
Fast and Robust High Dynamic Range Image Generation with Camera and
Object Movement

Thorsten Grosch

Institute for Computational Visualistics
University of Koblenz-Landau

Universiẗatsstr. 1, 56070 Koblenz, Germany
Email: grosch@uni-koblenz.de

Abstract

High dynamic range (HDR) images play an impor-
tant role in todays computer graphics: Typical ap-
plications are the improved display of a photograph
with a tone mapper and the relighting of a virtual
object in a natural environment using an HDR en-
vironment map. Generating an HDR image usually
requires a sequence of photographs with different
exposure times which are combined to a single im-
age. In practice two problems occur when taking
an image sequence: The camera is moving or ob-
jects are moving during the sequence. This results
in a blurry HDR image due to the camera move-
ment and moving objects appear multiple times as
ghost images in the combined image. In this paper,
we present a simple and fast algorithm for a robust
HDR generation that removes these artifacts with-
out prior knowledge of the camera response func-
tion.

1 Introduction and Previous Work

Nowadays, high dynamic range images are an es-
sential part in the field of computer graphics. Espe-
cially for natural illumination, images are required
that contain a radiance value at each pixel. A pho-
tograph taken with a usual camera can not capture
the whole dynamic range of the visible radiances.
There are always saturated regions, underexposed
regions, or both. Moreover, each digital camera
uses an unknown non-linear scaling function for
converting the incoming sensor exposure to a pixel
color. Determining this camera response function
was first mentioned by Mann et al. [4]. Here, a
simple gamma function is used to describe the ra-
diometric response function of a camera. A more

general calculation was presented by Debevec and
Malik [1]. They use a series of images with dif-
ferent exposure times to combine the images to a
single HDR image and to recover the camera re-
sponse function by solving a linear system of equa-
tions. The camera curve is described as a table of
256 exposure values for each possible grey value.
An alternative algorithm was presented by Robert-
son et al. [9] based on a probabilistic approach.
Mitsunaga and Nayar [5] calculate the camera curve
as a polynomial function with fixed degree. Their
method is able to determine the response function
with only rough estimates of the exposure times.
A robust method for determining the camera curve
was also presented by Grossberg and Nayar [2]. In-
stead of comparing pixel values, they compare the
brightness histograms of the images to determine
the camera response function. By contrast, only a
few hardware solutions for capturing HDR images
exist, like the Spheron camera, HDRC (IMS Chips)
or the digital micromirror array introduced by Na-
yar et al. [6]. At present, the conventional way to
create an HDR image is to take a sequence of im-
ages with different exposure times and to combine
them to a single HDR image with one of the meth-
ods described in [1][2][4][5][9].

Two problems occur when combining these im-
ages:

1. If the images are taken with a hand-held cam-
era, the combined HDR image will look blurry be-
cause of small camera movements. This can mainly
be avoided by placing the camera on a tripod, but
even pressing the capture button or changing the ex-
posure time can result in an offset of a few pixels.

2. Ghost images appear in the combined image
because of moving objects while capturing the im-
age series. This is not a problem in indoor envi-
ronments, but often unavoidable in outdoor environ-

ments. Typical examples are moving people, clouds
or trees waving in the wind.

One example with both camera and object mo-
tion is shown in Figure 1, the combined image with-
out alignment is shown in Figure 2.

Ward [10] presented a method to solve the first
problem by assuming a pure translational cam-
era movement. Each image of the sequence is
converted to a so-called median threshold bitmap
(MTB). These binary images are almost identical
for all exposure times and can be used for aligning
the images (Figure 3). The algorithm starts with a
low resolution image to get an initial estimate for
the translation and refines the estimate for the high
resolution images. The method is very fast because
of many hardware optimizations.

The second problem is mentioned by Kang et al.
[3] for creating an HDR video. Here, a video se-
quence is recorded with two alternating exposure
times. Neighbouring images in a video sequence
with known exposure time are first globally regis-
tered and then locally registered. First, a global reg-
istration computes an image warp which aligns the
two images optimally. Then, the local registration
is computed using a hierarchical homography to de-
termine the optical flow of small pixel movements.
The authors show that their method is also appli-
cable to still images taken with a digital camera
with convincing results. However, their algorithm
requires a precomputed camera response function
and it is quite time consuming. They report that
generating an HDR image from a sequence of five
images takes about 30 seconds. Since we do not ex-
pect that the response function is known for all pos-
sible camera adjustments, we decided to develop an
algorithm for robust and fast HDR generation with-
out prior knowledge of the response function. Our
algorithm can be summarized as follows:

1. Calculate Median Threshold Bitmaps
2. Translational Alignment
3. Translational and Rotational Alignment
4. Calculate Camera Response Function
5. Calculate Error Map
6. Combine HDR Image
7. Manual Corrections

Each step will be described in the following sec-
tions: Section 2 explains the alignment of the im-
ages, in section 3 we describe our method for re-
moval of ghost images. The results are presented in
section 4. An intuitive tool for manual correction

of the remaining artifacts is presented in section 5
before we conclude in section 6.

Figure 1: Image sequence taken with a hand-held
camera

Figure 2: Combined HDR image without alignment

Figure 3: Median threshold bitmaps for two images
of the car sequence. The bitmaps are almost identi-
cal except of the moving objects.

2 Image Registration

Since we have to solve two problems, we assume
that we have a static scene with a few moving ob-
jects. We solve the correct alignment first and re-
move the ghost images in the second step.

2.1 Basic Ideas

Our alignment method is based on the algorithm
presented by Ward [10], but we include an image
rotation. During our test series we found that a pure
translation is often not sufficient. Several image se-
quences contain a small rotation, especially when
the camera is held vertically. We use an optimiza-
tion algorithm to calculate the best rotation angle
for aligning two binary threshold images. The start-
ing value for the algorithm is the translation deter-
mined with the method described in [10] and a ro-
tation angle set to zero.

When XOR-combining both bitmaps, we count
the number of remaining white pixels which is used
as a function value for the optimization algorithm.
The Downhill Simplex method [7] is used to find
the best transformation since it is known as a robust
optimization algorithm.

2.2 Graphics Hardware

We use the graphics hardware for a fast calculation
of the XOR combination of two binary threshold
bitmaps. The basic idea is to draw both images
as rectangular, screen-filling polygons with the me-
dian threshold image as a texture. The first rectan-
gle is kept fixed, while the second rectangle is trans-
lated and rotated around the view axis, as shown
in Figure 4. After a logical XOR combination, the
resulting bitmap can be read from framebuffer to
main memory for counting the white pixels. Be-
cause reading pixels back to main memory is quite
slow, we developed an optimized version, which is
described in the next section.

XOR

MTB 2

MTB 1

Count Pixels = 6

Figure 4: Image alignment: The first image is kept
fixed while the second image is translated and ro-
tated around the view axis.

2.3 Fast Summation of White Pixels

To avoid reading the pixels from framebuffer back
to main memory, we do not use the logical opera-
tions included in OpenGL. Instead, we use a special
fragment program for the XOR combination of both
bitmaps. Both median threshold bitmaps are repre-
sented as textures, but we drawonly the transformed
bitmap and calculate the superposed texture pixels
in the fragment program. As can be seen in Fig-
ure 5, the texture pixel of the transformed bitmap is
accessed by the texture coordinates (s,t). The corre-
sponding texture coordinates for the first bitmap are
simply the window coordinates (x,y) of the current
fragment.

s
t

x

y

Figure 5: Texture coordinates (left) and intersection
region (right) of both median threshold bitmaps.

Because current fragment programs do not sup-
port logical operations, we discard the current frag-
ment in case ofidentical texture pixels to simulate
the XOR combination. The exclusion bitmaps are
used as textures, too. If at least one of them is zero,
the fragment is discarded. The fragment program is
shown in Figure 6.

To count the white pixels, we use anocclusion
query when drawing the transformed rectangle. Be-
cause we discard the black pixels in our fragment
program, the occlusion query returns the number of
white pixels.

2.4 Intersection Region

When combining both images, care must be taken
to count only pixels in theintersection of both rect-
angles, as can be seen in Figure 5. Because we draw
only the transformed rectangle, we restrict to the
intersection region automatically. Regions outside
the viewport are removed by clipping (dotted re-
gions) and fragments outside the transformed rect-
angle (striped regions) are never accessed.

void combineFP(out float4 color : COLOR,
float4 tc : TEXCOORD0,
float4 wpos : WPOS,

uniform samplerRECT mtbSampler1,
uniform samplerRECT mtbSampler2,
uniform samplerRECT ebSampler1,
uniform samplerRECT ebSampler2)

{
// discard identical pixels
// to simulate XOR operation

if (texRECT(mtbSampler1, wpos.xy).r ==
texRECT(mtbSampler2, tc.xy).r)
discard;

// discard fragment if at least
// one exclusion bitmap is zero

if (texRECT(ebSampler1, wpos.xy).r == 0)
discard;

if (texRECT(ebSampler2, tc.xy).r == 0)
discard;

// return white color

color = float4(1.0, 1.0, 1.0, 1.0);
}

Figure 6: Fragment program: Both median thresh-
old bitmaps and exclusion bitmaps are used as tex-
tures. When drawing the transformed rectangle, the
bitmaps are combined and the fragment is discarded
in case of a black pixel.

2.5 Comparison

The correct alignment could be found in most of
our testcases even in case of object motion during
the series. Figure 7 shows the XOR combination of
two median threshold bitmaps before and after the
optimization, the aligned HDR image is shown in
Figure 8.

Without a rotational alignment, several artifacts
appear in the HDR image, as can be seen in Figure
9. The translation and rotation values for this image
are listed in table 1.

3 Removing Ghost Images

After aligning the images, we are able to remove the
ghost images. To safely detect the affected pixels,
we calculate the camera response function first.

Figure 7: XOR combination of the median thresh-
old bitmaps. Left: Original images. Right: Aligned
images after 41 iterations of the Downhill Simplex
algorithm.

Figure 8: Aligned HDR image: The alignment
works despite the moving objects which appear as
ghost images.

3.1 Camera Response Function

Most algorithms for calculation of the camera re-
sponse function require static scenes and a direct
correspondence between the pixels. Because we
have a non-aligned sequence with object motion,
we use the algorithm presented by Grossberg and
Nayar [2]. This algorithm calculates the response
function based on cumulative histograms and is
mostly unaffected by camera or object motion. In
the following, we denote the camera functionf as
a conversion of sensor exposureX to pixel colorz:
f(X) = z.

3.2 Predicted pixel colors

With a known camera response functionf , we can
predict the pixel color from one image to another.
Suppose we have a pixel with colorzi,j at position
i, taken with exposure time∆tj . In a second image,
taken with exposure time∆tk, the corresponding

Figure 9: Difference between pure translational
alignment (left) and alignment including a rotation
(right). Without a small image rotation, the com-
bined image contains a slight blur. Moreover, sev-
eral parts in the image appear twice like the top of
the towers shown in the insets.

pixel color iszi,k. The resulting exposure values at
sensori are:

f
−1(zi,j) = Xi,j = Ei · ∆tj (1)

f
−1(zi,k) = Xi,k = Ei · ∆tk (2)

whereEi is the sensor irradiance.
Rearranging these equations leads to apredicted

pixel color z̃i,k for the second image:

z̃i,k = f(
∆tk

∆tj

f
−1(zi,j)) (3)

For each pair of consecutive images, we test if
the real colorzi,k in the second image is well ap-
proximated with the predicted color̃zi,k from the
first image:

|z̃i,k − zi,k| < ǫ (4)

The user parameterǫ depends on the amount of
noise in the camera images. A significant differ-
ence between the two colors indicates object mo-
tion. In this case, we mark the pixel as invalid in
a specialerror map. Pixels set to invalid are not
used when the HDR image is combined from the
image sequence. Here, we use the idea introduced

in [3] and fill the invalid pixels with a reference im-
age. The difference is, that our reference image is
selected by counting the number of underexposed
and saturated pixelsonly in invalid regions marked
in the error map. The image with the lowest number
is selected as the reference image. In this way we
minimize the loss of dynamic range. The resulting
error map for the car sequence is shown in Figure
10.

Because a direct insertion from one image in-
creases the amount of noise, we test if some of the
other images can be used as well. Therefore, we cal-
culate the predicted color from the reference image
to all the other images (Equation 3) and calculate
the average of all pixels which fulfil Equation 4.

The color prediction only works if we are not in a
saturated or underexposed region. In these regions,
the pixel color is always black or white. We there-
fore use two threshold values to exclude the black
and white pixels. Typically, we only check pre-
dicted colors if at least one of the two pixel colors
is in the range [20..240].

Table 1: Alignment values for the image shown
in Figure 9. The top rows shows the translational
alignment. The bottom row shows the alignment
with a rotation. Note that the best translation values
for alignment are floating point numbers.

Alignment 1 - 2 2 - 3 3 - 4 4 -5
tx -3 -7 -5 7
ty 5 3 -4 7
tx -3.0 -6.83 -5.06 7.09
ty 5.0 3.35 -3.71 6.9
α 0.0 -0.31 -0.17 0.09

4 Results

We tested our algorithm with 180 hand-held image
sequences. In 79 cases, the visual image quality
could be improved with an additional image rota-
tion. In the remaining series, the rotation angle was
too small for a visible difference. Because we use
the translational alignment as an initial guess for
our algorithm, we never decrease the quality of the
alignment. In a few cases, loss of visual image qual-
ity could be observed in certain regions when using
a rotation. Nevertheless, the overall appearance of

Figure 10: Error map for the car sequence. All
pixels that violate the predicted color condition are
marked in black. Note that all moving cars have
been detected. Some pixels inside the cars are not
marked due to a similar background color.

the image could be improved. One such example is
shown in the middle row of Figure 13 in the color
image section.

We observed alignment problems with 13 series.
These problem cases contain large object move-
ments, smoke or fire with changing illumination
during the series and images with noisy bitmaps.
After manually adjusting the threshold from 50%
to a different value, seven of these series could
be aligned. Despite these problems, the alignment
based on median threshold bitmaps proved to be
very robust. Several problematic sequences con-
taining water (rivers, fountains), reflective or refrac-
tive objects (light probes, glass sculptures) or wind
(waving trees and flags) were aligned properly.

In our test series, the average translation between
two hand-held photographs is 8.19 pixels (for a res-
olution of 1024 x 768 pixels), the average rotation
angle is 0.16 degrees.

We compare our alignment with the alignment
used in Photoshop CS2. In the majority of cases,
we observed a better image quality with our align-
ment, as can be seen in the color images. On the
other hand, Photoshop CS2 achieves better results
with the few problematic image series.

The computation time for creating an HDR im-
age from a sequence of five (1024 x 768) images
together with the camera response function is about
four seconds on a dual Athlon PC, running at 2.21
GHz, equipped with a GeForce 7800 GTX graphics
card. For comparison, the software implementation

Figure 11: Aligned HDR image without ghost im-
ages. Note that the cars are not completely removed
because we replace defective regions from asingle
image.

of the optimization algorithm takes about 20 sec-
onds for the same task.

5 Manual Adjustments

Most problems in the combined HDR image can be
solved with the algorithm described in the preceed-
ing sections. However, some problems still remain:

• Pale ghost images because of similar colors of
moving objects and background

• Clipped colors because of over - or underex-
posed regions in the reference image

• Small image alignment errors due to highly
varying distances of the visible objects

Recently, Ward [8] proposed heuristics for ghost re-
moval using all images, but this algorithm cannot
guarantee the complete elimination of all ghost im-
ages. Since we believe that there is no way to ensure
a consistent HDR image automatically, we decided
to create a tool for interactive correction of the com-
bined HDR image. Nowadays, some image manip-
ulation programs support HDR images, like Photo-
shop CS2 or IDRUNA Photogenics. However, we
developed our own tool because we can use the fol-
lowing information collected during HDR combi-
nation to aid the user with the correction:

• The aligned images
• The error map
• The camera response function

The main idea is to select a different reference im-
age for a problem region and copy the information
manually. Therefore, saturated or possibly damaged

regions can be visualized by showing the error im-
age as red pixels. The main user interaction is the
selection of one image from the sequence which is
suitable for a defective region. The region is cor-
rected with a specialclone brush which copies the
information from the selected image to the HDR
image. The camera response function is used for
conversion from the LDR image to the HDR image.
Figure 12 shows a typical example: The left im-
age is the combined HDR image with a few ghost
images. In the center image, possible problem re-
gions are shown as red pixels. One of the original
images is selected and the problem region is filled
with the information from the selected image with
a few mouse strokes. If none of the images fits for a
replacement, we use a standard clone brush to copy
information inside the HDR image or simple paint-
ing tools.

Figure 12: Left: Image region with a few ghost im-
ages. In this case, the reference image was too dark
for a replacement. Center: Visualization of the error
map. Right: Image correction by painting informa-
tion from a different reference image with a clone
brush.

6 Conclusion and Future Work

We presented an algorithm for robust high dynamic
range image generation that can handle both cam-
era and object motion without a precomputed cam-
era response function. We extended the translation
alignment based on median threshold bitmaps with
an additional rotation. Using an additional rotation
improved the image quality significantly in more
than 40% of our test series. By exploiting the fast
graphics hardware, we are able to align a sequence
of five images in about four seconds. Regions con-
taining ghost images can be detected by testing a
predicted color for each pixel. These regions are
filled with a reference image that minimizes the loss

of dynamic range. For the remaining problem re-
gions, we developed an intuitive tool for manual
corrections.

As future work, we are searching for methods to
further improve the HDR image quality. In compar-
ison with the original LDR image, the HDR image
ofter contains a slight blur. Moreover, images with
a very short or long exposure time are often mis-
aligned. In these cases, a different threshold value
has to be used for the bitmaps instead of the me-
dian. Currently, we select this value manually, an
automatic detection is still an open problem.

7 Acknowledgements

We would like to thank Markus Geimer, Jens
Krueger, Matthias Biedermann, Oliver Abert, To-
bias Ritschel, Rodja Trappe and Angelika Braeunig
de Colan for helpful suggestions and proofreading
the paper.

References

[1] P. Debevec and J. Malik. Recovering High
Dynamic Range Radiance Maps from pho-
tographs. InProceedings SIGGRAPH 1997,
pp. 369-378

[2] M. Grossberg and S. Nayar. What can be
known about the radiometric response from
images? InProc. of European Conference on
Computer Vision (ECCV) 2002, pp. 189-205,
2002.

[3] S. Kang, M. Uyttendaele, S. Winder and R.
Szeliski. High dynamic range video. InACM
Trans. on Graphics 2003, pp. 319-325, 2003.

[4] S. Mann and R. Picard. Being ’undigital’ with
digital cameras: Extending dynamic range
by combining differently exposed pictures. In
Proc. of IS&T’s 48th annual conference 1995,
pp. 422-428, 1995.

[5] T. Mitsunaga and S. Nayar. Radiometric self
calibration. InProc. of IEEE Conference on
CVPR 1999, pp. 374-380, 1999.

[6] S.K. Nayar, V. Brazoi and T.E. Boult. Pro-
grammable Imaging Using a Digital Mi-
cromirror Array. InProc. of IEEE Conference
on CVPR 2004, pp. 436-443, 2004.

[7] W.H. Press, S.A. Teukolsky, W.T. Vetterling
and B.P. Flannery.Numerical Recipes in C++.
Cambridge University Press, 2002.

[8] E. Reinhard, G. Ward, S. Pattanaik and P. De-
bevec.High Dynamic Range Imaging. Morgan
Kaufmann, 2005.

[9] M.A. Robertson, S. Borman and R.L. Steven-
son. Dynamic range improvement through
multiple exposures. InProc. of International
Conference on Image Processing 1999, pp.
159-163, 1999

[10] G. Ward. Fast, robust image registration for
compositing high dynamic range photographs
from hand-held exposures.Journal of Graph-
ics Tools, Volume 8/2003, pp. 17-30.

Figure 13: Comparison between the different alignment techniques: Pure translational alignment (left), our
method with translation and rotation (center) and Photoshop CS2 alignment (right).

Figure 14: No alignment (left), alignment (center) and ghost removal(right).

