presence of
transparent eavesdroppers1. Wyner introduced the concept of
wire-tap channels and analyzed the information-theoretical
security of discrete memoryless channels [2]. It is shown
that perfect secrecy could be achieved when the legitimate
receiver has a better channel than that of the eavesdroppers.
This notion was further generalized to additive white Gaussian
noise (AWGN) channels by Cheong and Hellman [3]. In [4],
Csiszár and Körner considered the broadcast wireless channels
and showed that the security of a transmission can still be
guaranteed by applying sophisticated channel codes, even if
the eavesdropping channel is not a degraded version of the
channel between the legitimate transceiver.

The rate at which information can be transmitted secretly
from the source to its intended destination is called achievable
secrecy rate, while the maximum achievable secrecy rate is
called the secrecy capacity. By taking channel propagation
effects into consideration, the secrecy capacity of wireless
fading channels was investigated in [5], and expressions of
the average secrecy capacity and the secrecy outage for quasi-
static fading channels were derived in [6]. Exact expression
of the secrecy capacity is hard to obtain, due to the limited
knowledge of channel status information (CSI) and path loss
in legitimate and eavesdropping channels. Ergodic secrecy
capacity, derived from statistics of CSI and distances which are
easier to obtain, can provide a single letter characterization for
the secrecy capacity of an arbitrary wire-tap channel. It can
also provide a helpful reference for the design of networks

1By “transparent eavesdropper” we refer to an intruder as described by
Wyner, with full knowledge of the system used by the legitimate pair.



2

such as allocating the transmission power and application of
protected zones. The ergodic secrecy capacity of fading chan-
nels without considering path loss was derived independently
in [5] and [7].

Previous works of physical layer security primarily focused
on point-to-point transmissions [8]–[10]. Recent efforts are to
achieve a better understanding of the inherent secrecy capa-
bilities of wireless systems under more realistic conditions,
such as the distribution of randomly deployed users in large-
scale networks. When studying security in random wireless
networks via stochastic geometric tools [11], the notion of
secrecy graphs emerged in [12]. An important distinction
between secrecy graphs and the conventional point-to-point
wire-tap channel is that the topology of networks, with respect
to both the legitimate and eavesdropping nodes, play a major
role not only on how much secrecy rate is available, but also
on how to measure it. Following this instinct, secrecy rate
scaling laws were studied in [13], while the secrecy rates of
unicast links in the presence of multiple eavesdroppers were
studied in [14]. Secrecy connectivity over large-scale network
were widely investigated in [11], [12] and [15].

To enhance physical layer security in large-scale networks,
various strategies were investigated, such as guard zones [16],
[17], sectorized transmission [18], precoding [19] and the
use of artificial noise [20]–[22]. Specifically, guard zones
were studied in [12] to improve secrecy connectivity without
considering fading, while the study of [16] investigated how
to enhance the secrecy transmission capacity using a guard
zone, based on the assumption of fixed distances between
the transmitters and the intended receivers. The concept of
secrecy protected zone [21] that extinct the eavesdroppers in
the zone is different from the guard zone that allows the
existence of the eavesdroppers inside the protected area. The
authors of [21] considered the use of artificial noise and a
secrecy protected zone to enhance the security of random
networks, in the presence of eavesdroppers and interferers
randomly deployed according to two homogeneous Poisson
point processes (PPPs). The study investigated the use of a
secrecy protected zone surrounding the transmitter in order
to stop eavesdroppers approaching, while still being affected
by interference from other legitimate transmitters. Analysis in
[16] and [21] derived the upper bound of the secrecy outage
based on the uniform distribution of eavesdroppers and the
lower bound by the distribution of the nearest eavesdropper,
respectively.

In this paper, we investigate how to enhance physical layer
security in random wireless networks with a secrecy protected
zone surrounding the transmitter as well as the interferer
protect zones surrounding the legitimate receivers. The impacts
of fading, interference and protected zones are studied in order
to analyze the secrecy performance. For large-scale networks,
interference has usually been viewed as a harmful factor. How-
ever, the interference can be well structured by using interferer
protected zones to benefit the secrecy transmission in a similar
manner to artificial noise. Notice that, the interference studied
in this work refers to the signals between other transmitters and
receivers, rather than artificial noise introduced additionally as
in the work of [16], [23] and [24]. Besides, the locations of

interferers follow a Poisson hole process, due to the existence
of the interferer protected zones. The contributions of this
research are summarized as follows:

• We derive the distribution of channel gains from the
transmitter to receivers which are ordered either accord-
ing to the distance or their strength. The expression for
the distribution of channel gains is an important tool for
calculating the capacity at the worst-case eavesdropper2,
which can be applied to derive the secrecy outage, the
probability of secure connection, and the ergodic secrecy
capacity.

• The ergodic secrecy capacity of random wireless net-
works is analyzed by considering both large scale path
loss and small scale fading. Additionally, we derive the
distribution of path loss for the nodes outside the secrecy
protected zone. To the best of the authors’ knowledge,
this has not been provided elsewhere before.

• Besides the secrecy protected zone, we also employ
interferer protected zones to restructure interference and
enhance the physical layer security. The distance distribu-
tion of legitimate receivers outside the secrecy protected
zone is studied.

• By adopting interferer protected zones at legitimate re-
ceivers, interference can be restructured to benefit the
security at the legitimate receiver without introducing
artificial noise. It is worth to notice that interference is
different from jamming noise, because it is the signal
broadcasted by other transmitters. Moreover, the distri-
bution of the active cooperative transmitters that follow
a Poisson-hole process has also been exploited.

The rest of this paper is organized as follows. The system
model and mathematical concepts for stochastic geometry
modelling are presented in Section II. In Section III, we study
the security in random wireless networks by deriving the
distribution for the composite channel gain. The performance
of adopting the protected zones with and without considering
interference are presented in Section IV and V, respectively.
The numerical results of secrecy characteristics are discussed
in Section VI. Finally, concluding marks are drawn in Section
VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Random network model

In this paper, we consider a random wireless network
deployed in an unbound two dimensional space consisting of
nodes modeled by a homogeneous PPP with intensity λ and
denoted as Φ. According to the stationarity of PPP, we fix the
source node at the origin as the distribution of Φ is translation-
invariant. Let Ξ =

{
ξk =

rαk
|hk|2

}
, k ∈ N be the path loss

process with small scale fading [11], where α is the path
loss exponent, rk and hk denote the distance and the fading
coefficient between the source node and the kth receiving
node, respectively. Ξ is also a PPP which will be discussed in
section III. Note that {ξk} is not ordered according to distance

2The worst-case eavesdropper means the eavesdropper which can obtain
the largest instantaneous capacity.
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TABLE I
LIST OF NOTATION

Notation Description
Φl Poisson point process of legitimate receivers
Φc Poisson point process of interferers
Φe Poisson point process of eavesdroppers
λl Intensity of Φl

λc Intensity of Φc

λe Intensity of Φe

Cs:k Ergodic secrecy capacity at the kth legitimate receiver
P Transmit power
hk Fading between transmitter and kth legitimate receiver
he Fading between transmitter and the worst-case eavesdropper
rk Distance between transmitter and kth legitimate receiver
re Distance between transmitter and the best eavesdropper
ξk Composite channel gain, ξk = rαk /|hk|2
ξe Composite channel gain, ξe = rαe /|he|2
α Path-loss exponent
ρt Radius of secrecy protected zone at transmitter
ρd Radius of interferer protected zone at legitimate receiver
P(.) Probability operator
E{.} Expectation operator

{rk} [11], but ordered by the combination of path loss and
fading.

The random network model given above can be modeled
by two overlaid PPPs of legitimate nodes and eavesdroppers,
with corresponding densities denoted as λl and λe. The source
node aims to transmit a signal to the kth legitimate receiver in
presence of eavesdroppers located at unknown distances. The
legitimate and eavesdropping channels are subject to quasi-
static fading and path loss.

Three scenarios are studied in this work. In the first scenario,
the basic random network is studied without a protected
zone. While in the second scenario, a secrecy protected zone
surrounding the source node is used to enhance security
in noise limited networks. In addition, two cases in which
eavesdroppers are aware and unaware of the secrecy protected
zone are investigated. Besides of utilizing a secrecy protected
zone, in the third scenario we analyze the impact of interfer-
ence restructuring on security by adopting interferer protected
zones.

B. Problem Formulation

1) Secrecy capacity: The secrecy capacity is the maximum
data rate at which the legitimate receiver can decode the signal
information with arbitrarily small error, while the eavesdrop-
pers’ error probabilities of decoding approach to one. The
secrecy capacity of the transmission from the source node to
the kth legitimate node is given by [4]

Cl:k =

[
log2

(
1 +

P

ξkσ2
l

)
− log2

(
1 +

P

ξeσ2
e

)]+
, (1)

where [a]+ = max{0, a}; ξe =
rαe

|he|2 , re and he denote
the distance and fading coefficient between the transmitter
and the worst-case eavesdropper; P , σ2

l and σ2
e denote the

transmission power at the source node, the noise at the
legitimate node and the worst-case eavesdropper, respectively.

2) Secrecy outage probability and probability of secure
connection: Secrecy outage probability, known as the outage
probability of secrecy capacity under small scale fading, is
given by [6]

Pout(ϱ) = P {Cl:k ≤ ϱ}

= P

{[
log2

(
1 + ηl/ξk
1 + ηe/ξe

)]+
< ϱ

}
,

(2)

where ηl = P
σ2
l

and ηe = P
σ2
e

. The probability of secure
connection is the probability to have a positive secrecy rate
from the source node to the legitimate receiver [25], which
can be obtained by substitute ϱ = 0 into equation (2).

3) Ergodic secrecy capacity: The ergodic capacity from the
source node to the kth legitimate receiver and the worst-case
eavesdropper can be obtained, respectively, as [26]

Rs:k = Ehk,rk

{
log2

(
1 +

|hk|2P
rαk σ

2
l

)}
,

Rs:e = Ehe,re

{
log2

(
1 +

|he|2P
rαe σ

2
e

)}
.

(3)

Note that, when analyzing the ergodic secrecy capacity, the
legitimate receivers is ordered by their distances to the source
node. This is different from the ordering based on the com-
bined effect of path loss and small-scale fading, which will be
used to derive the distribution of the secrecy capacity and the
probability of secure connections in Section III-A, B and C.
The adjustment of the ordering is motivated by the following
reasons. The investigation of the legitimate receivers based on
the ordering of the combined effect of path loss and fading can
reflect the order of their secrecy capacity and the probability
of secure connection, which is a better indication of how
the fading and the point distribution affect the secrecy of a
network. Besides, ordering the legitimate receivers based on
the combined effects can also provide more insights, as the
analysis of the worst-case eavesdropper is also based on the
combined effect, which will be shown in Section III. However,
as the derivation of the ergodic secrecy capacity should be
based on the communication between the same transmitter-
receiver pair over a period of time, it will be reasonable to
order the legitimate receivers according to their distances to
the source node.

The ergodic secrecy capacity can be derived by assuming
that the worst-case eavesdropper can keep achieving the largest
channel gain. Consequently, the ergodic capacity of the worst-
case eavesdropper obtained in equation (3) is an upper bound.
Because of this, a lower bound of the ergodic secrecy capacity
can be obtained as [22], [27], [28]

Cs:k = [Rs:k −Rs:e]
+
. (4)

III. SECURITY IN RANDOM WIRELESS NETWORKS

In this section, we will first derive the PDF of the composite
channel gain in the interference-free scenario without consid-
ering protected zone. Afterwards, this PDF will be used to
analyze the distribution of the secrecy capacity, the probability
of secure connection and the ergodic secrecy capacity.

A. PDF for the composite channel gain

To obtain the distribution of Cl:k for random networks under
Nakagami-m fading, we need to derive the PDF of ξk and ξe.
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Fig. 1. Random network without protected zone.

We define the path loss xk = rαk and denote the intensity of
the set Ξ = {xk/hk, k ∈ N} as λΞ. Then the intensity function
of Ξ is given in Lemma 1.

Lemma 1: Given that intensity of Φ is λ and the shape
parameter of Nakagami fading is denoted as m, Ξ is a PPP
and the intensity function of Ξ can be expressed by

λΞ(x) = A0x
δ−1, (5)

where δ = 2
α and A0 = πλδ Γ(δ+m)

mδΓ(m)
.

Proof: The point process of Ξ can be obtained from the
PPP of Φ = {rk} by a deterministic mapping and independent
displacement. According to the displacement theorem and
mapping theorem for point process transformations, Ξ is also
a PPP [11]. First, the intensity function of Ψ = {xk} can be
derived from E {Φ([0, x))} = λπx2 by mapping theorem

λΨ(x) = λπδxδ−1. (6)

Then, the intensity function λΞ(x) can be obtained by dis-
placement theorem for the general Nakagami-m fading model
by following Theorem 2.33 in [29].

Theorem 1: The PDF of ξk under Nakagami-m fading is

fξk(s) = exp(−A1s
δ)
δ(A1s

δ)k

sΓ(k)
, (7)

where A1 = A0

δ .
Proof: As Ξ is a PPP, the cumulative distribution function

(CDF) of ξk can be expressed by

Fξk(s) = P(ξk < s),

= 1− P (Ξ[0, s) < k) ,

= 1−
k−1∑
n=0

exp

(
−
∫ s

0

λΞ(x) dx

)
(
∫ s

0
λΞ(x) dx)

n

n!
,

(a)
= 1−

k−1∑
n=0

exp
(
−A1s

δ
) (A1s

δ)n

n!
,

(8)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Distribution of path gain: Analysis versus Simulation

ξ
i

P
D

F
 o

f ξ
i, f

(ξ
i)

 

 
f(ξ

i
), analytical

f(ξ
i
), simulation

4
th

 receiver
8

th
 receiver

1
st

 receiver

Fig. 2. PDF of ξ from the source node to the 1st, 4th and 8th receivers with
λ = 1, m = 1.5 and α = 4.

where Ξ[0, s) denotes the counting measure induced by a
random circular set of Ξ centered at the origin with radius
s, and (a) follows from∫ s

0

λΞ(x) dx =

∫ s

0

A0x
δ−1 dx =

A0

δ
sδ. (9)

By denoting A1 = A0

δ and taking the derivative of Fξk(s),
we can obtain the PDF for the composite channel gain as
expressed in (7).

Fig.2 is plotted to compare the PDF of the composite
channel gain derived in (7) with the Monte Carlo simulation
at various nodes. It shows that the proposed PDF is accurate,
as verified by the simulation.

B. Distribution of the secrecy capacity

To derive the distribution of the secrecy capacity, we first
investigate the distribution of the capacity at the legitimate
receiver. The outage probability of the capacity at the kth
legitimate receiver can be derived by

Pout(Rk < ϱ) = P
(
log2(1 +

ηl
ξk

) < ϱ

)
,

= 1−
∫ ηl

2ϱ−1

0

fξk(s) ds,

(b)
= 1− δAk

1

Γ(k)

∫ ηl
2ϱ−1

0

exp(−A1s
δ)sδk−1 ds,

(c)
=

Γ

(
k,A1

[
ηl

(2ϱ−1)

]δ)
Γ(k)

,

(10)
where (b) follows from Theorem 1 and (c) follows from [30,
Eq. 3.381]. The PDF of the maximum achievable rate at the
kth legitimate receiver can be acquired by taking the derivation
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of Pout (Rk < ϱ) as follows

fRk
(ϱ) =ln2 ηδkl

δAk
1

Γ(k)

2ϱ

(2ϱ − 1)δk+1

× exp

(
−A1

(
ηl

2ϱ − 1

)δ
)
.

(11)

Similarly, the PDF of the maximum achievable rate at the
worst-case eavesdropper can be obtained by setting k = 1 and
Ae = πλe

Γ(δ+m)
mδΓ(m)

as

fRe(ϱ) = ln2 ηδe
2ϱδAe

(2ϱ − 1)δ+1
exp

(
−Ae

(
ηe

2ϱ − 1

)δ
)
.

(12)
Then the distribution of the secrecy capacity at the kth
legitimate node can be easily obtained through the convolution
of fRk

(ϱ) for the kth legitimate receiver and the worst-case
eavesdropper similar to the steps used in [15] which ignored
the effect of small scale fading. Note that in this scenario,
we derive the PDF of the maximum achievable rate for the
network under Nakagami-m fading. Since the PDF of ξk has
already included the effect of fading, the density function for
the composite channel gain of the worst-case eavesdropper can
be calculated briefly by setting k = 1. Otherwise, deriving the
distribution of the channel gain at the worst-case eavesdropper
will be quite complicated if considering distribution of fading
coefficient and path loss separately.

C. Probability of secure connection

Probability of secure connection is the probability to have a
positive secrecy rate from the source node to the kth legitimate
receiver [25]. It can be derived from the secrecy outage
probability in (2) and expressed by

Psc,k = P
{
log2

(
1 +

ηl
ξk

)
− log2

(
1 +

ηe
ξe

)
> 0

}
. (13)

By using the algebraic operation similar to the one derived in
(13) and Theorem 1, the probability of secure connection can
be obtained as

Pcon,k = 1−
(

λl

λl + λe

)k

. (14)

Comparing with the derivation in [15], this result shows that
fading does not affect the probability of secure connection
which is determined only by the ratio of intensities.

D. Ergodic secrecy capacity without the protected zone

In the scenario without the protected zone, the legitimate
nodes and eavesdroppers are distributed as two independent
PPPs with different intensities, λl and λe. It is worth to
notice that the legitimate receivers are ordered by the dis-
tance between the source node and the legitimate receiver,
meanwhile the ergodic capacity at the kth legitimate receiver
can be obtained based on Theorem 2. The ergodic capacity at
the worst-case eavesdropper will be derived by applying the
distribution of ξe as shown in the following theorem.

Theorem 2: The ergodic capacity of the channel between
the source node and the kth legitimate node ordered by
distance can be expressed as

Rs:k =
(πλl)

kδmm

ln 2Γ(m)Γ(k)

∫ ∞

0

∫ ∞

0

sm−1 ln (1 + ηls)

× ykδ+m−1 exp
(
−msy − λlπy

δ
)
dy ds.

(15)

Proof: We denote the distance from the source node to the
kth legitimate receiver as rk, and xk,l = rαk . According to the
mapping theorem, the random variable xk,l is also distributed
as a PPP [31] with its distribution given by

fxk,l
(x) =

(πλl)
kδ

Γ(k)
xkδ−1 exp(−πλxδ). (16)

The distribution of Nakagami-m (power) fading model is given
by [11]

f|hk,l|2(x) =
mmxm−1exp(−mx)

Γ(m)
. (17)

Accordingly, the distribution of the channel gain ζk =
|hk,l|2
xk,l

can be derived as

fζk(s) =

∫ ∞

−∞
|y|f|hk,l|2, xk,l

(sy, y) dy,

=

∫ ∞

0

yf|hk,l|2(sy)fxk,l
(y) dy,

=

∫ ∞

0

y
mm(sy)m−1 exp(−msy)

Γ(m)

(πλl)
kδ

Γ(k)
ykδ−1

× exp(−πλyδ) dy,

=
(πλl)

kδmmsm−1

Γ(m)Γ(k)

×
∫ ∞

0

ykδ+m−1 exp(−msy − λlπy
δ) dy.

(18)
By using (3) and (18), the ergodic capacity at the kth legitimate
receiver can be found as

Rs:k =Eζk

{
log2 (1 + ηlζk)

}
,

=
1

ln 2

∫ ∞

0

ln (1 + ηls) fζk(s) ds,

=
1

ln 2

∫ ∞

0

ln (1 + ηls) s
m−1 (πλl)

kδmm

Γ(m)Γ(k)

×
∫ ∞

0

ykδ+m−1 exp
(
−msy − λlπy

δ
)
dy ds,

=
(πλl)

kδmm

ln 2Γ(m)Γ(k)

∫ ∞

0

∫ ∞

0

ln (1 + ηls) s
m−1

× ykδ+m−1 exp
(
−msy − λlπy

δ
)
dy ds.

(19)

For the case of α = 4 and m = 1 which is corresponding to
Rayleigh fading, the ergodic capacity at the nearest legitimate
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receiver can be obtained as follows:
Rs:1

=
πλl

2 ln 2

∫ ∞

0

∫ ∞

0

ln (1 + ηls) y
1
2 exp

(
−sy − λlπy

1
2

)
dsdy,

(d)
=

πλl

2 ln 2

∫ ∞

0

y−
1
2 exp

(
−λlπy

1
2

)
G3,1

3,2

(
ηl
y

∣∣∣∣∣ 0, 1, 1
1, 0

)
dy,

(e)
=

1

ln 2
√
π
G3,3

4,3

(
4

ηl(πλl)2

∣∣∣∣∣ 0, 1
2 , 0, 1

1, 0, 0

)
,

(20)
where G(·) is the Meijer-G function; (d) follows by expressing

ln(1+x) as Meijier G-function ln(1+x) = G1,2
2,2

(
x

∣∣∣∣∣ 1, 1
1, 0

)
and applying the integration relationship [30, Eq. 7.813.1]; (e)
follows from [30, Eq. 7.813.2].

Similarly, by using (3) and (7), the ergodic capacity of
the channel between the source node and the worst-case
eavesdropper can be expressed by

Rs:e = Eξe

{
log2

(
1 +

ηe
ξe

)}
,

=
δA1e

ln 2

∫ ∞

0

ln
(
1 +

ηe
s

)
sδ−1 exp

(
−Aes

δ
)
ds,

=
δA1e

ln 2

∫ ∞

0

sδ−1 exp
(
−Aes

δ
)
G1,2

2,2

(
ηl
s

∣∣∣∣∣ 1, 1
1, 0

)
ds,

(f)
=

1

ln 2
√
π
G2,3

4,2

(
4

ηeA2
e

∣∣∣∣∣ 0, 1
2 , 0, 1

1, 0

)
,

(21)
where (f) follows from α = 4 and [30, Eq. 7.813.2]. Then,
substitute (15) and (21) into (4), the lower bound of the ergodic
secrecy capacity at the kth legitimate node in the random
network without a protected zone can be derived.

IV. ENHANCING SECURITY WITH THE SECRECY
PROTECTED ZONE

To enhance the security of the legitimate transmission, we
adopt the scheme of the secrecy protected zone [23] where the
source node can keep a circular area free of eavesdroppers,
denoted as Dt(0, ρt) and ρt is the radius of the secrecy
protected zone. Notice that legitimate nodes are still deployed
as a PPP in R2 while eavesdroppers are distributed as a PPP
in D̄t, where D̄t represents the complement set of Dt(0, ρt)
in R2. In this paper, we will study the case that eavesdroppers
are not colluding.

Since the ergodic capacity of the worst-case eavesdropper in
this scenario is complicated to calculate, we will first consider
the worst case. To maximize its data rate, the eavesdropper will
try to approach the source node and stay at the boundary of
the secrecy protected zone. In this case, the distance between
the source node and the nearest eavesdropper is the radius
of the secrecy protected zone, ρt. Later in this section, it
will be proved that the nearest eavesdropper is the worst-
case eavesdropper since it can acquire the largest ergodic
capacity. Furthermore, the scenario that the eavesdroppers are
distributed as a PPP outside the secrecy protected zone will
also be investigated.

rl,k

re,1

Source node

Eavesdropper
Legitimate receiver

Fig. 3. Random network with the secrecy protected zone, Dt(0, ρt), at the
source node.

A. Eavesdropper on the Boundary of the Secrecy Protected
Zone

For the case that the eavesdroppers are aware of the secrecy
protected zone, we study the worst case that the eavesdroppers
try to maximize their data rate by approaching the boundary of
the zone. We will first prove that the nearest eavesdropper to
the source node has the largest ergodic capacity in Proposition
1 and then derive the ergodic capacity at the worst-case
eavesdropper.

Proposition 1: The ergodic capacity Rs:r of the channel be-
tween the source node and the receiving node is monotonically
decreasing with their distance r for arbitrary fading channels.

Proof: See Appendix A.
From Proposition 1, we can see that the nearest eaves-

dropper can obtain the largest ergodic capacity. Therefore, the
worst case is that there will be eavesdroppers on the boundary
of the secrecy protected zone, i.e. re = ρt. By expressing
ln(1 + x) as Meijier G-function and applying the integration
relationships [30, Eq. 7.813.1] and [30, Eq. 7.813.2], the
ergodic capacity of the channel between the source node and
the nearest eavesdropper can be calculated by

Rs:e =E|he|2

{
log2

(
1 +

ηe|he|2

ραt

)}
,

=
mm

ln 2Γ(m)

∫ ∞

0

ln

(
1 +

ηe
ραt

x

)
xm−1 exp(−mx) dx.

=
mm

ln 2Γ(m)

∫ ∞

0

xm−1 exp(−mx)

×G1,2
2,2

(
ηe
ραt

x

∣∣∣∣∣ 1, 1
1, 0

)
dx,

=
1

ln 2Γ(m)
G1,3

3,2

(
ηe

mραt

∣∣∣∣∣ 1−m, 1, 1
1, 0

)
.

(22)
For the case with Nakagami-m fading, the ergodic secrecy
capacity lower bound at the kth legitimate receiver with a
secrecy protected zone can be obtained by substituting (15)
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and (22) into (4). For the case with Rayleigh fading, (22) can
be simplified as

Rs:e
(g)
=

1

ln 2

∫ ∞

0

ln

(
1 +

ηe
ραt

x

)
exp(−x) dx,

(h)
=

1

ln 2
G1,3

3,2

(
ηe
ρ4t

∣∣∣∣∣ 0, 1, 1
1, 0

)
,

(23)

where (g) follows from that he is Rayleigh fading and its
power is exponentially distributed; (h) follows from [30, Eq.
7.813.1].

B. Random Eavesdroppers Outside of the Secrecy Protected
Zone

For the general case, the eavesdroppers may be unaware
of the boundary that their locations are still distributed as a
PPP in the field outside the secrecy protected zone. According
to Proposition 1, the worst-case eavesdropper is the nearest
eavesdropper which will obtain the largest ergodic capacity. To
calculate the ergodic capacity at the worst-case eavesdropper,
we derive the distribution of its distance from the source node
as shown in Theorem 3.

Theorem 3: Consider a random network in which the nodes
are modeled by a PPP outside a circular area. The PDF of the
distance from the origin to the nth nearest node is given by

dn(r) = 2πλr exp
[
−πλ

(
r2 − ρ2

)] [πλ (r2 − ρ2
)]n−1

(n− 1)!
,

(24)
where r > ρ, λ is the intensity and ρ is the radius of the
circular area.

Proof: See Appendix B.

The PDF of the distance from the source node to the nth

receiving node outside a circular area in (24) has been verified
by Monte Carlo simulations in Fig. 4. When there is no
protected zone, i.e. ρ = 0, the distribution of the distance
from the origin to the nth node can be obtain from (24) as

dn(r) = 2πλr exp(−πλr2)
(πλr2)n−1

(n− 1)!
. (25)

This is exactly the PDF of the Euclidean distance from
the source node to the nth neighbor provided in [31]. The
distribution of the distance from the nearest node to the origin
can be obtained by setting n = 1 in (24) as

d1(r) = 2πλr exp[−πλ(r2 − ρ2)], r > ρ. (26)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0
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2
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4
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6

7

8
Distribution of distance: Analysis versus Simulation

node distance

P
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F
 o

f d
is

ta
nc

e,
 d

n(r
)

 

 
d
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n
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d
4

d
2

d
1

Fig. 4. PDF of the distance from the source node to the nth neighbor with
λ = 1, ρt = 1; d1, d2 and d4 show the distribution of the distances from
the source node to the 1st, 2nd, and 4th nodes, respectively.

Consequently, the ergodic capacity at the worst-case eaves-
dropper can be obtained by

Rs:e =Ehe,re,1

{
log2

(
1 +

ηe|he|2

rαe,1

)}
,

=Ere,1

{∫ ∞

0

log2

(
1 +

ηe
rαe,1

x

)
f|he|2(x) dx

}
,

=

∫ ∞

ρt

∫ ∞

0

log2

(
1 +

ηe
yα

x

)
f|he|2(x) dxfre,1(y) dy,

=− 2πλe

ln 2
exp(πλeρ

2
t )

∫ ∞

0

y exp

(
yα

ηe
− πλey

2

)
× Ei

(
−yα

ηe

)
dy,

(27)
where Ei(·) is the exponential integral. Notice that, to avoid
confusion, we use fre,1(y) to denote the function of d1(r).
Similarly, the lower bound on the ergodic secrecy capacity
can be obtained by substituting (15) and (27) into (4).

V. ENHANCING SECURITY WITH BOTH THE SECRECY
PROTECTED ZONE AND THE INTERFERER PROTECTED ZONE

A. Problem Formulation

In addition to adopting a secrecy protected zone around the
source node, we introduce the interferer protected zones which
will contribute to restructuring the interference and enhance
the physical layer security. For the interference limited random
network, properly restructuring the interference can reduce its
detriment to the legitimate receivers more than that of the
eavesdroppers.

To reduce the interference in the legitimate channels, the
legitimate receivers will broadcast beacon signals with the
same power Pb [32]. The cooperative nodes that have re-
ceived the beacon signals will stop transmission. Note that
these cooperative nodes are different from those externally
introduced jammers in [16], but similar to the secondary
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rl,k

re,1

Source node

Eavesdropper Cooperative node

Legitimate receiver

Fig. 5. Random network with a secrecy protected zone at the source node
denoted by D(0, ρt) and interferer protected zones surrounding the legitimate
receivers denoted by D(x, ρd).

transmitters in cognitive radio (CR) networks. The legitimate
receivers will formulate another kind of protected zones
Φd = {D(x, ρd)|x ∈ Φl}, where D(x, ρd) is the circular area
centered at x with radius ρd and x is the coordinate of the
legitimate receiver. Then, the set of the cooperative nodes can
be expressed by

Φc =

{
ui

∣∣∣ui ∈

{
R2 −

∪
x∈Φl

D(x, ρd)

}}
, i ∈ N.

The description of the system model is given as follows and
illustrated in Fig. 5,

• The distribution of the source node and the legitimate
receivers are the same as the previous scenarios in Section
II, III and IV;

• The cooperative nodes are modeled by a homogeneous
PPP with intensity λc;

• To reduce the detriment from the interference, interferer
protected zones are adopted surrounding the legitimate
receivers. The legitimate receivers will prevent cooper-
ative nodes that are located in a nearby region from
transmitting signals inside the interferer protected zones,
by adopting the request-to-send/clear-to-send (RTS/CTS)
protocol in IEEE 802.11 [24].

To calculate the ergodic secrecy capacity, we will first derive
the distribution of the aggregate interference and the ergodic
capacity at the legitimate receivers and the eavesdroppers.

B. Distribution of the aggregated interference and ergodic
capacity at the legitimate receiver

The locations of the active cooperative nodes are depending
on the exclusion regions which are set up by the legitimate
receivers. The random set of cooperative nodes, Φc, can
be considered as a Poisson hole process [29] with primary
intensity λl and secondary intensity λc. The probability of a
point retained in the Poisson hole process is the probability

that no active cooperative node exists within the distance r
from the legitimate receiver. Consequently, the intensity of the
Poisson hole process is given by

λeqc = λc exp
(
−λlπr

2
)
. (28)

Since the distribution of the active cooperative nodes is
restructured by independent thinning of the cognitive users
outside the exclusion regions, we approximate the Poisson hole
process with a PPP by some adjustment of the intensity [33].
In the following subsection, we will calculate the distribution
of the aggregate interference from the cooperative nodes to
the legitimate receivers based on this approximation.

1) Interference at the legitimate receivers: The higher-order
statistics of the interference formed by the active cooperative
nodes will have less impact on the signal-to-interference-plus-
noise ratio (SINR) at the legitimate receivers than that of
the lower-order statistics, such as expectation and variance
[34], [35]. As a result, the interference from the Poisson
hole process can be approximately modeled by a PPP. The
aggregate interference from the cooperative nodes to the
legitimate receivers can be obtained by using Eq.(3.46) in [36],
while the interference in our case is analyzed based on an
approximated PPP with intensity λc exp(−λlπr

2). Denote the
moment generating function (MGF) of aggregated interference
at the legitimate receivers as LIcd(s), it is given by

LIcd(s) = exp

{
− λeqcπ

(
sδEh

(
hδγ(1− δ, shρ−α)

)
− ρ2Eh

(
1− exp(−shρ−α)

))}
.

(29)

For Rayleigh fading, equation (29) can be written as

LIcd(s) = exp

{
− λeqcπ

(
sρ2

s+ ρα
+

sΓ(2)

(1− δ)ρα(1−δ)

×2 F1(1− δ, 2; 2− δ;−sρ−α)

)}
.

(30)

2) Ergodic capacity at the legitimate receivers: We denote
the SINR at the kth legitimate receiver as γs:k, then

γs:k =
P |hk|2r−α

k

Pc

∑
i∈Φc

|hi,k|2r−α
i,k + σ2

k

,

=
Std

Icd +N
,

(31)

where hi,k denotes the fading coefficient between the ith
cooperative node and the kth legitimate receiver. Assuming
that the noise at the legitimate receivers are dominated by
the interference, the success probability at the kth legitimate
receiver can be approximated by

Ptd(τ) ≈ P (γs:k > τ) ,

= P (Std > τIcd) ,

(i)
= EIcd

(
exp(−τP−1rαk Icd)

)
,

(j)
= LIcd

(
τ

P r−α
k

)
,

(32)

where (i) follows from that |hk|2 is exponentially distributed
and (j) follows from Laplace transformation. Substitute (30)
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into (32), we can obtain the expression of success probability
at the kth legitimate receiver. The CDF of the SIR at the
kth legitimate receiver can be denoted by Fγs:k

(τ) = 1 −
LIcd

(
τ

Pr−α
k

)
. Then we derive the PDF of the SIR from

Fγs:k
(z) and analyze the ergodic capacity at the kth legitimate

receiver as [26]. Assuming that the distance rk is known at the
transmitter, the ergodic capacity at the kth legitimate receiver
can be obtained as

Rs:k =

∫ ∞

0

log2(1 + τ)fγs:k
(τ) dτ,

=
1

ln 2

∫ ∞

0

ln(1 + τ) d

[
1− LIcd

(
τ

Pr−α
k

)]
,

=− 1

ln 2
ln(1 + τ)LIcd

(
τ

Pr−α
k

)∣∣∣∣∞
0

+
1

ln 2

∫ ∞

0

LIcd

(
τ

Pr−α
k

)
1

1 + τ
dτ,

=
1

ln 2

∫ ∞

0

LIcd

(
τ

Pr−α
k

)
1

1 + τ
dτ.

(33)

The ergodic capacity in (33) can be calculated by using
numerical methods. Since deriving the closed-form expression
of the ergodic capacity at the kth legitimate receiver is
complicated, we analyze the lower bound of the interference
at the legitimate receiver and obtain

LIcd(s) = exp
{
− λeqcπ

[
sδEh(h

δγ(1− δ, shρ−α))

− ρ2Eh(1− exp(−shρ−α))
]}

,

(k)

≥ exp
{
− λeqcπ

[
sδEh(h

δΓ(1− δ))

− ρ2Eh(1− exp(−shρ−α))
]}

,

= exp
{
− λeqcπ

[
sδΓ(1 + δ)Γ(1− δ)− sρ2

s+ ρα

]}
,

(34)
where (k) follows from γ(a, x) ≤ Γ(a). According to (33),
the lower bound of the ergodic capacity at the kth legitimate
receiver can be expressed by

Rs,k
(l)
=

Pr−α
k

ln 2

∫ ∞

0

LIcd(s)
1

1 + Pr−α
k · s

ds,

(m)

≥
Pr−α

k

ln 2

∫ ∞

0

1

1 + Pr−α
k · s

exp
{
λeqcπ

sρ2

s+ ρα

}
× exp

{
− λeqcπΓ(1 + δ)Γ(1− δ)sδ

}
ds,

(n)
=

PΓ(1 + 1
δ )

a
1
δ rαk ln 2

Es

[ 1

1 + Pr−α
k s

exp
(
λeqcπ

sρ2

s+ ρα

)]
,

(o)

≥
Pr−α

k Γ(1 + 1
δ )

a
1
δ ln 2

1

1 + Pr−α
k Es(s)

× exp
(
λeqcπ

Es(s)ρ
2

Es(s) + ρα

)
,

(35)
where (l) follows by substituting τ with Pr−α

k s; (m) fol-
lows from (34); (n) follows by defining the PDF of s as
fs(x) =

a1/δ

Γ(1+1/δ) exp(−axδ) and a = πλeqcΓ(1+δ)Γ(1−δ);

(o) follows from Jenson’s inequality with the expectation of s
been given by

Ex(s) =

∫ ∞

0

sfx(s) ds =
Γ(2/δ)

δa1/δΓ(1 + 1/δ)
.

C. Distribution of the aggregated interference and ergodic
capacity at the worst-case eavesdropper

1) The interference at the eavesdroppers: Similarly, the
aggregate interference from the cooperative nodes to the
eavesdroppers can be obtained by using Eq.(3.21) in [36] and

LIce(s) = exp

(
−λeqcπs

δ πδ

sin(πδ)

)
. (36)

2) Ergodic capacity at the eavesdroppers: Ergodic capacity
at the eavesdroppers can be derived following the work of [26].
Denoting the SINR at the eavesdroppers as γs:e, we have

γs:e =
P |he|2r−α

t,e

Pc

∑
i∈Φc

|hi,e|2r−α
i,e + σ2

e

,

=
Ste

Ice +N
,

(37)

where hi,e denotes the fading coefficient from the ith coop-
erative node to the nearest eavesdropper. Assuming that the
noise at the eavesdroppers are dominated by the interference,
the success probability at the eavesdroppers is given by

P(τ) ≈ P(Ste > τIce),

= Eh

(
exp(−τP−1rαt,eIce)

)
,

= LIce

(
τ

P r−α
t,e

)
.

(38)

Substitute (28) and (36) into (38), we can obtain the success
probability at the eavesdroppers. The CDF of the SIR at the
eavesdroppers can be denoted by

Fγs:e(τ) = 1− LIce

(
τ

Pr−α
e

)
,

= 1− exp
(
−ber

2
eτ

δ
)
,

(39)

where be =
π2λeqcδ

P δ sin(πδ)
. Then the PDF of the SIR fγs:e(τ) can

be derived from Fγs:e(τ) as

fγs:e(τ) = δber
2
eτ

δ−1 exp
(
−ber

2
eτ

δ
)
. (40)

Considering the security constraint, we study the ergodic
capacity at the nearest eavesdropper which can obtain the
maximum ergodic capacity as shown in Proposition 1. The
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ergodic capacity at the nearest eavesdropper is given by

Rs,e =

∫ ∞

ρt

∫ ∞

0

log2(1 + τ)fγt:e(τ)fre,1(x) dτ dx,

=
1

ln 2

∫ ∞

ρt

fre,1(x)

∫ ∞

0

ln(1 + τ) d [−Fγt:e(τ)] dx,

=
1

ln 2

∫ ∞

ρt

fre,1(x)

∫ ∞

0

exp(−bex
2τ δ)

1

1 + τ
dτ dx,

=
2πλe exp(πλeρ

2
t )

ln 2

×
∫ ∞

ρt

∫ ∞

0

x

1 + τ
exp

[
−(πλe + beτ

δ)r2e,1
]
dxdτ,

=
πλe

ln 2

∫ ∞

0

exp(−beρ
2
t τ

δ)

(1 + τ)(πλe + beτ δ)
dτ.

(41)

VI. NUMERICAL RESULTS

In section III and IV, we have simulated the distribution
of the composite channel gain and the distance, in Fig.2
and Fig.4, respectively. In this section, we will study the
effect of various factors on the lower bound of the ergodic
secrecy capacity, including the intensity ratio, the radius of
the protected zones, path loss, interference and transmission
power.

A. Lower bound of the ergodic secrecy capacity with no
interference

Fig.6 illustrates the lower bound of the ergodic secrecy
capacity between the source node and the legitimate receivers
without a protected zone. In this scenario, the impact of path
loss and the intensity ratio between the legitimate receivers
and eavesdroppers is investigated. As shown in Fig.6, the
lower bound of ergodic secrecy capacity is monotonically
increasing with the increase of the intensity ratio between
the legitimate and eavesdropping nodes. When both of the
legitimate receivers and eavesdroppers experience the same
fading and path loss, the ergodic secrecy capacity at all the
legitimate receivers are zero if their intensity is equal to or
smaller than the intensity of eavesdroppers, i.e. λl/λe ≤ 1. An
interesting point shown in Fig.6 is that increasing the path loss
exponent will be beneficial for enhancing the ergodic secrecy
capacity which is due to the difference of their distance to the
source under the condition of λl/λe > 1.

Fig.7 reveals the impact of adopting a secrecy protected
zone surrounding the source node to enhance the ergodic
secrecy capacity. ρt denotes the radius of the secrecy protected
zone. As shown in Fig.7, for the same intensity ratio between
the legitimate receivers and the eavesdroppers, increasing the
radius of the protected zone can be helpful to enhance the
ergodic secrecy capacity. Compared to the results shown in
Fig.6 where the ergodic secrecy capacity will be zero if
λl/λe ≤ 1, the application of a protected zone ensures that
positive ergodic secrecy capacity can still be achieved even if
λl/λe ≤ 1, for example, λl/λe = 0.5. Another insight gained
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Fig. 6. The ergodic secrecy capacity as a function of the legitimate and
eavesdropping node intensities with different path-loss exponents, λe = 1
and m = 1.
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Fig. 7. The impact of the secrecy protected zone size on the ergodic secrecy
capacity with Pt/σ2

l = Pt/σ2
e = 30, λe = 0.1, α = 4 and ρd = 2.

from Fig.7 is that the increase of ρt has limited impact on the
ergodic secrecy capacity. This limitation is the value of the
ergodic capacity at the legitimate receiver, since the ergodic
secrecy capacity cannot be larger than ergodic capacity at the
legitimate receiver.

Fig.8 and Fig.9 show the impact of the protected zone
surrounding the source node, as well as the impact of the
intensity ratio on ergodic secrecy capacity. The legitimate
receiving nodes are ordered by their distances to the source
node. As shown in Fig.8, it is clear that, if the radius of
the protected zone is zero, i.e., there will be no protected
zone, the three scenarios will have the same performance.
For different scenarios with the same value of intensity ratio
and protected zone radius, adopting a protected zone will
significantly improve the lower bound of the ergodic secre-
cy capacity. When eavesdroppers are aware of the secrecy
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Fig. 8. The impact of the secrecy protected zone size on ergodic secrecy
capacity with Pt/σ2
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protected zone boundary, security will be undermined, but it
can still achieve higher ergodic secrecy capacity comparing
to the case without a protected zone. Fig.8 and Fig.9 also
suggest that increasing the intensity ratio and radius of the
secrecy protected zone is helpful to increase ergodic secrecy
capacity. Fig.9 further indicates that increasing the intensity
ratio between legitimate receivers and eavesdroppers will lead
to a higher ergodic secrecy capacity for all scenarios.

B. Ergodic secrecy capacity with interference

Fig.10 shows the comprehensive impact of the protected
zone radius at the legitimate receivers and the intensity of the
cooperative nodes. It is apparent that increasing transmission
power at the source node increases the ergodic capacity lower
bound at the legitimate receivers. Although simply increasing
the intensity of cooperative nodes will undermine the security
performance at legitimate receivers, the adoption of a secrecy
protected zone can increase the ergodic secrecy capacity lower
bound. In other words, combined with a secrecy protected
zone, using an interferer protected zone in order to restructure
interference can improve the ergodic secrecy capacity lower
bound. This is because a larger protected zone radius, ρd, will
reduce interference noise at the legitimate nodes compared to
that at the eavesdroppers.

VII. CONCLUSION

In this work, we studied physical layer security in random
wireless networks. The PDF of the channel gains by consid-
ering both fading and path loss was considered and a closed
form expression of its reciprocal is derived. This result was
then applied to analyze the probability of secure connection
and ergodic secrecy capacity. Furthermore, we investigated the
scenario with a secrecy protected zone to enhance physical
layer security and the analytical expression of ergodic secrecy
capacity is obtained. Moreover, interferer protected zones
surrounding legitimate receivers are also considered to reduce
the detriment from interference.
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Fig. 10. The impact of the interferer protected zones on ergodic secrecy
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By employing protected zones, positive ergodic secrecy
capacity can be achieved even if the intensity of the legitimate
nodes is smaller than that of the eavesdropping nodes in ran-
dom wireless networks. The application of interferer protected
zones can make the interference beneficial to the security
of the wireless network. Both the PDFs and the concept of
ergodic secrecy capacity provided in this paper can be easily
extended to the analysis of other secrecy characteristics in
random wireless networks, such as secrecy outage. They can
also be extended to investigate the cases with eavesdropper
colluding and multiple antennas at the source node.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: The ergodic capacity Rs:r of a general fading
channel with the PDF of the fading coefficient denoted as
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f|h|2(x), can be expressed as follows:

Rs:r = E|h|2

{
log2

(
1 +

η|h|2

rα

)}
,

=

∫ ∞

0

log2

(
1 +

η

rα
x
)
f|h|2(x) dx.

(42)

Then, the derivation of Rs:e as a function of r is given by
∂Rs:r

∂r
=

∫ ∞

0

[
log2

(
1 +

η

rα
x
)]′

f|h|2(x) dx,

= − αη

r ln 2

∫ ∞

0

x

rα + ηx
f|h|2(x) dx.

(43)

For any fading channel, PDF f|h|2(x) ≥ 0 always hold. It is
apparent that, as x ≥ 0, η ≥ 0 and rα ≥ 0, the integration∫ ∞

0

x

rα + ηx
f|h|2(x) dx ≥ 0. (44)

Then we have ∂Rs:r

∂r ≤ 0. Thus, the ergodic capacity Rs:r is
a monotonically decreasing function of r.

APPENDIX B
PROOF OF THEOREM 3

Proof: To derive the distribution of the distance from the
origin to the nth node outside the secrecy protected zone, we
first investigate the intensity function of the node at a distance
r(r > 0) from the origin. Then the CDF and PDF of the
distance from the nth node to the origin will be computed
based on this intensity function.

As the nodes outside the secrecy protected zone are dis-
tributed as a PPP, according to the mapping theory, the
intensity measure and intensity function can be separately
expressed by

Λopz =

{
πλ(r2 − ρ2) if r > ρ,
0 if r ≤ ρ,

(45)

and
λopz(r) =

{
2λπr if r > ρ,
0 if r ≤ ρ.

(46)

Since the locations of the nodes outside the secrecy protected
zone can still be modeled by a PPP, the probability of k nodes
located in the annual region Aρ:r with internal radius ρ and
external radius r can be calculated by

P[N(Aρ:r) = k]

= exp

(
−
∫
Aρ:r

λopz(x)dx

) (∫
Aρ:r

λopz(x)dx
)k

k!
,

= exp
[
−πλ(r2 − ρ2)

] [πλ(r2 − ρ2)]k

k!
.

(47)

Consequently, the CDF of the distance Dn(r) from the origin
to the nth nearest node can be computed by

Dn(r) = 1− P [N(Aρ:r) < n] ,

= 1− exp
[
−πλ(r2 − ρ2)

] n−1∑
k=0

[πλ(r2 − ρ2)]k

k!
.

(48)
By taking the derivation of (48), the PDF of the distance from
the origin to the nth node outside the secrecy protected zone
with radius ρ can be obtained as (24).
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