
Hardware and Software Considerations for Implementing
Hardware-in-the-Loop Traffic Simulation

Richard B. Wells           John Fisher           Ying Zhou           Brian K. Johnson            Michael Kyte
MRCI/NIATT                       MRCI                          MRCI                        MRCI/NIATT                             NIATT

University of Idaho
Moscow, ID  83844-0901

USA
rwells@ece.uidaho.edu          jcf@ieee.org                                                b.k.johnson@ieee.org         mkyte@uidaho.edu

Abstract – Digital computer simulation provides an important
tool for the study of complex systems. When the complexity of
the problem is too large to warrant an analytical solution,
simulation is the only option to analyze system configurations or
operational modes prior to their implementation in the field.
Not all components in a complex system can be modelled in
adequate detail in computer simulations: for example, only
simple, generic models of traffic controllers are available. Real-
time hardware-in-the-loop simulation allows real traffic
controllers to interact with computer simulations to improve
accuracy. This paper provides an overview of real-time
simulation and then discusses hardware and software
constraints to implementing a controller interface device (the
NIATT CID II) for real-time hardware-in-the-loop simulation.

I. INTRODUCTION
Digital computer simulation provides an important tool for

the study of complex systems. When the complexity of the
problem is too large to warrant an analytical solution,
simulation is the only option to analyze system
configurations or operational modes prior to  implementation
in the field. Dramatic improvements in computer equipment
have provided the abilit y to model large systems with
relatively short simulation run-times, with some classes of
simulation running in less time than the time period they are
simulating.

However, not all components in a complex system can be
modelled in adequate detail i n computer simulations. This is
the result of increasing complexity of devices such as traffic
controllers or protective relays in power systems. These
devices are often small embedded computer systems that are
capable of performing multiple functions, and are often user
programmable.

Although the basic algorithms used are often well known,
the details of the implementation in the controller can have
significant impact in the response to changes in systems
conditions. These manufacturer-specific details are generally
proprietary and are thus not available to incorporate into the
models available in computer simulation. As a result, the
computer simulation may use generic models to represent the
controller. These are adequate for developing a general
simulation of a system, but there can be significant errors
when compared to field results.

Real-time hardware-in-the-loop simulation uses a
computer simulation to model the bulk of the system.
However, the control hardware is interfaced to the computer
simulation and receives inputs from the simulation, makes
control decisions based on those inputs, and sends commands
to activate device models in the simulation. There are several

key challenges to implementing successful hardware-in-the-
loop simulation in a cost-effective manner. In general, either
a specialized computer is needed to run the simulation and
interface to the traffic controller, or an auxili ary interface
device is needed between the computer and the control
device [1]. It is also possible to create a network of control
devices connected to single computer simulation [2].

This paper provides an overview of real-time simulation
and then discusses hardware and software constraints to
implementing a controller interface device (NIATT CID II)
for real-time hardware-in-the-loop simulation. This is
followed with a description of a specific controller interface
device.

II . REAL-TIME SIMULATION

Simulation tools may be classified as ‘ real-time’ or ‘off-
line’ . Real-time simulation tools generate results in
synchronism with a real-time clock. This means that
calculations for each simulation timestep have to be
completed within the same corresponding interval of real-
world time. Real-time simulation tools can be based on
physical analog models or they can be implemented digitally,
often with special purpose computer architectures. Off-line
microscopic traffic simulation packages include:
TSIS/CORSIM [3], VISSIM [4], SimTraffic [5] and
Paramics [6]. Each of these tools has models to represent the
traff ic system components, which can then be assembled into
a system model. These tools are the end result of years of
development. Among the models available are generic
models for traff ic controllers that can be set up to implement
specific signal plans. Each tool also has a graphical user
interface to allow easy display of the simulation results. The
solution engine in each tool allows relatively large traff ic
networks to be modeled with fixed simulation time-steps
generally ranging from 100 milli seconds to 1 second.

Real-time simulation of a traffic network or any other type
of system is only necessary if there is a need for the
simulation to coordinate with something in the real world.
Real-time simulation tools are generally used for some form
of hardware-in-the-loop simulation, where some form of
control hardware such as a traffic controller or a protective
relay for an electric power system is interfaced to the
computer to interact with the computer simulation. The
control hardware takes measurements of operating conditions
from the computer simulation, acts on that information as it
would actual measurements in the field and then sends a
control signal back to the computer simulation (in place of



controlli ng hardware in the field).
Timing is a critical issue in real-time hardware-in-the-loop

simulation. First, the computer simulation must be able to
consistently run at real-time speeds, i.e. it should take 10
seconds to simulate 10 seconds of system time. If the
simulation takes 4 hours to simulate 10 seconds of system
time, it will not be possible. The operating systems
commonly used to run the simulation packages can create
diff iculties in this regard. If the computer system is loaded
heavily performing several tasks in parallel, the simulation
could take significantly longer to run. In some cases, special
purpose computing platforms with limited real-time
operating systems (non-multitasking operating systems) will
be required. In addition, if the simulation runs faster than
real-time, the simulation must be slowed down to run in real
time.

Second, the communication between the computer running
the simulation and control device must be fast enough to
allow real-time simulation to be maintained. In many cases, a
special interface will be needed between the computer and
the control device since the control device may not use
communication protocols that are compatible with standard
computer interfaces. This interface device will communicate
with the controller through the controller’s normal cable
interface. This side of the communication will generally be
sufficient for real-time simulation since the control device
normally communicates this way in the field. A key concern
is achieving sufficient data transfer rates between the
computer and the interface device. There are many high-
speed data communication protocols available, but, if
possible this communication should take place using standard
PC communication instead of requiring additional hardware
for the PC as well (adding a second interface). For example,
most newer PC’s are shipped with Universal Serial Bus
(USB) ports. If USB communication is capable of
performing real-time simulation, this would preclude the
need to add capabilit y to use faster industrial communication
protocols. This communication can create a significant
bottleneck, especially in cases where a large number of
control devices are to be connected to one computer
simulation.

III. HARDWARE CONSTRAINTS

Hardware-in-the-loop operation imposes the constraint of
real-time data processing on the system. This has in its turn
constraints that must be met by the system, which affect or
are affected by the computer’s operating system (OS), the
CID II’s embedded controller, and the simulation network. In
this section we briefly describe these considerations.

The first hardware constraint imposed on the system arises
in conjunction with the OS. Ideally a real-time processing
task is best suited to run under a real-time-executive (RTE)
operating system. RTE’s differ from conventional multi -
tasking OS’s in terms of scheduling algorithms [7],
synchronization of various system resources [8], and
consistency control schemes for memory resources accessed
by concurrent processes [9]. In contrast, a conventional OS,
e.g. Windows, lacks real-time support mechanisms. For
example, scheduling is often carried out using a run-time

slice algorithm, which simply assigns to each executing
process some particular average percentage of time. It thus
falls on the real-time application to manage its own real-time
characteristics and, additionally, frequently places constraints
on the number of active applications multi -tasked
“concurrently” in the system. In some cases of older OS’s
(e.g. Windows 3.1), multitasking is “cooperative,” a term that
means the application program itself is required to check a
message queue and “voluntarily” give up return control of
the system to the OS. “Uncooperative” applications could
prevent the user from switching applications or even from
accessing the system itself. In the application described in
this paper, responsibilit y for software management rests with
the CORSIM program itself and the user is required to
restrict the total application task load and/or properly assign
execution priorities among multiple tasks.

Timing consistency is crucial to the accuracy of the
hardware-in-loop simulation. In particular, the fundamental
time reference is maintained by the CORSIM software, and
CID II timing must remain synchronized to this reference. To
do this, a periodic timing signal must be transmitted from the
PC to the CID II network. In our application, this task is
accomplished as part of the CID II network communication
protocol. Providing a consistent timing reference for the
system favors the use of a synchronous communication
protocol (whereas most computer peripherals employ an
asynchronous parallel protocol, e.g. IEEE 1284 or IEEE 488,
or an asynchronous serial protocol, i.e. RS-232) [10]. In
synchronous protocols, the unit of information transfer is
called a frame. At the physical layer, the interface hardware
provides a SP with frame synchronization and error control.
For this application, since it was desirable to select a standard
protocol, we use the Universal Serial Bus (USB) protocol
[11].

USB provides a 12 Mbps serial channel divided into
frames of 1 msec each. Frame synchronization is provided by
a 48-bit start of frame (SOF) packet broadcast from the PC
once per msec. The USB SOF packet structure is shown in
Fig. 1. The CID II USB interface hardware detects SOF, and
SOF detect is used to establish the fundamental timing
reference within the CID II. All CID II operations are
constrained to execute within a time interval of 1 msec and
then wait for the next SOF detect.

Link management and flow control are provided in the
second layer of the interface protocol (data link layer). We

SY N C PI D Frame # CRC EOP I PGB

8 bytes 8 bytes 11 bytes 5 bytes 3 bytes 13 bytes

SY NC: sync field
PID : packet identi fi er

Frame #: f rame number
CRC: cycli c redundancy check f or the f rame number
EOP: end of packet

I PGB: inter-packet guard band

Fig. 1: USB Start of Frame Packet



use two of the four available transfer types available in USB.
The control transfer is required of all USB devices and is
executed when a peripheral is attached to the USB. This
transfer is used to setup and identify the USB peripheral to
the PC and establish its operating characteristics. It consists
of a setup transaction, a data transaction, and an
acknowledgement transaction as shown in Fig. 2.

Actual hardware-in-the-loop simulation operation uses
USB’s isochronous transfer mode [11].  This transfer mode
guarantees bounded data transfer latency, guaranteed bus
access, lower transaction overhead in the frame, and can be
implemented with relatively simple firmware in the CID II
controller. Two frame formats are employed in our protocol,
an Out Format (OUT) for data transfers from the PC to the
CID II and an In Format (IN) for data transfers from the CID
II to the PC.

The OUT format is shown in Fig. 3. Each CID II is
allocated 73 bytes of data plus 10 bytes of transaction
overhead. The transaction overhead consists of 2 bytes of
sync, 2 bytes of packet ID (PID), 2 bytes for device
addressing and a CRC5 check field, 2 bytes for a CRC16

data check field, and 2 bytes of guard interval between
transaction packets. The data packet, shown in Fig. 3,
includes a command op code for the CID II, an 8 byte
operand field, and a 64 byte traffic sensor timing data field.
These last two fields contain data from CORSIM that
determine the traffic sensor input signals CID II supplies to
the traffic controller (TC). These fields merit some
explanation, which will be provided below after we discuss
the IN field. The IN format is shown in Fig. 4. This format is
used to return phase information from the TC to the
CORSIM program.

Referring again to Fig. 3, the CID II simulates the binary-
valued inputs for up to 64 traff ic sensors to the TC. The time-
width of each sensor signal is specified by CORSIM with 1
msec timing resolution. Specification of the pulse width
requires 2 bytes of timing data, providing a maximum pulse
width of 65.535 seconds. With a 64 byte field available to
each CID II, our protocol allows new sensor commands to be
issued for only up to 32 sensors during any one USB frame.
This is acceptable because it is extremely atypical for a
CORSIM simulation to require changes to one-half or more
of a TC’s sensor signals at any one time. The 8 byte operand
field is used to specify which sensor outputs are receiving
new actuation data in an OUT transaction. Timing data is
packed into the timing data field such that the lowest
numbered activated sensor receives the first 2 bytes of timing
data, the next lowest sensor receives the next 2 bytes, etc.

When a sensor is activated, CID II stores the commanded
pulse width for that sensor in internal memory in a
“milli seconds remaining” (MSR) format. At every SOF
detect, every non-zero MSR is decremented; the sensor
output to the TC is de-asserted when this count reaches zero.

Using this protocol scheme, a large network of controllers
can be accommodated using a dedicated USB network, as
ill ustrated in Fig. 5. The principal limitation on the size of the
network will be set by the execution-time required by the
CORSIM software in its simulation computations and
managing the data buffering to and from the CID II network.

One last hardware constraint is worthy of note. Using real-
time simulation involving actual TC’s inevitably means that
hardware-in-loop simulations require a total simulation time
equivalent to the real traff ic flow time in the field.
Consequently, it is conceivable that these simulations may
take several hours to complete for complex traffic corridors.
This brings with it a requirement that the CID II be robust in

Idle

Token

Data

Handshake

Idle

Setup

Data

ACK

Host Function

Fig: 2: Control Transfer SETUP Transaction

CID ID       operand data

1 byte             8 bytes

FraOverhea
   transaction     CID 1       transaction     CID2                                    CID n

overhead overhead
   Frame
Overhead

EOF

Transaction 1

Transaction 2

Fig. 4: USB Frame Structure (IN) for CID II Application

Command      operand data                      Timing Data

1 byte             8 bytes                                  64 bytes
                                         1

FraOverhea

   transaction     CID 1       transaction     CID2                                    CID n

overhead overhead

   Frame
Overhead

EOF

Transaction 1

Transaction 2

Fig. 3: USB Frame Structure (OUT) for CID II Application



the face of short-term power line dropouts. The CID II power
supply has been designed to be able to withstand a line
dropout of up to 1 second in duration, which is comparable to
the abilit y of a typical PC’s line cycle dropout immunity. The
largest power dissipation element of the CID II is its LED
display panel, which provides the operator with visual
feedback of the progress of the simulation. The CID II
includes in its design a power dropout detection circuit that
the CID II’s microcontroller monitors. When a power
dropout is detected, the CID II conserves power by turning
off all it s LED indicators, which nearly doubles the dropout
immunity of the CID II for the same operating eff iciency in
its power supply.

IV. SOFTWARE MODIFICATIONS

There several software modifications that are also required
to run hardware-in-the-loop simulation. First of all , there has
to be some means for pulli ng data from the simulation as it
runs and simultaneously writing the response of the traff ic
controller into the simulation as commands to the simulated

traff ic signals. In addition, the simulation data file needs to
be modified to identify which intersections will access the
CID II to communicate with the physical traffic controller
rather than the simulated traff ic controller. The user could
modify the file by hand; however, it is more efficient to
develop a graphical interface to simpli fy this task for the
program user.

CORSIM exchanges data via a shared memory. To
perform real-time simulation, the CORSIM application is
modified to call two dynamic link library (DLL) modules
(CORSIM.dll and interface.dll ). These two dynamic link
library modules exchange data with the CID by using the
shared memory structure. Detector states are updated by
CORSIM, and the interface.dll reads those detector states and
sends them to the CID II via the USB interface.  Similarly,
the phase states that the interface.dll reads via the USB
interface are updated in the shared memory structure so
CORSIM can act on them.

Finally, a software driver is needed to interface the OS
with the USB bus. Operating systems that bundle systems
with a USB driver will meet the minimum requirements
described in section III . In addition, microcontroller vendors
who sell USB capable microcontrollers distribute their own
drivers. Fig. 6 shows the role of the software in the CID II.

The controller interface device also enables the creation of
additional software tools beyond the hardware-in-the-loop
simulation. A software version of a suitcase tester can also be
implemented. The suitcase tester software application allows
the user the abilit y to test each traff ic controller input and
verify its response to a variety of programmed conditions.

V. HARDWARE IMPLEMENTATION

A. System Overview

The CID II is a microcontroller-based system that connects to
a PC using the Universal Serial Bus (USB) interface.
Physically, a motherboard/daughterboard arrangement is
used to facilit ate easy assembly and part replacement.  Seven
daughterboards are used: microcontroller, display, CID II
input (2), CID II output (2), and power supply.

Because of the large number of signals being routed and
the spacing limitations of the target manufacturing process,
discrete logic chips were used for all digital logic functions
instead of programmable logic.

A PC running Microsoft Windows can perform send and
receive operations for up to 40 CID IIs in one second.  Thus,
a CORSIM simulation with a 1 Hz update rate could employ
40 CID II’s as shown in Fig. 5.

B. Microcontroller

The microcontroller used is Cypress Semiconductors’
popular EZ-USB 8051.  This processor runs at  24 MHz with
a four-clock instruction cycle, and contains approximately 6
KB of available on-chip RAM in our configuration.  Code is
stored on an external 16 KB EPROM.

Communication with the input and output boards is
accomplished over an 8-bit data bus and enable/disable lines.
Both input boards and both output boards are identical; the

  64

    CID 1

    CID3

USB Hubs

    CID 2

    CID 40

USB

USB

USB

USB

USB

  Traffic
Controller  1

  Traffic
Controller  2

  Traffic
Controller  3

  Traffic
Controller 40

CORSIM     64

64

    64

    64

  64

64

64

Fig. 5: NIATT CID II System Topology

Fig. 6: Software interface between the CID II and CORSIM



motherboard routes the proper enable/disable lines to the
proper boards.

C. Traffic Controller Interface

The CID II uses discrete connectors and custom cables to
interface with a variety of traffic controller models with up to
64 inputs and 64 outputs.  Traffic controller inputs are read
every 1 ms, when the USB start-of-frame interrupt is
received.

Traffic controller inputs are set when the CID II receives
new controller input data from the PC.  Each set of input data
tells what bits should be turned on/off, as well as the duration
for which a given data bit is on or off. Including timing data
allows the PC to send data at a manageable rate, and keeps
pulse lengths deterministic.

D. PC Interface

The CID II communicates with the PC over the USB
interface.  The USB specification defines several
communication modes.  The CID II uses the “isochronous”
mode, designed for data that is time-critical but may be lost
without catastrophe (e.g. digital audio data to a USB
speaker).

The CID II can receive a command from the PC every 1
ms.  Traff ic controller outputs are read every 1 ms and sent to
the PC to be read at its leisure.

The prevent confusion in a multiple-CID II environment,
data sent to the PC is tagged with a number identifying the
CID II that sent the data.  This number is set with a bank of
printed circuit board mounted dual inline package (DIP) IC
switches.

E. Human Interface

To facilit ate debugging, a display is included.  128 LEDs
show the status of all i nputs and outputs.  Two 7-segment
displays show the CID II identification number.  A self-test
button is also provided.

F. Self-test Function

The self-test feature uses a loopback cable to connect each
CID II input to the correspondingly-numbered CID II output.
The test first turns on all the display LEDs for visual
inspection.  It then performs a set of input/output checks to
find faulty inputs or outputs.  After the test is completed, the
position of faulty I/O pairs is displayed on the display LEDs.

VI. CONCLUSION

Digital computer simulation provides an important tool for
the study of complex systems. When the complexity of the
problem is too large to warrant an analytical solution,
simulation is the only option to analyze system
configurations or operational modes prior to their
implementation in the field. Not all components in a complex
system can be modelled in adequate detail i n computer
simulations, for example only simple, generic models of

traff ic controllers are available. Real-time hardware-in-the-
loop simulation allows real traffic controllers to interact with
computer simulations to improve accuracy. This paper
provides an overview of real-time simulation and then
discusses hardware and software constraints to implementing
a controller interface device (the NIATT CID II) for real-
time hardware-in-the-loop simulation.

VII. ACKNOWLEDGMENT

The authors gratefully acknowledge the contributions from
Zhen Li, Darcy Bullock, Peter Kohl, Jeremiah J. Remus,
James Richards, Eugene Bordenkircher, Cody Mill er, Kenton
Veeder, Tricia Veeder, Ivan Anderson, Dan Gordon, Darin
McKee, Geoff Biedler, and Mike Adams.

U.S. Department of Transportation University
Transportation Centers Grant DTRS98-G-0027 supported
Work on this project. This work was performed through the
University of Idaho National Institute for Advanced
Transportation Technology and the University of Idaho
Microelectronics Research and Communications Institute.

VIII. REFERENCES
[1] Bullock, D., T. Urbanik, “Hardware-In-The-Loop

Evaluation of Traff ic Signal Systems,” Proceedings of
the 2000 IEE Conference on Road Transport
Information and Control. April 4-6, 2000.

[2] Engelbrecht, R., C. Poe, and K. Balke, 1999,
“Development of a Distributed Hardware-In-The-Loop
Simulation System for Transportation Networks,”
Transportation Research Board Annual Meeting.
National Research Council , Washington, DC, Preprint
#990599.

[3] ITT Systems & Sciences Corporation. CORSIM User’s
Manual. Version 1.04. FHWA, U.S. Department of
Transportation, March 1998.

[4] PTV Planung Transport Verkehr AG. VISSIM User
Manual. Version 3.00. Karlsruhe, Germany, Jan. 2000.

[5] Trafficware. SimTraffic User’s Guide. Berkeley, CA,
1998.

[6] Quadstone Limited. Paramics System Overview,
Edinburgh  Scotland

[7] K. Ramamritham and J.A. Stankovic, “Scheduling
algorithms and operating systems support for real-time
systems,” Proc. IEEE, vol. 82, no. 1, Jan., 1994, pp. 55-
67.

[8] N. Suri, M.M. Hugue, and C.J. Walter, “Synchronization
issues in real-time systems,” Proc. IEEE, vol. 82, no. 1,
Jan., 1994, pp. 41-54.

[9] P.S. Yu, K.-L. Wu, K.-J. Lin and S.H. Son, “On real-
time databases: concurrency control and scheduling,”
Proc. IEEE, vol. 82, no. 1, Jan., 1994, pp. 140-157.

[10] Reference Data for Engineers: Radio, Electronics,
Computer, and Communications, 7th ed., E.C. Jordan
(ed.), Indianapolis, IN: Howard W. Sams, 1986, Chap.
26, pp. 10-19.

[11] Compaq, Digital Equipment Corp., IBM PC Co., Intel,
Microsoft, NEC, and Northern Telecom, “USB
Specification 1.0,” rev. 1.0, Jan. 19, 1996,
http://www.usb.org


