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Chapter 1

Introduction

The photons reaching your retina, sound waves reaching your ears, touch on your skin, as

well as taste and smell, are translated by (many) millions of sensory neurons into sequences

of electrical pulses which are sent along millions of nerve fibers to your brain. Such electrical

pulses, termed action potential or spikes, are the ’language’ of most of the nervous system,

in the blue whale as well as in a cockroach. From the different sensory modalities, to the

commands to the motor system, most of the neurons use patterns of spikes to represent

information and carry it from one neuron to (many) others. Spikes do not resemble the

external world they represent, nor the thoughts they carry, anymore than the musical notes

resemble the sound of a cello. They are the symbols of the neural code, which contains

two basic ’letters’ – spike and ’no-spike’ (very much like the zeros and ones in computers).

The problem of neural coding is to understand how patterns of spikes are related to sensory

stimuli, motor outputs, and ultimately, thoughts and intentions.

From a mathematical or engineering standpoint, the questions to be asked about the

nature of the neural code are not different from what we would ask about any other coding

and communication system (or an input-output black box): What are the codewords? What

do they encode and how are they decoded? Can we build a dictionary from the stimuli to

the responses, and vice versa? What is the capacity of the code to convey information? How

robust is the code to transmission or encoding (and decoding) errors? How efficient is the

code, time-wise and cost-wise? Are the codewords fixed, or history dependent? Is it universal

over the different parts of the system or between systems? A range of system identification

and machine learning tools have been used in the analysis of neuronal stimulus-response

paradigms, neural decoding algorithms and feature selection. Shannon’s mathematical the-

ory of communication [160], which laid the foundation of what is now known as information

theory, gives a general mathematical framework for the analysis and quantification of coding

systems and communication channels. It is therefore an appropriate tool for the study of

1



2 Noise and information in neural codes

the neural code.

From a biological viewpoint, understanding the code is inseparable from understanding

the biophysical machinery and the organism “point of view”: What is the biophysical design

that enables neuronal computing and coding? How well does it perform in terms of accu-

racy, time and energy consumption? How does the system (or the animal) use the code and

actually decode the spike trains? An implicit question is how different could the neurons

and the neural code be, and can we quantify the implications? Electrophysiological studies,

together with modelling and theoretical work have addressed these questions, reflecting on

the nature of neuronal codewords, what they stand for (in terms of the stimulus), the accu-

racy of neuronal response, etc. (see Chapters 2,3) – for the animal, neuronal population and

the single neuron level.

The work that I will describe deals with two fundamental issues concerning the nature of

the neural code. One is the relation between the neuronal biophysical design and noise and

the nature of the neural code. The other is the question of universality of the neural code.

• The nature of spike patterns as a code and the encoded content, are set by the biophys-

ical design and properties of the single neuron and the computation it performs [88].

A neuron may receive thousands of spike trains from other neurons as input. These

spike trains are transformed into voltage transients inside the neuron, and are then

merged (or ’processed’). The result is a single spike train that the neuron sends as an

output to thousands of other neurons. This biophysical computation depends on the

physical structure of the neuron, the ionic concentration and electric potential inside

and outside the neuron membrane, and the activity of special proteins embedded in

the neuronal membrane which enable ions to flow inside (or outside) of the neuron

(see Chapter 2). The biophysical ’building blocks’ of neurons are inherently noisy and

unreliable [64, 88]. A clear question is then, what are the effects of biophysical design

and specifically of neuronal noise on the computation and coding of neurons? (see

[190]).

• Since the pioneering work of Adrian [8], we know that the common alphabet of spike

and ’no-spike’ is common to all spiking neurons, that the number of spikes is correlated

with the stimulus that the neuron responds to, and that neuronal firing rate adapts

in response to a fixed stimuli. Using information theory, in recent years, the capacity

of the neural code has been quantified by estimating the amount of information that

the spike train may convey, in different sensory and other neural systems in various

animals [22]. These results show high information rates and coding efficiency, which

are achieved using a rather sparse code (in terms of the number of spikes that are
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used). An important, yet somewhat neglected question is what are the common coding

features and what are the individual ones of different neurons, either neighboring ones

or in different areas. Of special interest is the question whether the neural code of

corresponding modules and neurons in different individual animals is universal.

We focus here on three questions at the core of these issues, which reflect on the design and

nature of both the neural code and neuronal computation:

• What is the source of the input-dependent spike timing reliability and ac-

curacy, and what may be their implications?

The main debate over the nature of the neural code has focused on whether informa-

tion is encoded by the exact temporal structure of the spike train (temporal code), or

that the fine temporal structure is noisy and information is then carried just by the

average spiking rate (rate code). The type and resolution of code that neurons use

determine the capacity of the code to convey information, and reflects on the possible

decoding algorithm which neurons and the nervous system may use. However, recent

experimental results in vivo and in vitro show that the same neuron may have very

accurate spike timing in response to one stimulus, and highly unreliable spike timing

for another. The neural code is then input-dependent, i.e. information may be encoded

by both the average firing rate and the temporal structure of the neuronal spike train,

and the division is set by the nature of the code. We study detailed biophysical models

of spike generation, which incorporate ion channel noise, and investigate the nature of

their spike trains. We find that the stochastic models reproduce the experimentally

observed input-dependent reliability and precision of spike firing (as well as other spike

train characteristics). Our results suggest that ion channel noise may have a profound

effect on the nature of the neural code. We suggest that the noise inherent in neurons

enable them to act as “smart” encoders (hence, it could be less of a bug and more of

a feature), and thus reflects on the way information may be propagated and processed

in the nervous system.

• What are the design principles of the spiking mechanism and how may the

biophysical parameters of the neuron affect the nature and content of the

neural code?

The computational “task” of the spiking mechanism is to encode selected information

about the stimulus that the neuron is presented with. The biophysical design of the

neuron which performs this computation, must accommodate the inherent biophysical
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noise, metabolic costs and efficiency considerations. We use tools from information

theory to quantify the characteristics and performance of the neuronal spiking mech-

anism and analyze the structure of the spike train as a code. We proceed to evaluate

the effects of changing the biophysical parameters of the spiking mechanism, and learn

of the ’design principles’ of the ’biological hardware’, its limitations and capabilities.

We calculate the information rate and efficiency that the stochastic neuron models con-

vey about a family of stimuli, and find it to be similar to values reported experimentally.

The division between the rate coding component and temporal coding component in

the spike train may be highly variable for different inputs, reflecting the dynamic na-

ture of the neural code. Study of the biophysical parameters of the models suggests

that information encoding is robust to most parameters, but is sensitive to the ratio

between ion channel densities. We find that there is an optimal range of parameters

for information encoding, which is well within physiological range, even without taking

into account any metabolic considerations. Thus, neurons may maximize their infor-

mation capacity by appropriately balancing the density of the different ion channels

that underlie neuronal excitability.

• How universal and how individual is the neural code?

An obvious question about the nature of the neural code is whether the same coding

rules are used by different neurons, or by corresponding neurons in different individuals.

We present a quantitative formulation of this problem using ideas from information

theory, and apply this approach to the analysis of experiments in the fly visual system.

We find significant individual differences in the structure of the code, particularly

in the way that temporal patterns of spikes are used to convey information beyond

that available from variations in spike rate. On the other hand, all the flies in our

ensemble exhibit a high coding efficiency, so that every spike carries the same amount

of information in all the individuals. Thus the neural code has a quantifiable mixture

of individuality and universality.

We present a rather wide review of the biological and mathematical background of this work

(based mostly on the books by Nicholls, Martin and Wallace [126], Koch [88], Tuckwell [182],

Hille [64], Dayan and Abbott [37], Cover and Thomas [35], Rieke, Warland, de Ruyter van

Steveninck and Bialek, [143]). Chapter 2 introduces the basic biophysics of neuronal de-

sign and function – morphology, ion channels, synapses and spiking (focusing on modelling).

Chapter 3 presents the basic tools of spike train analysis, information theory and its appli-

cation to neural coding. Chapters 4 and 5 present the study of the neural code of stochastic

neuron models of spike initiation, incorporating ion channel noise. Chapter 6 present the
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study of the universality and individuality in the neural code of the fly visual system. Final

remarks and conclusions are given in chapter 7.
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Chapter 2

Background: Neuronal Biophysics:
Ion Channels, Spiking, Noise and
Modelling

Although neurons may differ considerably in their shape, size, and many of their molecular

components, their basic ’design principles’ are similar. Sharing the same basic morphology

and biophysical mechanisms enables (the vast majority of) neurons to initiate and propagate

action potentials and facilitates communicating them to other neurons through synaptic

connections.1 This chapter provides an overview of the basic building blocks of neuronal

biophysics, namely ion channels, ionic currents, neuronal morphology, synapses and electrical

properties of the membrane. We focus on the spiking mechanism and modelling of neuronal

excitability and on the noise in neuronal function.

2.1 Biophysical building blocks

Neurons are specialized for receiving information from other cells (or in the case of the

periphery, the outside world), generating voltage transients (mostly action potentials) in

response to these inputs, and sending them to other neurons. What enables neurons to

perform their unique ’task’, is their distinct morphological and biophysical design, both on

the molecular level, and the macroscopic one.

1A comparatively small class of neurons are nonspiking and use voltage graded responses as their output;

e.g. the bipolar cells, horizontal cells, some of the amacrine cells in the retina and many neurons in the

sensory-motor modules of invertebrates.

7



8 Noise and information in neural codes

2.1.1 Morphology, ions, channels, pumps, potentials etc.

The typical morphology of neurons is made of three main structural components. The cell

body or soma, where the regular cell ’machinery’ resides (i.e. the nucleus, mitochondria,

endoplasmic reticula, etc.), the dendrites which branch out of the soma – tree-like cable

structures that receive inputs from other neurons, and the axon – a single cable leaving

the soma which branches out to connect to the dendrites (or soma) of other neurons (see

Figure 2.1). The complexity of the dendritic structure enables the neuron to receive inputs

from many other neurons through synaptic connections (many thousands for a typical cortical

neuron). Correspondingly, the axon from a single neuron may traverse very long distances,

and connect to hundreds or thousands of neurons.

Figure 2.1: Morphology of four types of neurons, and their common features. Drawings of
four types of neurons, shown as representative examples of neuronal morphology. While different in
their size (figure is not to scale), the motor neuron (from the mammalian spinal cord), the Purkinje
cell (from human cerebellum), the mitral cell (from the olfactory bulb of a rat) and the pyramidal
cell (from the cortex of a mouse), share the same structure of an elaborate dendritic tree(s), cell
body and an axon. Taken from [126]

Physiologically, the electrical signal of relevance to the nervous system is the difference
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in electrical potential between the interior of a neuron and the surrounding extracellular

medium. The ionic concentration gradients across the cell membrane and the membrane

permeability to these ions, determine the membrane potential. The cell membrane is a

lipid bilayer, which is impermeable to most ions. Electrically, the membrane is a capacitor

separating the charges residing along its inner and outer surface, from both sides. While

the resistance of the lipid bilayer by itself is quite high, the resistance of the membrane is

significantly reduced by the numerous aqueous pores in the membrane, termed ion channels.

Ion conducting channels are proteins embedded in the membrane that allow the flow of

ions, mainly Na+, K+, Ca2+ and Cl−, across the membrane (see Figure 2.2). Channels may

be highly selective for the ion charge or type (or have very little ion selectivity). Voltage-

gated channels change their functional state, i.e. moving from open to close state and vice

versa, as a function of the membrane potential. Other channels are activated (opened) by

intracellular messengers (for example, Ca2+ dependent channels) or by extracellular ligands

such as neurotransmitters or neuromodulators (e.g. synaptic receptor channels), and are

usually called ligand-gated channels. Typically, a neuron would have quite a few different

channel types, which may be selective to different ions. The distribution of channels in the

neuronal membrane is far from uniform, and may range from a few channels up to a few

hundreds of channels per square micron. The total number of channels in a cell is on the

order of a few hundred thousands or millions.

Figure 2.2: Ion channels in the cell membrane. Schematic representation of ion channels
embedded in the cell lipid layer membrane (left), and a schematic view of a generic voltage-sensitive
ion channel (both taken from [64]).

Specific ion types have distinct intracellular and extracellular concentrations (for example,

potassium concentration inside the cell is higher than outside). The ions flow into and out

of the cell due to both voltage and concentration gradients. However, without external
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stimuli, these different forces drive the cell to an equilibrium point – the resting potential

of a neuron, which can be explained from basic physical chemistry principles. Under these

resting conditions, the electrical gradient and the ionic concentration gradient balance each

other for each of the ion types. The potential inside the cell membrane of a neuron, resulting

from the accumulation of charges on the membrane, is then about -70 mV relative to that

of the surrounding bath, and the cell is said to be polarized. Selective ion pumps located

in the cell membrane expend energy (see e.g. [64]) to maintain the potential concentration

gradients that support this membrane potential difference.

The potential changes if the balance of ion flow is modified by the opening or closing

of ion channels. The membrane is hyperpolarized when current, in the form of positively

charged ions flows out of the cell (or negatively charged ions flowing into the cell) through

open channels. If current flows into the cell, the membrane potential becomes less negative

(or even positive), and the cell is depolarized. Normal neuronal membrane potentials vary

over a range from about −90mV to +50mV .

2.1.2 Signaling and Spiking

The currents flowing through the ion channels are responsible for the two types of electrical

signals generated by neurons – localized potentials and action potentials. Localized, graded

potentials can travel only short distances before attenuation, and so they are useful in special,

physically compact regions, e.g. synaptic connections (see below) or sensory nerve endings.

Action potentials are voltage impulses that travel (fast) along the axon and are capable of

propagating to long distances. The main reason is that the action potential is a regenerative

impulse – the voltage dependent ion channels along the axon prevent its decay2. Axons

terminate at synapses, the connection points between the axon of one neuron and the dendrite

or soma of another (see section 2.1.3 below).

If a neuron is depolarized sufficiently to raise the membrane potential and open enough ion

channels (typically, Na+ channels), current flows into the cell, initiating a positive feedback

process, and the neuron generates an action potential. An action potential is a roughly

100mV change in the electrical potential across the cell membrane which lasts about 1ms.

Figure 2.3 shows the membrane voltage of a layer V pyramidal neuron, recorded using an

intracellular electrode.

2In many cases the axon is covered with myelin (formed by neuroglial and Schwann cells) which increases

the axonal membrane resistance, resulting in a speedy and more reliable conduction of the spikes. Along

myelinated axons there are usually the nodes of Ranvier, where the myelin cover is interrupted and the axon

is exposed. In these areas, there is a high density of ion channels, which re-amplify the spike for the next

axonal segment.
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0.1 s 

10 mV 

Figure 2.3: A spike train of a cortical pyramidal neuron, in vitro. The membrane voltage
of a layer V cortical pyramidal neuron of a two weeks old rat, recorded in vitro using an intracellular
patch electrode. The cell was injected with a small DC current. Experiment performed in the lab
of Yosi Yarom

The generation of an action potential also depends on the recent history of cell spiking.

It is virtually impossible to fire two action potential within less than a few milliseconds, a

phenomena called the absolute refractory period of the neuron. During the relative refractory

period, which lasts up to tens of milliseconds after a spike, it is ’difficult’ to evoke an action

potential. I.e., more current is needed to evoke a spike during this period.

2.1.3 Synapses

Synapses are the connection points of one neuron to another (or of a neuron with an effector

cell, e.g. muscle fiber or secretory cell), where signals are passed from one cell to another. At

electrical synapses (or gap junctions), current generated by an impulse in the presynaptic cell

terminal spreads into the postsynaptic cell through low-resistance channels. More commonly,

synapses are chemical, where there is no direct spread of current between the presynaptic and

postsynaptic sides of the synapse. Synaptic transmission begins when an action potential

arrives at the presynaptic terminal and causes a rise in the concentration of Ca2+ within the

terminal (due to the activation of local voltage-dependent channels). This causes vesicles

containing transmitter molecules to fuse with the cell membrane and release their contents

into the gap between the presynaptic and postsynaptic membranes. Transmitter molecules

diffuse across the cleft and bind to receptors on the postsynaptic membrane. Binding of

transmitter molecules leads to the opening of ion channels that modify the conductance of
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the postsynaptic neuron, completing the transmission of the signal from one neuron to the

other.

Postsynaptic ion channels can be activated directly by binding to the transmitter (ionotropic

synapses), or indirectly when the transmitter binds to a distinct receptor that affects ion

channels through an intracellular second-messenger signaling pathway (metabotropic synapses).

Depending on the nature of the ion flow (type and direction), the synapses can have either

an excitatory, depolarizing, or an inhibitory, typically hyperpolarizing, effect on the postsy-

naptic neuron.

2.2 The spiking mechanism and its modelling

The pioneering experimental work of recording membrane conductances and intracellular

action potentials [36, 67, 73], suggested that the source of action potentials are transient

changes in the membrane conductances. Following, Hodgkin and Huxley’s experimental

work presented the first quantitative description of the ionic mechanisms responsible for

spiking in the squid axon. Using the voltage clampmethod3 with ionic substitutions, blockers

etc., they identified the separate ion-type currents and quantified their dependency on the

membrane voltage and as a function of time. They showed that changes in sodium and

potassium conductances occurred during spiking, and that the timing and nature of these

changes correspond to the time course and magnitude of the action potential [69, 68, 70].

They then concluded their study and series of papers by introducing a model of excitability

in a single cell, which accounts qualitatively for conduction and excitability of the squid giant

axon [71]. Hodgkin and Huxley suggested a physical interpretation of the changes in ionic

conductances using “gating particles” which can be either in an open or closed states, and

are basically a ’ball and chain’ model of ion channels. However, their experimental work did

not deal with single channels, (whose existence was empirically observed many years later;

see below), and the formalism they introduced to describe voltage-dependent conductances

(which is almost universally used to describe voltage-dependent conductances to this day) is

based on deterministic differential equations which deal with the average behavior of ionic

currents.

3A recording technique which makes it possible to set the membrane potential of the cell almost instanta-

neously at any desired level and keep it fixed (i.e. “clamped”), while recording the current flowing through

the membrane.
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2.2.1 The Hodgkin-Huxley model

Based on their experimental work, Hodgkin and Huxley [69, 68, 70] suggested that the

electrical behavior of a membrane patch can be represented by the circuit presented in

Figure 2.4.

Figure 2.4: Electrical circuit description of the Hodgkin-Huxley model of a membrane
patch. The membrane of the squid axon is modelled using four parallel branches – The voltage
dependent sodium and potassium conductances (RK = 1/GK and RNa = 1/GNa), the leak conduc-
tance (Rleak = 1/Gleak) and the membrane capacitance. (The nonlinearity ”hides” in the voltage
dependence of the sodium and potassium ionic conductances)

The Hodgkin-Huxley (HH) model is of an isopotential membrane patch (i.e. there are no

spatial effects on the potential), or a single electrical compartment. The units of the model

are per membrane unit area, and it is then straightforward to scale the model to a single

compartment of any desired membrane area.

The total membrane current is the sum of the ionic currents and the capacitive current,

Im(t) = Iionic(t) + Cm
dVm(t)

dt
Iionic(t) = INa(t) + IK(t) + Ileak(t) (2.1)
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where Im is the membrane current density, Iionic are the ionic currents densities, Cm is

the membrane capacity per unit area (assumed constant) and Vm is the membrane voltage.

The two main ionic conductances, sodium and potassium are independent of each other,

and a third, “leak conductance” does not depend on any of the other conductances or the

membranal voltage. Thus, the total ionic current is the sum of the separate ionic currents.

The individual ionic currents are linearly related to the potential according to Ohm’s law,

IK(t) = GK(V, t)(V (t)− EK)

INa(t) = GNa(V, t)(V (t)− ENa)

Ileak(t) = Gleak(V, t)(V (t)− Vleak) (2.2)

where GK , GNa and Gleak are the potassium, sodium and leak conductances per unit area

of the membrane (correspondingly) and EK , ENa and Vleak are the corresponding reversal or

equilibrium potentials of each of the ionic species (the potential at which the ionic concen-

tration gradient is balanced by the electrical potential gradient, and there is no net flux of

the ions of this type).

The voltage-dependent conductances GNa(t) and GK(t) are given by

GNa(t) = Gmax
Na fNa(t) ; GK(t) = Gmax

Na fK(t) (2.3)

where Gmax
Na and Gmax

K are the maximal sodium and potassium conductances per unit mem-

brane area and fNa(t) and fK(t) are each the corresponding (instantaneous) fraction of the

maximal conductance which is actually open (or active). The ion channel interpretation of

these equations is that each of the ion species i conductance, Gi is determined by multiplying

the conductance of a single open channel by the density of channels in the membrane and by

the fraction of channels that are open at time t. Gmax
i is a membrane constant, equal to the

product of the first two factors, that describes the conductance per unit area of membrane

when all channels of type i are open. The fraction of channels in the open state is equiva-

lent to the probability of finding any given channel in the open state, and it is denoted by

fi. In the original Hodgkin and Huxley interpretation, these fractions were functions of the

activation and inactivation of the “gating particles” which control the ionic conductances.

Hence, the potassium current is modelled as,

IK = Gmax
K n4 (V − EK) (2.4)

where Gmax
K = 36mS/cm2 and EK = −12mV , relative to the resting potential. The fraction

of maximal conductance which is open is given by n4, where n is a dimensionless activation

variable, ranging between 0 and 1 and whose dynamics are given by,



2.2. THE SPIKING MECHANISM AND ITS MODELLING 15

dn

dt
= αn(V )(1− n)− βn(V )n (2.5)

where

αn(V ) =
V − 10

100 (1− exp−(V−10)/10)
(2.6)

and

βn(V ) = 0.125 exp−V/80 (2.7)

are voltage-dependent rate functions.

An alternative way to write the dynamics of n is in terms of the steady state value of

n∞(V ) (the value of the activation variable n for a fixed V at t → ∞) and the voltage-

dependent time constant τn(V ) (a measure of the speed of the dynamics of n),

dn

dt
=
n∞ − n

τn
(2.8)

where

n∞ =
αn(V )

αn(V ) + βn(V )
(2.9)

and

τn(V ) =
1

αn(V ) + βn(V )
(2.10)

Similarly, the sodium current is modelled by,

INa = Gmax
Na m3h (V − ENa) (2.11)

where Gmax
Na = 120mS/cm2 and ENa = 115mV , relative to the resting potential. m and

h are dimensionless activation and inactivation variables, with m ≥ 0 and h ≤ 1 and their

dynamics are given by,

dm

dt
= αm(V )(1−m)− βm(V )m (2.12)

and a similar equation for h.

The corresponding rate functions are

αm(V ) = 0.1
V − 25

1− exp−(V−25)/10 ; βm(V ) = 4 exp−V/18 (2.13)

and

αh(V ) = 0.07 exp−V/20 ; βh(V ) =
1

1 + exp−(V−30)/10 (2.14)

An equivalent description ofm and h usingm∞, h∞, τm and τh (similar to equations 2.8- 2.10)

is straightforward.
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Figure 2.5: Steady state values of activation and inactivation variables in the HH
model as a function of the voltage. The steady state sodium activation m∞ (blue) and
potassium activation n∞ (red) increase with membrane voltage, whereas the steady state sodium
inactivation, h∞ (green), monotonically decreases with V . Activation (and inactivation) of the
channel conductances is a steeper function of the voltage, due to the power law relation between
the activation ( inactivation) variables and the conductances.

Figure 2.5 shows the dependence of the steady state values of activation and inactivation

variables on the membrane voltage.

The leak conductance density of the membrane is fixed, Gleak = 0.3mS/cm2, and the leak

reversal potential associated with it is Vleak = 10.613mV (set so that the total membrane

current at the resting potential is zero). Finally, the membrane capacity is Cm = 1µF/cm2.

Thus the equation which describes the membrane potential as a function of all the currents

that flow across it is,

Cm
dV

dt
= Gmax

Na m3h (ENa − V (t)) +Gmax
K n4 (EK − V (t))

+ Gleakm
3h(Vleak − V (t)) + Iinjected(t) (2.15)

where Iinjected(t) (measured in µA/cm2) is the current injected via an intracellular elec-

trode. This equation, together with the sets of equations for the activation and inactivation

variables, are the Hodgkin and Huxley model for an isopotential membrane patch.

The rate functions of the HH model were fit to 6.3◦C, which is considered the ’standard’

temperature of the HH model. To correct for other temperatures, the rate constants (i.e.

α’s and β’s) are scaled by a multiplicative factor φ,
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Figure 2.6: HH spike and ion conductances. The membrane potential of a 200µm2 HH patch,
in response to a short DC current injection is shown with the separation of ionic conductances
underlying the action potential. Sodium and potassium conductances (measured in mS/cm2) are
shown in arbitrary units

φ = Q
(T−6.3)/10
10 (2.16)

where the temperature coefficient Q10 (defined as the increase in rate when the temperature

changes by 10◦C) equals 3, and T is the temperature in Celsius.

Figure 2.6 shows the membrane potential during a spike (the response of the HH model

of a 200µm2 membrane patch to a short DC current injection), as well as the sodium and

potassium conductances.

2.2.2 Properties of the HH model and its applicability as a general

neuron model

The HH model replicates many of the features of spiking of the squid giant axon: the form,

duration and amplitude of a single spike (both for the membrane and the propagating spike),

its sharp threshold, the conduction velocity of the spike along the axon, the refractory period

of the neuron, the impedance changes during the spike, anode-break excitation, accommo-

dation, subthreshold response and oscillations. When simulating the response to a sustained

stimulus currents, it demonstrates a discontinuous onset of repetitive firing with a high spik-

ing frequency and a limited bandwidth of the firing frequency. Figure 2.7 shows the response
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Figure 2.7: HH spiking. (A-D) Segments of the spiking pattern of a 200 µm2 HH patch, in
response to sustained DC currents. A and B show the steady state of the membrane voltage
in response to subthreshold currents; C and D show the sustained firing pattern in response to
superthreshold ones

of the HH model to sustained DC current inputs reflecting the discontinuous relation between

the input current amplitude and the firing frequency.

However, careful studies of the model reveal that it does not provide a good description

of quite a few electrophysiological properties of the axon (see e.g. [32]), in particular the

refractory behavior of the preparation in response either to sustained or periodic current

pulse stimulation. Also, the model does not account for after potentials and slow changes in

the squid giant axon.

As a generic model for a spiking neuron, the HH model is criticized since it has a discon-

tinuous f-I curve, exhibiting an inverted-Hopf current-voltage dynamics [48, 57], (also termed

a Type II membrane dynamics), whereas most of the cortical neurons have a continuous and

smooth saddle-node current-voltage relation (a Type I membrane) [182, 48, 57]. Additionally,

the HH model firing pattern is non-adapting. Finally, the model is deterministic and does

not exhibit the response variability most neurons demonstrate (see below). As a quantitative
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neuronal model, it is clear that the HH model (like any other detailed model) needs to be

modified to explain the biophysical aspects and macroscopic behavior of different kinds of

neurons, as they may have a wide range of voltage-dependent currents and ligand dependent

ones, different membrane areas, etc.

Still, the HH model serves as the ’golden standard’ of neuronal excitability, and with

minor changes - as the backbone of most neuronal spiking models The main reason is that

the HH model does capture the essence of spiking through ionic currents (Na+ andK+) which

enter and leave the cell through voltage dependent channels. Moreover, the model is compact,

and approximates well many of the features shared by different types of neurons (shape and

duration of spiking, repetitive spiking in response to sustained inputs, refractoriness etc.)

while incorporating biophysical aspects of the neuron. Adding the appropriate currents for

other channel types (usually using similar kinetic schemes) is easily done. Accordingly, and

since the model has been studied mathematically in great detail [81], it is the common choice

of conductance based modelling for computational studies and theoretical ones4.

2.3 Noise in Neurons

2.3.1 Expression of Noise in Neurons and its sources

Like any other physical system, noise is an inherent feature of neurons resulting from their

complex biophysical design and components. Unreliable and stochastic function have been

observed on both the macroscopic and microscopic level of neurons, from the early days of

neuronal electrophysiology. For example, neurons may spike spontaneously without stimu-

lation, the firing of neurons exposed to near-threshold stimuli seems to be random, synaptic

transmission is highly unreliable, action potentials conduction along the axon may fail, or

advance with variable velocity (see e.g. [96, 97, 88, 126, 6, 113]). Figure 2.8 shows an exam-

ple of the unreliable spike timing of neurons in response to repeated DC current injection in

vitro (and interestingly – a reliable response of the same cell to repeated presentation of a

fluctuating stimulus. We will return to that in the next chapters)

The unreliability and random-like function of single neurons is usually assumed to arise

from the properties of the biophysical building blocks and design of the cell. The main

sources of noise are associated with the membrane, synapses and ion channels: Thermal

noise due to the membrane resistance (Johnson noise), quantal release of synaptic transmit-

ters and the open-close fluctuations of the ion channels, which may originate from thermal

4Also common are the simplified model of Fitzhugh-Nagumo which is more mathematically tractable and

the integrate and fire model (see e.g. [182]). For discussion see [154]
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Figure 2.8: Reliability of firing patterns of cortical neurons evoked by constant and
fluctuating current. (A) A superthreshold dc current pulse (150 pA, 900ms, middle) evoked
trains of action potentials in a layer V pyramidal neuron. Responses are shown superimposed (10
trials, top), and as a raster plot (25 trials,bottom). (B) Same cell is stimulated repeatedly, this
time with a fluctuating stimulus (a Gaussian white noise, with a 150 pA mean, 100 pA std, filtered
with an alpha-function with τα = 3). Taken from [110].

fluctuations, electrical ones or ion concentration fluctuations. The effects of these differ-

ent noise sources have been studied experimentally and theoretically, trying to connect the

biophysical properties to the operational ones [96, 97, 195, 178, 114, 115, 196].

We emphasize the difference between these internal sources of noise and the variability

in the function of a neuron which stems from the input that it receives – the spike trains of

many thousands of neurons. Since each of these neurons is noisy and the synapses are also

stochastic, the input to the neuron is unreliable as well. Thus, if a stimulus is presented to

the animal (or system) repeatedly in an identical way, the synaptic activity that the soma

’sees’ will still be different from one presentation of the stimulus to another. The effect of the

synaptic input noise on the single neuron function has been studied extensively, reflecting it

may be highly significant in setting the neuronal response to its inputs [200, 169, 65] (note

also the history dependent activity of synapses [118, 181, 3, 37]).

Aside from the synapses, the most prominent internal noise source of the neuron, has

been argued to be the ion channel fluctuations [96, 114], that will be at the focus of large

parts of our work. As we shall discuss in the following chapters, this noise may play a

significant role in determining the way information is processed and transmitted by neurons.
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Figure 2.9: Current flowing through a single ion channel. Patch clamp recording of a single
ion channel, held at a constant membrane potential of 0mV . Opening of the channel (downward
events), cause a 3nA current flow. The random opening and closing of the channel is typical of all
ionic channels. Baseline fluctuations are due to thermal noise. Taken from [88].

2.3.2 Ion Channel Noise

The development of the patch clamp recording technique [125] made it possible to observe

the activity of single channels in an intact small patch of membrane, and record the currents

that flow through them. Once a particular type of channel is isolated in the patch, it is

possible to measure its kinetics and conductivity.

Channels open and close randomly, as one can see from the fluctuations of the membrane

current. From single channels recording we learn that when activated, they may open at

random intervals. Channels may also fluctuate between different open states which have

different conductance levels. An example of single channel recording, reflecting the stochastic

nature of channel opening and closing, and the much smaller effect of thermal noise on the

membrane currents is shown in Figure 2.9.

Single channels (usually) open and close abruptly, and their kinetics are frequently de-

scribed by a state diagram, as in chemical kinetics. The kinetics of single channels may

be quite complex. This complexity is assumed to arise from a wide set of possible confor-

mational and structural changes that the channel goes through as a function of membrane

voltage changes, or the binding of ligands. Consequently, channel kinetics are usually mod-

elled using a rather intricate (usually first order) Markovian kinetic model that takes into

account multiple open and closed states, including ’inactivated states’ (states following an

open state, in which the channel is unable to open). A simple example of such a diagram

would be,
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closed ⇀↽ open ⇀↽ inactive (2.17)

with one first-order transition between the states (implying that the macroscopic permeabil-

ity changes follow a single exponential relaxation after a step change, see [64]. We neglect

the rate constants between the states for clarity).

Fitting such models suffers from the usual problems of model selection, as there is no

clear indication of the actual number of states that the channel may have (it cannot be

derived using the current knowledge of three dimensional structure of the channels in the

membrane). The multiplicity of closed and inactive states is often seen as multiple kinetic

time constants in the gating currents, in fluctuation measurements and in the open/close

time histograms of single channel recordings. Various learning theory techniques have been

utilized to find efficient and principled models (see e.g. [186, 82]). It is conceivable that the

number of states is very large [177], or that channel behavior has memory of past states (i.e.,

the Markovian order may be larger than 1).

Although it is clear that channels are stochastic elements by nature, it has usually been

assumed (and so implemented in most neuron models) that it is justified to use deterministic

descriptions of the conductances arising from many channels of a given type. The reasoning

is that because of the large number of channels of each type, and because the channel act

independently of each other (which they do, to a good approximation), then, from the law

of large numbers, the fraction of channels open at any given time is approximately equal to

the probability that any one channel is in an open state. Hence, most neuron models use

deterministic descriptions of the conductances arising from many channels of a given type.

Following Hodgkin and Huxley’s physical interpretation [68, 71], and Fitzhugh’s work [50],

a stochastic version of the HH model, which is based on simulating ion channel noise has

been studied in detail as a more biophysically accurate description of the spiking mechanism

[163, 42, 31, 170], and is presented in chapter 6.

2.4 The Computational Sketch of a Single Neuron

We conclude this section by presenting a simplified view of the biophysical computation that

the single neuron performs. As shown schematically in Figure 2.10, a single neuron may

receive spike trains as inputs from many excitatory and inhibitory neurons.

These spike trains are transformed by the synapses into post synaptic potentials in the

dendrites and the soma of the receiving neuron. The post-synaptic potentials are merged in

a nonlinear way by the dendritic tree with its active and passive conductances, and reach
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Figure 2.10: Sketch of a single neuron computation.

the soma of the neuron as a voltage trace. The many thousands of channels in the soma

and the axon hillock then ’encode’ this voltage trace into a sequence of action potentials

that propagates down the axon to neurons ’down the road’. The output of the neuronal

computation of the cell is a single spike train, but how is information encoded by this

pattern of spikes?
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Chapter 3

Background: The Neural Code –

Spike Trains, Coding and Information

Theory

Adrian’s work on sensory neurons [8] formed the principles of our understanding of the

neural code. First, he found that spiking is an all-or-none phenomena, occurring (or not) in

response to incoming stimuli. As no intermediate response was found, the spiking patterns

were assumed to be the sole carrier of information. Second, the number of spikes that a cell

produces is related to the nature of the stimulus. Third, in response to a static stimulus,

the spike rate declines (over time).

How do spike patterns encode and represent information? This is still a central question

in neuroscience, usually called the problem of the neural code. The study of the neural code

can be roughly divided into a few interconnected questions: What do the spikes encode?

How do they encode it? how efficient is the code? How susceptible is it to noise? Is it

optimal in some sense?

This chapter presents the main questions regarding the nature of the neural code and

some of the answers to these questions. We present the standard tools of analysis of neuronal

spike trains and the concepts of information theory, which has been a significant tool in the

analysis of spike train content and nature.

3.1 Quantifying the Neural Responses

Although action potentials can vary in their amplitude, duration, and shape, these differ-

ences are small enough so that spikes are typically treated as identical stereotyped events.

25



26 Noise and information in neural codes

Ignoring the brief duration of an action potential (which is about 1msec), an n action po-

tential sequence is usually characterized simply by a list of times when the spikes occurred

{t1, t2, ..., tn}, or {ti} in an abbreviated form. Often, the sequence will be represented as a

sum of idealized spikes, using the Dirac delta function, i.e.

ρ(t) =
n

∑

i=1

δ(t− ti) (3.1)

ρ(t) is sometimes called the neural response function.

The spike count rate of a window of time T of the spike train, is defined as the number of

spikes that occur during the time window, divided by the window length

r =
n

T
=

1

T

∫ T

0
ρ(t)dt (3.2)

3.1.1 Spike train statistics

Describing the connection between the stimuli and a neuron’s response, requires the con-

struction of some form of a ’dictionary’ between the two. I.e. we wish to portray the mapping

that the neuron performs from any of the stimuli, s(t), into the set of possible spike trains.

The top panel of figure 3.1 shows the responses of a specific neuron in the fly visual system

to repeated presentations of the same visual stimulus s(t) (see figure caption for details).

Clearly, there is no unique response and so apparently, the mapping of a stimulus to a spike

train is a stochastic one (see also figure 2.8). It is then possible to define the conditional

probability that a neuron will respond to a stimulus s(t) with a specific spike train {ti}, as

P ({ti}|s(t)). Using Bayes’ rule and proper definitions of the ensemble of stimuli P (s(t)) and

of the responses P ({ti}),
1 it is possible to define the conditional probability of the stimulus

given a response, P (s(t)|{ti}). These conditional probability distributions, are the central

tools in the analysis of spike trains and the nature of the code.

Since the spike train that the neuron responds with to a given stimulus, typically varies

from trial to trial, it is customary to use the aforementioned probability densities to charac-

terize the average behavior of the neuron. As the spike times are continuous, one needs to

use probability density function for the spike timing, and so the average firing rate at time

t, over a window of size ∆t, is

r(t)∆t =
∫ t+∆t

t
〈ρ(τ)〉dτ (3.3)

where 〈 〉 is the average over trials (input presentations). The top panel of figure 3.1, shows

the different responses of the H1 neuron in the fly visual system, during an experiment in

1We put aside the issue of defining the appropriate probability spaces, see e.g. [143].
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Figure 3.1: Variability of neural responses and construction of the average response.
Top panel shows a raster plot of 50 individual spike trains of the motion sensitive H1 neuron in the
fly visual system, in response to repeated presentation of the same visual stimulus at time t = 0.
Bottom panel shows the Post Stimulus Time Histogram (PSTH) of the responses. The PSTH is
calculated for consecutive time bins, by taking the average number of spikes in each bin (10msec
in this case), over stimulus presentation, and normalizing it by the bin size. Taken from [143]

which the same visual stimulus was presented repeatedly to the fly. The bottom panel shows

the averaged firing rate of the H1 neuron calculated from the responses in the top panel, and

is known as the post stimulus time histogram (PSTH) of the neuronal responses.

An alternative way to represent the spike train is to use the sequence of intervals between

the spikes, i.e., {δt1, δt2, ..., δtn−1} = {t2−t1, t3−t2, ..., tn−tn−1}. A frequently used measure

of the nature of the spike train is the distribution of interspike intervals that a neuron uses, in

response to a specific stimulus (ISI distribution). The ratio between the first two moments

of the distribution, µISI (the mean interspike interval), and VarISI ( the variance of the

distribution), namely µISI

VarISI
, is termed the coefficient of variation (CV) of the interspike

interval (CV of ISI).
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Theoretical models of spiking often refer to spike trains as point processes (statistical

models of a sequence of events). Due to the random-like nature of in vivo spike trains, it is

often assumed that one spike is independent of the other spikes, in which case the spike times

follow a non-homogeneous Poisson distribution. Although it is known that this assumption is

incorrect, the Poisson model is a frequent approximation of spiking patterns, and considered

to be a fairly reasonable one. According to the Poisson distribution, the probability to find

k spikes within a time window of size ∆t, is given by

P (k spikes) =
(λ∆t)kexp(−λ∆t)

k!

where λ is the average firing rate of the neuron per unit time. The probability of an interspike

interval falling between t and t+∆t is given by r∆texp(−λt) . As can be easily verified, the

CV of ISI of a Poisson spike train is 1. The value of CV of ISI of real neurons spike trains is

then compared to the value of the idealized Poisson value, quantifying the randomness of the

spike train (for example, the CV of an “ordered” spike train with fixed interspike interval

equals 0).

Similar to the interval distribution, the autocorrelation function quantifies the probability

that two spikes will occur within a certain separation, regardless of the events (spikes)

in between. It is thus a useful tool to identify patterns of activity of the neuron (e.g.

oscillations). Using the definitions of the neural response function and the average spike

count, the autocorrelation of a spike train is given as function of the time difference between

the spikes τ ,

Cρρ(τ) =
1

T

∫ T

0
〈(ρ(t)− r)(ρ(t+ τ)− r)〉dt (3.4)

where the average is over stimulus presentations. The autocorrelation is easily generalized

to the correlation between the spike trains of two different neurons.

The response of a neuron may depend on many different properties of the stimulus it

is presented with. Quantifying the relation between the stimulus and the response is a

question of identifying the features of the stimulus that the neuron ’cares’ about. Extracting

the encoded features of a system is a difficult problem (see e.g. [21]). In neuroscience, trying

to identify what neurons ’care about’ is usually translated into mapping their receptive field2,

i.e. the set of stimuli that the neuron responds to (see e.g. [37]). Often, the receptive field

properties will be summarized by the spike-triggered average stimulus, A(τ), which is the

average value of the stimulus over a time interval τ before a spike is fired (the averaging is

over spikes and stimulus presentation),

A(τ) = 〈
1

n

n
∑

i=1

s(ti − τ)〉 (3.5)

2following to the seminal work of Hubel and Weisel [77] on the receptive field of cortical visual neurons
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Figure 3.2 shows an example of the construction of a spike triggered average. It is straight-

forward to define similar averages of the stimulus conditioned on different response features

(see e.g. [143]). We note that spike triggered averaging is a simple case of the more general

Figure 3.2: Spike triggered average. A sequence of light intensities which are projected on a
salamander retina, is shown on top, with the resulting spike train of a retinal ganglion cell below
it. The spike triggered average is constructed by averaging the stimulus waveforms preceding each
of the spikes. The result is shown on the bottom right. Taken from [143].

reverse correlation method, which is a standard tool in system identification, connecting

between input and output features (see [120, 143]).

3.2 The Nature of the Neural Code

3.2.1 Rate Codes and Temporal Codes

While it is clear that action potentials convey information through their timing, the nature

of the neuronal codewords and their ’meaning’ has been a controversial issue in neuroscience.

The main debate over the nature of the neural code has focused on whether the fine temporal

structure of the spike train carries information or whether the details of the fine structure

are mainly noise (see e.g. [143, 158]). Obviously, the nature of spike trains as a code sets

the capacity of the code to convey information, and reflects on how it could be decoded.
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Much of the discussion has focused on presenting examples of neurons using a rate code or

a temporal code, often without a clear definition of what these terms mean.

The ‘classical’ view of the neural code is that of rate coding, which stems from the em-

pirically observed unreliability of neuronal spike trains. Since it is evident that the temporal

structure of the spike train is noisy, it has often been argued that the sole carrier of informa-

tion is the spike rate. The frequent version of rate coding is actually a spike counting code,

in which the rate is defined as the number of spikes in a time window divided by the length

of the window. The rate for every point time is usually estimated using the (somewhat oxy-

moronic) ‘instantaneous firing rate’, defined either by using a moving-window spike-counting

code or by using the inter-spike interval and defining the instantaneous rate as 1
ISI

.

The concept of temporal coding arises when we consider how precisely we must measure

spike times to extract most of the information from a neuronal response. This precision

determines the temporal resolution of the neural code. Several studies have found that this

temporal resolution is on a millisecond time scale or less, indicating that precise spike timing

is a significant element in neural encoding (for example, [40, 89, 20, 143]).

3.2.2 Noise, Reliability and the neural code

Another approach in the investigation of the nature of the neural code is to connect it to

the computation that the neuron performs and the way the computation is implemented.

One common view of a neuron is that of an integrator of inputs. Spiking is then the result

of summing of many random-like (or noisy) events. In this case, temporal information in

the inputs to the neuron cannot be kept in the outgoing spike train. The alternative view

suggests that the neuron may function as a coincidence detector, for coordinated spiking of

a small number of input neurons (see e.g. [4]). In this case, temporal information is very

likely to persist in a network, if it concerns synchronized activity of neurons (Obviously, a

key issue in this respect is how many synaptic potentials are needed to create a single spike

[130]. The highly irregular nature of the interspike intervals of cortical cells has been argued

as an evidence for both perspectives.

Softky and Koch [164] argued that the convergence of many Poisson-like excitatory in-

puts onto a single integrating neuron with a membrane time constant of the order of 10

milliseconds, would result in a much more regular spike train than the usual Poisson-like

spike train usually seen in cortical single cell recording. Therefore, their conclusion was that

cortical cells must function as coincidence detectors, rather than integrators, and that the

effective time constant is of the order of 1 − 2 milliseconds. Shadlen and Newsome [158]

demonstrated that massive uncorrelated input of balanced excitatory and inhibitory contri-
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butions from Poissonic-like sources (Softky and Koch neglected the inhibitory inputs) would

yield a Poissonic spike train in the target cell. They argued that this result refutes the

possibility of precise temporal encoding.

Balanced excitation and inhibition inputs to a neuron have been argued to result in an effec-

tive short membrane time constant [165, 159, 185], leaving the question of coincidence de-

tection somewhat unresolved. Other possible sources for the high CV of the ISI distribution

have been suggested, like the nature of repolarization after a spike, relative refractoriness,

and membrane voltage instability [16, 180].

3.2.3 Rate code and Temporal code, revisited

According to the above formulation (section 3.2.1), temporal encoding might seem to be a

special case of rate encoding in the limit of a small encoding time window. However, the

temporal structure of a spike train or firing rate evoked by a stimulus is determined both by

the dynamics of the stimulus, by the nature of the neural encoding process and the internal

noise of the neuron. Stimuli that change rapidly tend to generate precisely timed spikes

and rapidly changing firing rates no matter what neural coding strategy is being used (see

below).

A generalized (and more accurate) view of the temporal vs. rate code problem has been

given (in different ways) in [1, 175, 143, 25]. They all suggest that the question is not

just a matter of the size of the encoding time window or temporal resolution, but rather a

question about the symbols of the code and their content. Using very small time windows

to analyze the nature of the spike train, only improves the time scale over which the rate

code is considered – it is still a weighted average of the number of spikes over the encoding

time window. Temporal coding should refer to the existence of information in the temporal

structure of the spike train, beyond the information carried by the modulated firing rate

of the neuron! (In other words, temporal coding should refer to temporal precision in the

response that does not arise solely from the dynamics of the stimulus, but relates to properties

of the stimulus).

3.2.4 Experimental results of input-dependent unreliability, noise

and code

Clearly, the reliability and temporal accuracy of spike timing are fundamental to the nature

of the neural code. Accurate spike timing can carry more information than a fuzzy one, and

may imply a different decoding scheme to be used by the nervous system. The work of Bryant
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and Segundo [26] and the more recent work of Mainen and Sejnwoski [110] addressed this

question directly, by repeatedly injecting identical current traces into the soma of neurons

(while blocking synaptic transmission) and thus trying to characterize the reliability and

accuracy of the neuronal spike trains. They have shown that neurons respond to fluctuating

current inputs with repeatable and accurate spike trains, whereas slowly varying inputs result

in lower repeatability and ‘jitter’ in the spike timing. Figure 2.8 (in the previous chapter),

shows the responses of a layer V cortical pyramidal neuron from a rat to two opposite types

of input currents, injected repeatedly to the neuron using an intracellular electrode. DC

current injection results in very low reliability of the spike timing, reflecting a noise source

dominating the timing of the spike. Since synaptic transmission was blocked, this suggests

that the noise source is a cellular one. The injection of a highly fluctuating current, with

the same mean value as the DC current, resulted in a similar number of spikes, which are

timed very accurately across repeated trials.

Thus, the same neuron can be extremely accurate in terms of spike timing, having a

precision of less than 1msec for some inputs, and yet be very inaccurate for other inputs.

This result suggests that the nature of the neural code (the outgoing spike train) is set by

the nature of the stimulus and the internal noise of the neuron (which affect the neuronal

computation)3. Figure 3.3 shows the similar results of [127], which also include intermediate

reliability in response to different types of current stimuli.

Similar input-dependent spike train reliability and accuracy, have been reported for neurons

in vivo when the animal was presented with a dynamic or static stimulus, and the response

of a single neuron was recorded [13, 39, 139].

3.2.5 Population Codes

Until now, we have described the neural code question and analysis, in terms of the code of

a single neuron. Obviously, information is typically encoded in the nervous system by pop-

ulations of neurons. Population coding has several possible advantages from an information

encoding viewpoint, including reduction of uncertainty due to neuronal noise or different

feature selectivity, and the ability to represent a number of different attributes of a stim-

ulus simultaneously. Individual neurons in such a population typically have different but

overlapping selectiveness so that many neurons, but not necessarily all, respond to a given

stimulus.

3Some arguments about experimental problems which may be the source of these result have been raised

in past years. It has been suggested that instrumental noise or unreliability and electrode problems may be

the reason for the unreliability of spike timing in the Mainen and Sejnowski experiment. However, the same

results have been reported by different groups (see e.g. [127]) and different preparations.



3.2. THE NATURE OF THE NEURAL CODE 33

Figure 3.3: Reliability and jitter of spike timing in a regular spiking cell. Similar to
the results of [110], shown in Fig. 2.8, the responses of a cortical neuron to repeated injection of
different types of currents is shown. (A) In response to a dc current (middle), the unreliable spike
patterns (superimposed, top; raster plot, bottom) is shown. (B) Response of the same cell to a
current waveform derived from a visually evoked response. (C) As in B, input used is an artificial
fluctuating current dominated by low frequency components. (D) As in C for a current dominated
by high frequency component. Taken from [127]

Thus, in general the population code may have a mixture of the coding schemes. First,

the cells may respond to different features in a common stimulus. Second, they may respond

independently, given the stimulus, or thirdly, they may encode things in their joint response

things about the common input (sometimes in a synergistic way,[53, 52, 131]).

Due to experimental limitations of multi-cell recordings, and since it is easier to analyze

the responses of a population of neurons as independent. This has been the frequent (but

not the only) approach in population decoding studies, which mainly deal with estimating an

average value of the neuronal population [54, 157, 147, 148, 198, 37, 201]. But how could the

correlations between the spiking of different neurons provide additional information about

a stimulus that cannot be obtained by considering all of their firing patterns individually?

Synchronous firing of two or more neurons is one mechanism for conveying information in

a population correlation code [184, 89, 141]. Rhythmic oscillations of population activity

provides another possible mechanism [90]. Both synchronous firing and oscillations are

common features of the activity of neuronal populations.
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One possible comprehensive view is given by the synfire chain model [5], which sug-

gests that synchronized patterns of neuronal activity are the key mechanism of information

encoding and propagation in the cortical networks (see also [44, 123]).

3.3 Information theory and the neural code

Information theory was formulated by Shannon [160] as a general framework for quantifying

the information conveying ability of communication systems. The general form of a com-

munication channel (be it an optic fiber line, spoken language or a neuron), is of a sender,

a receiver and a physical media over which the sender conveys signals to the receiver: The

sender selects a particular message it wishes to send, out of a set of possible messages. He

then uses an encoder to convert the message into a set of symbols which will go over the

physical channel. When arriving on the other end, the message is decoded by the receiver.

In general, encoding (decoding) and transmission are stochastic and noisy processes, and so

the analysis of the nature of the communication channel relies on the conditional probability

densities of an “output” at the receiving end as a function of the “input” the sender wanted

to send (and vice versa). The key concepts of information theory, the entropy and mutual

information, depend on the probabilities with which the symbols and their combinations are

used across the communication channel. Entropy measures the richness of the patterns of

coding symbols and the mutual information measures how much does the output of channel,

i.e. the decoded message, convey about the input to the channel, i.e. the original message

of the sender.

In electrical and communication engineering, information theory evaluates the capacity

of communication channels and searches coding schemes that saturate them. However, due

to its mathematical rigor, and parameter-free nature, the concepts and tools of information

theory have been imported to many other fields. Mutual information serves as a general-

ized measure of correlation between variables, an unbiased measure of the effect of changing

parameters on the outcome of an experiment (used for example in psychology and biology).

Maximum entropy and information maximization concepts are common in design and opti-

mization problems (e.g. in game theory, economics and decision theory. Information theory

has also been used in the study of computation and the dynamics of physical systems, since

in a simplified way, every input-output “machine” is a communication channel (see e.g. [35]).

In neuroscience, information theory has been applied to questions regarding the nature

of the neural code [143, 22, 37], as we discuss below. It has also been used for quantifying

the nature of jitter in the propagation of action potentials along the axon [6], the analysis of

the nature of a synaptic connection function and synaptic learning rules [102, 103, 116, 29],
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the study of feature encoding [173]. Especially interesting are the ideas of maximization of

encoded information and efficient information encoding as design principles of the nervous

system [15, 11, 17, 102, 103].

3.3.1 Entropy, Relative Entropy and Mutual Information

The entropy of a set of responses of a system, measures how rich (or “surprising’) the set of

responses is. If a system is presented with a variety of stimuli and responds in the same way

every time, or that only a few different responses appear, we might conclude that this set

of responses is uninteresting. A richer set would show a larger range of different responses,

perhaps in a highly irregular and unpredictable sequence. The Shannon entropy quantifies

the intuitive notion of ’how surprising the response is’ as a function of its probability. Intu-

itively, an information measure should be positive, anticorrelated with the probability of a

response and additive for two independent observations. The only functions that obey these

requirements are logarithmic (see [7]).

Thus, if we consider the response as a random variable, the entropy of a discrete random

variable X which may take K possible values in Ω was defined by Shannon as

H(X) = −
∑

x∈Ω
p(x) log2 p(x) bits (3.6)

where p(x) is the probability of X taking the value x. The entropy is a measure of how much

is unknown about the value of the random variable. The usual physical intuition is that the

entropy of a system is the logarithm of the number of possible states that the system can

occupy.

The entropy of a pair of discrete random variables X and Y (taking values in Ω and Υ,

correspondingly), with a joint distribution p(x, y) is called the joint-entropy and is defined

as,

H(X,Y ) = −
∑

x∈Ω

∑

y∈Υ
p(x, y) log2 p(x, y) bits (3.7)

Based on the entropy measure, it is possible to quantify how much information does an

output of a system (or a channel) Y , carry about the input X. Alternatively, this may apply

for any two random variables, asking what does knowing the value of one variable reveals

about the value of the other. If X is chosen from some probability, P (X), then the entropy of

this distribution is a measure of the surprise (or uncertainty) of the value of X. Once Y (the

decoded received message) is observed, the range of possible inputs which were the source

of it is restricted, according to the conditional distribution of X given Y . Consistent with

the notion of entropy as a measure of uncertainty about the nature of X, the conditional
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entropy of Y given X measures how much of the uncertainty about the nature of X has

remained after seeing Y , and is then defined to be

H(X|Y ) =
∑

y∈Υ
p(y)H(X|Y = y) = (3.8)

= −
∑

y∈Υ
p(y)

∑

x∈Ω
p(x|y) log2 p(x|y)

= −
∑

y∈Υ

∑

x∈Ω
p(x, y) log2 p(x|y) bits

The similar expression of the conditional entropy of the output Y given the input X,

H(Y |X) = −
∑

x∈Ω
p(x)

∑

y∈Υ
p(y|x) log2 p(y|x) (3.9)

= −
∑

x∈Ω

∑

y∈Υ
p(x, y) log2 p(y|x) bits

(In our context this would be considered as a ’noise entropy’ term, as it measures what is

unknown about the response when the input is known).

The mutual information between X and Y is defined as the difference between what was

unknown about X prior to observing Y and the uncertainty about X left after observing Y .

Measured in bits, the mutual information is symmetric in X and Y , and is given by

I(X;Y ) =
∑

x∈Ω

∑

y∈Υ
p(x, y) log2

p(x, y)

p(x)p(y)
= (3.10)

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

Figure 3.4 gives a Venn-like diagram of the relation between the entropies and the mutual

information of two random variables.

The relative entropy or Kullback-Leibler divergence between two probability distributions,

p(x) and q(x) is defined as,

DKL(p(x)||q(x)) =
∑

x∈Ω
p(x) log2

p(x)

q(x)
bits (3.11)

and can serve as a measure of the dissimilarity of the two distributions. Using Jensen’s

inequality, one can see that DKL(p(x)||q(x)) ≥ 0, and is equal to zero only when p(x) is

identical to q(x). It is an asymmetric and unbounded measure. Using the Kullback-Leibler

divergence, we can rewrite the mutual information between X and Y as

I(X;Y ) = DKL(p(x, y)||p(x)p(y)) (3.12)
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H(X|Y)

H(X)

I(X;Y) H(Y|X)

H(Y)

H(X,Y)

Figure 3.4: Venn-like diagram of two random variables’ entropies and mutual informa-
tion.

3.3.2 Spike train entropy and information rates

In the context of neural codes, information theory has mainly been used to quantify the

relation between the input to the neuron (or system), and the response of the neuron. The

symbols of the code are the action potentials, and so the spike timings sequence is the

usual description of the response. Since the space of possible stimuli (or inputs) is usually

infinite, such an analysis is limited only to the set of stimuli that are used. The choice of

stimuli and the probability distribution of their presentation will determine the nature of the

set of responses. The paradigm is that a set of stimuli {s1(t), s2(t), ..., sm(t)} is presented

repeatedly, and the neuronal responses are registered. Thus, for each stimuli i, we have a set

of responses of the neuron, {ri1(t), r
i
2(t), ..., r

i
n(t)}.

4 The questions that can be addressed are

what is the conditional entropy of the spike train of the neuron with respect to some class

of stimuli? What is the mutual information between the stimuli and the spike trains? How

efficient is the code or how much of the spike train is noise? How reliable is the code? Since

each spike costs energy, how efficient is the code energy-wise? etc.

In practice, computing the entropy and mutual information for spike sequences can be

difficult, since the probability distribution of the spike sequences and the joint (or condi-

tional) distribution of the spike train and the stimuli must be estimated reliably. Spike train

entropy calculations are typically based on the study of long-duration recordings consisting

of many action potentials, which is experimentally demanding.5 Since the entropy of a se-

4As before, we take the neuron’s point of view, so even when the stimulus is presented to the animal, we

regard it as presented to the neuron
5Consequently, many information theory analyses use simplified descriptions of the response of a neuron
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quence of symbols typically grows linearly with the length of the sequence, it is customary

to compute entropy or information rates. These entropy and information rates are the total

entropy or information divided by the duration of the spike train. Alternatively, entropy and

mutual information can be divided by the total number of action potentials and reported as

bits per spike rather than bits per second.

Several different methods of calculating spike train entropy (and information) have been

used since the work of MacKay and McCulloch [107], who estimated the entropy of spike

trains by binning them into binary sequences (and so deduced a bound on the capacity of

neurons as information conveyers). Werner and Montcastle [193], Eckhorn and Popel [45, 46],

and Optican and Ricmond [128] have estimated the joint distribution or the conditional

distribution based on a limited and simplified set of stimuli and responses of the neuron.

Bialek, de Ruyter, Warland and Rieke [20, 143] have used Wiener-Volterra kernels [149] (and

their causal approximations) to reconstruct the stimulus out of the spike train and thus give a

lower bound on the mutual information. Heller et al. [63] (see also [192]) have used artificial

neural networks to estimate the mutual information between the stimulus and spike trains.

The context-tree-weighting algorithm [197] has also been used both for spike train entropy

calculation [104]. The difficulty in estimating the entropy and information rates which leads

to overestimation has been addressed by various resampling techniques (for example, [129]),

approximations and bounds (e.g., [179]). We present here the technique of Strong et al.

[171], for estimating the spike train entropy, the spike train noise entropy, and the mutual

information between the stimulus and the spike train (for comparison of the methods see

[28] and [192]).

Computing spike train entropy and information rates

The entropy of the spike train is a measure of the richness of the ’vocabulary’ of the neuron

and gives a bound on how much information the code could carry, if there was no noise. To

make entropy calculations practical, a long spike train is broken into statistically independent

subunits, and the total entropy is written as the sum of the entropies of the individual

subunits. The spike train is discretized in ∆t bins, using a sliding ‘window’ of size T along

the discretized sequence. The train of spikes is thus transformed into a sequence of k-letter

‘words’ (k = T/∆t), consisting of 0’s (no spike) and 1’s (spike), as shown in Figure 3.5.

Clearly, any fixed choice of ∆t is arbitrary. Both the spike train and noise entropy rates

depend on ∆t – since more information can be extracted from accurately measured spike

that reduce the number of possible symbols (i.e. responses) that need to be considered. For example, the

spike timing may be replaced by the average firing rate.
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Figure 3.5: Example of binning of spike trains and transforming them into binary word
distribution. (A) Two segments of multiple response traces of a neuron, (recorded in vivo from
the fly H1 neuron). (B-C) Using a fixed binning time window ∆t (of size 3msec in this case),
the spike trains are transformed into sequences of bins, which form ’words’ (10-letter words in this
case). The number of spikes in each bin (of each of the trials) is counted, forming a word W . For
each point in time it is then possible to estimate the probability of observing a certain word (based
on the multiple stimulus presentation). Adapted from [39].

times than from poorly measured spike times. Thus, we expect the information rate to

increase with decreasing ∆t, at least over some range of ∆t values [25]. Often a range of ∆t

values is explored, usually chosen to be small enough so that the transformed spike trains are

binary sequences, and large enough so that the word distribution is well sampled. Typical

values will range between 0.5msec to 5msec.

By using a long enough spike train, we can get a reliable estimate of P (W ), the probability

of the word W to appear in the spike train, and then compute the entropy rate of the total

word distribution,

HT
total = −

1

T

∑

W

P (W ) log2 P (W ) bits/sec (3.13)

The difference between the entropy for finite word size and the true entropy for infinite

word size, should be proportional to 1/T for large T [35, 171]. Therefore, HT
total is estimated
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as a function of T (which is here assumed to be in sec), which is increased to the point

where the estimation of the probability distribution becomes difficult. The entropy is then

estimated, as shown in figure 3.6 for the case of the fly H1 neuron responses, by extrapolating

linearly to 1/T = 0. The resulting Htotal gives the entropy rate of the neuronal spike train

[35, 39, 171].

Figure 3.6: Entropy and noise entropy rates estimation for the H1 visual neuron in the
fly responding to a randomly moving visual image. The activity of the motion sensitive
neuron, H1, in the fly visual system was recorded in response to the repeated presentation of a
randomly moving movie of a black and white bar pattern (see [171]). The spike train entropy and
conditional entropies were calculated for different finite word sizes T , as explained in the text. The
filled circles in the upper trace show the full spike-train entropy rate computed for different values
of 1/T . The straight line is a linear extrapolation to 1/T = 0, which corresponds to T →∞. The
lower trace shows the spike train noise entropy rate for different values of 1/T . The straight line
is again an extrapolation to 1/T = 0. Both entropy rates increase as functions of 1/T , and the
true spike-train and noise entropy rates are overestimated at large values of 1/T . At 1/T = .20s,
there is a sudden shift in the dependence. This occurs when there is insufficient data to compute
the spike sequence probabilities. The difference between the y intercepts of the two straight lines
plotted is the mutual information rate. The resolution is t =3 ms. Taken from [171].

In order to calculate the mutual information we need to estimate the conditional proba-

bility of the word given the stimulus. If a long enough stimulus (which is assumed to sample

“well” the possible stimulus values or features), is presented repeatedly to the neuron, we can

estimate the conditional probability as a temporal average (see [171] for details). We then

examine the set of words that the neuron uses at a particular time t over all the repeated

presentations of the stimulus, and estimate P (W |t), the time-dependent word probability

distribution. At each time t we calculate the time-dependent entropy rate, and then take
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the average of these entropies

HT
noise = 〈−

1

T

∑

W

P (W |t) log2 P (W |t)〉t bits/sec (3.14)

where 〈. . .〉t denotes the average over all times t6. As before, taking the limit of HT
noise at

T →∞, gives the noise entropy rate of the spike train Hnoise, which measures how much of

the fine structure of the spike trains of the neuron is just noise (see figure 3.6).

The difference between the extrapolated total entropy rate and the noise entropy rate,

gives the information rate that the spike train convey about the stimulus (with an errorbar

resulting from the unreliability of the extrapolation, see [171]).

The spike train entropies and information rates of neurons have benn estimated in dif-

ferent animals, modalities and in response to different types of stimuli [22]. The information

rates conveyed about dynamic stimuli may range from a few bits per second to almost 300,

whereas the average information encoded per spike, ranges between near 0 to over 3 bits per

spike. (Since spiking is considered as one of the key energy consumption process in neurons,

it is common to divide the encoded information rate by the number of spikes that were used

for coding this information, and thus get energetic efficiency of the code. This assumes of

course that the energy per spike is fixed.)

The range of information rates conveyed about dynamic stimuli may range from a few

bits per second to almost 300, whereas the average information encoded per spike (which,

assuming that every spike costs roughly the same amount of energy, measures the energetic

efficiency of the code), range between near 0 to over 3 bits per spike.

3.3.3 Design principles of the code

Spike train entropy and information transmission have been used in ’first principles’ calcu-

lations and theoretical analysis, trying to explain the nature of the neural code. Possible

’design principles’ of the neuronal computation and coding, have been suggested to be the

sparseness of the neural code, minimization of redundancy in the code and maximization of

the amount of encoded information or information rate [15, 102, 103, 17, 11, 176]. Of special

interest are studies of the possible optimization of the amount of information or information

rate under metabolic constraints [95, 14].

6Averaging over time is equivalent to averaging over stimulus features as long as our stimulus is long

enough to sample the stimulus features reliably, citeStrong-etal-98
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Chapter 4

Reliability and accuracy of spike

timing in stochastic neuron models

4.1 Introduction

Following the formulation of the Hodgkin-Huxley (HH) equations for modelling spike initi-

ation in the squid giant axon [72] (see 2.2.1), research into the electrical activity of single

neurons followed two main paths: the attempt to discover further macroscopic equations

governing different membrane currents (e.g., [199]), and the attempt to investigate, and

mathematically describe, the behavior of the ion channels underlying these currents [64, 146].

Although part of the same general problem, mathematically these two areas of investigation

are entirely different. In the Hodgkin-Huxley formulation, the ion conductances are modelled

by means of deterministic differential equations, and their values range continuously from

zero to a given maximum. However, because individual ion channels are discrete elements

whose properties can only be given probabilistically, the electrical activity of nerve cells is

most accurately described as resulting from the interaction of stochastic, discrete, units. It

is commonly assumed that a large collection of such discrete units practically forms a con-

tinuous deterministic system, as is the case in numerous large physical systems. Because the

number of excitable channels in the axon’s spike initiation zone is estimated to be large (in

the order of tens of thousands of ion channels, [64]), models for spike generation in neurons

typically utilize deterministic rather than stochastic equations [111, 144, 138].

A few theoretical studies did, however, consider the effect of channel stochasticity, focus-

ing on the question ”when does the stochastic model converge to the corresponding deter-

ministic model?”. Following [71], Fitzhugh [50] suggested a kinetic model for the description

of conductance change associated with the HH equations (and thus giving rise to stochas-

43
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ticity); others used stochastic HH equations to investigate the effect of various parameters

(e.g., number of channels, membrane area, etc.) on the dynamics of the membrane voltage.

The main message of these studies is that the stochastic system differs considerably from the

deterministic HH system when a small number (a few hundreds to a few thousands) of chan-

nels and small membrane areas are involved [42, 163, 170, 41]. Other related questions which

were studied in this context are spontaneous spiking due to channel noise [163, 170, 30, 145],

the effect of channel stochasticity on spike propagation in axons [145, 75, 76], and the ef-

fects on neuronal dynamics and subthreshold voltage [195] (see also the review in [196]).

Correspondingly, several experimental [47, 195, 189], and theoretical [30, 96, 97, 114, 115]

studies have indicated that noise from voltage-gated channels can have important effects at

the cellular level (see also [18]). In a more general perspective, the effect of different kinds of

noise on the firing threshold of neurons was examined by Lecar and Nossal [96, 97]. A more

recent study has compared the contribution of different noise sources on synaptic signals

propagating in dendrites [114, 115]. The effect of general additive noise (without specifying

its biophysical origin) on the behavior of neuronal models has been studied computationally

and theoretically, reflecting its effect on spiking patterns and oscillations [105, 23] and even

on spiking reliability [84] and possible advantages in information encoding [33, 99].

Recent experimental studies addressed the question of reliability and accuracy of spike

firing time in neocortical pyramidal cells. By blocking synaptic transmission and injecting

current to the isolated neuron, Mainen and Sejnowski [110] (see also [26, 127] showed that

spike timing is highly unreliable for repeated DC current inputs whereas for fluctuating

current inputs the firing reliability is significantly improved. For highly fluctuating currents,

they showed that the firing precision may go up to a millisecond range (see also [174]).

Similar results have been presented for neurons in vivo, in response to static or dynamic

stimuli presented to the animal [13, 139, 39].

We ask whether for realistic membrane area and number of excitable channels, a biophysically-

inspired noise that is generated by channel stochasticity plays an important role in deter-

mining the reliability of spike firing times. We therefore model membrane patches of areas

of a few hundred square micrometers, comprising of a total of a few thousands to tens of

thousand ion channels. The model patches are injected with both DC inputs and the more

biologically realistic fluctuating current inputs. We directly simulate the activity of the ion

channels, thus introducing their stochasticity into the models. For a broad range of inputs,

the stochastic HH model (unlike the deterministic one) replicates, at least qualitatively, the

spike timing reliability and accuracy characteristics observed in cortical neurons. In addi-

tion to its significant effect on the timing of spike firing, channel noise also produces three

additional experimental observations, namely voltage-dependent sub-threshold membrane
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voltage oscillations for DC input, occasional ”missing” spikes for supra-threshold inputs and

”spontaneous” spikes for sub-threshold inputs. Similar spike timing reliability characteristics

are shown to occur in a stochastic model of cortical interneurons (a stochastic version of the

Wang and Buzsaki model [191]. We suggest that the noise inherent in the operation of ion

channels enables neurons to act as “smart” encoders, and conclude that channel stochasticity

should be considered in realistic models of neurons.

This chapter is based on work with Barry Freedman and Idan Segev, most of which was

published in Refs. [152, 151].

4.2 The stochastic HH model

In both the deterministic and stochastic HH models (see section 2.2.1), the dynamics of the

membrane voltage is given by

Cm
dV

dt
= −gleak(V − Vleak)− gK(V − EK)− gNa(V − ENa) + I (4.1)

where V is the membrane potential, VL, EK , ENa are the reversal potentials of the leakage,

potassium and sodium currents, respectively, and gL, gK , gNa, are the corresponding specific

ion conductances; Cm is the specific membrane capacitance and I is the specific current

injected into this membrane patch.

The stochastic model differs from the deterministic one in the description of the potassium

and sodium voltage dependent conductances. The set of deterministic differential equations

which describe the average response of the ion conductances (section 2.2.1), is replaced with

a simulation of the thousands of single ion channels in the membrane. Following the physical

interpretation of Hodgkin and Huxley [71], each ion channel is modelled as having voltage

dependent ’gates’ [50]. A channel is open (and allows ions to flow through it) only when all

the gates are open. A potassium channel may be in one of five different states (i.e. the n4

activation term is interpreted as having four ’gates’). The kinetics of the channel is described

by a Markovian model [50, 42, 163, 31] which explicitly incorporates the internal workings

of the channel,

[n0]
4αn
⇀↽
βn

[n1]
3αn
⇀↽
2βn

[n2]
2αn
⇀↽
3βn

[n3]
αn
⇀↽
4βn

[n4]

(4.2)
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where [ni] is the state with i open gates and, hence, [n4] labels the single open state of the

K+ channel. αn, βn are identical to the original HH rate functions.

Similarly, each Na+ channel can exist in 8 different states (due to the m3 activation and

h inactivation variables), defined by the following scheme,

[m0h1]
3αm
⇀↽
βm

[m1h1]
2αm
⇀↽
2βm

[m2h1]
αm
⇀↽
3βm

[m3h1]

αh ↑↓βh αh ↑↓βh αh ↑↓βh αh ↑↓βh

[m0h0]
3αm
⇀↽
βm

[m1h0]
2αm
⇀↽
2βm

[m2h0]
αm
⇀↽
3βm

[m3h0]

(4.3)

where [m3h1] labels the single open state of the Na+ channel, and αh, βh, αm and βm are

the rate-functions in Hodgkin-Huxley formalism. The potassium and sodium membrane

conductances are given by,

gK(V, t) = γK #[n4] gNa(V, t) = γNa#[m3h1] (4.4)

where #[n4] is the number of K+ channels which are open (i.e in state [n4]), and #[m3h1] is

the number of open Na+ channels. γK and γNa are the conductances of the single potassium

and sodium ion channel at their open state, respectively.

By switching from the ’standard’ HH model to the ion channel based model, channel

stochasticity is incorporated into the voltage dynamics. Instead of keeping track of each

of the channels separately, we have used a more efficient scheme to track only the total

populations of channels in each of their possible states (see [163, 30], for a discussion on

possible simulation methods for populations of channels). Specifically, if at time t there are

nA channels in state A and nB channels in state B and the transfer rate of channels from

state A to state B is r, then each of the channels in state A might transfer to state B between

time t and t+∆t with probability p = r∆t. Hence, for each time step we determine ∆nAB,

the number of channels which move from A to B, by choosing a random number from a

binomial distribution [135], i.e.,

Prob(∆nAB) =





nA

∆nAB



 p∆nAB(1− p)(nA−∆nAB). (4.5)

In the present study we used the forward Euler integration method with ∆t = 0.01msec, as

in [30].

Finally, in order to make the transition from the deterministic to the stochastic model,

we need to know exactly how many channels there are in the modelled membrane patch.

Once we choose the conductance of the individual channel, the number of channels can be
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calculated directly from the channel densities and from the maximal conductances, g ’s, given

in the HH model. We choose here 20pS as the value of a single channel conductance for both

potassium and sodium channel types – similar to typical values of ion channel conductance

reported in cortical neurons [64]. The model parameters are summarized in Table 4.1.

At the limit of infinitely large number of channels (with small channel conductance),

the model converges back to the deterministic model behavior. However, when using a

finite number of channels with the corresponding single channel conductance, the stochastic

model will differ from the deterministic one [163, 42, 170]. It is important to note that we

use here the spatially independent (space-clamped) HH equations. Clearly, this is a severe

oversimplification of the realistic case and its implications will be addressed in section 4.5.

The effect of ion channel stochasticity is demonstrated in figure 4.1, by voltage clamp

simulation of the model. Unlike the deterministic model, for which the current needed to

clamp the voltage is fixed (different current for each voltage level), for the stochastic model

the current is fluctuating. Thus, the ion channel stochasticity introduces voltage dependent

noise to the neuron (compare with [195]). As a result, the input-output relation of the

deterministic model is significantly changed in the stochastic model. Figure 4.2 shows the

average firing rates of the stochastic model and the deterministic one, in response to DC

input currents (the f − I curve). Clearly, the ion channel noise transforms the discontinuous

relation between the input current and the firing rate into a smooth one (which is the common

behavior observed in real neuron)

4.3 Reliability and accuracy of spike timing in the SHH

model

Before we proceed to the simulation results regarding the spike timing reliability and the

resulting neural code, let us first try to estimate the effect of introducing stochasticity into the

HH model. Suppose that the area of the membrane patch is 200µm2. According to the model

parameters (Table 4.1), this membrane patch contains 3, 600K+ channels and 12, 000Na+

channels. Considering the large number of modelled channels, one would naively estimate

the number of fluctuating channels about the mean to be on the order of 1√
N

channels.

Hence, for N = 3, 600K+ channels, the size of the fluctuation is 1.7% and, hence, we would

expect rather small deviations from the deterministic model. An even smaller effect would

be expected for the Na+ channels. Surprisingly, this is not the case, as shown in Figure 4.3.
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Figure 4.1: Voltage clamp results of SHH model. Examples of the current needed to
clamp the SHH model (patch area 200µm2 ) to different voltage levels (indicated near each
of the waveforms) for a 100ms period.

4.3.1 Encoding Reliability and Precision: Input Current Versus

Channel Fluctuations

The response of a stochastic isopotential HH compartment to repeated presentation of supra-

threshold currents is shown in Figure 4.3. When the same supra-threshold DC current pulse

(10 µA/cm2, 250msec ; A, top frame) is repeatedly presented to the modelled membrane

patch, the resulting spike trains vary considerably from trial to trial, i.e., the spike firing time

is neither reliable nor accurate (Fig. 4.3A, bottom frame). This should be compared with the

response of the corresponding deterministic model shown in the middle frames. On the other

hand, when the stimulus is fluctuating (simulating the current that presumably reaches the

site of spike generation following the activation of many synaptic inputs impinging on the

dendritic tree, B top frame; see caption of Fig. 4.3 for details), the reliability and accuracy

of the spike train in the stochastic HH model is improved compared to DC case (B, bottom

frame).

As in [110], two measures of the spike timing, the reliability and the precision were

calculated from the peri-stimulus time histogram (PSTH, not shown), for a wide range of
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Figure 4.2: f-I curve of the HH and SHH models. Average firing rate in response to
DC current input of both the HH and the stochastic HH model.

input patterns (see caption of Fig. 4.4 for details). The reliability and precision of the spike

patterns were strongly correlated with the amplitude of the fluctuations in the input current,

σinput (Fig. 4.4 A and B); the reliability and precision dropped as the input was filtered with

larger time constants (Fig. 4.4 C and D). In the stochastic HH model, both the reliability

and the precision (which for most of the responses, was in the range of 1 to 2msec), are in

close agreement with the results for cortical neurons [110, 127]. It is noteworthy that there is

no clear dependence of the reliability and precision on the mean value of the injected current,

as was also found experimentally by Mainen and Sejnowski (personal communication).

Hence, with a realistically large number of channels, when incorporating their unavoidable

stochasticity, one obtains an effect which is qualitatively similar to the behavior of real

neurons, and is significant from both biophysical and computational viewpoints. Clearly,

the effect of stochasticity depends on the number of ion channels and on the membrane

area. It increases when decreasing the number of channels and decreases when increasing

the membrane area. Still, the effect of channel stochasticity was significant even when

the membrane area was increased by a factor of five (to 1, 000µm2). Similar behavior was

observed when, for a given membrane patch, the channel density was increased by the same

factor (not shown). But why is the result of the stochastic model so different from that
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Cm Specific membrane capacitance 1µF/cm2

T Temperature 6.3◦C

VL Leakage reversal potential 10.6mV

gL Leakage conductance 0.3mS/cm2

VK Potassium reversal potential −12mV

gK Maximal potassium conductance 36mS/cm2

γK Potassium channel conductance 20 pS

DK Potassium ion channel density 18 channels/µm2

VNa Sodium reversal potential 115mV

gNa Maximal sodium conductance 120mS/cm2

γNa Sodium channel conductance 20 pS

DNa Sodium ion channel density 60 channels/µm2

αn(V )
0.01(10−V )

e(10−V )/10−1

αm(V )
0.1(25−V )

e(25−V )/10−1

αh(V ) 0.07 e−V/20

βn(V ) 0.125 e−V/80

βm(V ) 4.0 e−V/18

βh(V )
1

exp(30−V )/10 +1

Table 4.1: Hodgkin-Huxley parameters and rate functions used in the simulations

obtained from the corresponding deterministic HH model?

The apparent error in the previous estimation of the size of the effect of channel stochas-

ticity lies in failing to realize that the relevant number of channels is not the total number

of channels in the membrane patch, but rather the number of channels which are open near

the threshold for spike firing. If this number is relatively small, the size of the fluctuations

in the number of open channels in this regime is not negligible. Mathematically, the correct

estimation for the size of the fluctuation should rely on the binomial statistics. For a total

population of N channels and a probability p of a channel to be open, the size of the fluctu-

ations is
√

Np(1− p) and the fluctuations about the mean, Np, is
√

(1−p)
Np

. If p is small, as

in the case near the threshold for spike firing, the relative size of the fluctuations is rather

large. In this case, the inherent stochasticity of the channels is expected to have a significant

effect on the voltage dynamics, i.e., on the time of threshold crossing. When this is the case,

the firing behavior of the stochastic model is expected to be considerably different from that

of the corresponding deterministic model.

Figure 4.3.1 shows that this is indeed the situation. As in Figure 4.3A, ten repeated

10µA/cm2 DC current inputs were applied, this time to a 600µm2 membrane patch con-

sisting of a total of 10, 800K+ channels and 36, 000Na+ channels. The voltage response is

shown in Figure 4.3.1B, whereas the number of open K+ and Na+ channels near the spiking
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Figure 4.3: for figure caption see footnote0

threshold is shown in panels C and D, respectively. As can be seen, a surprisingly small

number of ion channels; approximately 300K+ channels and 50Na+ channels are opened in

this voltage regime. With these small numbers, channel fluctuations become significant and

critically determine the exact time in which sufficient additional Na+ channels are recruited

to initiate a regenerative response. When injecting the same DC current repeatedly, the

fluctuations vary significantly from one trial to the other. Consequently, the time of spike

firing for this input is unreliable.

0Figure 4.3: Reliability of firing patterns in a model of an isopotential deterministic and

stochsatic Hodgkin-Huxley membrane patch in response to both DC and fluctuating current

input. A Ten superimposed responses to repeated supra-threshold DC current pulses (10µA/cm2, 250msec;

top frame), evoked a train of regular firing in the deterministic HH model (middle frame) and a ’jitter’

in the firing in the stochastic HH model (bottom frame). B The same patch was again stimulated ten
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Figure 4.4: Dependence of reliability and precision on stimulus parameters. The
reliability and accuracy of the spike train was calculated in a similar manner to [110]. The
Peri-stimulus time histogram (PSTH) of 20 successive presentation of a particular stimulus
was smoothed using an adaptive filter, yielding an estimate for the instantaneous firing rate.
Significant elevations in the instantaneous firing rate (’events’) were selected from the PSTH
using a threshold of two times the mean firing rate over a given block of responses. The
reliability of the response to a particular stimulus is defined as the average of the fraction
of spikes that occurred in the events in that stimulus’ PSTH. The temporal precision of the
response is defined by the average of standard deviation of the events in that stimulus’ PSTH.
A Estimates of the reliability of the spike train in a 200µm2 stochastic HH membrane patch,
for stimuli with various fluctuation amplitudes, σinput. Each curve is for a different mean
value of the stimulus (I = 7− 20µA/cm2, τinput = 1msec). B The temporal precision of the
same responses as in A. C The reliability for stimuli filtered with different time constants
(τinput = 1− 10msec). Each curve is for a different mean value of the stimulus and a given
σinput. (I = 7− 20µA/cm2, σinput = 3− 12µA/cm2). D The temporal precision of the same
responses as in C.

In principle, this channel noise induced unreliability can be mostly overridden by injecting

a current that fluctuates significantly. If the input fluctuations are sufficiently large, the

voltage dynamics will be dominated by the transients in the current input rather than by the

channel noise. This effect is demonstrated in Figure 4.3.1 where the response to a fluctuating

times repeatedly, this time with a fluctuating stimulus (low- pass Gaussian white noise with a mean I, of

10µA/cm2, and a standard deviation σinput of 7µA/cm2 which was convolved with an ’alpha-function’ with

a time constant τinput = 1msec, top frame (see [110] )). As can be clearly seen, the ’jitter’ in spike timing

in the stochastic model is significantly smaller in B than in A (i.e. increased reliability for the fluctuating

current input). Patch area used was 200µm2, with 3, 600K+ channels and 12, 000Na+ channels. (Compare

to Fig.1 in [110]).
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Figure 4.5: Channel fluctuations
ruins the reliability of spike tim-
ing in the case of DC cur-
rent input. A 10µA/cm2 DC cur-
rent injected to a 600µm2 stochas-
tic HH model (10, 800K+ channels
and 36, 000Na+ channels) results with
dispersed spike timings for repeated
simulation (10 superimposed voltage
traces) in B. In C and D, the num-
ber of open Na+ and K+ channels, re-
spectively, corresponding to the volt-
age traces presented in B are shown.
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input in a specific time window is shown. In contrast to the DC-input case (Fig. 4.3.1),

here the transients in the input current partially overcome the channel fluctuations and

enforce nine out of the ten spikes to occur within an approximately 1msec time window

(Fig. 4.3.1B). The reason for this relatively high reliability of spike timing becomes clear

by observing panels C and D. The accuracy is determined by two parameters. The first

is the variability in the time where the number of open K+ channels reaches a sufficiently

small value (note that a large outward K+ current impedes the initiation of the spike). This

variability should be small in order to obtain high accuracy. Indeed, in 9 out of 10 repetitions,

this condition is satisfied (see Fig. 4.3.1C). The second parameter is the rate of the buildup of

the Na+ channel population towards threshold. For an accurate spike timing, this buildup,

which is determined by the amplitude and rate of the depolarizing input current, should be

sufficiently large to overcome the channel fluctuations (see Fig. 4.3.1D). We note that, for a

given voltage, the size of the channel fluctuation is as large in the fluctuating-input case as

in the DC-input case, but in the latter these channels fluctuations are ‘lost in the crowd’.

To examine the relative contribution of the K+ and Na+ channels to the reliability

and precision, we simulated a hybrid system in which one of the channel populations was

stochastic and the other was deterministic. Both channel types contribute to the complex

reliability nature of the system. However, as expected from the larger number ofK+ channels

that are open near threshold for spike firing (Fig. 4.3.1 C,D and Fig. 4.3.1 C,D), as well as

from their slower kinetics, the noise introduced by the K+ channels is more dominant in

determining the reliability and accuracy of this system (not shown).

4.3.2 Sub-threshold oscillations, ’Spontaneous’ spikes and ‘miss-

ing’ Spikes

Along with the effect of channel fluctuations on spike timing, incorporating channel stochas-

ticity in the HH model gives rise to three additional phenomena which were observed ex-

perimentally: (i) considerable sub-threshold oscillations in the membrane voltage for DC

inputs, (ii) ’spontaneous’ spikes for ’sub-threshold’ inputs and (iii) ‘missing’ spikes for supra-

threshold inputs. These phenomena cannot be reproduced in the deterministic HH model.

In the stochastic model, oscillations in the membrane voltage are already observed for zero

current input (Fig. 4.7A). Occasionally, these oscillations are sufficiently large to generate

’spontaneous’ spikes which would not have occurred in the corresponding deterministic model

(current threshold for spike firing in the deterministic model is I = 7µA/cm2). An example

of ’spontaneous’ spikes in the case of I = 4µA/cm2 is shown in Figure 4.7B; detailed analysis

of spontaneous spiking in the stochastic HH model for zero current input was recently per-
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Figure 4.6: Fluctuating input cur-
rent partially overrides the chan-
nel stochasticity and increases
the reliability of spike timing. A
small time window of the system be-
havior for the fluctuating input case
is presented. A The input current
with a mean value of 10µA/cm2 and
with σinput = 5µA/cm2 and τinput =
1msec, injected to a 600µm2 stochas-
tic HH membrane patch is depicted.
B Ten superimposed voltage-traces re-
sponses to repeated injection of the
fluctuating current in A. In nine out
of ten of the cases, a spike was fired
within approximately 1 millisecond
time window. C,D The number of
open Na+ and K+ channels, respec-
tively, for the voltage traces presented
in B, reflecting how the fluctuations of
both Na+ and K+ channels are over-
ridden by the fluctuations in the in-
put current. When a sufficient num-
ber of K+ channels close (C), the de-
polarizing transient in the input cur-
rent, starting at t = 143msec, results
in the nearly synchronous buildup of
Na+ channels at t = 146msec (D).
The result is spike firing at t = 147.3−
148.4msec. In the one case where in-
sufficient number of K+ channels was
closed in time, the spike is initiated
somewhat later due to the next fluc-
tuation in the input current.
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formed (see [30]). Some of the spikes that occur in repetitive firing in the deterministic model

(Fig. 4.3), disappear in the stochastic model, although the input currents are supra-threshold

(’missing spikes’ in Fig. 4.7, C and D).
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Figure 4.7: The response of the stochastic model to injected DC input currents.
Different DC current amplitudes were injected to a stochastic HH model of an isopotential
membrane patch of area 600µm2 (10, 800K+ channels and 36, 000Na+ Channels). A,B
Membrane voltage oscillations are the dominant effect of the stochastic nature of the ion
channels, with occasional spontaneous spiking. C,D Supra-Threshold DC input currents
result with irregular spiking, with occasional ’missing’ spikes and membrane voltage os-
cillations. This is not expected in the corresponding deterministic HH model where the
threshold is 7µA/cm2. Below this value, smooth sub-threshold voltage response is observed
(not shown); above this value, regular firing is obtained (not shown).

It is important to note that both the amplitude and the frequency of the membrane

oscillations observed in the stochastic model are voltage dependent (e.g., compare A to B

in Fig. 4.7). This is also the case with the membrane voltage oscillations in neocortical

neurons [56, 87], as well as in other neuron types ( e.g., [79] and [91]). We suggest that

in addition to the deterministic macroscopic mechanisms that were proposed to explain the

generation of sub-threshold oscillations, the stochastic nature (and the limited number) of
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the ion channels may have a dominant effect on the nature of these oscillations (see also [105]

and [23]).

Channel stochasticity has such a dramatic effect on the voltage dynamics because it

exploits a peculiar, and largely neglected, aspect of the deterministic HH equations, namely

its two stable states for supra-threshold current input (see discussion of the bistability in

the HH equations in [34] and [59]). For a DC input, one state is the well-known repetitive

firing behavior (green curve in Fig. 4.8A) whereas the other state is a non-firing behavior of

early damped voltage oscillations which converges to a steady voltage (Fig. 4.8A, red curve).

In both cases, a 7µA/cm2 DC current was injected and the marked difference between the

two curves is the result of minute perturbation in the initial conditions. These two different

behaviors can be better appreciated in the phase plane diagram in panels B and C of Fig. 4.8.

Translating the ion conductances to the corresponding number of open ion channels, these

panels show the very different paths in phase space taken by the firing (green) and the

non-firing (red) trajectories. The bottom panel shows the convergence of the non-firing

behavior to a fixed point. It also shows that the distance, in terms of number of open

channels, between the continuous firing cycle and the non-firing voltage behavior is very

small. Although small, the deterministic nature of the HH equations implies that, for a DC

input, the system remains in one stable state or the other. However, introduction of channel

noise could, in principle, flip the system between these two states.

Figure 4.8D-F show that, indeed, in the stochastic model, channel fluctuations do oc-

casionally bridge the small distance in phase space between the two stable states. The

stochastic opening (or closing) of a few extra K+ and/or Na+ channels pushes the system

spontaneously from the continuous firing stable-state (blue trace) to the non-firing stable-

state (red trace), where it stays for a while, and vice versa (green trace, Fig. 4.8D). This

spontaneous transition between the two states is the cause for the ‘missing’ spikes and the

sub-threshold membrane voltage as well as for occasional ‘spontaneous spikes’ (Fig. 4.7B).

Panels E and F depict the corresponding phase-plane behavior of the system. It clearly

shows that fluctuations in only a few channels are responsible for the transition between

these two stable states. We conclude that the non-firing stable state in the deterministic HH

model, becomes a key player in the stochastic HH model. Experimentally, the co-existence

of the two stable solution in the the squid giant axon, as well as in the corresponding HH

model, was demonstrated ( see [59] and also [34]).

Considering the sub-threshold membrane oscillations, the role of channel fluctuations is

two-fold. First, they drive the system from the firing state into the basin of attraction of

the non-firing stable state. Second, the fluctuations prevent the system from converging

into the fixed-point of the non-firing stable state of the corresponding deterministic model.
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As a result, the system is ’cycling’ around this fixed point and, thus, the sub-threshold

membrane voltage oscillations emerge. The frequency of the sub-threshold oscillations is

set by the period of these cycles. Based on this observation we can predict analytically the

power spectrum of the oscillations with a fair degree of accuracy and we can also quantify

the rate of transfer between the two states in the case of DC input (not shown). Questions

regarding the effect of various parameters on the sub-threshold oscillations, such as the area

of the membrane patch, the properties of the channels etc., will be briefly addressed in the

Discussion but a more complete study is yet to be performed.

Finally, it is interesting to note that changing the temperature of the model,and thus

accelerating the rate functions which control the dynamics and fluctuations of the ion chan-

nels, may result in a dramatic change in the nature of the spike firing. Figure 4.9 shows

the effect of changing the temperature of the model to 20◦C, which is significantly higher

than the ’standard’ HH temperature (6.3◦C) (and is not a ’normal’ temperature for the

squid). While the change in temperature has a small effect on the regular spiking pattern

of the the deterministic model (panel A), the firing of the stochastic HH model (panel B)

becomes highly irregular and ‘bursty’ [105], and the subthreshold oscillation become even

more apparent.

Increasing the temperature, thereby accelerating the rate-functions of the model, results

in a dramatic change in the nature of the spike firing (Figure 4.9). The regular spiking in

the deterministic model (A) turns, in the stochastic case (B) into a highly irregular and

‘bursty’ spike trains [[105]]. Again, this emphasizes the significant difference between the

deterministic model and the more realistic stochastic one.

4.4 Spike reliability in the stochastic Wang-Buzsaki

model

We turn to ask to what extent the results for the stochastic HH model may apply for other

spike generation models (and other neurons). Using a similar formalism, we simulate a

stochastic version of the Wang and Buzsaki model (WB) [191] of a cortical interneuron.

As in the HH model, the “backbone” of the WB model is based on sodium and potassium

channels, but with different channel densities and rate functions. The membrane membrane

voltage is given by equation 4.2, and the activation and inactivation variables follow the

same differential equations as the HH case. Cm = 1µF/cm2, and Iinj is in µA/cm
2 , Gleak =

0.1mS/cm2 and vleak = −65mV . The rate functions for the sodium conductance are given
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by

αm(V ) = 0.1
V + 35

1− exp−(V+35)/10

βm(V ) = 4exp−(V+60)/18

αh(V ) = 0.35exp−(V+58)/20

βh(V ) =
5

1 + exp−(V+28)/10
(4.6)

with GNa = 35mS/cm2 and ENa = 55mV . The potassium rate functions are given by

αn(V ) = 0.05
V + 34

1− exp−(V+34)/10
(4.7)

βm(V ) = 0.625exp−(V+44)/80 (4.8)

with GK = 9ms/cm2 and EK = −90mV .

Unlike the HH model, and similar to the behavior of many cortical neurons, its f-I curve

is continuous, reflecting a different input-output dynamics. It is an example of the type

I family of neuron models [48, 57]. Figure 4.10 shows that reliability and accuracy of the

spike train of the stochastic WB model (SWB), has similar input-dependent characteristics,

as the SHH model. The SWB model also shows spontaneous and ’missing’ spikes, but its

subthreshold voltage fluctuations do not show oscillatory behavior (not shown).

4.5 Conclusions and discussion

4.5.1 Summary of results

We have shown that with a realistically large number of ion channels, the inherent ‘noise’

in channel operation critically determines the timing and dynamics of spike firings for the

stochastic HH model. Similar behavior was observed in a stochastic model of a cortical in-

terneuron. The reason for this strong effect of channel stochasticity is that near the threshold

for spike firing, only a very small percentage of Na+ and a small percentage of K+ channels

is open (in the HH formalism – the activation variables, m and n, are small near threshold).

Consequently, the variability in membrane voltage near threshold for excitation is large and

this is reflected in the variability of spike firing time. We conclude that for a wide range of

input parameters, the stochastic model captures important features of real neurons; these

features are neglected in the deterministic model.

In agreement with the experimental results [110, 127] the reliability and precision of spike

timing in the stochastic HH and Wang-Buzsaki models is very sensitive to the properties of
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the current input. The reliability and precision of the spike timing is high for strongly fluc-

tuating inputs and decreases for more smooth (e.g., DC) inputs. The present study shows

that this effect could be explained in terms of the relation between the instantaneous shape

and amplitude of the input signal and the amplitude of channel fluctuations. Strongly fluc-

tuating inputs ”override” the inherent channel fluctuations, and the spike timing is primarily

dictated by the input rather than by channel stochasticity. In contrast, channel fluctuations

become relatively more significant for smooth inputs and thus, spike firing time becomes less

reliable.

In addition to its effect on spike timing, channel stochasticity produces three additional

phenomena which do not occur in the deterministic HH model, but were all observed exper-

imentally (e.g., see [59]). Voltage membrane oscillations are seen for sub-threshold current

inputs and they also occur between spikes for supra-threshold inputs. ‘Spontaneous’ spikes

(for sub-threshold inputs) and ‘missing’ spikes (for supra-threshold inputs) were also ob-

served in this model. These three phenomena result from the “unmasking” of the non-firing

stable state in the HH model by the channel fluctuations. This state, which was largely ne-

glected in the framework of the deterministic HH model, becomes a key player in determining

voltage dynamics in the stochastic model.

4.5.2 Towards a more realistic stochastic model of neurons

The present study gives only a qualitative explanation for the input dependent reliability of

spiking time of neurons. First, the spatial domain of neurons was completely neglected. In

particular, it is important to consider the filtering effect and the impedance load imposed

by the soma and dendrites, as well as by the axon, on the excitable channels at the spike

initiation zone. A multi-compartmental model (possibly composed of an axon with several

highly-excitable nodes of Ranvier, separated by passive inter-nodes and a few dendritic

compartments) should be utilized to better understand the effect of channel stochasticity on

the reliability and accuracy of spiking in neurons. In such a model, the input should impinge

onto the dendritic compartments and be simulated by a barrage of synaptic conductance

changes (rather than by current inputs). In this context, it is important to emphasize that

in many neuron types, the dendritic membrane is endowed with excitable channels in low

density [109] and this may imply a large variability (fluctuations) already in the receptive

region of the neuron . In contrast, we expect that in the axon, most of the variability will

arise in the compartment where the spikes are initiated and that, downstream along the
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axon, spike timing would be encoded very reliably and with high precision 1.

Another major issue to consider is the applicability of the results presented here to other

spiking models and excitable systems, in addition to the models we have presented. Most

neurons consist of a large variety of ion channel types (e.g., A-current, persistent and slow-

inactivating Na+ currents, low threshold Ca+2 current, etc.) each with different density

and kinetics. Moreover, based on direct measurements of single ion channels behavior, it

is possible to construct detailed kinetic diagrams of single ion channels which will better

describe the channel stochasticity and voltage-dependent dynamics and open time correla-

tions. These models usually include many more states, and result in different inherent time

scales [132, 186, 51, 122, 177] (other models even consider a continuum of states, see [106]).

Still we can state with confidence that the surprisingly large effect of channels stochasticity

is likely to persist for other models. The important parameter that determines the size of

fluctuations near threshold for spike firing is the number of open channels in this voltage

regime. To the best of our knowledge, in all present models of excitability, only a small

percentage of the total number of excitable channels is open near threshold. Consequently,

a large variability in spike firing time is also expected in these models. Clearly, the exact

nature of spike firing reliability will depend on channel properties.

What about the sub-threshold membrane oscillations, spontaneous spikes and missing

spikes? The nature of the bistability of the HH model, which is set by its inverted-Hopf

bifurcation, is what ‘enables’ the channel noise to spontaneously switch the system between

its two stable states. For the SHH model, this is the source of the sub-threshold membrane

oscillations, the ‘missing’ and the ‘spontaneous’ spikes. These phenomena may not occur

in models with different types of stabilities (e.g., those with saddle-node bifurcation) and

other phenomena may then arise (see [144, 194, 105]). Indeed, the results for the stochastic

Wang and Buzsaki model do not show similar obvious subthreshold oscillations, but rather

subthreshold fluctuations, as well as missing and spontaneous spiking. The oscillations we

got from changing the temperature of the stochastic HH model suggest that the nature of

subthreshold fluctuations (unlike the input-dependent spike timing reliability) may be very

1One might wonder if the uncertainty engendered by the bistability in the HH model would make spike

propagation along the axon impossible. If, at each site in the axon, there is some probability that the system

will go into a stable non-firing state, the spike may fail somewhere along the axon. Also, a significant noise

in the axon (see [145]) may destroy temporal correlations between the output synapses. However, except

for the compartment where the spike may, or may not, be initiated as a result of the depolarizing synaptic

current, all other axonal compartments downstream receive relatively sharp and large current input from

the spike in the previous node. For such inputs, channel stochasticity will be masked and, consequently, the

axon is expected to act as a highly reliable delay line adding only relatively small jitter [75, 76, 6, 94]. Still,

complete failure may occur in axons at regions with low safety-factor for propagation (e.g., see [55]).
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sensitive to the model (or neuron) parameters.

4.5.3 Other sources of noise in neurons

In the current study we only considered the effect of one source of noise in neurons – the

intrinsic stochastic nature of the ion channels. A variety of other sources of noise exists,

such as spontaneous synaptic release, variability in the number of transmitter molecules

and in the number of available receptors. Other possible sources of neuronal noise are

changes in intracellular and extracellular ion concentrations and in the concentration of

neuromodulators, as well as in the activity of ion pumps. Ephaptic interactions (electric

field effect) of one neuron on other neurons is yet another possible source of noise. Our

study shows that the intrinsic channel stochasticity should be considered as a key source of

the variability of action potential timing.

Clearly, the other possible sources of noise should also be considered in order to quantify

the relative contribution of each of these sources, or their possible synergistic effect. Theoret-

ical works which have analyzed possible sources of noise in neurons have reflected that synap-

tic noise and ion channel noise are the dominant sources of neuronal noise [96, 97, 114, 115].

Synaptic noise and background activity effects have been studied both theoretically and

experimentally, and shown to have a significant effect on neuronal spiking [200, 169, 65].

However, the in vitro experiments on spike timing reliability have been usually performed

with synaptic blockers, [110, 127], i.e. without any synaptic noise effects. We note the

experimental and modelling results of White et al [195] who have used similar stochastic

models to explain the nature of voltage noise in cortical neurons in vitro, and of Jensen and

Gartner [84, 83], who showed that a simple additive noise could qualitatively reproduce the

differences in reliability and accuracy of spike timing in response to DC versus the fluctuat-

ing input found experimentally. (However, because the neuronal noise is both voltage- and

activity-dependent, it is clear that a simple additive noise is only a first-order approximation

to the real case. The difference between models with simple additive noise and models with

more realistic noise in terms of the fine temporal structure of spike firing requires further

exploration).

Experimental studies may further clarify this issue by utilizing different manipulations;

e.g., blocking synaptic receptors (as in [110]); using a dynamic clamp to ”replace” the noisy

channel conductance with a deterministic conductance [161]; blocking specific ion channels

and observing the resultant changes in membrane noise under voltage-clamp conditions (see

initial results in this direction by [189]); blocking ion pumps, etc. We also note recent

experimental results reflecting different membrane voltage ”states” in cortical neurons in



4.5. CONCLUSIONS AND DISCUSSION 63

vivo, and voltage membrane fluctuations of spiking threshold [12, 10].

4.5.4 Implication for Neural Coding

The reliability and accuracy of the spike timing, in the stochastic HH and WB models and

in cortical neurons ([110]; [13]) as well as in other neurons [39] range between an unreliable

response to DC inputs and a very reliable response to large-amplitude, highly-fluctuating,

inputs. The actual current that reaches the site of spike initiation in neurons varies between

these two extreme input patterns; its exact nature is determined by the degree of correlation

among the synaptic inputs that impinge onto the neuron. Highly correlated synaptic activity

gives rise to sharp current transients whereas uncorrelated synaptic activity give rise to

’smooth’ current traces (see also [78, 83]). Our modelling results suggest that the neuron’s

most basic machinery – the ion channels – enable it to act as a ‘smart’ encoder. Slowly

varying inputs are coded with low reliability and accuracy and, hence, the information about

such inputs is encoded almost exclusively by the spike rate. Trying to decode information

about such an input, using the exact temporal structure of the spike train, would result

in decoding the internal noise of the cell rather than decoding the input. On the other

hand, correlated inputs are encoded with higher reliability and accuracy, giving more of a

‘temporal’ code. I.e. information about the input exists in the exact timing of the spikes.2

In the next chapter we demonstrate and quantify the notion of temporal coding and rate

coding in stochastic models which incorporate ion channel noise, using information theory.

We note that in such a system, correlated activity of a population of neurons is likely to

propagate within the network with high temporal precision, as suggested by Abeles [5] in the

synfire model as well as in recent detailed models of spike timing in a network [44, 123]. In

contrast, weakly correlated activity would propagate in an imprecise temporal manner and

is more likely to decay within the network. The fact that the intrinsic noise of neurons may

serve as a mechanism to destroy propagation of random correlations and, at the same time,

allows for an accurate chains of activity to persist within the network has no baring on the

question whether such chains do exist.

In addition to its significance for information coding, the relatively small size of the

channel ‘pool’ in the spike initiation zone has further computational implications. One

clear advantage of such a limited channel ‘pool’ was demonstrated in the work of [177] (see

2It seems that channel stochasticity would be very dominant in models that assume balanced excitation-

inhibition (see [158, 159, 165, 16, 185]) , in which the effective ‘resting’ membrane voltage of the cell is near

threshold. [16] and [180] suggest that complex repolarization and refractoriness schemes as another source

for the high firing variability in neocortical neurons which, in many ways, coincide with the effect of channel

fluctuations.
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also [121]) which shows that channel inactivation and reactivation kinetics have a significant,

long-lasting (minutes) effect on the ‘availability’ of channels, providing the neuron with an

effective memory. Thus, the output spike train depends on both the properties of the in-

stantaneous synaptic input as well as on the history of the presynaptic and postsynaptic

activity. This memory is embedded in the distribution of channels states in the spike initia-

tion site. The nature and resolution of this memory depends on the size of the channel pool

and on the kinetics and number of states of the channels. We hypothesize that the number of

channels in the spike initiation zone may be ‘optimized’ in some sense to give the reliability

and accuracy discussed above, together with a short term memory of the neuron’s activity.

In this context it is interesting to mention the works of [117] and [2] which demonstrates

activity-dependent long-term changes in the properties of intrinsic membrane currents. In

the next chapter we investigate the design principles and the effect of biophysical parameters

of the stochastic model on the nature of the neural code.

Another important effect of stochasticity in a limited ‘pool’ of channels are the sub-

threshold and supra-threshold membrane oscillations. Such oscillations were observed in

neocortical neurons (see [56]) as well as in other neuron types ([79]; [91]) and were suggested

to serve as the underlying ‘clock’ for neurons firing and even as a synchronizing and binding

mechanism for neuronal activity ([74] and [189]). In the HH model, these voltage oscillation

result from the channel noise; in other systems other mechanisms may be responsible for

these oscillations (e.g. [56]; [194]).

We argue then that the noise inherent to the activity of ion channels must be considered

in neuronal modelling and spike train analysis, if one wishes to understand what determines

the firing patterns of neurons and, consequently, the nature of the neural code.
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Figure 4.8: Channel fluctuations cause flipping between firing and non-firing stable
states in the stochastic HH model. A–C The two stable states of the deterministic HH
model are presented. In A, two traces of the membrane potential are shown for a 600µm2

membrane patch, injected with a 7µA/cm2 DC current. The difference between the green
and red traces results from the minute difference in the initial conditions. In the continuous
firing case (green curve), the initial values are: V = 4.21mV ; gK = 4121 pS (corresponds to
206.05 open K+ channels) and gNa = 195.8 pS (corresponding to 9.79 open Na+ channels)
assuming a single-channel conductance of 20 pS (Table 1). In the non-firing case (red curve)
the initial values are: V = 4.23mV ; gK = 4399.4 pS (corresponds to 219.97 open K+

channels) and gNa = 197.4 pS (corresponding to 9.87 open Na+ channels). B shows the 3D
phase-plane of these two behaviors of the system, the green curve is for the spiking behavior,
and the red curve is for the non-firing stable state. A magnification of B is presented in C,
reflecting the small basin of attraction of the non-firing state and the short distance in term
of number of open channels between the two states. D–F The corresponding behavior of
A–C in the stochastic model. Channel fluctuations in the stochastic model spontaneously
flip the system between the firing and the non-firing states. D A typical voltage trace of the
stochastic HH patch. Different colors were used to emphasize the different segments of the
trace. The corresponding phase-plane traces are shown in E and F. As can be seen in F,
the system flips from the firing stable state (blue trace) to the non-firing stable state (red
trace) , where it stays for a few ’cycles’. Hence, the sub-threshold oscillations in the top
trace translate to small size ‘loops’ in the phase-plane. The system then flips back to the
firing stable state (green trace).
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Figure 4.9: Temperature effect on the SHH model. (A) The response of a 200µm2 determin-
istic HH membrane patch to a 10µA/cm2 DC input with the temperature raised to 20◦C.
A high frequency regular spiking is seen. (B) The corresponding stochastic model responds
with a highly irregular, ‘bursty’ spike train and subthreshold oscillations between the spikes.
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Figure 4.10: Reliability of firing patterns in the SWB model.
Two current traces were injected to a deterministic WB model and a stochastic version of
the model. Both models are (A) A slowly varying input current (low- pass Gaussian white
noise with a mean I, of 10µA/cm2, and a standard deviation σinput of 3µA/cm

2 which was
convolved with an ’alpha-function’ with a time constant τinput = 1msec). (C) The spike
train of the deterministic model in response to the injection of the current trace in (A). (E)
Raster plots of the spike trains of the stochastic model response to repeated injection of
the current trace in (A). (B) A highly fluctuating input current (low- pass Gaussian white
noise with a mean I, of 10µA/cm2, and a standard deviation σinput of 15µA/cm

2 which was
convolved with an ’alpha-function’ with a time constant τinput = 1msec). (D) Similar to
(C), the response of the deterministic model to the injection of the current trace in (D). (F)
Similar to (E), the responses of the stochastic model to the current trace in (B). Patch area
used was 200µm2, with 900K+ channels and 3, 600Na+ channels.
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Chapter 5

The nature of the neural code,

information optimization and

biophysical design in stochastic

neuron models

5.1 Introduction

The computation that a single neuron performs, i.e. the mapping from the thousands of in-

coming spike trains into a single outgoing one, is implemented by a complex network of bio-

physical elements. The nature and result of the computation are defined by the parameters

of the biological ’building blocks’: the strength and dynamics of the synapses [162, 118, 3],

the morphology and excitability of the dendritic tree [156, 124, 155, 172] and the types and

number of ion channels in the soma and axon hillock [64, 112].

The design principles of this biophysical computation [88] must accommodate the com-

putational ’task’ of the neuron and the costs and limitations of using the biological machin-

ery. First, the computation consumes significant amounts of energy, mainly due to spiking

and synaptic activity [86]. Second, the synapses and ion channels are noisy and unreliable

[168, 64]. More functional demands of the design may originate from the processes controlling

the development of the neuron and its inherent activity-dependent plasticity [183, 43].

The effects of biological constraints on neural function, and possible optimal design strate-

gies have been studied in various neuronal systems and modules. Metabolic costs and the

efficiency of neural information coding have been studied for non-spiking and spiking neu-

rons [100, 14, 95]. Efficient information coding has also been analyzed in the context of

69
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computational constraints [15, 11]. The value of Na+ conductance along the squid axon has

been argued to optimized for the conduction velocity of the action potentials [66, 9].

This chapter presents the study of the effects of the ion channel noise and other biophys-

ical parameters of the spiking mechanism on the nature of the neural code. In chapter 4

we demonstrated that ion channel noise may control the reliability and accuracy of spike

timing. One of the key conclusions was that ion channel noise may enable neurons to act as

’smart’ encoders, where information may be encoded either by the spiking rate or the spiking

temporal pattern, the code may be more of a rate code or a temporal code, as a function of

the input. Based on these results (and claims), we proceed here to investigate and quantify

the nature of the neural code of the stochastic spike generation models.

To that end, we simulate the responses of the stochastic versions of the spike generation

models of Hodgkin and Huxley [71] and of Wang and Buzsaki [191] (see chapter 6), to

the injection of various current stimuli. The (large) set of stimuli was chosen so that it

would approximate (at least qualitatively) the currents that may reach the soma from the

dendritic tree. Information theory tools [160, 35] are then used to quantify the performance

of the spike generation mechanisms, measuring how much the spike trains entail about the

stimulus the model was presented with. The nature of the spike trains as a code is analyzed

by calculating how much information is carried by the average firing rate (rate code) and

how much information is added by the temporal structure of the spike train (temporal code)

[143, 171, 25], as well as various coding efficiency measures. The nature of the code is

found to be variable, mixing rate and temporal components in an input-dependent manner,

reflecting (again) on the decoding strategies that the nervous system may be using.

Following, we explore the effect of changing the biophysical parameters of the model on

the information encoded by the model’s spike trains. Reducing the level of noise which the

ion channel stochasticity introduces results in a small gain in terms of the information rate

encoded by the spike train about most stimuli, and in loss for other stimuli (a stochastic

resonance like behavior [33, 18, 99]). The effects of changing the number of the different

ion channel types (which changes the neuronal excitability) on the information encoding

capabilities of the spike generation models is also studied. For most of the stimuli explored,

there is an optimal combination of channels of the different types which maximizes the

amount of information that the model encodes about its stimulus. These optimal channel

densities lie well within physiological range, and are (for most stimuli) close to the ’standard’

HH channel densities. We suggest then, that the spike generation mechanism may optimize

the number of ion channels in the membrane so to maximize the average information it

encodes about the stimuli it receives and discuss the possible constraints that metabolic

costs may impose.
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This chapter is based on work done in collaboration with Idan Segev and Naftali Tishby,

parts of which have been published in [153].

5.2 Spike train properties of the SHH model

To investigate the neuronal spiking mechanism design and encoding characteristics, we sim-

ulate the responses of the stochastic HH model to a set of input stimuli. The “standard”

stochastic model of reference we use in this chapter is a single 200µm2 compartment soma

which contains 3, 600K+ and 12, 000Na+ stochastic ion channels. The single channel conduc-

tance is taken to be 20 pS for both types, similar to the values found for cortical neurons [64].

As discussed in the previous chapter, this reference model replicates the input-dependent

spike timing reliability and accuracy observed in real cortical neurons.

The set of stimuli we ’inject’ into the model are current waveforms that approximate

the synaptic currents that reach the soma from the dendritic tree (see [110] and chapter

2). Each stimulus is 10− 20 seconds long, and is the result of convolving a Gaussian white

noise trace (with a mean current η and standard deviation σ) with an alpha function (with

a τα = 3 msec). Six different mean current values are used (η = 0, 2, 4, 6, 8, 10 µA/cm2),

and five different standard deviation values (σ = 1, 3, 5, 7, 9 µA/cm2). Thus, the set contains

30 input current traces. We shall see that this set of stimuli spans the range of neuronal

responses that real neuron exhibit. Thus, while it is by no means an exhaustive set of stimuli,

it samples the space of possible stimuli in an ’interesting’ way.

Figure 5.1 shows the average firing rates of the ’standard’ SHH model in response to

these stimuli. The firing rate range between 2 to 60 spikes per second, which is comparable

to in vivo firing cortical rates.

A common measure of spike train irregularity, is the nature of the interspike interval distri-

bution. Figure 5.2 shows the coefficient of variation of the interspike interval distribution

(see chapter 3), as a function of the stimulus parameters. Similar to what is observed under

in vivo conditions for cortical neurons, the coefficient of variation of the interspike interval

distribution range from 0.3 to nearly 1, depending on the stimulus features (compare for

example to [164, 180]).

5.3 Information rates of the SHH model

To quantify the coding properties of the SHH model, we proceed to calculate how much

information is conveyed by the spike trains of the model about each of the stimuli it is
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Figure 5.1: Average firing rates of the SHH model in response to the set of stimuli.
Average spiking rate of the SHH model as a function of the current input parameters; η is
the current input mean and σ is the standard deviation. The surface is an interpolation
between the actual data points (which are on the surface grid).

presented with. Information theory provides a quantification of the relation between the

input present to the model neuron and the spike trains that the model neuron responds

with, without assuming what features of the code are important, or imposing a measure on

the input-output relation (see chapter 3).

We use the measure of encoded information to complement the spike timing reliability

and accuracy measures used in Chapter 4, thus quantifying the notion that accurate spiking

is more informative.

Using the ’direct method’ of calculating the information content of the spike train in

response to a specific stimulus, following [39, 171])(see also Chapter 3. Each of the stimuli is

presented repeatedly to the model neuron and its spike trains are discretized, using bins of

size ∆τ , into a binary sequence of zeros (no spike) and ones (spike). Using a sliding window

of size T along the sequence, we get a sequence of K-letter binary ‘words’ (K = T/∆τ).

After estimating P (W ), the probability of the word W to appear in the spike trains, it is

possible to compute the entropy rate of the total word distribution (of K-letter words),
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Figure 5.2: Coefficient of variation of the interspike interval distribution of the
SHH model in response to the set of stimuli. Coefficient of variation of the inter-spike
interval distribution of the SHH model in response to the current input parameters; η is the
current input mean and σ is the standard deviation. The surface is an interpolation between
the actual data points (which are on the surface grid).

H total
T = −

∑

W

P (W ) log2 P (W ) bits/word (5.1)

which measures the richness of the set of responses of the neuron to this stimulus. This

calculation is repeated for different word sizes (different K’s). Taking the limit of infinitely

long words (and normalizing by the word length), gives the spike train entropy rate, [35, 39,

171],

H total = lim
T→∞

1

T
H total

T . (5.2)

We then examine the set of words that the neuron model used at a particular time t over

all the repeated presentations of the stimulus, and estimate P (W |t), the time-dependent

word probability distribution. At each time t we calculate the time-dependent entropy of

the words, and then take the average (over all times) of these entropies,

Hnoise
T = 〈−

∑

W

P (W |t) log2 P (W |t)〉t bits/word (5.3)
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which measures how much of the fine structure of the spike trains of the neuron is just noise.

〈. . .〉t denotes the average over all times t. Again, this calculation is repeated for each of the

inputs, using different word sizes (K values). Taking the limit of infinitely long words, gives

the spike trains’ noise entropy rate,

Hnoise = lim
T→∞

Hnoise
T . (5.4)

The bin size ∆τ was chosen to be 2msec long, which is small enough to keep the fine

temporal structure of the spike train within the word sizes used, yet large enough to avoid

undersampling problems (see [171]).

Figure 5.3 shows the total entropy rate, H total, of the standard SHH model in response

to the set of stimuli, as a function of the stimulus parameters. The total spike train entropy

range from 10 to 170 bits/sec.
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Figure 5.3: Total entropy of the SHH spike trains The total spike train entropy rate
of the SHH model as a function of the input parameters. Error bar values range between
3− 10% (not shown).

The noise entropy rate, HNoise, depends differently on the input parameters, as shown in

Fig. 5.4, and may get up to 100 bits/sec. Specifically, for inputs with high mean current

values and low fluctuation amplitude, many of the spikes are just noise, even if the mean

firing rate is high.
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Figure 5.4: Noise entropy of the SHH spike trains in response to the different
stimuli. Noise entropy rate as a function of the current input parameters. Error bar values
of this surface range between 6− 16% (not shown).

The difference between the neuron’s total entropy rate and the noise entropy rate, is the

average information rate that the neuron’s spike trains encode about the stimulus, [35, 39],

I(stimulus, spike train) = H total −Hnoise (5.5)

Figure 5.5a shows the information rate conveyed about each of the stimuli by the SHH model.

The encoded information rate is more sensitive to the size of fluctuations in the input than

to the inputs’ mean value, as may be expected from the spike train reliability results for

cortical neurons [110]).

Dividing the information rate that the spike train of the model conveys about a certain

stimulus, by the average spike rate of this spike train, gives the average information encoded

per spike. Since spiking consumes considerable amounts of energy, this is a common measure

of the “energetic efficiency” of the code. The resulting values, shown in Figure 5.5b, are

similar to the values observed experimentally [22].
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Figure 5.5: Information rate and Information per spike encoded by the SHH model
about the set of stimuli. (a) The information rate about the stimulus in the spike trains,
as a function of the input parameters, calculated by subtracting noise entropy from the total
entropy. Error bars range between 6 − 14% (not shown). (b) Information per spike as a
function of the input parameters, which is calculated by normalizing the results shown in a
by the average firing rate of the responses to each of the inputs.

5.3.1 Coding efficiency, rate coding and temporal coding in the

SHH model

Using the word probability distributions and the total word and noise entropies, we turn

to characterize the nature of the neural code of the stochastic HH model, in terms of the

coding efficiency and the contribution of the relative parts of the code in terms of rate and

temporal components.

First, we compute a measure of coding efficiency which is the ratio between the amount

of information carried by the spike train and the total spike train entropy. This measure

ranges between zero and one: one extreme case is that the noise entropy is zero (i.e., the

spike trains are deterministic), in which case all of the spike train structure is utilized to

encode information about the stimulus, and the efficiency measure equals one. In the other

extreme case, the spike train carries no information about the stimulus, and the efficiency

is zero. Figure 5.6 shows the coding efficiency for each of the stimuli in the set, ranging

between 0.2 to a little over 0.5 (compare to [171]).

Next, we address the ongoing argument over the temporal vs. rate coding schemes of the

neural code (see Chapter 3). We measure directly how much of the information conveyed

by the spike trains is carried just by the modulated firing rate and how much does the
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Figure 5.6: Coding efficiency of the SHH model for the different stimuli. The
coding efficiency, measured by the ratio of the information to the total spike train entropy,
as a function of the function of the stimulus parameters.

temporal structure of the spike train contributes, for each of the stimuli in our set. The

information carried by the firing rate may be interpreted as the information that is carried

by the individual spikes, without taking into account their relative timing (see [25]),

Ifiringrate =
r̄

Tstim

∫ Tstim

0
dt
r(t)

r̄
log2

[

r(t)

r̄

]

bits/sec, (5.6)

where r̄ is the average spike rate of the model and Tstim is the duration of the repeated stim-

ulus. In terms of the word-based entropy calculations, this is equivalent to the information

carried by words of length K = 1 (see also [140]). The difference between the total infor-

mation and the information carried by the firing rate, is the information that the temporal

structure of the spike train carries about the stimulus. Figure 5.7 shows the division between

rate coding and temporal coding of the SHH model in response to each of the stimuli in the

set. Each point marks the nature of the code which is used in response to a specific stimulus,

showing the information rate that the temporal structure of the spike train (y-axis) adds to

what is carried by the average firing rate (x-axis). It is obvious that the division between the

rate coding portion and temporal coding one is highly variable, and depends on the nature

of the stimulus. There is then no unique coding scheme of the SHH model, but rather an
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input-dependent one. While in some cases most (or all) of the information is carried by the

firing rate, for other stimuli, the temporal information may be more the twice as large as the

information carried by the rate. The results for stimuli with the same mean (η) (connected

by a line in Figure 5.7 for presentation purpose), reflect the non-trivial effect of the ratio

between the size of the stimulus mean and std (σ) on the division between the temporal and

rate coding components. As may be expected, we see that for highly fluctuating stimuli, the

effect of the stimulus mean diminishes (compare to Fig. 4.4).
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Figure 5.7: Rate and Temporal components of the neural code of the SHH model.
For each of the stimuli, the information encoded by the temporal structure of the spike train
(additional to what is coded by the rate) is shown as a function of the information encoded
just by the rate modulation. The points corresponding to stimuli which had the same DC
component are connected by line for presentation clarity (noted by their η value). The size
of the fluctuating component of the stimuli is shown by the σ values for the top line (similar
order holds for all lines).
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5.4 Dependence of information encoding on the pa-

rameters of the model

Having seen that the stochastic HH model (with the standard channel density), replicates

successfully the behavior of real neurons both in terms of the spike train reliability and

information rates, and after quantifying the nature of the code, we turn to investigate the

sensitivity of these results to changes in the (biophysical) parameters of the model.

5.4.1 The effect of reducing the ion channel noise on information

encoding is not unidirectional

Given that ion channels are stochastic by nature, an obvious question regarding the design

of the spiking mechanism is whether one could achieve a less noisy neuron by using the same

basic building blocks, and if so, what might the gain and cost be? Since the size of the noise

induced by the ion channel stochasticity is determined by the fluctuations in the number

of open channels around the expected mean, one obvious way to reduce the ion channel

noise is to reduce the single channel conductance and proportionally increase the number

of ion channels, so that the total conductance is kept fixed. (Thus, at the limit of a very

large number of channels with very small single channel conductance – keeping the total

conductance fixed – one would approach the deterministic HH model [163, 42]).

Asking whether the spike initiation model will transmit more information about its in-

puts, if its ion channel noise were reduced in that way, we repeat the calculation of infor-

mation rate encoded about the set of stimuli, for a family of stochastic HH models, with

different ion channel noise levels. For the single channel conductance levels we span the full

range of values reported for different types of channels and neurons ranging from a 0.1 pS to

a few tens of pS [64]. Figure 5.8 shows the information rates of these models in response to

a few representative stimuli. It turns out that for most stimuli, reducing the noise level of

the model, would mean that the neuronal spike train would encode more information about

the stimulus. When the single channel conductance level is reduced to 0.2 pS (i.e. having

100 times the number of channels of the reference stochastic model), the gain is on the order

of 50%; At the limit of the deterministic HH model, the neuron model would encode a bit

over that twice the information that the ’standard’ stochastic model does.

Interestingly, for some of the inputs (mostly the ones with a low mean current value),

reducing the noise would result in the neuron encoding less information about the stimu-

lus. Such a stochastic resonance effect, where noise may improve the information encoding

capabilities of a system, has been discussed theoretically (see e.g. [33]) and demonstrated
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both in neuronal models and in real neurons (see e.g. [18, 99]). It is not obvious then, that

reducing the level of noise that the ion channels introduce is beneficial from an information

encoding point of view. Even when reducing the noise increases the encoded information

rate, the improvement is not dramatic.
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Figure 5.8: Dependence of information rate on single channel conductance. Infor-
mation rates were calculated for SHH models with different single channel conductance level,
while keeping the total ion conductance fixed (by proportionally increasing the number of
channels). For relatively small values of σ and small to medium values of η (blue and black
lines), information rate increases with increase in the single channel conductance, i.e. with
larger channel noise. For larger values of σ (red, purple and green lines), increase in the
channel noise decreases the information rate. The values for the corresponding deterministic
HH model (where the single channel conductance approach zero), are marked by an arrow
(on the left). Units of stimuli parameters η and σ are in µA/cm2.

5.4.2 Changing channel densities and information encoding

The key parameters that control the nature of neuronal excitability are the numbers of ion

channels of different types which reside in the neuron’s membrane and are involved in the

spike generation mechanism. Expressing more channels of different types and especially

changing the ratio between the different types is likely to change the spiking patterns and
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information encoding properties of the neuron, as well as the nature of ion channel induced

noise and the metabolic requirements of the neuron [64].

We therefore examine the effect of changing the number of sodium and potassium ion

channels and the ratio between the two types of channels, on the nature of spiking and

information encoding of the stochastic HH model and the stochastic Wang and Buzsaki

model (SWB). We define a family of stochastic models based on the reference SHH model

(and similarly for the SWB one) that differ in their Na+ and K+ ion channel densities and

leaving the other parameters unchanged. To simplify the comparison between models, the

ion channel densities of the different models will be given in units of the ion channel densities

of the reference model (which result from the regular HH model). Thus in the ’normalized

HH units’ the ion channel densities of the reference model are both ’1’.

We simulate the response of each of the models to the set of stimuli, and preform similar

information rate calculations, as in the previous sections. Figure 5.9a shows the effect of

changing the total Na+ and K+ channel densities, while keeping the ratio between them

fixed. The top panel shows the average firing rate in response to the different stimuli as

a function of the model channel density. Each of the curves connects the response values

of 6 models to a certain stimuli (connecting the response values if for presentation purpose

only). For clarity, the responses to only 9 representative stimuli are shown. The normalized

channel densities of the reference SHH model (i.e. ’1’), are marked by the vertical broken

line. Clearly, for all the stimuli in the set, increasing the channel density of the model

beyond the reference SHH one, results in a lower firing rate, and an optimum around half

the standard channel density. The middle panel shows the information rate encoded by the

models as a function of the channel density. Evidently, having more ion channels (of both

types), results in encoding less information about the stimulus. For some of the stimuli the

optimal channel densities are near the standard HH ones, and for some having even fewer

channels would increase the information rate. Interestingly, the information encoded per

spike (shown in the bottom panel) is robust to changes in the ion channel density, for all the

stimuli used.

What would happen if we allow the ratio between the densities of the different ion channel

types to change? Figure 5.9b shows firing and information rates where the Na+ density is

held fixed at the reference value, whereas the K+ density changes. For all stimuli, the

firing rate is monotonically decreasing when the K+ density increases (top panel). For

information encoding (middle panel) in turns out that for all examined stimuli, the optimal

K+ density is near the reference one (or even less). The information encoded per spike shows

an opposite behavior. Thus, having more K+ channels means that the neuron would encode

less information about the stimulus it is presented with (although with higher efficiency).
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Figure 5.9 shows the effect of changing the Na+ density while keeping theK+ density fixed at

its reference value. As may be expected, having more Na+ channels means that the model is

more excitable, and the firing rate increases for all the stimuli (top frame). However, having

more Na+ channels (and a higher firing rate) does not mean a higher information rate. For

most of the stimuli, the optimal Na+ is near the reference one. For the rest of the stimuli,

it is evident that the information rate is saturating. This means that the spike generation

is becoming more and more noisy as the Na+ increases. The information encoded per spike

(top panel), reflects that indeed, the energetic efficiency is strongly decreasing with the Na+

density.

To check the generic nature of these results, we also examine the dependence of infor-

mation encoding on the ion channel densities for the stochastic Wang-Buszaki (WB) model

[191] (as discussed in Chapters 2 and 4), the WB model of a cortical interneuron, has a

different current-voltage relation, which is more similar to that of cortical neurons than the

HH model.). Our reference stochastic WB (SWB) model is that of a single 200µm2 compart-

ment soma which contains 900K+ and 3, 600Na+ stochastic ion channels. As for the SHH

model, the single channel conductance is taken to be 20 pS for both types. (The reference

model demonstrates the input-dependent spike timing reliability and accuracy, discussed in

the previous chapter (see Figure 5.10).)

Similar to what was found for the SHH model, increasing the total number of ion channels

of the stochastic WB model (while keeping the ratio between the different types fixed),

results in a lower information rate conveyed by the outgoing spike trains. Keeping Na+

density fixed and increasing the K+ channel density results in a slight (saturating) increase

in the information for many of the stimuli, suggesting that the optimal K+ density is nearly

twice that of the reference model (or closer to the reference model density for the rest of

the stimuli used) . Increasing the Na+ density while keeping the K+ density fixed to its

reference value, reflects a very sharp optimal Na+ density for information encoding, lower

than the reference model density.

5.5 Conclusions and discussion

5.5.1 The nature of the neural code

We have calculated the information rates and characterized the nature of the neural code

utilized by the spike trains of the stochastic HH and stochastic WB spike generation models,

which incorporate ion channel noise. For the stochastic HH model, the information rates

encoded about a wide set of current inputs (imitating the current that may reach the soma
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from the dendritic tree) depend on the nature of the stimulus, and range from nearly zero

to 70 bits/sec (while the firing rate range between 2 to 60 spikes/sec). These values are

similar to the information rates (and information per spike values) which were reported

experimentally [22]. The coding scheme of the stochastic spiking models is found to be a

combination of rate coding and temporal coding – for some stimuli, most of the information

is carried by the firing rate, whereas for others the information carried by the temporal

structure of the spike train may be much larger than the information carried by the rate.

Complementing the results of the previous chapter, the nature of the neural code as well as

the coding efficiency of the stochastic model are found to by highly input-dependent (compare

to [110, 39]). Similar behavior was found for the stochastic WB model of an interneuron

spike generation, although with higher firing rates and information rates.

These results suggest that the neural code is neither a ”temporal code” nor a ”rate code”.

If the same neuron uses very different coding strategies for different stimuli, combining rate

and temporal components, then there is no stationary neural code – the symbols of the

code stand for different ’messages’ in different contexts. The experimental examples of

accurate spike timing and the ”contradicting” examples of noisy spiking patters, may be

just reflections of the different stimuli properties that the cells have been presented with.

While the nature of spike timing, spike reliability and information content have been shown

to be input-dependent [110, 127, 39], a direct measure of the coding strategy for different

stimuli has not been done, to the best of our knowledge.

If real neurons use a non-stationary code in vivo, then efficient decoding of spike trains

would require an adaptive synaptic activity or an adaptive voltage response of the decoding

neuron. It would be interesting to study the nature of depressing and facilitating synapses

[119]) as a reflection of such a decoding mechanism (see e.g. [118, 3, 181]). Similar questions

arise in the contexts of redundancy of information encoding by population of neurons, and

the individuality of the code for population of neurons (see next chapter).

5.5.2 Robustness and optimality of the spike generation mecha-

nism

Studying the effects of changing the biophysical parameters of the models, we have found

that for most stimuli, there is an optimal combination of ion channel densities that maximizes

information encoding about that stimulus, within ”physiological range”. I.e., the optimal

channel combination is well within 50 percent of the ”standard” channel densities of the HH

and WB models. The effect of changing other biophysical parameters, like the membrane

area, the temperature or even the total ion channel densities (keeping the ratio between
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sodium and potassium channels fixed) on the information encoding rate have been found to

be of significantly smaller magnitude.

What is the functional significance of these optimal points? First, since the ”task” of

the neuron as a whole is to extract information from all the spike train it receives from

other neurons (and by that to throw away information) and to propagate the result to

other neurons, it is not clear that one should expect the spiking mechanism to optimized for

information encoding. Moreover, it could have been that an optimal channel combination for

encoding information about these stimuli would lie well outside what one might consider as

a physiological range. Second, when studying optimization principles for the neural code of

neurons, it has often been suggested that neurons may optimize their information encoding

properties under an energy consumption constraint [95, 14]. Finding an optimal ion channel

distributions within physiological range suggests that this may not be a critical factor in

setting the spiking mechanism behavior (see also below). These optimal points are not

the result of metabolic constraints, but rather from the nature excitability of the spiking

mechanism and its stochasticity. We find that the information encoded per spike (which

is a measure of energy efficiency of the coding) may better shape the range of optimal ion

channel densities found earlier.

In general, a neuron encounters a wide distribution of input stimuli, and therefore it would

”make no sense” for the spike generating mechanism to be optimized for a specific stimuli,

but rather to be optimized (if it was to be optimized at all) for that distribution. Accordingly,

we find that the optimal ion channel densities combinations for different stimuli are not ”far”

from one another (in the space of ion channel densities). It is known that neurons replaces

their ion channels on a time scale of hours [64]. Moreover, recent experimental studies of

cultured cortical neurons have shown that neurons may change their ionic conductivity in

response to long periods of no spiking activity in the slice (or to excessive spiking) [43].

We therefore hypothesize that neurons may be able to adjust their ion channel expression

patterns in order to maximize their information encoding, based on the distribution of stimuli

they receives. We note the theoretical work of Stemmler and Koch [167] who suggested an on-

line ”learning” mechanism for dendritic conductances that would maximize the information

that the soma would encode about the synaptic potentials. Thus, although learning is often

regarded as a synaptic mechanism, the soma and spiking mechanism, may also play an active

role in it.
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5.5.3 Is ion channel noise a bug or an unavoidable feature?

As intuitively expected, for most of the stimuli, we have found that had it been possible

for the neuron to reduce its ion channel noise by using more channels that have a lower

conductance, the information rate encoded about these stimuli would increase. However,

reducing the noise level to achieve a 50 % percent gain in information, requires expressing

about 2 order of magnitude more ion channels. Even if packing such a large number of

channels in the membrane was possible, it is not clear that the metabolic cost of expressing

and maintaining so many channels in the cell membrane is practical. It is then possible that

given the stochastic nature of single ion channels and the nervous’ system’s constraints of

space allotted for single neurons, time of computation and energy consumption, alternative

designs of a less noisy neuron are not ”cost effective” and it is better to have several noisy and

unreliable neurons devoted for the same computational task rather than a single accurate

and noiseless one (see also [95]).

Other aspects of neural function and neural circuits’ structure reflect on the effectiveness

and value of constructing a reliable spiking mechanism (out of the known biophysical building

blocks). First, the distributed nature of the nervous system (especially in mammals), which

is robust to losing many neurons, suggest that it may be more efficient to use noisy neurons

rather than ”costly” reliable ones. Second, since the reliability of synapses is low [168,

169], it may be better not to invest in a very reliable and accurate spiking mechanism1.

Obviously, it is not clear how these different constraints and computational aspects have

been weighted by evolution to drive the biophysical design, and it is currently hard to see

an experimental system in which one could address these questions directly. Still, it may be

interesting to compare the information encoding properties (firing patterns and content), and

the biophysical parameters (noise level, neuronal size, energy consumption etc.) in different

neuronal systems, and possibly compare species.

If cost effective consideration have shaped the design of the spike mechanism, it may

be expected then that the nervous system will employ information encoding and processing

schemes which would match the nature of the existing noise, or even take advantage of it.

Corollary, we have seen that the contrary to the usual notion of noise as an obstacle, if the

neuron were to be less noisy, its information encoding capabilities would diminish for some

of its possible stimuli. Similar behavior, termed stochastic resonance, where adding noise

to the input to a nonlinear system or to the system itself, results in response properties

which convey more information about the nature of the input signal, has been observed in

theoretical studies of models of neurons [33] as well as in real neurons [99] and in artificially

1of course, this is somewhat of a ’chicken and egg’ problem
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created ion channel populations [18]. Again, in the case of spiking neurons, it is often possible

to come up with ”an alternative” biophysical design that would achieve the information

encoding capabilities that the noise enables 2. However, the key point is that noise is not an

added design element in neurons, but rather an inherent feature of the biological machinery.

Interestingly, the ”smart encoding” scheme, which we have suggested in the previous chapter,

and the synfire chain model [5] may also be considered as giving a coding solution given a

noise constraint.

5.5.4 Limitations of the current work and future directions

The current analysis of the biophysical design of the neuronal spiking mechanism and the

resulting neural code, is limited in several aspects. First, we have used two specific models

of neurons, and one may wonder whether our results are valid for other neuronal models,

and ultimately, for real neurons. The stochastic HH and WB models include only sodium

and potassium ion channels, and none of the other (less abundant) channel types which exist

in real neurons [64]. Also, we have used isopotential neuron models, neglecting any spatial

features of the spiking mechanism, and of the dendritic tree and the axon. We note that the

models we have used belong to two different classes of spiking models [48]. It would then

be surprising if it turns out that our results are due to some peculiarity of the HH and WB

models, especially since these two models contain the core of most neuronal spiking models.

Still, as discussed in the previous chapter, it would be interesting to add other ion channel

types to the models and study the effects of the spatial and morphological properties of the

neuron on the nature of the neural code. Especially interesting would be the addition of

adaptation to the models, either through specific ionic currents (see for example [51]) or

channel inactivation (e.g., [177]).

Second, our set of stimuli is a small sample of the full range of currents that may reach

the soma from the dendritic tree. Thus, although the stimuli we used are considered as a

good approximation to the currents that reach the soma from the dendritic tree, it is possible

that we are missing important aspects of the correlations between synaptic activities, and

filtering properties of the dendritic tree branches. Still, the responses to our set of stimuli

span the range of firing rates, coefficient of variation of the interspike interval distribution

and the information rates and information per spike rates reported for real neurons. Thus,

while this is hardly an exhaustive set of stimuli, we argue it is interesting enough to reflect

2A common explanation of stochastic resonance behavior in neurons has suggested that adding noise to

a subthreshold input could result in spiking, which would then convey more information about the stimulus.

The common criticism raised in this aspect is that instead of relying on the noise, the neuron could have

had a lower threshold to begin with.
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on the nature of the neural code and the spiking properties of the model neurons. We expect

that adding different types of stimuli would enrich our understanding of the effects of the

biophysical design on the neural code, since even with the limited size of the set we were

able to demonstrate the stimulus-dependent nature of information encoding in the spiking

patterns and find different effects of noise reduction on the information encoding properties

of the model neurons.

The main questions that stem from our results are whether (and how) real neurons indeed

use different temporal and rate components in their neural code, as a function of the stimuli,

and whether neurons optimize their ion channel population to improve their information

encoding properties. We hope that experimental studies would address these questions by

describing the response properties of neurons to rich set of stimuli, and by monitoring the

changes of spiking patterns and of biophysical properties of neurons [43]. We suspect that

such studies might reflect that the neural code is non-stationary by nature and may be

constantly adapting on the molecular level.
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Figure 5.9: Ion channels density effect on encoded information in the SHH model.
The firing rates and information rates that a family of SHH models (differing in their ion channel
densities) encode about the set of stimuli were calculated. Denoting the initial SHH model as ’HH
densities’, the new models densities are measured in ’HH units’. (a), top panel The effect of
changing both Na+ and K+ channel densities (keeping the ratio between the types fixed), on the
firing rate of the model, shown for 9 representative stimuli out of the total stimuli set. The broken
line at ’1’ denotes the ’regular’ HH densities. The lines connect the points which correspond to
the same stimuli (and are used for presentation purpose only). (a), middle panel Similar to a,
the information rate encoded about each of the stimuli is shown as a function of the ion channel
density. (a), bottom panel calculating the ratio between the information rate and the firing rate,
the information encoded per spike is shown as a function of the model’s ion channel density. (b)
Similar to a, the firing rate, information rate and information per spike are shown as a function of
the K+ channel density used in the model (in this case the Na+ density is kept fixed). (c) Similar
to a and b, the firing rate, information rate and information per spike are shown as a function of
the Na+ channel density used in the model (K+ channel density is kept fixed).
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Figure 5.10: Ion channels density effect on encoded information in the SWB model. (a)
The effect of changing both Na+ and K+ channel densities (keeping the ratio between the types
fixed), on the information rate that the spike trains of the model convey, shown for 9 representative
stimuli out of the total stimuli set. The broken line at ’1’ denotes the ’regular’ WB densities. The
lines connect the points which correspond to the same stimuli, are for presentation purpose only.
rate encoded about each of (b) Similar to a, the information rate is shown as a function of the K+

channel density used in the model (in this case the Na+ density is kept fixed). c Similar to a and
b, the information rate is shown as a function of the Na+ channel density used in the model (K+

channel density is kept fixed).
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Chapter 6

Universality and individuality in a

neural code

6.1 Introduction

When two people look at the same scene, do they see the same things? This basic question

in the theory of knowledge seems to be beyond the scope of experimental investigation. An

accessible version of this question is whether different observers of the same sense data have

the same neural representation of these data: how much of the neural code is universal, and

how much is individual? To approach this problem we must give a quantitative definition of

similarity or distance among neural codes.

One way to quantify the similarities or differences among neural codes (i.e. sequences of

spikes) is to imagine that each spike train is a point in an abstract space, and that there is a

metric on this space [187, 188, 108]. Metric space methods have a long history of application

to problems of comparing strings or sequences [98], including text. These are the standard

tools for comparisons among nucleotide or amino acid sequences in molecular biology, where

considerable effort has gone into the definition of metrics that are biologically plausible and

computationally tractable [93]. While metric space approaches have been very useful, all such

methods have several conceptual problems. First, the metric is imposed by the investigator

and does not emerge from the data. Second, even within a plausible class of metrics there

are arbitrary parameters, such as the relative distance cost of moving vs. deleting a spike.

Finally, it is not clear that our intuitive notion of similarity among neural responses (or

amino acid sequences) is captured by the mathematical concept of a metric. In contrast,

we show how information theory [160, 134] can be used to quantify directly the differences

among the sources of the sequences. This approach avoids any a priori assumption of a

91
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metric on the sequence space and does not require a model of the process that generates the

sequences.

We apply these methods to analyze experiments on an identified motion sensitive neuron

in the fly’s visual system, the cell H1 [61]. Many invertebrate nervous systems have cells

that can be named and numbered [27], and in many cases the total number of neurons

involved in representing a portion of the sensory world is quite small, so that destruction of

individual neurons can have a substantial impact on behavior (see, for example, Ref. [62]). In

these cases the neural representation of sensory information is especially accessible, precisely

because it is localized to a small set of identified cells. On the other hand, if a large fraction

of neurons are identifiable it might seem that the question of whether different individuals

share the same neural representation of the visual world would have a trivial answer.

Far from trivial, we find that the neural code even for identified neurons in flies has

components which are common among flies and significant components which are individual

to each fly. The existence of identified neurons thus does not preclude the expression of

individuality in neural representations; we should expect that all neural circuits – both

vertebrate and invertebrate – express a degree of universality and a degree of individuality.

For H1 we quantify these ideas, and we hope that the methods we introduce will be applicable

more generally.

This chapter is based on work with Naama Brenner, Naftali Tishby, Rob de Ruyter van

Steveninck and William Bialek, parts of which has been published in [150]

6.2 An ensemble of flies and the experimental setup

We place our discussion in the context of the experiments shown in Fig. 6.2a. Nine different

flies are shown precisely the same movie, which is repeated many times for each fly; as

we show the movie we record the action potentials from the H1 neuron.1 Details of the

1Recordings were made from the H1 neuron using standard methods: the fly was immobilized in wax, a

tungsten microelectrode was inserted through a small hole at the back of the fly’s head, and H1 was identified

through its response properties; spikes were detected with a window discriminator. The stimulus was a rigidly

moving pattern of vertical bars, randomly dark or bright, with average intensity Ī ≈ 100mW/(m2 · sr),

displayed on a Tektronix 608 high brightness display; bar widths were set equal to the horizontal lattice

spacing (interomatidial angle) of the compound eye. The fly viewed the display through a round diaphragm,

showing approximately 30 bars. Frames of the stimulus pattern were refreshed every 2ms, and with each

new frame the pattern was displayed at a new position. This resulted in an apparent horizontal motion of the

bar pattern, which is suitable to excite the H1 neuron. The pattern position was defined by a pseudorandom

sequence, simulating a diffusive motion or random walk. Experiments were performed by Rob de Ruyter

van Steveninck and Geoff Lowen at NEC research institute, Princeton, NJ, USA.
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stimulus movie should not have a qualitative impact on the results, provided that the movie

is sufficiently long and rich to drive the system through a reasonable range of responses.

Figure 6.2b makes clear that the responses of different flies to the same movie indeed are

different: average spike rates are different, the patterns of rate modulation are different, and

the degree of reliability from presentation to presentation is itself variable from fly to fly.

Despite these differences, there also are some common features, both on long time scales

(∼ 100ms) and in the detailed pattern of spikes on the (few) millisecond time scale. At this

qualitative level, some pairs of flies (e. g., 6 and 7) seem more similar, others (e. g., 7 and

8) very different. The goal of this paper can be phrased as the problem of quantifying these

observations.

Before proceeding to characterize individual variations, we must specify the “ensemble

of flies” in our experiment. All of the flies are freshly caught female Calliphora, so that our

ensemble of flies approaches the natural one and is not restricted to a highly inbred labora-

tory stock. We tried to minimize obvious sources of variation by doing all experiments at the

same time of day, and by analyzing only stationary segments of recording that are obtained

in between feedings of the animals. Recordings are rejected only if raw electrode signals are

excessively noisy or unstable; in particular we do not select for flies that exhibit mean spike

rates (spontaneous or driven) in a predefined range. Even with these precautions, there re-

main questions about whether observable differences among individuals should be ascribed

to what we colloquially call “individuality” or (merely) to differences in “internal state” at

the time of the experiment; one way to address this is to ask if differences are associated per-

sistently with the individuals or if they fluctuate across experiments on the same individual

at different times. In several cases we have done experiments over several days on the same

flies, and the day to day variations of H1’s response within flies are significantly smaller than

the variations from fly to fly. We therefore believe that the individual variations among flies

in our experimental ensemble provide a fair sampling of the individual differences in nature.

The conventional measure of the neural response is the average spike rate, which varies

from 22 to 63 spikes/s among our ensemble of flies. One might argue that these differences of

spike rate are sufficient to establish the existence or nonexistence of individual variations, but

this would be missing much of the structure in the data. First, even the largest differences of

mean rate are not so large when seen in context of the rate variations across time within each

fly. Second, we shall see that differences in how particular patterns of spikes are associated

with visual inputs provide much more information about individual identity than that carried

by the rate alone. Finally, flies with similar mean spike rates nonetheless can be distinguished

based on more detailed analysis. Thus, while the mean rate provides a convenient label for

each fly in our ensemble, we turn to a more quantitative approach.
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Figure 6.1: Different flies’ spike
trains and word statistics. (a) All
flies view the same random vertical
bar pattern moving across their visual
field with a time dependent velocity,
part of which is shown . In the ex-
periment, a 40 sec waveform is pre-
sented repeatedly, 90 times. (b) A set
of 45 response traces to the part of
the stimulus shown in (a) from each
of the 9 flies. The traces are taken
from the segment of the experiment
where the transient responses have de-
cayed. Spike trains from flies 1 and 6
are colored by red and blue, respec-
tively, which we will use as a color
code for the other parts of the fig-
ure. (c) Example of construction of
the local word distributions. Zooming
in on a segment of the repeated re-
sponses of fly 1 to the visual stimuli
(see green rectangle in (b)), the fly’s
spike trains are divided into contigu-
ous 2 ms bins, and the spikes in each of
the bins are counted. E.g., we get the
6 letter words that the fly used at time
3306 ms into the input trace. (d) Sim-
ilar to (c) for fly 6. (e) The distribu-
tions of words that flies 1 and 6 used at
time t = 3306ms from the beginning
of the stimulus. The time dependent
distributions, P 1(W |t = 3306ms) and
P 6(W |t = 3306ms) are presented as
a function of the binary value of the
actual ’word’, e.g., binary word value
′17′ stands for the word ′010001′. (f)
Collecting the words that each of the
flies used through all of the visual
stimulus presentations, we get the to-
tal word distributions for flies 1 and 6,
P 1(W ) and P 6(W ).
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6.3 Distinguishing among individuals

Differences among neural codes may arise from various sources: First, different individuals

may use different sets of coding symbols, or more subtly, the underlying symbols may be the

same but the errors or noise in expression of the symbols may be individualistic. Second,

they may use the same symbols to encode different stimulus features. Third, they may have

different latencies, so they ‘say’ the same things at slightly different times. Finally, perhaps

the most interesting possibility is that different individuals might encode different features of

the stimulus, so that they ‘talk about different things.’ These different sources of variation

obviously have different implications for the individuality of neural representation. We begin

by quantifying the magnitude of the differences among individuals.

It is convenient to think about the responses of a neuron as being like the words in a

language. One clear question then is whether different flies speak with the same vocabu-

lary. If we can label each possible neural response as a “word” W , then the vocabulary is

characterized by the distribution of words used by a particular fly’s H1 in response to the

stimulus movie, P i(W ) for the ith fly. Evidently comparing vocabularies involves measuring

the similarity among the probability distributions P i(W ), and there are many possible ways

of doing this. If we knew the correct family of models for sequences or words that we are

trying to compare, then of course we could use specialized measures that are natural within

the class of models. However, without such knowledge, and trying to avoid making apriori

assumptions, we turn to information theoretic quantities such as entropy and mutual infor-

mation.2 In simple cases (such as χ2 measures of difference in Gaussian distributions) it is

easy to see that the “natural” measures of distance are related monotonically to the infor-

mation theoretic measures. Thus the information theoretic approach automatically includes

the familiar metrics, but generalizes beyond the cases where these particular metric assump-

tions can be justified. (The cost of this generality is that we have to sample the relevant

probability distributions, which may be prohibitive in some applications.) In the present

case the relevant quantity is the information about identity: the amount of information, in

bits, that spoken words provide about the identity of the speaker. We emphasize that this

is the unique measure of dissimilarity among vocabularies that is independent of any model

for the structure of the underlying code.

Words are discrete objects, while spike arrival times are continuous. It is convenient, then,

2With one exception, each possible measure of (dis)similarity will produce pathological results for some

set of distributions that we might observe in an experiment. As shown by Shannon [160], the only measures

that work in all cases are constructed from information theoretic quantities such as entropy and mutual

information
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to discretize the neural response, although we shall have to make sure that our conclusions

do not depend on this discretization. Specifically, we discretize the neural response into time

bins of size ∆t = 2ms; at this resolution there are almost never two spikes in a single bin,

so we can think of the neural response as a binary string, as in Fig. 6.2c–d. We examine

the response in windows of time T , so that an individual neural response becomes a binary

word W with T/∆t letters. Any fixed choice of T and ∆t is arbitrary, and so we explore a

range of these parameters.

Once we have discretized the neural response into words, it is natural to compare the

“vocabularies” of different flies. This can be done by looking at the distribution of words used

by a particular fly’s H1 in response to the stimulus movie, P i(W ) for the ith fly. Figure 6.2f

shows that different flies ‘speak’ with similar but distinct vocabularies. On the other hand,

Fig. 6.2e shows that at the same time in the stimulus movie, different flies may choose to

use very different words out of these similar vocabularies.3 As with human speech, we might

imagine that individuals could be identified by their total vocabulary, or more efficiently by

their choice of words in particular situations. This identifiability by words can quantified

by asking how much information, in bits, spoken words provide about the identity of the

speaker.

Imagine that we record multiple speakers reading from the same text, in the same way

that we record the activity of neurons from different flies responding to the same sensory

inputs. There are many possible speakers, and we are shown a small sample of the speech

signal: how well can we identify the speaker? If we can collect enough data to characterize the

distribution of speech sounds made by each speaker then we can quantify, in bits, the average

amount of information that a segment of speech gives about the identity of the speaker.

Further we can decompose this information into components carried by different features of

the sounds. Following this analogy, we will measure the information that a segment of the

neural response provides about the identity of the fly, and we will ask how this individuality

is distributed across different features of the spike train. From these distributions P i(W ) we

can quantify the average information that a single word of length T gives about the identity

of the fly, IT (W ; identity;T ),

IT (W ; identity) =
N

∑

i=1

Pi
∑

W

P i(W ) log2

[

P i(W )

P ens(W )

]

bits,

3It is important to realize that discretization allows us to exhibit the neural response as a ‘word,’ but

does not tell us which words are similar; in particular the ordering of words along the x axis in Figs. 6.2e&f

is arbitrary.
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P ens(W ) =
N

∑

i=1

PiP
i(W ). (6.1)

where Pi = 1/N is the a priori probability that we are recording from fly i and P ens(W ) is

the probability that any fly in the whole ensemble of flies would generate the wordW . Thus,

we measure how well we can discriminate between one individual and a mixture of all the

other individuals in the ensemble, or effectively how ‘far’ each individual is from the mean

of her conspecifics.

The measure IT (W ; identity) has been discussed by Lin [101] as the ‘Jensen–Shannon

divergence’ DJS among the distributions P i(W ), namely DJS(P
1(W ), P 2(W ), ..., PN(W )).

We recall that the problem of finding a measure of similarity among distributions is not

simple; obvious choices such as the Kullback–Leibler [35] divergence are not symmetric, and

may have spurious technical requirements such as absolute continuity of one distribution with

respect to the others. Lin [101] and Guttman [58] proposed DJS as a way of getting around

these difficulties, and showed that DJS can be used to bound other measures of similarity,

such as the optimal or Bayesian probability of identifying correctly the origin of a sample

(as in forced choice psychophysical discrimination experiments). Here DJS arises not just as

an interesting possible measure of similarity (see also [137]), but as the unique answer to the

question of how much information a sample provides about its source.4

The finite size of our data set prevents us from exploring arbitrarily long words, but

happily we find that information about identity is accumulating at a more or less constant

rate well before the undersampling limits of the experiment are reached (Fig. 6.2a). Thus,

IT (W ; identity) ≈ RT (W ; identity) · T (6.4)

and R(W ; identity) ≈ 5 bits/s, with a very weak dependence on the time resolution ∆t.

Since the mean spike rate can be measured by counting the number of 1s in each word W ,

this information includes the differences in firing rate among the different flies.

Even if flies use very similar vocabularies, they may differ substantially in the way that

they associate words with particular stimulus features, as is clear from the comparison of

4Given two empirical probability distributions (samples) p(x) and q(x), for every 0 ≤ λ ≤ 1 their λ-JS

divergence is defined as

DJS
λ (p(x)||q(x)) = λDKL (p(x)||r(x)) + (1− λ)DKL (q(x)||r(x)) , (6.2)

where

r(x) = λp(x) + (1− λ)q(x) (6.3)

can be shown to be the most likely source of both p(x) and q(x) [137], with λ as a prior. Without a-priori

information about the relative likelihood of p and q we use λ = 1
2
. The JS divergence has various attractive

properties. First, it is symmetric. But more importantly, unlike the KL-divergence, it is bounded.
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Figure 6.2: Distinguishing one fly from others based on spike trains. (a) The average
rate of information gained about the identity of a fly, given the distribution of words that
it used throughout the stimulus presentations, as a function of the word size used. The
information rate is saturated even before we reach the maximal word length used. Following
Figure 6.2, Red marks are the average rate of information that the word distribution of fly
1 give about its identity, compared with the word distribution mixture of all of the flies.
The connecting line is used for clarification only. Blue marks the results for fly 6, and the
black marks the average over all 9 flies. (b) Similar to the computation done for (a), we can
compute the average amount of information that is gained about the identity of the fly, give
its word distribution at a specific time, compared with the mixture of the word distribution
of all of the 9 flies. Averaging over all times, we get the average amount of information
gained about the identity of fly 1 based on its time dependent word distributions (red), fly
6 (blue), and the average over the 9 flies (black).

Figs. 6.2e and 6.2f. In our experiments the stimulus runs continuously in a loop, so that

we can specify the stimulus precisely by giving the time relative to the start of the loop; in

this way we don’t need to make any assumptions about which features of the stimulus are

important for the neuron, nor do we need a metric in the space of stimuli. We therefore

can consider the word W that the ith fly will generate at time t. This word is drawn from

the distribution P i(W |t) which we can sample, as in Fig. 6.2c–e, by looking across multiple

presentations of the same stimulus movie. In parallel with the discussion above, we can now

ask for the average information that a word W provides about identity given that it was

observed at a particular time t,

IT (W ; identity|t) =
N

∑

i=1

Pi
∑

W

P i(W |t) log2

[

P i(W |t)

P ens(W |t)

]

,

P ens(W |t) =
N

∑

i=1

PiP
i(W |t). (6.5)
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This information depends on the time t because some moments in the stimulus are more

informative than others, as is obvious from Fig. 6.2. 5 The more natural quantity is an average

over all times t, which is the average information that we can gain about the identity of the

fly by observing a word W at a known time relative to the stimulus,

IT ({W, t}; identity) = 〈IT (W ; identity|t)〉t bits, (6.6)

where 〈· · ·〉t denotes an average over t.

Figure 6.2b shows that observing the spike train at a known time during the stimulus

movie provides 32 ± 1 bits/s about the identity of the fly. This is more than six times as

much information as we can gain by observing the spike train alone, and corresponds to

gaining one bit in ∼ 30ms. This one bit of information refers to identifying individuals in

the full experimental ensemble; we can also ask about the discrimination between a typical

pair of flies in the ensemble, and this pairwise (one bit) discrimination also becomes reliable

in ∼ 30ms. This is the time scale on which flies actually use their estimates of visual motion

to guide their flight [92], so that the neural codes of different individuals are distinguishable

on the time scales relevant to behavior.

6.4 Spike rates and information rates of the H1 of dif-

ferent flies

Having seen that we can distinguish reliably among individual flies using relatively short

samples of the neural response, it is natural to ask about the origins and implications of

these individual differences. In particular, the vocabularies of the different flies are quite

similar, but the way in which words are associated with stimulus features is much more

individualistic. This is the statement that IT ({W, t}; identity) >> IT (W ; identity). This

association of words with features is at the heart of the neural code, and it would be surprising

if individuality in this association did not have implications for the representation of visual

information.

In the previous discussion we measured the amount of information that the neural re-

sponse provides about the identity of the fly given that we have access to the stimulus. Of

course the neural response is not “designed” to represent identity, but rather the stimulus

itself. Thus we can ask how much information the neural response of an individual fly pro-

vides about the stimulus. As discussed in Refs. [39, 171] (and chapter 3), this information,

5As above, IT (W ; identity|t) is also DJS(P
1(W |t), P 2(W |t), ..., PN(W |t)).
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I iT (W ; s(t)), is determined by the same probability distributions P i(W |t) as before:

I iT (W ; s(t)) =

〈

∑

W

P i(W |t) log2

[

P i(W |t)

P i(W )

] 〉

t

. (6.7)

As with information about identity, we expect that information about the stimulus grows

with the duration of our observations, so that I iT (W ; s(t)) ≈ Ri(W ; s(t)) · T .

Figure 6.3a shows that the flies in our ensemble span a range of information rates from

Ri(W ; s(t)) ≈ 50 to ≈ 150 bits/s. This threefold range of information rates is correlated

almost perfectly with the range of spike rates, so that each of the cells transmits nearly

a constant (±10%) amount of information per spike, 2.39 ± 0.24 bits/spike. Although bit

rates and spike rates vary among individuals, there is a surprising universality of the ratio

bits/spike. The fact that the information per spike is constant across the ensemble of flies

means that cells with higher spike rates are not generating extra spikes at random, but rather

each extra spike is equally informative about the visual stimulus.
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Figure 6.3: The information about the stimulus that a fly’s spike train carries is
correlated with firing rate, and yet a significant part is in the temporal structure.
(a) The rate at which the H1 spike train provides information about the visual stimulus is
shown as a function of the average spike rate, with each fly providing a single data point
(Fly 1 is marked by a red point and Fly 6 by a blue one). The linear fit of the data points
for the 9 flies corresponds to a universal rate of 2.39± 0.24 bits/spike, as noted in the text.
(b) The extra amount of information carried by the temporal structure of the spike train of
each of the flies, as a function of the average firing rate of the fly. The average amount of
additional information that is carried by the temporal structure of the spike trains, over the
population is 45± 17%.

The capacity of an individual code to carry information is quantified by the total entropy
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of the distribution of neural responses,

Si
total(T ) = −

∑

W

P i(W ) log2 P
i(W ) bits. (6.8)

It is natural [143, 142] to define the efficiency of the code as the fraction of this capacity

which is used to convey information about the visual stimulus, εi = I iT (W ; s(t))/S i
total(T ).

Like the information per spike, this efficiency is nearly constant across the ensemble of flies,

ε = 0.59± 0.05 at ∆t = 2ms, with a very weak dependence on ∆t [171].

Although information rates are correlated with spike rates, this does not mean that

information is carried by a “rate code” alone. Rate coding usually is distinguished from

“timing codes” in which the detailed temporal structure of the spike train plays a crucial

role. There are two senses in which the timing of action potentials could be important. First

there is the simple question of whether marking spike arrival times to higher resolution really

allows us to extract more information about the sensory inputs. The average information

carried by the spike trains of H1 under these conditions is enhanced significantly when we

analyze the responses with a resolution of ∆t = 2ms rather than ∆t = 4ms, and if we

reduce our resolution to ∆t = 10ms we loose more than half of the information; in this

sense, timing is important down to a scale of a few milliseconds [171]. A second notion of

spike timing being important is that temporal patterns of spikes may carry more information

than expected by adding the information carried by the individual spikes. We can address

this by measuring the information carried by the arrival time of a single spike, independent of

its temporal relation to the other spikes. This ‘single spike information’ can also be thought

of as the information conveyed by temporal modulations in the spike rate, and can be written

as an integral over the time dependent rate ri(t) for each fly [25, 140]

I ione spike =
1

Tloop

∫ Tloop

0

ri(t)

r̄i
log2

[

ri(t)

r̄i

]

dt bits, (6.9)

where r̄i is the average spike rate in cell i and Tloop is the duration of the repeated stimulus

movie. For all the flies in our ensemble, the total rate at which the spike train carries infor-

mation is substantially larger than the ‘single spike’ information—2.39 vs. 1.64 bits/spike,

on average. This extra information, shown in Fig. 6.3b, is carried in the temporal patterns

of spikes.

6.5 Using a universal codebook

Although different flies encode different amounts of visual information in the spike trains of

their H1 neurons, we expect that there are aspects of this information common to all the flies.
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The neural code for any individual fly can be thought of as a probabilistic mapping from

neural responses or words back into the space of visual stimuli [38]. The information conveyed

by the spike train quantifies the specificity of this mapping: the tighter the distribution of

stimuli consistent with a given response the more information is conveyed. This information

[Eq. (6.7)] is available in full only to an observer who knows the mapping from responses

to stimuli. If the neural codes used by different flies are different, then these conditional

distributions in stimulus space also are different. The idea that there is something universal

in the code used by all flies means that the neural responses are interpretable—at some

cost—even without knowing the identity of the fly that generates these responses. But if

we don’t know the identity of the fly, all we can do is to associate each neural response

with a distribution of stimuli that corresponds to an average over the individuals, and this

distribution necessarily is broader than any of the individual distributions. As a result, we

have less information about the visual stimulus. Once again, quantifying this information loss

provides the only model independent measure of the departures from universality. Conversely

the degree of universality in the code is measured by the fraction of visual information that

can be captured using a “universal codebook” adapted to the ensemble of flies rather than

to the individuals. 6

The greater the differences among the neural responses of different flies, the more visual

information we will lose if we don’t know the identity of the individual: information gained

about identity is information lost about the stimulus if we use a universal codebook. To

formalize this relation between identifiability and decoding, note that if we observe the

response of a neuron but don’t know the identity of the individual, then we are observing

responses drawn from the ensemble distributions defined above, P ens(W |t) and P ens(W ).

Under these conditions, the information that words provide about the stimulus is

IensT (W ; s(t)) =

〈

∑

W

P ens(W |t) log2

[

P ens(W |t)

P ens(W )

] 〉

t

bits. (6.10)

On the other hand, if we know the identity of the fly we gain the information I iT (W ; s(t))

from Eq. (6.7). The average information loss is then

Iavgloss(W ; s(t)) =
N

∑

i=1

PiI
i
T (W ; s(t))− IensT (W ; s(t)). (6.11)

6Even though flies differ in the structures of their neural responses, distinguishable responses could be

functionally equivalent, as with distinct amino acid sequences that fold to the same protein structure. Thus

it might be that all flies could be endowed (genetically?) with a universal or consensus codebook that allows

each individual to make sense of her own spike trains, despite the differences from her conspecifics. Thus we

would like to ask how much information we lose if the identity of the flies is hidden from us, or equivalently

how much each fly can gain by knowing her own individual code.
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This average information loss can be rewritten exactly in terms of the information about

identity:

Iavgloss(T ) = IT ({W, t}; identity)− IT (W ; identity). (6.12)

As a practical matter, Eq. (6.12) means that the answer to our question about the efficacy

of a universal codebook is contained in the results of Fig. 2. The result is that, on average,

not knowing the identity of the fly limits us to extracting only 64 bits/s of information about

the visual stimulus. This should be compared with the average information rate of 92.3 bits/s

in our ensemble of flies: knowing her own identity allows the average fly to extract 44% more

information from H1.

6.6 The nature of the ’personal’ bits

Thus far we have analyzed the differences among the neural codes of different flies, and how

much extra information a fly can extract by knowing it’s individual codebook. It is natural

to ask what is being “said” by these extra bits, characterizing more explicitly the mapping

from neural responses back to stimulus space for the different flies.

For each neural response W we can look back through the entire experiment and accu-

mulate the motion trajectories that lead up to the response, and these provide samples from

the distribution of stimuli conditional on the response as described above. Because the space

of trajectories has many dimensions, this distribution is difficult to visualize, and so we focus

here on the means of these distributions. This is a generalization of the reverse correlation

or spike triggered average method [143]: rather than looking at the average stimulus that

leads to a single spike, we look at the average stimulus that leads to the responses W (which

consists of a pattern of spikes and empty intervals [38]).

In Fig. 6.4 we show the average waveforms of the stimulus velocity preceding a specific

binary word in the spike trains of flies 1 and 6. Since fly 6 spike trains convey almost 3 times

more information about the stimulus, one might have speculated that the same word was

used in completely different stimulus contexts for the two flies. In fact, the differences are

in the details and not in the general picture: spikes stand for pulses of positive velocity (as

in Fig. 6.4b), long silent intervals stand for negative velocities (as in Figs. 6.4a&c), and the

largest differences among the flies are in the widths, latencies and amplitudes of the pulses;

combinations of spikes and intervals then lead to very different trajectories (as in Fig. 6.4d).

For the fly which conveys less information, spikes are associated with larger positive velocities

(Fig. 6.4b) and silences are associated with (slightly) larger negative velocities (Fig. 6.4a).

Thus, these elementary responses come closer to exhausting the dynamic range of the inputs.
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Conversely, the more informative spike train covers the dynamic range of inputs with a

greater variety of composite responses.
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Figure 6.4: What different flies mean by same words. The word-triggered averages
are shown for flies 1 (red) and 6 (blue) for 4 different words. Similar to the computation of
spike triggered averages, we compute the average velocity profile of the movie presented to
the flies, preceding 7-letter binary words. (a) The average stimulus waveform preceding the
word ′0000000′ for Flies 1 (red) and 6 (blue), is shown as a function of the time relative to
the end of the word (shown in actual time order on the right top side of the panel). (b-d)
Word triggered averages for 3 other words, reflecting that the waveforms haves similar rough
structure, and that the difference between the flies is in the details.

6.7 Discussion

In the present work we have tried to the quantify the individuality of the neural code used by a

single neuron in the fly visual system. On the one hand, this individuality is sufficient to allow

discrimination among individuals on time scales of relevance to behavior. Correspondingly,

a significant amount (∼ 30%) of the visual information carried by this neuron is accessible
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only to observers who know the identity of the individual fly. We emphasize that these

observations characterize the individuality of the fly’s visual system up to the level of the H1

neuron, and thus provide a quantitative answer to our original question about individuality

in the neural representation of sense data. A separate and obviously interesting question

concerns the individuality of circuitry at subsequent stages, which might (or might not) make

it possible for flies to use the individualistic components of their sensory representations in

guiding motor behavior.

Although individual differences are apparent (by inspection of Fig. 6.2) and quantifiable

(Fig. 6.2), we have also found significant elements of universality in the code. In the structure

of the representations, the codebooks of different flies seem to differ only in matters of detail,

as indicated in Fig. 6.4. More profoundly, although different flies extract very different

amounts of information from the same visual inputs, all the flies achieve a high and constant

efficiency in their encoding of this information (Fig. 6.3). From previous work it is known

that the visual system of an individual fly exhibits substantial changes in coding strategy

as it adapts to different ensembles of inputs, and at least in one case this adaptation serves

to optimize information transmission [24]. Rather than converging on the same information

rates in different flies, these adaptation processes seem to converge on codes of uniformly

high efficiency, supporting the idea that efficiency of representation is a ‘design principle’ for

the system [15].

On average the flies in our ensemble have neural codes in which a substantial amount of

information is carried by patterns of spikes. This antiredundancy or synergy among spikes

[25] is reduced substantially if we are forced to use a universal codebook. Mathematically

this loss of synergy in the universal codebook is related to the fact that the rate at which

we gain information about the identity of the fly (Fig. 6.2b) increases with window size

to Tc ∼ 10ms. Discrimination among flies is enhanced by being able to see patterns of

spikes in windows of size Tc, implying that the way these patterns are used to encode visual

information is unique to each individual. Each individual fly thus gains nearly 50% more

information through the use of a code in which patterns of spikes carry extra information,

and more than half of this is lost if the fly does not have knowledge of its own identity. Not

only is spike timing important for the neural code, but the way in which timing is used is

specific to each individual.

One obvious difference between invertebrate and vertebrate nervous systems is the ex-

istence of identified neurons in invertebrates. The identifiability of invertebrate neurons

sometimes has been interpreted to mean that these smaller nervous systems are hard wired

automata; indeed the optomotor system of flies has been held up as a clear example of this

extreme view. In this view, individuality plays no role, and it should even be possible to
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average the results of experiments on corresponding neurons in different individuals. For

vertebrates, substantial individuality arises through development and learning, and there

are few if any identified neurons; at best vertebrates have identifiable modules consisting of

hundreds or thousands of neurons, such as the columns in visual cortex. Against this clear

dichotomy it is worth remembering that even genetically identical single celled organisms

exhibit individuality in their sensory–motor behavior [166]. We hope that the techniques

introduced here will help in quantifying the similarities or differences among neurons more

generally, both for assessing the relatedness of function among cells in the same animal and

for the comparison of corresponding cells in different individuals.
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Concluding remarks

We have studied three aspects of the nature of the neural code. One was the effect of ion

channel noise on reliability and accuracy of spike timing. Another was the nature of the

information encoding properties in such stochastic models and the effect of the biophysical

parameters on the encoded information. Finally, we have compared the neural codes of an

identified neuron in different animals, to quantify the individual and universal parts of their

neural codes. We try to summarize what we have learned, and present the possible implica-

tions of our results as well as the future questions that arise.

Ion channel noise may determine the nature of the neural code : microscopic

noise having a macroscopic effect

We have shown that ion channel noise may be the source of the stimulus-dependent reliability

and timing jitter characteristics which were observed in real neurons, both in vivo and in

vitro [110, 127, 13, 139, 39]. The microscopic ion channel noise can affect the macroscopic

behavior of neurons, since the initiation of a spike is the result of opening of a critical number

of ion channels. Because this number is relatively small, fluctuations in the number of open

channels may have a significant effect on the membrane voltage, and thus on the timing and

occurrence of a spike. Adding of ion channel noise to the deterministic neuron models also

results in the (qualitative) replication of several other features of the spiking behavior of

real neurons, namely, subthreshold oscillations of the membrane voltage, spontaneous and

missing spiking. Such stochastic neuron models also better replicate the firing statistics and

information encoding properties of real neurons.

These results reflect the significant connection between the detailed molecular level of the

neuron and the macroscopic level of information processing and encoding. It seems that the

noise inherent to the activity of ion channels must be considered in the modelling of neurons

at the cellular level and also when studying neuronal networks. While this adds a significant

107
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level of complexity to the analytical study of neuronal function, and to the simulation of pop-

ulation of neurons (both in terms of design and computation time), neglecting the neuronal

noise may compromise the accuracy of the results and their applicability to real neurons. It

remains to be seen how detailed the models of single channel activity should be in order to

capture the main effects of the ion channel noise on the spiking patterns (see [154]). Our

results and recent experimental results regarding the voltage-dependent nature of neuronal

noise [195], and different functional ’states’ of the membrane voltage [12, 10], suggest that

the detailed models of the noise may (or at least a voltage dependent additive noise, which

may be derived from the average fluctuations for linearized version of the full model, [114]).

Adding other channel types, and using channel kinetic models that better span the history

dependent nature of ion channel activity, may teach us that the microscopic level may also

direct the nature of functional memory and state dependent neuronal function [177, 106].

More generally, the study of the effects of fluctuations in a small number of molecules as a

source of (significant) macroscopic noise, is a reoccurring theme in biology and biophysics. It

has been discussed as an important component of the ’design’ and reliability of biochemical

switches [136, 19], synaptic modification [85, 19], genetic regulation networks and replication

[133, 60] and individuality of single organisms [166, 49]. It would be interesting to compare

the noise characteristics in these systems, as well as common features in terms of overcoming

the noise by using a population of noisy elements and even relying on the existence of noise

to improve the system performance.

Biophysical design principles of neuronal spiking

The biophysical design of the neuron must accommodate a computational ’task’ with var-

ious biophysical and computational constraints, such as the physical extent of the neuron,

processing time, metabolism, biophysical noise and input noise. Our study of the effect of

changing the biophysical parameters on the information encoding properties of the stochastic

spiking models suggests several insights to the design principles of the spiking mechanism

and neuronal function.

First, even if neurons were able to reduce their ion channel noise by using many more

ion channels with lower conductance, the improvement in information encoding properties

will be moderate (100 times more channels would result in less than a factor of 2 in the

information encoding rate for most stimuli, and much less in others). Thus, it may be that

significant reduction in the ion channel induced noise is not ’cost-effective’, and it is more

efficient to use several noisy neurons, than building and maintaining highly reliable ones. For

some stimuli, we find that noise would actually improve the information encoding. Thus,

noise and information do not always play opposing roles in terms of neuronal function.
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The stochastic nature of neural spiking and the input-dependent effects on information

encoding imply that decoding of the ambiguous spike patterns must rely on populations of

neurons (it would be interesting then to compare the noise levels of identified neurons to

cortical ones) (see e.g., [202]). The nature of the noise also means that inherently, correlated

patterns of neuronal activity are more likely to propagate in a network of neurons, whereas

uncorrelated ones would be more likely to ’die-out’ [5, 123, 44]. One obvious extension of

our work is the modelling the activity patterns of networks of neurons with ion channel

based noise. Other interesting questions are the relation between ion channel noise and

subthreshold oscillations [80], the effect of ion channel noise as stochastic element in neuronal

learning (like a finite temperature in learning), and the nature of ion channel noise in adapting

neurons.

Second, we have found that information encoding properties of stochastic spiking models

are robust to many of their biophysical parameters, but are relatively sensitive to changes in

the ratio of densities of their different ion channel types. For most of the stimuli we checked,

it turns out that the optimal ion channel combination for information encoding is within

”physiological range”. A possible extension of our work is to try to formulate the relation

between the information encoding properties of the spiking mechanism and its metabolic

costs in a rate-distortion like formulation [35, 14, 95, 176]. More generally, it is natural to

ask whether the described robustness and optimality would persist when we add more ion

channel types and adaptation to the model, and how might history-dependent ion channel

expression serve as a learning mechanism, to optimize the neuronal information encoding

properties [43, 167].

Another possible ’design principle’ was found in the study of the neural codes of different

flies. Even though the flies may encode very different amounts of information about the

same stimulus, and use different neural codes with different noise, the average information

encoded per spike is universal. An obvious question is then whether such universal coding

efficiency exists in other systems, and how robust is this universality to different stimulus

features.

The stochastic and non-stationary nature of the neural codes

The goal of understanding the neural code is often explained in terms of constructing a

dictionary from the neuronal spike trains to the stimulus, and the opposite dictionary from

the stimuli to the responses (a similar set of dictionaries would exit for motor neurons

and muscles). These dictionaries must be stochastic since the response of a neuron to

the repeated presentation of the same stimuli is not deterministic. Conversely, different

inputs may result in the same pattern of spiking from the same neuron. Moreover, these
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dictionaries must be context dependent, since neurons adapt their neural responses, either

through activity dependent changes in their ion channel states, expression of ion channels,

synaptic connections etc.

Suggesting a biophysical explanation to the stochastic nature of the code, which lies in

the machinery of the neuron, we further argue that the code itself is input dependent. We

submit that the rate and temporal components of the spike patterns depend on the nature

of the stimulus (expanding the notions of input-dependent reliability and accuracy of spike

timing). We hope for a direct experimental study of this prediction.

We show that not only is the code different from one stimulus to another, but rather

that the neural codes of different individuals may be significantly different. Presenting a

method for comparing neural codes and applying it to the H1 neuron in different flies, we

find significant differences between individuals, which reflect individual and common parts

of encoded information. Again, an especially interesting common feature of the codes is that

the information encoded per spike is universal across the fly population.

Provocatively, we could say that the fact that all neurons use spikes, may be similar to

acknowledging that human communicate using phonemes. It doesn’t capture the richness of

human languages, its dynamic nature and the effect on how humans may communicate. Al-

ternatively, we easily ignore differences in pronunciation. This leads to two central questions

as a key issue in the study of neural codes. First, what are the common features of the neural

codes that different neurons of different types, different systems, and different animals use

and how do these common features change when cells adapt their responses. The second of

course is how these differences affect the nature of neuronal computation and function. The

answers are likely to lie between two extreme options: One is that since a ’target’ neuron

must decode the different, adapting codes of population of ’input’ neurons, it extracts only

the common, stationary aspects of the code, thus ignoring the variability and individuality

of the neural codes. The other is that neurons are constantly adapting to better decode the

variety of different adapting inputs they get from other neurons.

Finally, I hope we have contributed to the understanding of the biophysical design and

properties of neural codes. As the common criticism of the detailed study of the neural code

goes, it may still be that none of the details of the neural code(s) matter at the behavioral

level, which is an open and debatable experimental question. If nothing else, it would be a

bit boring.
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