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Abstract — Digital computer simulation provides an important
tool for the study of complex systems. When the complexity of
the problem is too large to warrant an analytical solution,
simulation isthe only option to analyze system configurations or
operational modes prior to their implementation in the field.
Not all components in a complex system can be modelled in
adequate detail in computer simulations: for example, only
simple, generic models of traffic controllers are available. Real-
time hardware-in-the-loop simulation allows real traffic
controllers to interact with computer simulations to improve
accuracy. This paper provides an overview of real-time
simulation and then discusses hardware and software
constraints to implementing a controller interface device (the
NIATT CID I1) for real-time har dwar e-in-the-loop simulation.

[. INTRODUCTION

Digital computer simulation provides an important tool for
the study of complex systems. When the complexity of the
problem is too large to warrant an analyticd solution,
simulation is the only option to anayze system
configurations or operational modes prior to implementation
in the field. Dramatic improvements in computer equipment
have provided the ability to model large systems with
relatively short simulation run-times, with some dasses of
simulation running in lesstime than the time period they are
simulating.

However, not al components in a complex system can be
modell ed in adequate detail in computer simulations. This is
the result of increasing complexity of devices such as traffic
controllers or protedive relays in power systems. These
devices are often small embedded computer systems that are
cgpable of performing multiple functions, and are often user
programmable.

Although the basic dgorithms used are often well known,
the detail s of the implementation in the wntroller can have
significant impad in the response to changes in systems
conditions. These manufadurer-spedfic detail s are generaly
proprietary and are thus not avail able to incorporate into the
models available in computer simulation. As a result, the
computer simulation may use generic models to represent the
controller. These are adequate for developing a genera
simulation of a system, but there can be significant errors
when compared to field results.

Red-time hardware-in-the-loop simulation uwses a
computer simulation to model the bulk of the system.
However, the control hardware is interfaced to the computer
simulation and receves inputs from the simulation, makes
control dedsions based on those inputs, and sends commands
to adivate device models in the simulation. There ae several

key challenges to implementing succesdul hardware-in-the-
loop simulation in a cost-effedive manner. In generd, either
a spedalized computer is needed to run the ssmulation and
interface to the traffic controller, or an auxiliary interface
device is needed between the computer and the cntrol
device [1]. It is also possble to crede a network of control
devices conneded to single computer simulation [2].

This paper provides an overview of red-time simulation
and then dscusses hardware and software constraints to
implementing a controller interfacedevice (NIATT CID 1)
for red-time hardware-in-the-loop simulation. This is
followed with a description of a spedfic controller interface
device

II. REAL-TIME SIMULATION

Simulation tools may be dasdfied as ‘red-time’ or ‘off-
line. Red-time simulation tools generate results in
synchronism with a red-time dock. This meas that
cdculations for each simulation timestep have to be
completed within the same corresponding interval of red-
world time. Red-time simulation tods can be based on
physicd analog models or they can be implemented digitally,
often with spedal purpose computer architedures. Off-line
microscopic  traffic  simulation  packages  include:
TSISCORSIM [3], VISSIM [4], SimTraffic [5] and
Paramics [6]. Each o these tools has models to represent the
traffic system components, which can then be assembled into
a system model. These tools are the end result of yeas of
development. Among the models available are generic
models for traffic controll ers that can be set up to implement
spedfic signal plans. Each tod also has a graphicd user
interfaceto allow easy display of the simulation results. The
solution engine in each tool alows relatively large traffic
networks to be modeled with fixed simulation time-steps
generally ranging from 100 milli seconds to 1 second.

Red-time simulation of atraffic network or any other type
of system is only necessary if there is a need for the
simulation to coordinate with something in the red world.
Red-time simulation tools are generally used for some form
of hardware-in-the-loop simulation, where some form of
control hardware such as a traffic controller or a protedive
relay for an eledric power system is interfaced to the
computer to interad with the computer simulation. The
control hardware takes measurements of operating conditions
from the computer simulation, ads on that information as it
would adual measurements in the field and then sends a
control signal back to the computer simulation (in place of



controlling hardware in the field).

Timing is a criticd iswue in red-time hardware-in-the-loop
simulation. First, the computer simulation must be able to
consistently run at red-time spedls, i.e. it shodd take 10
seonds to simulate 10 seconds of system time. If the
simulation takes 4 hours to simulate 10 seconds of system
time, it will not be possbhle. The operating systems
commonly used to run the simulation packages can crede
difficulties in this regard. If the computer system is loaded
heavily performing several tasks in paralel, the ssmulation
could take significantly longer to run. In some cases, spedal
purpose computing patforms with limited red-time
operating systems (non-multitasking operating systems) will
be required. In addition, if the simulation runs faster than
red-time, the simulation must be slowed dawn to run in red
time.

Semnd, the communication between the computer running
the simulation and control device must be fast enough to
alow red-time simulation to be maintained. In many cases, a
spedal interfacewill be needed between the cmmputer and
the ntrol device since the control device may not use
communicaion protocols that are compatible with standard
computer interfaces. This interfacedevice will communicae
with the controller through the cntroller’s normal cable
interface This s$de of the communicaion will generaly be
sufficient for red-time simulation since the control device
normally communicates this way in the field. A key concern
is adiieving sufficient data transfer rates between the
computer and the interface device There ae many high-
speed data @mmunicaion protocols available, but, if
possble this communication should take placeusing standard
PC communication instead of requiring additional hardware
for the PC as well (adding a second interface). For example,
most newer PC's are shipped with Universal Serial Bus
(USB) ports. If USB communicaion is capable of
performing red-time simulation, this would preclude the
need to add capability to use faster industrial communication
protocols. This communicaion can creade a significant
bottleneck, espedally in cases where a large number of
control devices are to be conneded to one computer
simulation.

I11. HARDWARE CONSTRAINTS

Hardware-in-the-loop operation imposes the constraint of
red-time data processing on the system. This has in its turn
constraints that must be met by the system, which affea or
are dfeded by the computer’s operating system (OS), the
CID II's embedded controll er, and the simulation retwork. In
this sdion we briefly describe these considerations.

The first hardware constraint imposed on the system arises
in conjunction with the OS. Idedly a red-time processng
task is best suited to run under a red-time-executive (RTE)
operating system. RTE's differ from conventional muilti-
tasking OS's in terms of scheduling algorithms [7],
synchroniztion of various system resources [8], and
consistency control schemes for memory resources accessd
by concurrent processes [9]. In contrast, a conventional OS,
e.g. Windows, ladks red-time support mechanisms. For
example, scheduling is often carried ou using a run-time
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dice dgorithm, which simply assgns to ead executing
process some particular average percentage of time. It thus
falls on the red-time appli caion to manage its own red-time
charaderistics and, additionally, frequently places constraints
on the number of adive applicaions multi-tasked
“concurrently” in the system. In some caes of older OS's
(e.g. Windows 3.1), multitasking is “cooperative,” a term that
means the applicaion program itself is required to check a
messge queue and “voluntarily” give up return control of
the system to the OS. “Uncooperative” applicaions could
prevent the user from switching applicdions or even from
accesdng the system itself. In the application described in
this paper, responsibility for software management rests with
the CORSIM program itself and the user is required to
restrict the total application task load and/or properly assgn
exeaution priorities among multi ple tasks.

Timing consistency is crucial to the acaracy of the
hardware-in-loop simulation. In particular, the fundamental
time reference is maintained by the CORSIM software, and
CID Il timing must remain synchronized to thisreference To
do this, a periodic timing signal must be transmitted from the
PC to the CID Il network. In our application, this task is
acomplished as part of the CID Il network communicaion
protocol. Providing a consistent timing reference for the
system favors the use of a synchronous communicéaion
protocol (whereas most computer peripherals employ an
asynchronous parallel protocol, e.qg. |IEEE 1284 o IEEE 488,
or an asynchronous sria protocol, i.e. RS-232 [10]. In
synchronous protocols, the unit of information transfer is
cdled a frame. At the physicd layer, the interface hardware
provides a SP with frame synchronization and error control.
For this application, sinceit was desirable to seled a standard
protocol, we use the Universal Seria Bus (USB) protocol
[11].

USB provides a 12 Mbps <ria channel divided into
frames of 1 msec eah. Frame synchronizaion is provided by
a 48-hit start of frame (SOF) packet broadcast from the PC
once per msec. The USB SOF packet structure is shown in
Fig. 1. The CID Il USB interfacehardware deteds SOF, and
SOF deted is used to establish the fundamental timing
reference within the CID II. All CID Il operations are
constrained to execute within a time interval of 1 msec ad
then wait for the next SOF deted.

Link management and flow control are provided in the
seoond layer of the interface protocol (data link layer). We
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use two of the four avail able transfer types avail able in USB.
The control transfer is required of all USB devices and is
exeauted when a peripherd is attached to the USB. This
transfer is used to setup and identify the USB peripheral to
the PC and establish its operating charaderistics. It consists
of a setup transadion, a data transadion, and an
adknowledgement transadion as shown in Fig. 2.

Actual hardware-in-the-loop simulation operation uses
USB’s isochronous transfer mode [11]. This transfer mode
guarantees bounded data transfer latency, guaranteed bus
acces lower transadion owerhead in the frame, and can be
implemented with relatively simple firmware in the CID I
controller. Two frame formats are employed in our protocol,
an Out Format (OUT) for data transfers from the PC to the
CID Il and an In Format (IN) for data transfers from the CID
I to the PC.

The OUT format is shown in Fig. 3. Each CID Il is
alocaed 73 bytes of data plus 10 bytes of transadion
overhead. The transadion owerhead consists of 2 bytes of
sync, 2 bytes of packet ID (PID), 2 bytes for device
addressng and a CRC5 chedk field, 2 bytes for a CRC16
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Fig. 3: USB Frame Structure (OUT) for CID Il Applicaion
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Fig. 4: USB Frame Structure (IN) for CID Il Application

data check field, and 2 bytes of guard interval between
transadion padkets. The data packet, shown in Fig. 3,
includes a command op code for the CID Il, an 8 byte
operand field, and a 64 byte traffic sensor timing data field.
These last two fields contain data from CORSIM that
determine the traffic sensor input signals CID 11 supplies to
the traffic controller (TC). These fields merit some
explanation, which will be provided below after we discuss
the IN field. The IN format is shown in Fig. 4. This format is
used to return phase information from the TC to the
CORSIM program.

Referring again to Fig. 3, the CID 1l simulates the binary-
valued inputs for up to 64 traffic sensors to the TC. The time-
width of each sensor signal is spedfied by CORSIM with 1
msec timing resolution. Spedficadion o the pulse width
requires 2 bytes of timing data, providing a maximum pulse
width of 65.535 seconds. With a 64 byte field available to
ead CID I, our protocol allows new sensor commands to be
isaued for only up to 32 sensors during any one USB frame.
This is aceptable because it is extremely atypicd for a
CORSIM simulation to reguire changes to one-half or more
of aTC's nsor signals at any one time. The 8 byte operand
field is used to spedfy which sensor outputs are receving
new aduation data in an OUT transadion. Timing data is
padked into the timing data field such that the lowest
numbered adivated sensor recaves the first 2 bytes of timing
data, the next lowest sensor recaves the next 2 bytes, etc.

When a sensor is adivated, CID |l stores the commanded
pulse width for that sensor in internal memory in a
“milli seconds remaining” (MSR) format. At every SOF
deted, every non-zero MSR is deaemented; the sensor
output to the TC is de-asserted when this count reaches zero.

Using this protocol scheme, a large network of controllers
can be acommodated using a dedicaed USB network, as
ill ustrated in Fig. 5. The principal limitation an the size of the
network will be set by the execution-time required by the
CORSIM software in its dmulation computations and
managing the data buffering to and from the CID |l network.

One last hardware constraint is worthy of note. Using red-
time simulation involving adual TC's inevitably means that
hardware-in-loop simulations require a total simulation time
equivalent to the red traffic flow time in the field.
Consequently, it is concelivable that these simulations may
take severa hours to complete for complex traffic corridors.
This brings with it a requirement that the CID Il be robust in
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the face of short-term power line dropouts. The CID Il power
supply has been designed to be able to withstand a line
dropout of up to 1second in duration, which is comparable to
the aility of atypicd PC'sline cycle dropout immunity. The
largest power dissipation element of the CID Il isits LED
display panel, which provides the operator with visual
feedback of the progress of the simulation. The CID Il
includes in its design a power dropout detedion circuit that
the CID II's microcontroller monitors. When a power
dropout is deteaed, the CID Il conserves power by turning
off al its LED indicaors, which nealy doubles the dropout
immunity of the CID Il for the same operating efficiency in
its power supply.

IV. SOFTWARE MODIFICATIONS

There severa software modificaions that are also required
to run hardware-in-the-loop simulation. First of al, there has
to be some means for pulling data from the simulation as it
runs and simultaneously writing the response of the traffic
controller into the simulation as commands to the simulated
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Fig. 6: Software interface between the CID |l and CORSIM

traffic signals. In addition, the simulation data file needs to
be modified to identify which intersedions will access the
CID Il to communicate with the physicd traffic controller
rather than the simulated traffic controller. The user could
modify the file by hand; however, it is more dficient to
develop a graphicd interface to simplify this task for the
program user.

CORSIM exchanges data via a shared memory. To
perform red-time simulation, the CORSIM applicdion is
modified to cdl two dynamic link library (DLL) modules
(CORSIM.dIl and interfacedll). These two dynamic link
library modules exchange data with the CID by using the
shared memory structure. Detedor states are updated by
CORSIM, and the interfacedll reads those detedor states and
sends them to the CID Il via the USB interface Similarly,
the phase states that the interfacedll reads via the USB
interface are updated in the shared memory structure so
CORSIM can ad on them.

Finaly, a software driver is needed to interface the OS
with the USB bus. Operating systems that bundle systems
with a USB driver will med the minimum requirements
described in sedion I1l. In addition, microcontroller vendors
who sell USB capable microcontrollers distribute their own
drivers. Fig. 6 shows the role of the softwarein the CID II.

The controller interfacedevice dso enables the credion of
additional software tods beyond the hardware-in-the-loop
simulation. A software version of a suitcese tester can also be
implemented. The suitcase tester software application allows
the user the ability to test each traffic controller input and
verify itsresponse to avariety of programmed condtions.

V. HARDWARE IMPLEMENTATION
A. System Overview

The CID Il isamicrocontroll er-based system that connedsto
a PC using the Universal Seriad Bus (USB) interface
Physicdly, a motherboard/daughterboard arrangement is
used to fadlit ate eay assembly and part replacament. Seven
daughterboards are used: microcontroller, display, CID Il
input (2), CID Il output (2), and power supply.

Because of the large number of signals being routed and
the spadng limitations of the target manufaduring process
discrete logic chips were used for al digital logic functions
instead of programmable logic.

A PC running Microsoft Windows can perform send and
recave operations for up to 40 CID Ilsin one second. Thus,
a CORSIM simulation with a 1 Hz update rate could employ
40 CID II'sas shown in Fig. 5.

B. Microcontroller

The microcontroller used is Cypress Semiconductors
popular EZ-USB 8051. This processor runsat 24 MHz with
a four-clock instruction cycle, and contains approximately 6
KB of available on-chip RAM in aur configuration. Code is
stored on an external 16 KB EPROM.

Communicaion with the input and output boards is
acomplished over an 8-bit data bus and enable/disable lines.
Both input boards and both output boards are identicd; the



motherboard routes the proper enable/disable lines to the
proper boards.

C. Traffic Controller Interface

The CID Il uses discrete connedors and custom cables to
interfacewith avariety of traffic controller models with upto
64 inputs and 64 outputs. Traffic controller inputs are read
every 1 ms, when the USB start-of-frame interrupt is
receved.

Traffic controller inputs are set when the CID 1l receves
new controller input data from the PC. Each set of input data
tellswhat bits should be turned on/off, as well as the duration
for which a given data bit is on or off. Including timing data
allows the PC to send data & a manageable rate, and keegps
pulse lengths deterministic.

D. PC Interface

The CID Il communicates with the PC over the USB
interface The USB gpedficaion defines severa
communicaion modes. The CID Il uses the “isochronous’
mode, designed for data that is time-criticd but may be lost
without caastrophe (e.g. digita audio data to a USB
spesker).

The CID |l can recave acommand from the PC every 1
ms. Traffic controller outputs are read every 1 msand sent to
the PC to beread at itsleisure.

The prevent confusion in a multiple-CID I environment,
data sent to the PC is tagged with a number identifying the
CID Il that sent the data. This number is st with a bank of
printed circuit board mounted dual inline padkage (DIP) IC
switches.

E. Human Interface

To fadlitate debugging, a display is included. 128 LEDs
show the status of al inputs and autputs. Two 7-segment
displays show the CID Il identification number. A self-test
button isalso provided.

F. Self-test Function

The self-test feaure uses a loopbadk cable to conned each
CID Il input to the correspondingly-numbered CID |l output.
The test first turns on al the display LEDs for visua
inspedion. It then performs a set of input/output chedks to
find faulty inputs or outputs. After the test is completed, the
position d faulty 1/0O pairsis displayed on the display LEDs.

VI. CONCLUSION

Digital computer simulation provides an important tool for
the study of complex systems. When the complexity of the
problem is too large to warrant an analyticd solution,
simulation is the only option to andyze system
configurations or operational modes prior to ther
implementation in the field. Not all componentsin a complex
system can be modelled in adequate detail in computer
simulations, for example only simple, generic models of

traffic controllers are available. Red-time hardware-in-the-
loop simulation allows red traffic controll ers to interad with
computer simulations to improve acuracy. This paper
provides an overview of red-time simulation and then
discusses hardware and software constraints to implementing
a ontroller interface device (the NIATT CID 1) for red-
time hardware-in-the-loop simulation.
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