
A Wireless Sensor Network Protocol for the OMG
Data Distribution Service

Kai Beckmann and Marcus Thoss
Distributed Systems Lab, RheinMain University of Applied Sciences

Unter den Eichen 5, D-65195 Wiesbaden, Germany
Email: {kai.beckmann|marcus.thoss}@hs-rm.de

Abstract—Wireless Sensor Network technologies are maturing
into industrial applicability, but the availability of broadly sup-
ported architectures and integration of existing standards is still
lagging behind. As a proposal to ameliorate this situation, we con-
sider the OMG Data Distribution Service (DDS), a middleware
standard for interoperable data-centric publish/subscribe archi-
tectures with real-time capabilities, a candidate for standards-
based realisations of equally data-centric WSN scenarios.

DDS is rooted in larger-scale architectures. Consequently, the
RTPS network protocol defined as a sibling standard to DDS
assumes Ethernet-sized network frames and substantial commu-
nication resources, which are potential obstacles to applying DDS
to WSNs. We therefore propose SNPS as an alternative transport
protocol for DDS communication. SNPS has been designed
as part of sDDS, a model-driven DDS realization architecture
supporting highly resource-constrained embedded sensor node
platforms. Still, SNPS is generally independent of sDDS; it was
demonstrated to be usable even with minimalist solutions lacking
a proper DDS run-time system.

For SNPS, a modular layered architecture focussing on min-
imum footprint and scalability was defined. SNPS packets are
assembled from an extensible set of submessages that are chosen
and filled according to a well-defined, unambiguous protocol state
engine. Keeping a stack of context information for a stream of
SNPS submessages minimizes explicit state representation in the
resulting packet structure. Other aspects of the protocol design
are the support for bundling of data to minimize the total number
of link layer frames exchanged and the leveraging of multi- and
broadcast properties of wireless sensor networks. Most of the
features are beneficial for wired sensor networks as well.

SNPS has been implemented for several wireless and wired
network protocols (ZigBee, 6LoWPAN, and Ethernet/UDP/IP)
on diverse embedded sensor node and PC platforms. It has
been embedded in the sDDS architecture and integrated into
minimalist standalone implementations. It will be the main DDS
transport protocol used at sensor integration levels of current
projects of the authors’ laboratory research group targeting home
and industrial automation scenarios.

I. INTRODUCTION

Wireless Sensor Network technologies are maturing into
industrial applicability. Most innovations, however, still focus
on research questions and on finding innovative, but sometimes
isolated solutions to them. Despite some prominent exceptions
like the widespread support of the network standard IEEE
802.15.4, the use of well-established standards for WSN
technology is still lagging behind. This paper describes an
effort that aims at closing part of this gap.

Data-centric modeling techniques are a good match for
wireless sensor networks. With the Data Distribution Service

(DDS) [1], the OMG has created a middleware standard for
interoperable, platform- and vendor-neutral data-centric pub-
lish/subscribe architectures with real-time capabilities. A data
model is defined in terms of OMG IDL and related to topics,
which can be subscribed to or published by applications.
Additionally, the API of DDS provides of a rich set of data-
centric QoS policies.

DDS is not intended for WSNs, but the functionality
matches many requirements proposed for WSN middleware.
The recommended wire protocol is RTPS [2]. Being rooted in
larger-scale architectures, it assumes Ethernet-sized network
frames and substantial communication resources, and thus its
protocol overhead seldom fits WSN requirements. Therefore,
one of the challenges to overcome for leveraging OMG DDS
technology for WSNs is the replacement of RTPS, which is
an optional sibling part of the standard. Instead, an alternative
protocol is presented that is suitable for extremely resource-
critical WSN networking environments.

Here, the Sensor-Network Publish-Subscribe protocol
(SNPS) is proposed for making DDS concepts better available
to the WSN community. Based on the modular architecture of
DDS, SNPS has been devised as an alternative wire protocol
for DDS nodes. Implementations of it have been created in the
authors’ lab within, but not dependent on, a prototypical DDS
development and implementation framework (sDDS) targeting
both small embedded and PC-level node hardware [3]. SNPS
aims at supporting a wide set of underlying communication
layers to integrate heterogenous architectures and to provide a
scalable realisation of DDS. So far, ZigBee and 6LoWPAN
are supported with regard to typical small-scale wireless
architectures as well as wired Ethernet/IP/UDP and CAN.

II. BACKGROUND

A. OMG’s Data Distribution Service

With the Data Distribution Service (DDS), the OMG has
published an open standard for a data-centric publish-subscribe
middleware platform with a rich set of real-time capabili-
ties [1]. The DDS API and the fundamental system entities
are expressed in a platform independent and object-oriented
manner in OMG IDL.

Compared to other OMG standards like CORBA, UML
and MDA, DDS is not very popular yet. Still, with the
OMG’s focus on portable, vendor-neutral standards, and their
successful record of standardizing industry-oriented distributed

10th International Workshop on Intelligent Solutions in Embedded Systems, 2012

~
45



systems architectures, the DDS standard is likely to assume a
relevant position in the data-centric middleware landscape.

Fig. 1. Essential DDS architecture

Since DDS is data-centric, the modelling of the data proper
is of primary importance for the definition of a DDS system.
DDS is based on the idea of a global data-space, where typed
data can be published and subscribed by participating entities.
The basic structure is displayed in fig. 1. Each distinguished
kind of data is addressed by a topic, which adds a name
and an optional set of mandatory QoS policies to its data
type. The names of topics must be unique within a domain,
which provides application-level grouping of data types and
communication realms. The data types can be defined with
a subset of the OMG IDL syntax, offering complex types
like structures and arrays as well as simple atoms like in-
tegers. Topic types are application-specific since DDS does
not specify a distinct run-time typing authority. Therefore,
matching application interfaces must be generated from the
IDL definition to support type-safe handling. Those interfaces
are derived from the data-writer and data-reader classes,
which are the point of access for interchanging data samples
with the middleware.

A subscription is established if at least one publisher (data
writer) and at least one subscriber (data reader) for the same
topic exists. QoS policies can be assigned to DDS objects to
constrain the subscription relation with regard to reliability of
communication, bandwidth consumption, and latencies.

The DDS standard only specifies a middleware API. To
provide compatibility of DDS implementations from different
vendors, a matching wire protocol is needed. The “Real-Time
Publish-Subscribe” (RTPS) [2] protocol standard was created
to be used within DDS, and it is the officially recommended
protocol to provide DDS interoperability. RTPS requires a
datagram service as a subordinate layer and defines a mapping
for UDP/IP. To that effect, RTPS implies a minimum frame
size and routing behaviour. Furthermore, RTPS maps the
loosely coupled data-centric topic model to a set of relations
among concrete nodes providing and requesting resources.
QoS and real-time aspects, as formalized by DDS, are realised
through the functionality of the protocol.

B. The sensornet Data Distribution Service

The data centric publish-subscribe approach and the rich
set of accompanying QoS policies of the DDS standard match

many special requirements of applications for WSNs, but DDS
was not initially designed for this purpose. The limited and
often heterogeneously distributed availability of resources with
regard to computing and storage capacity or energy within
a WSN mandates a downscaling of middleware features to
match the applications and target systems at hand.

With the “sensornet Data Distribution Service” (sDDS), the
authors have designed and realised an approach to generate
individual DDS implementations at node level, by applying
a model driven software development (MDSD) process [4].
In this process, system, application and target requirements,
capabilities and the desired feature sets are defined separately
with domain-specific languages (DSLs), and joined based on
a meta-model spanning all aspects. Utilising that information,
middleware functionality is selected within the MDSD pro-
cess, mapped to the target environment, and the middleware
implementations are generated for the individual nodes of the
system. The application itself is implemented using the subset
of the DDS-API and functionality selected. Tailoring the DDS
type space and subsetting the API are considered reasonable,
and often necessary, measures for achieving application foot-
prints that match the typical, limited WSN node resource
offers. By virtue of the MDSD process, changes affecting the
target hard- or software or the functionality needed merely
require the adaption of the model and a re-generation run.

To further reduce the memory footprint and optimise the
processing of data, the MDSD process and code generation
for sDDS produce a deliberately compact middleware imple-
mentation with less abstraction layers within the code base
than those found within in the model spaces. The fine-granular
object-oriented modularisation and abstraction layers are thus
kept on the meta- and specific model level. To facilitate
broad platform support and ease the adaption to new systems,
most of the middleware code is plain ANSI-C. Platform-
specific elements that are encapsulated in corresponding code
templates are abstracted through sDDS-internal interfaces.

The custom selection of DDS functionality and the hetero-
geneity of implementations for the nodes of a system, also with
regard to functionality, entails the need for a communication
protocol that can cope with these aspects in addition to basic
WSN communication tasks. SNPS is our proposal to meet
those requirements.

This paper focuses on the syntax and semantics of SNPS,
which we consider a major contribution to the applicability
of sDDS for DDS-based WSN scenarios. Beyond that, we
will not delve into the details of sDDS and the corresponding
MDSD process, but in [3], we were able to show that, on
a technical level, DDS can be used in WSN scenarios, and
in [4], the MDSD process is presented thoroughly.

III. RELATED WORK

Being one of the pioneers for many developments in the
WSN community, the TinyOS project [5] was also used in
an effort to integrate DDS technology with the embedded
sensor network landscape, coined TinyDDS [6]. As TinyOS

46



development and APIs are based on a proprietary program-
ming language called nesC, DDS APIs also had to be adapted
to that environment for TinyDDS. Thus, portability on the
DDS standard level, which lacks official language bindings
for nesC, is lost. Regarding the protocol realisation, TidyDDS
uses an approach following the OSI network layer model
with replaceable layer implementations. TinyGIOP, forming
a subset of the OMG General Inter-ORB Protocol (GIOP),
is used at the session layer for the exchange of data between
DDS objects. The data itself are encoded in TinyCDR, a subset
of CDR, adapted to the requirements of WSNs. The routing
functionality is encapsulated in the “Overlay Event Routing
Protocol” layer (OERP) and can be replaced with several
appropriate implementations. The “TinyDDS L4 Adaption
Layer” (L4AL) connects the OERP with network and data
link layer protocols like AODV and ZigBee [7]. TinyDDS
must be considered to aim at different goals as sDDS/SNPS,
sacrificing portability and a standardised language binding for
a rather complete, easy-to-use solution that is well integrated
with TinyOS and its protocol stack. Its strictly layered protocol
stack provides abstractions and flexiblity at the expense of
code size and protocol overhead (cf. [8]). It should be noted,
though, that TinyDDS can also be used with a Java binding,
which provides compatibility with the DDS standard in that
language context.

Another approach of applying the DDS standard for em-
bedded systems, with focus on real-time aspects is the “micro
Data Distribution Service” (µDDS) [9]. µDDS implements a
subset of the DDS standard as well, but it is implemented
in the C programming language and uses the POSIX 5.1
interface of the PaRTiKle real time OS. Additionally, Java
with jRate is considered for a real time Java-based solution.
IEEE 802.15.4 and ZigBee are employed as communication
technologies, and the routing functionality is described to
be replaceable. Code generation is only used for the type-
dependant interfaces of DDS. µDDS is intended for larger
embedded systems, focusing on real time rather then minimal
resource consumption in WSNs.

A good example for a platform supporting both the standard
RTPS protocol and efficient proprietary solutions for DDS
communication is OpenSplice DDS [10]. Its modular design
and its availability as an open-source version make it an ideal
candidate for DDS deployments and adaptations over large
scales of system architectures. The extremely limited resources
of an embedded node, a few hundred KBytes of code at
most, that are considered in the work presented here cannot
be covered by downscaling OpenSplice DDS, though.

A comparison with the many non-DDS-related WSN proto-
cols that have been proposed and implemented is well beyond
the scope of this presentation, which focuses on providing
a platform- and implementation-neutral protocol for DDS
implementations on WSNs. As to this specific requirement,
this is considered a novelty, with the exception of TinyDDS,
as mentioned. An example for a more general overview of the
goals of WSN protocols and the middleware concepts thus
supported is [11].

IV. SNPS
As a protocol for a DDS implementation for WSNs, SNPS

must meet several specific requirements. To conserve energy,
radio networks for WSNs support only small frame sizes
and provide limited bandwidth. Besides the action of send-
ing and receiving the data proper, significant amounts of
energy are needed to initiate transmissions at all. Therefore,
reasonable aggregation of data and the low overhead for
multi- or broadcasting schemes in the case of radio networks
should be utilised by WSN-optimized protocols. As a primary
requirement, relevant parts of DDS functionality must drive the
design of the protocol, and, following the strengths of sDDS,
nodes of a system with heterogeneous implementations should
still be able to collaborate.

A. Fundamental SNPS Properties

To meet these requirements, we present the Sensor-Network
Publish-Subscribe (SNPS) protocol, whose design focuses
minimum protocol overhead, fine-granular modularity and
the usability within and without sDDS middleware. SNPS is
meant to carry data, and control and management information
within a data centric publish-subscribe network. To facilitate
efficient message buffer handling and processing, the protocol
implementation shall be tightly coupled to the middleware or
application using it.

Different from RTPS, SNPS supports very small frame sizes
and utilises the natural ability of radio networks for low-
overhead multi- or broadcasting to support the aggregation
of multiple data samples for different receivers within one
packet. To achieve this, the addressing scheme is data- or
content-specific, which is another difference to RTPS. In terms
of energy consumption, sending a larger packet to several
receivers can be favourable to the transmission of two unicast
packets. The reception of possibly unneeded information in
the packet can be used for establishing redundancy and for
future data routing or aggregation mechanisms.

SNPS assumes datagram service functionality in a sub-
ordinated protocol layer. Currently, SNPS realisations cover
WSN-oriented networks like ZigBee and 6LoWPAN as well
as generic Ethernet/UDP/IP-based stacks. While the current
implementation of SNPS needs supporting routing function-
ality, the protocol design anticipates the option of intra-
SNPS routing. A data centric middleware being aware of
and controlling routing decisions has the potential for more
effective distribution of the data and a better usage of system
resources. Especially the exploitation of multi- or broadcast
properties is a promising aspect [12].

SNPS has been designed to be used within sDDS. As
described earlier, this DDS implementation targets WSNs,
and it can be individually generated for each node using
an MDSD process [4]. Hence, the middleware functionality
supported may differ on the nodes within a network, but a
peer-to-peer-semantic shall still be possible. To cope with this
fact, and to reduce the protocol overhead, SNPS uses a dual
approach of implied structure and self-description within the
protocol. When only little common knowledge about the size

47



of protocol elements is required, a middleware implementation
can skip unknown parts of a message that state their own
length, which corresponds to ignoring locally unsupported
functionality. Also, SNPS does not depend on sDDS: Even
stand-alone protocol implementations lacking a DDS run-
time system can be used to have very small targets interact
with sDDS nodes, which was demonstrated in a prototypical
implementation.

The structure of SNPS is based on the idea of small
atomic information units, called “Submessages”, which can
be used to encode information proper, or to convey control
and management functionality. Sub-structuring of messages is
part of the RTPS design as well. In contrast to RTPS though,
the sequential order of Submessages establishes contexts for
the interpretation of the encoded information. Thus, protocol
overhead and the encoded state information are reduced during
message processing. The grouping of Submessages can be
related to specific functionality of the DDS standard.

The encoding of the payload is the responsibility of the
middleware implementation using SNPS. For sDDS, for in-
stance, the set of data types supported was selected with
respect to fixed type lengths and reasonable processing effort.
The encoding itself is based on CDR except for the alignment
on byte boundaries, which helps to reduce the payload size.
The endianness is determined during the code generation for
the particular topic type according to the target system. When
necessary, SNPS uses the same encoding for primitive data
types of the protocol messages.

B. SNPS Submessage types

There are three sets of Submessages defined for SNPS with
increasing ranges of size: Basic-Submessages, Extended- and
Supplements-Submessages. For each Submessage, the size is
known or given as part of the header.

Although every Submessage type is distinct, Submessages
with the same functionality are sometimes made available
in more than one set, having different header sizes and
information capacity, to allow for greater flexibility in the
usage of the most common message elements and thus reduce
overhead.

For the Basic-Submessages, header type and at least part
of the payload are packed in a single byte. They are used
for the most common tasks when a payload is needed. From
the sixteen possible types, the ten types specified so far are
displayed in Fig. 2, leaving room for future extensions. Data
samples are addressed with a domain id and topic id of 4 bits
each. The most frequently used data types shall have the lowest
id, while less frequently used types will use an Extended-
Submessage. Likewise, for the data proper, payloads of up to
15 bytes fit in a Basic-Submessage, otherwise, an Extended-
Submessage must be used.

To support a reliable transmission of recurring data samples,
sequence numbers with 4 bits are assumed to be sufficient,
helping to further reduce the overhead. Depending on the use
case, a handshaking (ACK/NACK) scheme can be employed,
if supported by the operating middleware.

Fig. 2. Basic-Submessages

For the basic timestamp, a maximum payload of 20 bits
is allowed, to be filled with an appropriate, system-specific
representation. CRC and status types are allotted for the future
use of SNPS on minimalist run-time implementations, which
would need to integrate data link layer functionality in SNPS.

Fig. 3. Extended-Submessages

Extended-Submessages treat the 4-bit field in the first byte
not as payload but as a type discriminator. They are used for
parameterless indications, like an ACK, or for common tasks
whose payload exceeds 4 bits. The most relevant Extended-
Submessages are shown in Fig. 3. They also adress the
need for higher-resolution timestamps and for longer sequence
numbers. Since the focus is on nodes processing small-sized
data, support for fragmentation is only found in this slightly
bigger set of Submessages. For future use, support of routing
and data link functionality and a more accurate CRC type
are included. The Separator Submessage is needed to reset a
message context, which will be explained in the next section.
All Basic- or Extended-Submessages must be well-defined
because their size is implicit, and must be recognized, even if
the information is not processed by a specific implementation.

The header size of Supplement-Submessages is at least
two bytes; it carries explicit size information. Supplement-
Submessages are used for rare use cases and allow a more
flexible extension of the protocol. The explicit size information
ensures compatibility with nodes lacking support for some of
the protocol elements.

48



C. SNPS message context

As stated in section IV-A, the aggregation of multiple data
samples within one package is an important feature of SNPS.
The sequential order of Submessages establishes contexts
for the interpretation of the encoded information. Therefore,
protocol state control can often be implied, reducing the
overhead incurred in Submessage headers. Switching protocol
states in this fashion also simplifies the parsing and generation
of SNPS messages. To demonstrate the context scheme, Fig. 4
displays the encoding of three data samples.

Fig. 4. Anatomy of SNPS Basic Messages

Every SNPS message is initialised with the version of the
protocol and the number of Submessages following, giving the
protocol implementation a hint for optimising the processing
of the message.

The occurrence of each control Submessage, which can be
specifying a domain, a topic or a data sample index (shown
as “Data Addressing” Basic-Submessages in Fig. 2), spans a
context that remains valid until another Submessage of the
same type changes the context, or until it is reset completely
by a Separator Extended-Submessage.

Data samples are related to DDS topics, and these are
grouped within DDS domains. In the example of Fig. 4, all
data samples are assigned to topics of the Domain a, set up
as a context by the first Domain Submessage. Similarly, the
following conetext of Topic A spans two consecutive Data
Submessages 1 and 2. These in turn provide a conext for the
data samples proper and optional meta data attached to them,
like timestamps (not shown here).

The minimum sequence of Submessages needed for a useful
data transmission is displayed in Fig. 4 as well. Besides the
header of two bytes, domain, topic and data Submessages, and
the data sample payload itself are needed, giving a minimum
header size of five bytes.

D. Proof of Concept Realisations

Because of the close relationship of the SNPS protocol
and sDDS, the implementation of both is currently integrated.
Yet, SNPS implementations have also been split off and used
standalone.

The current code base is largely platform independent, and
it uses abstract interfaces to embed platform-specific modules
to facilitate porting to different target systems at this stage
of the development. The SNPS implementation is realised

in small platform independent code modules which can be
composed during the code generation, considering the func-
tionality needed. So far, although, the SNPS implementation
does not take the underlying network layers into account.
Currently, SNPS messages are assembled in the platform
independent part of sDDS, and then forwarded to a platform-
specific network module. This module must provide a generic
datagram service functionality, and it encapsulates platform-
specific parts, like addresses. This approach has proven ben-
eficial, since we were able to port sDDS and thus SNPS to
several different platforms and network architectures.

The need of a generic datagram service can be satisfied
with UDP/IP, and the largely generic code base of sDDS
permits the usage of popular POSIX PC platforms, avoiding
the permanent need for WSN hardware access and providing a
versatile primary development environment. Furthermore, the
integration of a WSN system into a PC-level network with
continuous deployment of sDDS becomes feasible.

Based on the IEEE 802.15.4 protocol, the ZigBee standard
is promoted for WSN applications in home and industry
environments by different hardware vendors. Attractive radio
and microcontroller solutions are thus available, and ZigBee
was initially chosen for sDDS and SNPS. A first approach had
been to exploit the ZigBee profile functionality and wrap DDS
topics in profiles, mapping the topic data structure to profile
attributes. The data discovery, distribution and the subscription
management could then have been delegated to a ZigBee
stack with sDDS as thin layer only, mapping the DDS API
to ZigBee. Further analysis showed that the ZigBee profile
definition is not flexible enough for this purpose: Profiles must
be assigned by the ZigBee Alliance, and not even a sandbox
area is provided, whereas the flexible and application-specific
topic and data definition is one of the major advantages of
DDS. Therefore, only the transport layer of the ZigBee stack
is used and more functionality remains with sDDS and SNPS.

So far, SNPS has been implemented on two ZigBee
stacks from different hardware vendors: Texas Instruments’
zStack [13] on the System-on-Chip platform CC2430 and the
BitCloud stack developed by Atmel [14]. Since the broad
toolchain and compiler support for Atmel microcontrollers for
Linux aids the integration in the sDDS development environ-
ment, the ATmega1284 and ATmega128RFA1 platforms are
now the primary target platform for sDDS and SNPS.

SNPS is also supported on 6LoWPAN, which offers the
IPv6 protocol for WSN environments [15]. With 6LoWPAN,
sDDS can be used in mixed WSN and traditional Ethernet-
based networks without the need for a complex protocol
mapping on a gateway. One comprehensive 6LoWPAN stack is
part of the Contiki operating system for very small embedded
devices, which is widely used in academic and commercial
applications [16]. The current sDDS implementations were
ported to Contiki and 6LoWPAN within a student project,
taking about three weeks. Large parts and the logic of the
UDP/IP realisation could be reused, although adoptions for
supporting IPv6 under Linux were necessary as well. A
transparent gateway between 6LoWPAN and IPv6 networks

49



is provided by the Contiki project.
As part of another student project, SNPS support for the

Controller Area Network (CAN) bus was launched. Other
works [17] support our assumption that the utilisation of
CAN for DDS, exploiting CAN’s message-based addressing
scheme for DDS topics, is quite promising, besides its real-
time aspects. Admittedly the maximum payload of 8 bytes of
a CAN frame is challenging even for SNPS, which is already
optimised for small frame sizes. Our project results suggest
that the function set of SNPS must be reduced drastically, and
the general Submessage concept would need to be abandoned.
A detailed discussion cannot fit in this publication, though.

In comparison to RTPS, SNPS gains its advantages by
the smaller header. Additionally to the underlying protocol
headers, each RTPS message is started with a 20 byte header,
and each data segment as well, whereas the payload has an
own 8 byte header and has to be aligned. In contrast to SNPS
the basic message shown in Fig. 4, would need 48 bytes.
If several data samples (eg. n) for one topic are put in one
message, the overhead would be 20+n∗24+n∗payload bytes,
whereas SNPS would only need 2 + 2 + n ∗ 1 + n ∗ payload
bytes, if the payload has less than 16 bytes. Admittedly it
have to be noted, that RTPS includes a mandatory sequence
number of 8 byte in each data segment, while in SNPS this
is optionally and different sizes are selectable, according the
individual use case of the application.

V. SUMMARY, CONCLUSION

The WSN community could benefit from more standards-
based approaches, and the OMG DDS Standard provides fea-
tures that match the requirements of WSN architectures almost
naturally. Unfortunately, although DDS is a promising candi-
date for WSN scenarios, its roots, targeting more powerful
hardware, entailed features contradicting WSN applications,
like the resource-hungry RTPS communication protocol.

We could show that an alternate protocol approach can be
defined that focuses deliberately on low-powered WSN node
hardware and sensor node networks with its typical, small
frame sizes and transmission schemes. The conception of the
SNPS protocol as a replacement for RTPS in such scenarios
captures those aspects in its basic packet structures but also in
the protocol engine. SNPS supports a reasonable feature set
of the DDS standard, and it has been designed expandable to
provide additional features with new submessage types. Yet,
interoperability with nodes recognizing only a limited set of
message types is ensured.

Realisations of SNPS have been created as part of the
MDSD-based sDDS architecture. It has been implemented
for recent embedded wireless node targets using ZigBee and
6LoWPAN networking. For management and control function-
ality, and for debugging and measurement applications, SNPS
is also available for PC-level platforms using Ethernet/IP/UDP
networking.

As SNPS (and sDDS) are still evolving, many concepts
and protocol elements will be revisited. There are also many
desirable features that have yet to be investigated and realised.

The support of the QoS policies of the DDS standard through
SNPS beyond this presentation has not been finalised yet. If
properties of underlying transport layers cannot be easily inte-
grated, it might be necessary to extend the protocol structure.

We also expect the SNPS implementations to benefit from
the interweaving of code snippets realising protocol handling
with those implementing sDDS middleware and application
layers. So far, the clean separation of the MDSD model layers
has been sustained throughout code generation, but especially
protocol buffer access and method calls will be streamlined to
reduce the size of both code and data buffers.

Besides continuing the development of SNPS and its im-
plementations, one major step currently in preparation will be
the deployment of sDDS and SNPS in larger, heterogeneous
WSN applications within the authors’ research projects.

REFERENCES

[1] OMG, “Data Distribution Service for Real-time Systems, Version 1.2,”
Tech. Rep. formal/07-01-01, Jan. 2007.

[2] ——, “The Real-time Publish-Subscribe Wire Protocol DDS Inter-
operability Wire Protocol Specification ( DDS-RTPS ),” Tech. Rep.
formal/2010-11-01, Nov. 2010.

[3] K. Beckmann, “Konzeption einer leichtgewichtigen, datenzentrierten
Middleware für Sensornetze und eine prototypische Realisierung
für ZigBee,” Master’s thesis, RheinMain University of Applied
Sciences, Wiesbaden, Germany, Apr. 2010. [Online]. Available: http:
//wwwvs.cs.hs-rm.de/downloads/extern/pubs/thesis/beckmann10.pdf

[4] K. Beckmann and M. Thoss, “A Model-Driven Software Development
Approach Using OMG DDS for Wireless Sensor Networks Software
Technologies for Embedded and Ubiquitous Systems,” in Software
Technologies for Embedded and Ubiquitous Systems, ser. Lecture Notes
in Computer Science, S. L. Min, R. Pettit, P. Puschner, and T. Ungerer,
Eds. Springer Berlin / Heidelberg, 2011, vol. 6399, ch. 11, pp. 95–106.

[5] “TinyOS,” Website. [Online]. Available: http://tinyos.net/
[6] P. Boonma and J. Suzuki, “Middleware Support for Pluggable Non-

Functional Properties in Wireless Sensor Networks,” in Proc. IEEE
Congress on Services - Part I. IEEE, Jul. 2008, pp. 360–367.

[7] ——, “Toward Interoperable Publish/Subscribe Communication be-
tween Wireless Sensor Networks and Access Networks,” in Proc of
the 6th IEEE Consumer Communications and Networking Conference
(CCNC’07). IEEE, Jan. 2009, pp. 1–6.

[8] ——, TinyDDS: An Interoperable and Configurable Publish / Subscribe
Middleware for Wireless Sensor Networks. IGI Global, Jun. 2010, ch. 9,
pp. 206–231.

[9] A. González, W. Mata, L. Villaseñor, R. Aquino, J. Simo, M. Chávez,
and A. Crespo, “DDS: A Middleware for Real-time Wireless Embedded
Systems,” Journal of Intelligent & Robotic Systems, vol. 64, no. 3, pp.
489–503, Dec. 2011.

[10] PrismTech, “OpenSplice DDS.” [Online]. Available: http://www.
opensplice.com/

[11] W. Masri and Z. Mammeri, “Middleware for Wireless Sensor Networks:
A Comparative Analysis,” in Proc. of the International Conference
on Network and Parallel Computing Workshops. NPC Workshops.
(IFIP’07). Los Alamitos, CA, USA: IEEE, 2007, pp. 349–356.

[12] H. Karl and A. Willig, Protocols and architectures for wireless sensor
networks. John Wiley & Sons, Oct. 2007.

[13] TI. zStack. [Online]. Available: http://www.ti.com/tool/z-stack
[14] Atmel. BitCloud. [Online]. Available: http://www.atmel.com/tools/

BITCLOUD-ZIGBEEPRO.aspx
[15] N. Kushalnagar, G. Montenegro, D. E. Culler, and J. W. Hui, “Transmis-

sion of IPv6 Packets over IEEE 802.15.4 Networks,” Internet Requests
for Comment, RFC Editor, Fremont, CA, USA, Tech. Rep. 4944, Sep.
2007.

[16] The Contiki OS. [Online]. Available: http://www.contiki-os.org/
[17] S. Hasnaoui and R. Rekik, “Application of a CAN BUS transport for

DDS middleware,” in Proc. of the Second International Conference
on the Applications of Digital Information and Web Technologies
(ICADIWT ’09). IEEE, Aug. 2009, pp. 766–771.

50


