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Abstract This paper preliminarily investigates the appli-

cation of unscented Kalman filter (UKF) approach with

nonlinear dynamic process modeling for Global positioning

system (GPS) navigation processing. Many estimation

problems, including the GPS navigation, are actually non-

linear. Although it has been common that additional

fictitious process noise can be added to the system model,

however, the more suitable cure for non convergence

caused by unmodeled states is to correct the model. For the

nonlinear estimation problem, alternatives for the classical

model-based extended Kalman filter (EKF) can be

employed. The UKF is a nonlinear distribution approxi-

mation method, which uses a finite number of sigma points

to propagate the probability of state distribution through the

nonlinear dynamics of system. The UKF exhibits superior

performance when compared with EKF since the series

approximations in the EKF algorithm can lead to poor

representations of the nonlinear functions and probability

distributions of interest. GPS navigation processing using

the proposed approach will be conducted to validate the

effectiveness of the proposed strategy. The performance of

the UKF with nonlinear dynamic process model will be

assessed and compared to those of conventional EKF.

Keywords Extended Kalman filter �
Unscented Kalman filter � Nonlinear model �
Global positioning system (GPS)

Introduction

The Global positioning system (GPS) is a satellite-based

navigation system that provides access to accurate posi-

tioning information anywhere on the globe. The extended

Kalman filter (EKF) (Brown and Hwang 1997; Farrell and

Barth 1999; Gelb 1974; Simon 2006) has been one of the

promising approaches while employed in the GPS receiver

as the navigational state estimator. The EKF not only

works well in practice, but also it is theoretically attractive

since it has been shown that it is the state estimator that

minimizes the variance of the estimation mean square error

(MSE). Nevertheless, the divergence due to modeling

errors has been a critical problem in Kalman filter appli-

cations. The fact that EKF highly depends on a predefined

dynamics model forms a major drawback. To achieve good

filtering results, the designers are required to have the

complete a priori knowledge on both the dynamic process

and measurement models, in addition to the assumption

that both the process and measurement are corrupted by

zero-mean Gaussian white sequences. If the theoretical

behavior of a filter and its actual behavior do not agree,

divergence may occur.

Recently, there has been an increasing interest in the

development of techniques for nonlinear estimation (Simon

2006; Gordon et al. 1993; Julier et al. 1995; Julier and

Uhlmann 1997; Norgaard and Poulsen 2000; Wan and van

der Merwe 2000), which can approximate the statistics of

the process as accurately as possible. The process of state

estimation combines a priori knowledge about the state and

its transition due to a set of inputs, with a sequence of

measurements. In general, the state estimate is recursively

obtained in two stages: (1) the prediction and (2) the update.

The well known optimal state estimator utilizes the analy-

tical probability density function (PDF) to predict the states
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using the total probability theorem and subsequently uses

the measurement to update with Bayes’ rule. This optimal

estimator requires storing the PDF and integrating it, and

often results in impractical algorithms, therefore, techniques

have been developed to approximate the optimal estimator.

Algorithms such as the EKF and unscented Kalman

filter (UKF) (Wan and van der Merwe 2000; Wan and van

der Merwe 2001) etc., focus on approximating the pre-

diction probability characteristics and use the standard

minimum MSE estimator. The EKF uses first order Taylor

series expansion, which can be improved by higher order

approximations at the expense of computational burden.

The UKF has been developed in the context of state

estimation of dynamic systems as a nonlinear distribution

(or densities in the continuous case) approximation

method. The UKF is superior to EKF not only in theory but

in many practical situations. The algorithm uses a finite

number of sigma points to propagate the probability of

state distribution through the nonlinear dynamics of sys-

tem. The algorithm performs the prediction of the statistics

with a set of carefully chosen sample points for capturing

mean and covariance of the system (Julier et al. 2000;

Julier and Uhlmann 2002; Julier 2002). The UKF can

capture the states up to at least second order, while the EKF

is only a first order approximation.

The EKF has difficulty to ensure error convergence due to

limited knowledge of the system’s dynamic model and

measurement noise. If the Kalman filter is provided with

information that the process behaves a certain way, whereas,

it actually behaves a different way, the filter will continually

intend to fit an incorrect process signal and the EKF estimates

may not be reliable. In a number of practical situations, the

availability of a precisely known model is unrealistic, which

results in filtering performance degradation. Investigation of

the nonlinear filtering approach to the navigation problem

has been seen, but not as common as the EKF in the literature

(van der Merwe and Wan 2004; Crassidis 2006; Li et al.

2006). In the actual GPS navigation filter design, there exists

model uncertainties which cannot be expressed by the linear

state-space model. It is very often the case that little a priori

knowledge is available concerning the maneuver. In the

modeling strategy, some phenomena are disregarded and a

way to take them into account is to consider a nominal model

affected by uncertainty. The linear model increases model-

ing errors since the actual vehicle motions are nonlinear

process. Even it has been common that additional fictitious

process noise can be added to the system model, neverthe-

less, the more suitable cure for non convergence caused by

unmodeled states should be to correct the model.

This paper is organized in six sections. In Sect. 2, pre-

liminary background on the extended Kalman filter for

GPS navigation processing is briefly reviewed. The UKF is

introduced in Sect. 3. Section 4 presents the GPS nonlinear

dynamic modeling. In Sect. 5, simulation experiment and

analysis are carried out to evaluate the performance of the

approach in comparison to those by conventional approach.

Conclusions are given in Sect. 6.

The extended Kalman filter for GPS navigation

processing

Kalman filtering has been recognised as one of the most

powerful state estimation techniques. The purpose of the

Kalman filter is to provide the estimation with minimum

error variance. The extended Kalman filter is a nonlinear

version of the Kalman filter and is widely used for the

position estimation in GPS receivers. A superior way of

solving the GPS navigation solution is to use the extended

Kalman filter.

The extended Kalman filtering is a nonlinear version of

Kalman filtering, which deals with the case governed by

the nonlinear stochastic differential equations:

_x ¼ fðx; tÞ þ uðtÞ ð1aÞ
z ¼ hðx; tÞ þ vðtÞ ð1bÞ

where the vectors u(t) and v(t) are both white noise

sequences with zero means and mutually independent:

E½uðtÞuTðsÞ� ¼ qdðt� sÞ; E½vðtÞvTðsÞ�¼ rdðt� sÞ;
E½uðtÞvTðsÞ� ¼ 0

ð2Þ

where d(t) is the Dirac delta function, E [�] represents

expectation, and superscript ‘‘T’’ denotes matrix transpose.

Expressing Eqs. (1a) and (1b) in discrete-time equiva-

lent form leads to

xkþ1 ¼ fkðxkÞ þ wk ð3aÞ
zk ¼ hkðxkÞ þ vk ð3bÞ

where the state vector xk[ <n, process noise vector wk[ <n,

measurement vector zk[ <m, and measurement noise vector

vk[ <m. In Eq. (3a, b), both the vectors wk and vk are zero

mean Gaussian white sequences having zero

crosscorrelation with each other:

E½wkwT
i � ¼

Qk; i ¼ k

0; i 6¼ k

�
; E½vkvT

i � ¼
Rk; i ¼ k

0; i 6¼ k

�
;

E½wkvT
i � ¼ 0 for all i and k

ð4Þ

where Qk is the process noise covariance matrix, Rk is the

measurement noise covariance matrix, and Dt is the sam-

pling interval.

The discrete-time extended Kalman filter algorithm for

the GPS navigation processing is summarized as follow:

1. Initialize state vector and state covariance matrix: x̂�0
and P0

-

250 GPS Solut (2008) 12:249–260

123



2. Compute Kalman gain matrix from state covariance

and estimated measurement covariance:

Kk ¼ P�k HT
k ½HkP�k Hk þT Rk��1 ð5Þ

3. Multiply prediction error vector by Kalman gain

matrix to get state correction vector and update state

vector:

x̂k ¼ x̂�k þKk½zk � hkðx̂�k Þ� ð6Þ

4. Update error covariance

Pk ¼ I�KkHk½ �P�k ð7Þ

5. Predict new state vector and state covariance matrix

x̂�k ¼ fk�1ðx̂�k�1Þ ð8Þ

P�kþ1 ¼ UkPkU
T
k þQk ð9Þ

where the linear approximation equations for system and

measurement matrices are obtained through the relations

Uk �
ofk

ox

����
x¼x̂�

k

; Hk �
ohk

ox

����
x¼x̂�

k

ð10Þ

Equations (5–7) are the measurement update equations,

and Eqs. (8) and (9) are the time update equations of the

algorithm from k to step k + 1. These equations incorporate

a measurement value into a priori estimation to obtain an

improved a posteriori estimation. In the above equations, Pk

is the error covariance matrix defined by E½ðxk � x̂kÞðxk �
x̂kÞT�; in which x̂k is an estimation of the system state vector

xk, and the weighting matrix Kk is generally referred to as

the Kalman gain matrix. The Kalman filter algorithm starts

with an initial condition value, x̂�0 and P0
-. When new

measurement zk becomes available with the progression of

time, the estimation of states and the corresponding error

covariance would follow recursively ad infinity. Further

detailed discussion can be referred to Brown and Hwang

(1997), Farrell and Barth (1999) and Gelb (1974).

The unscented Kalman filter

In the EKF, the state distribution is approximated by a

Gaussian random variable (GRV), which is then propagated

analytically through the first-order linearization of the

nonlinear system. Wan and van der Merwe (2000) pointed

out that this will introduce large errors in the true posterior

mean and covariance of the transformed GRV and lead to

sub-optimal performance and sometimes filter divergence.

The unscented Kalman filter (UKF) was first proposed by

Julier et al. (1995) to address nonlinear state estimation in

the context of control theory. The UKF addresses this

problem by using a deterministic sampling approach. The

state distribution is also approximated by a GRV, but is

represented using a minimal set of sample points. These

sample points are carefully chosen so as to completely

capture the true mean and covariance of the GRV. When the

sample points are propagated through the true nonlinear

system, the posterior mean and covariance can be captured

accurately to the third-order of Taylor series expansion for

any nonlinear system. One of the remarkable merits is that

the overall computational complexity of the UKF is the

same as that of the EKF (Wan and van der Merwe 2000).

Unscented transformation

The first step in the UKF is to sample the prior state dis-

tribution, i.e., generate the sigma points through the

unscented transformation (UT) (Julier et al. 2000; Julier

and Uhlmann 2002; Julier 2002). The unscented transform

is a method for calculating the statistics of a random var-

iable which undergoes a nonlinear transformation. The

basic premise is that to approximate a probability distri-

bution is easier than to approximate an arbitrary nonlinear

transformation. A set of weighted samples or sigma points

are deterministically chosen so that they completely cap-

ture the true mean and covariance of the random variable.

The samples are propagated through true nonlinear equa-

tions, and the linearization of the model is not necessary.

Suppose the mean �x and covariance P of vector x are

known, a set of deterministic vector called sigma points can

then be found. The ensemble mean and covariance of the

sigma points are equal to �x and P. The nonlinear function y

= f(x) is applied to each deterministic vector to obtain

transformed vectors. The ensemble mean and covariance of

the transformed vectors will give a good estimate of the true

mean and covariance of y, which is the key to the unscented

transformation. Figure 1 illustrates the mapping of the UKF

versus that of the EKF, through the transformation of: (1)

the nonlinear function f(�), shown on the top portion of the

figure, and (2) its Jacobian/Hessian F, shown at the bottom

portion of the figure. The dot-line ellipse represents the true

covariance; the solid-line ellipse represents the calculated

covariance. The UKF approach estimates are expected to be

closer to the true values than the EKF approach.

Consider an n dimensional random variable x, having

the mean x̂ and covariance P, and suppose that it propa-

gates through an arbitrary nonlinear function f. The

unscented transform creates 2n + 1 sigma vectors X (a

capital letter) and weighted points W, given by

Xð0Þ ¼ x̂ ð11Þ

XðiÞ ¼ x̂þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ kÞP

p
ÞTi ; i ¼ 1; . . .; n ð12Þ
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XðiþnÞ ¼ x̂� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ kÞP

p
ÞTi ; i ¼ 1; . . .; n ð13Þ

W
ðmÞ
0 ¼ k

ðnþ kÞ ð14Þ

W
ðcÞ
0 ¼ W

ðmÞ
0 þ ð1� a2 þ bÞ ð15Þ

W
ðmÞ
i ¼ W

ðcÞ
i ¼

1

2ðnþ kÞ ; i ¼ 1; . . .; 2n ð16Þ

where ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ kÞP

p
Þi is the ith row (or column) of the

matrix square root.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ kÞP

p
can be obtained from the

lower-triangular matrix of the Cholesky factorization; k =

a2 (n + k) - n is a scaling parameter; a determines the

spread of the sigma points around x
_

and is usually set to a

small positive(e.g., 1e - 4 B a B 1); k is a second

scaling parameter (usually set as 0); b is used to incorpo-

rate prior knowledge of the distribution of �x (When x is

normally distributed, b = 2 is an optimal value); Wi
(m) is the

weight for the mean associated with the ith point; and Wi
(c)

is the weigh for the covariance associated with the ith

point.

The sigma vectors are propagated through the nonlinear

function to yield a set of transformed sigma points,

yi ¼ f ðXiÞ i ¼ 0; . . .; 2n ð17Þ

The mean and covariance of yi are approximated by a

weighted average mean and covariance of the transformed

sigma points as follows:

�yu ¼
X2n

i¼0

W
ðmÞ
i yi ð18Þ

�Pu ¼
X2n

i¼0

W
ðcÞ
i ðyi � �yuÞðyi � �yuÞ

T ð19Þ

As compared to the EKF’s linear approximation, the

unscented transformation is accurate to the second-order

for any nonlinear function.

The unscented Kalman filter

The basic premise behind the UKF is it is easier to

approximate a Gaussian distribution than it is to approxi-

mate an arbitrary nonlinear function. Instead of linearizing

using Jacobian matrices as in the EKF and achieving first-

order accuracy, the UKF uses a deterministic sampling

approach to capture the mean and covariance estimates

with a minimal set of sample points. A high level of

operation of the UKF is shown in Fig. 2.

To look at the detailed algorithm of the UKF, first, the

set of sigma points are created by Eqs. (12) and (13). After

the sigma points are generated, the time update (prediction

step) of the UKF includes the following steps:

ðf�k Þi ¼ f ððX�k ÞiÞ; i ¼ 0; . . .; 2n ð20Þ

x̂�k ¼
X2n

i¼0

W
ðmÞ
i ðf�k Þi ð21Þ

P�k ¼
X2n

i¼0

Wc
i ½ðf�k Þi � x̂�k �½ðf�k Þi � x̂�k �

T þQk ð22Þ

ðZ�k Þi ¼ hððf�k ÞiÞ ð23Þ

Fig. 1 Illustration of properties of UKF and EKF (Li et al. 2006)

Initial covariance and state vector

Generating sigma 
points

Calculation of
weighs

Sigma points propagation:
Calculate the mean and

covariance of the transformed
sigma points Predict/Time update

State, measurement, and
covariance prediction: Transform

the sigma points according to
process & measurement model

Estimation/Measurement update:
State and covariance update

k = k + 1

Fig. 2 High level of operation of the unscented Kalman filter
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ẑ�k ¼
X2n

i¼0

W
mð Þ

i ðZ�k Þi ð24Þ

The measurement update (correction) step of the UKF

involves the following steps:

Pyy ¼
X2n

i¼0

W
ðcÞ
i ½ðZ�k Þi � ẑ�k �½ðZ�k Þi � ẑ�k �

T þ Rk ð25Þ

Pxz ¼
X2n

i¼0

W
ðcÞ
i ½ðf�k Þi � x̂�k �½ðZ�k Þi � ẑ�k �

T ð26Þ

Kk ¼ PxzP�1
yy ð27Þ

x̂k ¼ x̂�k þKkðzk � ẑ�k Þ ð28Þ

Pk ¼ P�k �KkPyyKT
k ð29Þ

The flow chart for the UKF approach is summarized in

Fig. 3. The samples are propagated through true nonlinear

equations; the linearization is unnecessary (Calculation of

Jacobian is not required). They can capture the states up to

at least second order, where as the EKF is only a first order

approximation.

Nonlinear dynamic modeling

In actual GPS navigation filter designs, there exist model

uncertainties which cannot be expressed by the linear state-

space model. The commonly used position-velocity (PV)

model is a linear model, which is popular due to its sim-

plicity. The linear model increases modeling errors since

the actual vehicle motions are nonlinear process. It is very

often the case that little a priori knowledge is available

concerning the maneuver. In the modeling strategy, it has

been very common that additional fictitious process noise

can be added to the system model. However, the best cure

for non convergence caused by unmodeled states is to

correct the model. Derivation of a better, nonlinear,

dynamic model is necessary for improving the estimation

accuracy.

The PV model

The dynamic process of the GPS receiver in lower dynamic

environment can be represented by the PV model (Brown

and Hwang 1997; Farrell and Barth 1999). In such case, the

GPS navigation filter includes three position states, three

velocity states, and two clock states, so that the state to be

estimated is a 8 9 1 vector. When selecting Kalman fil-

tering as the navigation state estimator in the GPS receiver,

using b and d to represent the GPS receiver clock bias and

drift, the differential equation for the clock error is written

as

_b ¼ d þ ub

_d ¼ ud

ð30Þ

where ub * N(0,Sf) and ud * N(0,Sg) are independent

Gaussian distributed white sequences. The PV process

model governed by Eq. (1a) leads to

_x1

_x2

_x3

_x4

_x5

_x6

_x7

_x8

2
66666666664

3
77777777775
¼

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

x1

x2

x3

x4

x5

x6

x7

x8

2
66666666664

3
77777777775
þ

0

u2

0

u4

0

u6

u7

u8

2
66666666664

3
77777777775

where x1, x3, x5 represent the position components; x2, x4, x6

represent the velocity components; and x7 and x8 represent

the receiver clock offset and drift errors, respectively. These

states can be implemented in the WGS-84 coordinates. Note

that the state vector represented in the east, north, and alti-

tude coordinate system is also accessible. In such case, the

))(()( ikik f −− = Xζ

∑
=

−− =
n

i
ik

(m)
ik W

2

0

)(ˆ ζx

k

n

i

T
kikkik

c
ik W QxζxζP +−−= ∑

=

−−−−−
2

0

]ˆ)][(ˆ)[(

))(()( ikik
−− = ζhZ

(m)∑
=

−− =
n

i
ikik W

2

0

)(ˆ Zz

∑
=

−−−− +−−=
n

i
k

T
kikkik

(c)
iW

2

0
yy ]ˆ)][(ˆ)[( RzZzZP

∑
=

−−−− −−=
n

i

T
kikkik

(c)
iW

2

0
x ]ˆ)][(ˆ)[( zZxζP z

1PPK −= yyxzk

)ˆ(ˆˆ −− −+= kkkkk zzKxx
T
kkkk KPKP yy−= −

(1)   The transformed set is given by instantiating each point
        through the process model

(2)  Predicted mean

(3)   Predicted covariance

(4)   Instantiate each of the prediction points through observation
        model

(5)   Predicted observation 

(6)   Innovation covariance 

(7)   Cross covariance

(8)   Performing update using the nominal KF 

P

Fig. 3 Flow chart for the unscented Kalman filter
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coordinate transformation from WGS-84 to ENU frame for

the GPS satellite positions needs to be conducted to ensure

that the correct measurement information is used.

When the PV model is employed, the corresponding

state transition matrix for the model can be obtained to be

Uk ¼

1 Dt 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 Dt 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 Dt 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 Dt
0 0 0 0 0 0 0 1

2
6666666664

3
7777777775

ð31Þ

The process noise covariance matrix for the PV model is:

Qk ¼

Qx

Qy 0
Qz

0 Sf Dt þ Sg
Dt3

3
Sg

Dt2

2

Sg
Dt2

2
SgDt

2
66664

3
77775 ð32Þ

where the submatrices are given by

Qx ¼ Qy ¼ Qz ¼
Sp

Dt3

3
Sp

Dt2

2

Sp
Dt2

2
SpDt

" #

The states and the measurements are related nonlinearly.

The nonlinear pseudorange equation can be linearized by

expanding Taylor’s series around the approximate (or

nominal) user position ðx̂n; ŷn; ẑnÞ and neglecting the

higher terms. If only the pseudorange observables are

available, the linearized measurement equation based on

n observables can be written as given by:

q1

q2

..

.

qn

2
6664

3
7775¼

q̂1

q̂2

..

.

q̂n

2
6664

3
7775þ

h
ð1Þ
x 0 h

ð1Þ
y 0 hð1Þz 0 1 0

h
ð2Þ
x 0 h

ð2Þ
y 0 hð2Þz 0 1 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

h
ðnÞ
x 0 h

ðnÞ
y 0 hðnÞz 0 1 0

2
66664

3
77775

x1

x2

x3

x4

x5

x6

x7

x8

2
66666666664

3
77777777775
þ

vq1

vq2

..

.

vqn

2
6664

3
7775

ð33Þ

where the elements of the measurement model Hk are the

partial derivatives of the predicted measurements with

respect to each state, which is an (n 9 8) matrix.

Hk ¼
ohk

ox
¼

h
ð1Þ
x 0 h

ð1Þ
y 0 hð1Þz 0 1 0

h
ð2Þ
x 0 h

ð2Þ
y 0 hð2Þz 0 1 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

h
ðnÞ
x 0 h

ðnÞ
y 0 hðnÞz 0 1 0

2
66664

3
77775 ð34Þ

The norm of the expected pseudorange hkðx̂�k Þ based on the

GPS satellite position and the a priori state estimate x̂�k is

given by

r̂i ¼ jjhkðx̂�k Þjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂�k � xi

� �2 þ ŷ�k � yi

� �2 þ ẑ�k � zi

� �2
q

The vector (hx
(i), hy

(i), hz
(i)), i = 1, ..., n, denotes the line-of-

sight vector from the user to the satellites:

hðiÞx ¼
x̂�k � xi

r̂i
; hðiÞy ¼

ŷ�k � yi

r̂i
; hðiÞz ¼

ẑ�k � zi

r̂i
ð35Þ

Assuming measurement errors among satellites are

uncorrelated, we have

Rk ¼

rq1
0

rq2

. .
.

0 rqn

2
6664

3
7775 ð36Þ

The proposed nonlinear model

Although it has been very common that additional fictitious

process noise can be added to the system model, however,

the best cure for non convergence caused by unmodeled

states is to correct the model.

To construct the nonlinear dynamic model, consider a

vehicle moving at the velocity represented as Vb ¼ ubi~þ
vbj~þ wbk

*

: The velocity in the fixed frame in terms of

Euler angles and body velocity components has the

relation

V ¼
_x

_y

_z

2
4
3
5

¼
ChCw SUShCw � CUSw CUShCw þ SUSw

ChSw SUShSw þ CUCw CUShSw � SUCw

�Sh SUCh CUCh

2
4

3
5 ub

vb

wb

2
4

3
5

where the following notations are used:SU � sinðUÞ;CU �
cosðUÞ; Sh � sinðhÞ;Ch � cosðhÞ; Sw � sinðwÞ; and Cw :
cos (w). Based on the idea, the dynamic process model of

the GPS receiver can be represented by the nonlinear

model.

_x ¼ ub cos h cos wþ vbðsin U sin h cos w� cos U sin wÞ
þ wbðcos U sin h cos wþ sin U sin wÞ

_y ¼ ub cos h sin wþ vbðsin U sin h sin wþ cos U cos wÞ
þ wbðcos U sin h sin w� sin U cos wÞ

_z ¼ �ub sin hþ vb sin U cos hþ wb cos U cos h

ð37Þ

Suppose that, as the nonholonomic constraint, only the

longitudinal movement is considered and the lateral slippage

is neglected. In case the velocity in the x-component of body

frame is considered, jjVbjj � jjubi~jj � V ; the model can be

simplified
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_x ¼ V cos h cos w

_y ¼ V cos h sin w

_z ¼ �V sin h

ð38Þ

In this case, we consider the GPS navigation filter with

three position states, three angles states, and two clock

states, so that the state to be estimated is a 9 9 1 vector.

The dynamic model governed by Eq. (38) with additive

noise, when written in the form _x ¼ fðx; tÞ þ uðtÞ given in

Eq. (1a), is represented by the 9 9 1 vector

_x
_y
_z
_U
_h
_w
_V
_b
_d

2
66666666664

3
77777777775
¼

_x1

_x2

_x3

_x4

_x5

_x6

_x7

_x8

_x9

2
66666666664

3
77777777775
¼

V cos h cos w
V cos h sin w
�V sin h

0
0
0
0
d
0

2
66666666664

3
77777777775
þ

u1

u2

u3

u4

u5

u6

u7

u8

u9

2
666666666664

3
777777777775

ð39Þ

and

F ¼ of

ox

¼

0 0 0 0 �VShCw �VChSw ChCw 0 0
0 0 0 0 �VShSw VChCw ChSw 0 0
0 0 0 0 �VCh 0 �Sh 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

2
666666666664

3
777777777775

ð40Þ

In this nonlinear dynamic model, attitude angles are

introduced. As part of the state variables, these angles can

be estimated from the GPS filter in a single-antenna receiver

with pseudorange observables. The process noise covariance

matrix for this nonlinear model is given by the form

Qk ¼

q11

q22 0

q33

q44

q55

q66

q77

0 q88 q98

q89 q99

2
666666666664

3
777777777775

ð41Þ

in which the qii are set to be constants, i ¼ 1. . .7; q88 ¼
Sf Dt þ Sg

Dt3

2
; q98 ¼ Sg

Dt2

2
; q89¼Sg

Dt2

2
; q99 ¼ SgDt: Similar

to the representation as in the PV model, the linearized

measurement equation based on n observables for this

nonlinear model is given by:

q1

q2

..

.

qn

2
66664

3
77775¼

q̂1

q̂2

..

.

q̂n

2
66664

3
77775þ

h
ð1Þ
x h

ð1Þ
y hð1Þz 0 0 0 0 1 0

h
ð2Þ
x h

ð2Þ
y hð2Þz 0 0 0 0 1 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0

h
ð3Þ
x h

ð3Þ
y hð3Þz 0 0 0 0 1 0

2
666664

3
777775

x1

x2

x3

x4

x5

x6

x7

x8

x9

2
666666666666664

3
777777777777775

þ

vq1

vq2

..

.

vqn

2
66664

3
77775

ð42Þ

where as defined previously, the elements of the

measurement model Hk are the partial derivatives of the

predicted measurements with respect to each state, which is

an (n 9 9) matrix.

Hk ¼

h
ð1Þ
x h

ð1Þ
y hð1Þz 0 0 0 0 1 0

h
ð2Þ
x h

ð2Þ
y hð2Þz 0 0 0 0 1 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0

h
ð3Þ
x h

ð3Þ
y hð3Þz 0 0 0 0 1 0

2
66664

3
77775 ð43Þ

in which the line-of-sight vector from the user to the sat-

ellites, (hx
(i), hy

(i), hz
(i)), is the same as defined in Sect. 4.1.

Simulation experiment and analysis

Simulation experiments have been carried out to evaluate

the GPS navigation performance for the UKF approach in

comparison with the conventional EKF approach. Both the

PV model and nonlinear model will be employed as the

dynamic process model. Simulation was conducted using a

personal computer with Pentium 4 1.7 GHz CPU. The

computer codes were developed by the authors using the

Matlab1 6.5 version software. The commercial software

Satellite Navigation (SATNAV) toolbox by GPSoft LLC

was employed for generating the satellite positions and

pseudoranges.

The simulation scenario is as follows. The experiment

was conducted on a simulated vehicle trajectory originating

from the position of North 25.1492� and East 121.7775� at

an altitude of 100 m. This is equivalent to �3; 042;½
329:24; 911; 080:22; 694; 074:3�T meters in the WGS-84

ECEF coordinate system. The location of the origin is

defined as the (0,0,0) location in the East-North-Up (ENU)

frame. The three dimensional plot of trajectory is shown as

in Fig. 4. The description of the vehicle motion is listed in

Table 1. In addition, vehicle velocity in the east, north, and

vertical components is provided in Fig. 5; pitch and

heading angle parameters are shown in Fig. 6, for provid-

ing better insight into vehicle dynamic information in each

time interval.
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Since we assumed that the differential GPS (DGPS)

mode is used most of the errors can be corrected, but the

multipath and receiver measurement thermal noise cannot

be eliminated. The measurement noise variances rqi
value

are assumed a priori known, which is set to be (3.5 m)2.

Let each of the white-noise spectral amplitudes that drive

the random walk position states be Sp = 0.1 m2/(rad�s).

Also, let the clock model spectral amplitudes be

Sf = 0.4 9 10- 18 s and Sg = 1.58 9 10- 18 s- 1. These

spectral amplitudes can be used to find the Qk parameters

in Eq. (32) for the PV model. The measurement noise

covariance matrix is

Rk ¼

15 0
15

. .
.

0 15

2
664

3
775

The sigma points capture the same mean and covariance

irrespective of the choice of matrix square root which is

used. The numerical efficient and stable method such as the

Cholesky factorization has been used in obtaining the

sigma points.

Results based on the PV model

The parameters for the UKF are: a = 0.1, b = 2, c = 0.

Figures 7 and 8 provide comparison of GPS positioning

errors for EKF and UKF when the PV model is utilized. In

the three time intervals, 51–100, 151–200, 251–350 s, the

vehicle is conducting maneuvering, and the mismatch of

the model leads to large navigation error. It is seen that

results from both methods almost overlap each other and

little benefit was gained based on the UKF. In order to

improve the navigation estimation accuracy, utilization of a

nonlinear model for better description on the vehicle

dynamic will be more plausible to achieve better estimation

accuracy.
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Fig. 5 Vehicle velocity in the east, north, and vertical components
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Fig. 4 Three dimensional vehicle trajectory (in ENU frame)

Fig. 6 Pitch and heading angle parameters of the vehicle for the

simulation scenario

Table 1 Description of vehicle motion

Time interval (s) Motion

0–50 Constant velocity

51–100 Constant acceleration

101–150 Constant velocity

151–200 Variable acceleration

201–250 Constant velocity

251–350 Circular motion, clockwise turn

351–450 Constant velocity
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Results based on the nonlinear model

For comparison purpose, the same values of process noise

covariance parameters will be utilized for both the EKF

and UKF. Two cases are implemented: (1) a smaller pro-

cess noise is used: qii = 0.02, i = 1,...,7, for which case a =

1e - 4, b = 2, c = 0; (2) a larger process noise is used: qii =

3, i = 1,...,7, for which case a = 0.007, b = 2, c = 0.

Global positioning system navigation performance

comparison between EKF and UKF, when the proposed

nonlinear model is utilized are given in Figs. 9, 10, 11, 12,

13 and 14. Figures 9, 11 and 10, 12 show the east, north

and vertical components of navigational errors for the EKF

and the UKF, for smaller and larger process noise covari-

ance, respectively. It can be seen that substantial estimation

accuracy improvement is obtained by using the proposed

strategy, discussed as follows:

1. In the four time intervals, 0–50, 101–150, 201–250,

351–450 s, the vehicle is not maneuvering and is

conducting constant-velocity straight-line motion for

all the three components. For this case, with good

system modeling, therefore both the EKF and UKF

provide good results. The navigation accuracies based

on the two approaches have relatively smaller

difference.

2. In the three time intervals, 51–100, 151–200, 251–

350 s, the vehicle is conducting maneuvering. The

significant mismatch of the model leads the large

errors in the conventional EKF solution. The UKF with

nonlinear model that better describes the vehicle

dynamics is more able to achieve better navigation

accuracy.

The three velocity components, longitudinal velocity, and

attitude angles of the vehicle can be estimated from the

GPS filter as part of the state variables. Figures 13 and 14

provide the comparison of velocity errors and the Euler

angle errors for EKF and UKF approaches, respectively.

Velocity accuracies determined by both filters are equiv-

alent. In certain time epochs, large estimation errors are

induced, due to large changes in velocity. Certainly,

introducing very large process noise will improve the

accuracy in these epochs, accompanied by the serious

degradation of velocity estimation accuracy in the remain-

ing low dynamic regions. Estimation accuracies for attitude

angles are about the same order except that UKF has better

smoothness and shorter transition time.

Fig. 7 Comparison of GPS positioning errors for EKF and UKF

when the PV model is used (note that both results almost overlap each

other)

Fig. 8 Comparison of RMSE when the conventional PV model is

utilized
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Conclusions

In light of UKF’s superiority to extended Kalman filter, this

paper has presented an unscented Kalman filtering

approach for GPS navigation processing. In the proposed

estimation mechanism, a nonlinear dynamic model has

been suggested. The nonlinear model has been demon-

strated to be effective in navigation accuracy improvement.

The reason is due to the fact that the UKF is able to deal

with the nonlinear formulation, while the linear model does

not reflect the actual dynamic behavior when the vehicle is

maneuvering. Therefore, in the case that PV model is

employed as the dynamic process model, the performance

improvement from the UKF will not be obtained. The UKF

with nonlinear model will ensure better description on the

vehicle dynamics and will be able to achieve better navi-

gation accuracy. Navigation accuracy based on the

proposed method has been compared to that of the con-

ventional EKF approach and has demonstrated substantial

navigational accuracy improvement. Tuning of parameters

for the UKF and process noise covariance should be con-

sidered; more completed dynamic model which better

describes the vehicle dynamic model can be conducted in

future work. In additions, the adaptive algorithm has been

one of the approaches to prevent divergence problem when

precise knowledge on the system models are not available.

Fig. 9 Comparison of GPS positioning errors for EKF and UKF

when the proposed nonlinear model is used (smaller process noise

covariance has been used)

Fig. 10 Comparison of GPS positioning errors for EKF and UKF

when the proposed nonlinear dynamic model is used (larger process

noise covariance has been used)
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These adaptive approaches used in the standard EKF can

also be incorporated for tuning the noise covariance

matrices based on dynamically adjusting the parameters,

leading to the adaptive unscented Kalman filter (AUKF)

for further improvement.
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