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On the preferential concentration of solid
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We present results from a direct numerical simulation of the passive transport of
solid particles by a fully developed turbulent channel flow with a Reynolds number
of 180 based on the friction velocity and the channel half-width. Three particle
sets are studied, ranging in diameter from 0.5 to 1.4 viscous wall units and in
aerodynamic time constant from 0.6 to 56 centreline Kolmogorov time scales. We
use particle number density histograms and fractal dimensions to show that the level
of order in the particle spatial distribution peaks near a Stokes number of unity
based on the Kolmogorov time scale. We then quantify the relationship between this
spatial distribution and the instantaneous flow topology. The results indicate that the
previously reported preferential concentration of particles in low-speed streaks leads
to a suppression of particle velocities in the viscous sublayer and buffer region even
in the presence of streamwise gravitational acceleration. In other regions of the flow,
the particles’ non-random spatial distribution is shown to be uncorrelated with the
local flow topology. We compare our results with the experimental data of Kulick et
al. (1994) and Fessler et al. (1994) and confirm that the latter authors’ results were
not influenced by turbulence modification.

1. Introduction
1.1. Motivation and objectives

Investigating solid particle transport by turbulent fluids provides insight into natural
systems, such as urban atmospheres, and technological systems, such as clean room
filtration devices. The statistical modelling of particulate transport ranks as one of the
classical problems of turbulence research. Yet little is known regarding the detailed
dynamics of the phenomenon. By contrast, decades of single-phase flow research is
coalescing into a picture of persistent structures arising in a quasi-periodic fashion
with random phase shifts. What level of order these structures impart to a dispersed
phase remains an open question. In particular, it remains unclear how to relate the
particle number density field to the turbulence structure in wall-bounded flows.

This question can be answered in part by direct numerical simulation (DNS) of the
turbulence with simultaneous Lagrangian tracking of the particles, which represents
the most fundamental approach available. DNS resolves all of the dynamically
relevant scales of the turbulence, while the particle equation of motion is built on the
well-understood physics of low-Reynolds-number flow around small spheres.

Current computer technology makes this approach feasible for simulating canonical
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flows with particle number densities equal to those of related experiments, albeit at
Reynolds numbers below experimental values. Thus, we set out to simulate the flow
studied by Kulick, Fessler & Eaton (1994) and Fessler, Kulick & Eaton (1994) at
approximately one-fourth their Reynolds number. They were able to measure the level
of order in the particle spatial distribution but were unable to relate that order to the
turbulence structure. Our work was motivated by the emergence of computational
resources sufficient to fill this gap in the empirical database.

1.2. Related work

We review here some previous work concerning coherent structures in turbulence and
the preferential concentration of particles by those structures. The reader is referred
to Rouson, Eaton & Abrahamson (1997) for a broader picture of the particle-laden
flow literature.

1.2.1. Coherent structure

The recognition of coherent structure in turbulence dates at least to the proposal by
Theodorsen (1952, as cited in Robinson 1991) of the hairpin vortex as the primary flow
unit sustaining near-wall turbulence. More recently, Robinson (1990) reviewed much of
the conventional wisdom on coherent structures in the light of the new accumulation
of DNS databases. From these, he synthesized a conceptual model that related the
cyclic evolution of the sublayer streaks to buffer-layer quasi-streamwise vortices and
outer-region arched vortices. He also noted that the quasi-streamwise vortices typically
appear individually rather than in the counter-rotating pairs suggested by the hairpin
model.

Despite much attention since Theodorsen’s work, no widely accepted definition
of coherent structure exists. Most definitions involve subjective choices of cut-off
values or reference frames. For example, local pressure minima below some threshold
value are frequently used to identify vortex cores. One scheme for rational selection
of the employed cut-off values was developed by Chong, Perry & Cantwell (1990).
Their scheme involves examining every point from a reference frame translating with
the local fluid velocity. Each point is then a critical point of the dynamical system
obtained by Taylor expansion of the instantaneous fluid velocity u about a point x.
For all cases of practical interest, the phase-space trajectory of this dynamical system,
and hence the physical-space trajectory of fluid elements, is governed by

dxi
dt

= ui,jxj (1.1)

where ui and xi are the ith Cartesian components of the vectors u and x, the subscript
comma symbolizes partial differentiation with respect to the subsequent index, and
the Einstein summation convention applies.

Chong et al. (1990) classified all possible trajectories of the above linear system
according to the values of the three invariants of the velocity gradient tensor ui,j:

P = ui,i, (1.2)

Q = 1
2
[(ui,i)

2 − ui,juj,i], (1.3)

R = −λ1λ2λ3, (1.4)

where λ1, λ2, and λ3 are the eigenvalues of ui,j . For incompressible flow (P = 0), the
discriminant

D = (27/4)R2 + Q3 (1.5)
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Figure 1. Incompressible flow critical point topologies, counterclockwise from upper right:
stable focus/compressing, unstable focus/stretching, stable node/saddle/saddle, and unstable
node/saddle/saddle (figure courtesy of J. Chacin).

determines the eigenvalues of ui,j and thus the trajectory of xi. D > 0 corresponds
to one real and two complex-conjugate eigenvalues; D < 0 corresponds to three real,
distinct eigenvalues. The curves D = 0 and R = 0 divide the (Q,R)-plane into the
four regions depicted in figure 1: the so-called stable focus/stretching, unstable fo-
cus/compressing, stable node/saddle/saddle and unstable node/saddle/saddle critical
points.

Blackburn, Mansour & Cantwell (1996) used this scheme to study the topology
of fine-scale motions in a turbulent channel flow at ReCL = 7860. They discerned
high-enstrophy (mean-square vorticity) tubular structures containing aligned vorticity.
These structures originate with streamwise orientation in the buffer region, extend
obliquely away from the wall through the log layer and attain predominantly spanwise
orientation in the wake. They also reported that the viscous dissipation occurs
primarily in annular regions surrounding these tubes. However, Jeong & Hussain
(1995) later demonstrated that the technique of Chong et al. (1990) can mischaracterize
the geometry of certain vortical structures due in part to the effect of frame translation.
Jeong & Hussain (1995) proposed a vortex definition that is equivalent to that of
Chong et al. (1990) for planar flows but less error-prone for three-dimensional flows.

1.2.2. Homogeneous turbulence simulations

The direct predecessor of the current project was the DNS of particle-laden,
homogeneous turbulence by Squires & Eaton (1991). They classified flow structures
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according to a four-category scheme developed by Hunt, Wray & Moin (1988)
and Wray & Hunt (1989). The four categories were eddy, convergence, stream, and
rotational zones. Classifying a particular region of the flow involves searching for
certain threshold values of the static and dynamic pressure and the second invariant,
II , of the velocity gradient tensor:

II = ui,juj,i ≡ SijSji − 1
4
ωiωi, (1.6)

where Sij = 1
2
(ui,j + uj,i) is the strain rate tensor and ωk = εijkuk,j is the vorticity. Eddy

zones characterize vortices and therefore correspond to regions of low II and low static
pressure p. Convergences zones characterize stagnation points, thus corresponding to
high II and high static pressure. Streaming zones characterize fast jets, corresponding
to low II and high dynamic pressure. Rotational zones characterize shear layers,
corresponding to regions where II is as low as in eddies, but the static pressure is
intermediate between that of eddies and convergence zones.

Squires & Eaton (1991) computed the average particle number density found in
each of the above zones for particles with Stokes numbers of 0.075, 0.15 and 0.52 based
on the integral time scale of a homogeneous turbulent flow. They found the particle
number densities to be nearly an order of magnitude higher in convergence zones
than in eddies. The number density in rotational zones and streams fell between the
other two types of zones, with streams containing more particles per unit volume than
rotational zones. They also found that the conditional expectation of particle number
densities decreased monotonically with the enstrophy. Finally, they demonstrated the
non-randomness of the particle spatial distributions by comparing number density
histograms with Poisson distributions of the same mean. In all measures, the peak
preferential concentration occurred for the particles with the intermediate Stokes
number of 0.15 based on the integral time scale. Wang & Maxey (1993) obtained
similar results and argued that peak preferential concentration of particles occurs at
a Stokes number of unity when normalized by the Kolmogorov time scale.

J. Segura (private communication) recently investigated the relationship between
II and particle location in the centreplane region by post-processing our simulation
results. The nearly homogeneous statistics in this region has some similarity to the
flows studied by Squires & Eaton (1991) and Wang & Maxey (1993). However,
Segura found no noticeable difference between the probability density function of
II conditionally sampled at particle locations and those at fluid grid points. (In this
region, the streamwise and spanwise grid spacing is uniform and the wall-normal
spacing is nearly uniform.) She did discern differences in PDFs calculated for fast-
moving particles, which are the particles most likely to have recently visited other
regions of the flow.

1.2.3. Channel flow simulations

Over the past decade, several research groups have studied some aspect of passive
particle transport in channels. Given the narrowness of this topic, it is important
to note how the other studies differ from the present work. Since most of the other
work has been concerned with deposition and sedimentation, the studies have focused
primarily on near-wall behaviour. Small sets of low- to moderate-Stokes-number par-
ticles were tracked and assumed to collide inelastically with the channel walls. The
present work has concerned primarily Eulerian and Lagrangian statistics, determining
the relationship between particle number density and local flow topology, and mod-
elling interphase momentum transfer. None of these tasks would be possible without
tracking large ensembles of moderate- to high-Stokes number particles throughout the
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entire channel while allowing for resuspension of particles after elastic collision with
the wall. Finally, the slip velocities characteristic of such massive particles necessitates
the use of a nonlinear drag law, whereas most other DNS studies have simulated
Stokesian particles.

McLaughlin (1989) published the first DNS of particle transport in a wall-bounded
turbulent flow. He studied aerosol deposition in a fully developed channel flow at the
Reynolds number, ReCL, of 2000 based on the mean centreline velocity and channel
half-width. The particle Stokes numbers, St+, were of order one in wall units. The
particles accumulated in the viscous sublayer. Depositing particles developed non-
negligible slip-velocity Reynolds numbers.

Brooke et al. (1992) applied McLaughlin’s numerical technique at slightly higher
Reynolds number. They found that the slip velocities of depositing particles increased
with the particle Stokes number. For the highest Stokes numbers in their study
(St+ = 10), the depositing particles’ average slip-velocity Reynolds numbers ranged
up to 2.5. They used evidence from simulated flow visualization to argue that the
eddies responsible for particle deposition are the same quasi-streamwise vortical flow
structures responsible for turbulence production. They also noted a weak tendency
for particles to accumulate near the wall, where they collect in the low-speed streaks
characteristic of the viscous sublayer.

Pedinotti, Mariotti & Banerjee (1992) studied Stokesian particle sedimentation
in open channels. They modelled nearly neutrally buoyant particles with a particle
equation of motion that balanced inertial effects with Stokes drag and gravity. The
particles were assumed to collide inelastically yet frictionlessly with the channel
bottom in order to allow for resuspension into the flow. Thus, upon collision, the
particles stick and slide. These authors again observed preferential concentration of
moderate-Stokes-number particles in low-speed streaks.

They also pointed out that it is impossible to match the particle Stokes number
in all relevant scalings for two studies performed at different Reynolds numbers. For
example, one can match the Stokes number based on the Kolmogorov time scale, but
the Stokes number based on the viscous wall time scale will not match and vice versa.
The limitation of DNS to low Reynolds numbers thus makes difficult the comparison
with higher-Reynolds-number flows observed in the laboratory. The challenge is to
match the scales that are most dynamically relevant to the phenomena under study.

1.2.4. Channel flow experiments

We will make direct comparisons between our results and the experimental data of
Kulick et al. (1994) and Fessler et al. (1994). Kulick et al. measured Eulerian velocity
statistics for the fluid and solid phases in a downward, fully developed channel flow
at the Reynolds number ReCL = 13 800. They studied particles ranging in size from
28 µm diameter Lycopodium spores to 90 µm glass at a range of mass loadings. Their
2% mass-loading case closely approximates our passive particle tracking and will
therefore be used for comparison.

Fessler et al. studied the particle spatial distribution at the centreplane of the same
channel. They used number density histograms and fractal dimensions to quantify the
level of non-randomness in the observed distributions. One unresolved question in
their study relates to their need to achieve number density histograms with compara-
ble means at varying Stokes numbers. This required varying the mass-loading, which
limited their ability to detect preferential concentration of particles in the absence of
turbulence modification. For the highest particle Stokes numbers studied, the mass
loading was sufficient to attenuate the turbulence intensities as much as 40% in the
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Figure 2. Flow configuration.

channel centreplane. DNS with passive particle tracking provides a feasible method
for firmly establishing the preferential concentration trends reported by Fessler
et al.

2. Methodology
For the idealized flow configuration of figure 2, we simulated three particle sets

studied by Kulick et al. and Fessler et al. For these sets, we computed several sets
of statistics describing the particle distribution, including number density histograms
and fractal dimensions. We also calculated the invariants Q and R both on a uniform
grid and on one coincident with the particle locations. Several other flow descriptors,
including Eulerian and Lagrangian velocity statistics, are reported in Rouson et al.
(1997).

The fluid-phase mass and momentum transport were modelled by the three-
dimensional, time-dependent, incompressible Navier–Stokes equations supplemented
by the incompressibility constraint. The spatial variation of the flow variables was
approximated by the spectral representation of Kim, Moin & Moser (1987), which
implies no-slip boundary conditions at the solid walls and periodic boundary condi-
tions at the streamwise- and spanwise-normal boundaries. We employed their spatial
resolution of 128 Fourier modes in the statistically homogeneous streamwise (X1) and
spanwise (X3) directions and 129 Chebyshev modes in the wall-normal (X2) direction
with an expansion by 3/2 in X1 and X3 for de-aliasing purposes when calculat-
ing the nonlinear terms. We coupled this spatial representation with the third-order
Runge–Kutta (RK3) time-advancement algorithm developed by Spalart, Rogers &
Moser (1991). The initial velocity field was the output from a single-phase flow DNS
in which randomly perturbed, plane Poiseuille flow was advanced in time until its
Eulerian statistics reached a stationary state.

Since the drag expression of Stokes (1851) underpredicts the drag at the particle
slip-velocity Reynolds numbers observed by previous investigators, we applied a
correction factor that matches experimental drag measurements to within 5% up to
slip-velocity Reynolds numbers of 800 (Schiller & Nauman 1933, as cited in Clift,
Grace & Weber 1990). With this correction, our final equations of motion for a
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Simulation Experiment

Fluid
ReCL 3297 13 800
Reτ 180 640

28 µm diameter Lycopodium
StK 0.60 0.60
St+ 8.6 22
a/H 0.00070 0.00070

50 µm diameter Glass
StK 8.1 8.1
St+ 117 300
a/H 0.00125 0.00125

70 µm diameter Copper
StK 56 56
St+ 810 2000
a/H 0.00175 0.00175

Table 1. Flow and particle parameters. (ReCL and Reτ are the Reynolds numbers based on the mean
centreplane velocity and the friction velocity, respectively. StK is the Stokes number based on the
Kolmogorov time scale.)

particle at position r with velocity v at time t are

dri
dt

= vi, (2.1)

dvi
dt

=
CDRep

24St
[ui(r, t)− vi(t)] + gi, (2.2)

CD ≡ 24

Rep
(1 + 0.15Re0.687

p ), (2.3)

where CD and Rep are the drag coefficient and Reynolds number based on slip velocity
and particle diameter. The fluid velocity was obtained in (2.2) by three-dimensional
linear interpolation between the spectral collocation points. Equations (2.1)–(2.3) were
time-advanced with the same RK3 scheme as used for the fluid phase.

Table 1 provides the channel flow Reynolds numbers, the particle Stokes numbers
and the particle radii, a, normalized by the channel half-width, H , for the present
simulations and for the experiments. Note that we matched the Stokes numbers based
on the Kolmogorov time scale. Fessler et al. and Wang & Maxey (1993) found that
this parameter determines the level of preferential concentration in the particle spatial
distribution.

Although not employed in the results presented here, we investigated the inclusion
of the lift force due to Saffman (1965). McLaughlin (1989) found that this lift force
increased the deposition velocity of simulated aerosol particles. Similarly, our tests
showed that lift increased the rate of particle accumulation near the wall; however,
it did not influence the Eulerian velocity statistics. This might be expected since the
term is formally of the same order in particle radius as several terms we neglected
in the more complete equation of motion derived by Maxey & Riley (1983). Finally,
we also tested a lift expression that McLaughlin (1993) derived with less restrictive
assumptions, but that term proved negligible compared to the particle drag in the
same direction.
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We tracked 723 particles for each of the three particle sets listed in table 1, providing
number densities comparable to those used for the preferential concentration studies
of Fessler et al. The particles were initially seeded uniformly on a three-dimensional
rectangular grid. The dispersed-phase boundary conditions were periodicity in the
streamwise and spanwise directions and specular reflection at the wall. Periodicity
implies that particles exiting the flow domain through one boundary were reintroduced
at the opposing boundary with their exiting velocity.

Simulations were run until the particles’ Eulerian velocity statistics became station-
ary in time. The number density statistics, however, never achieve stationarity owing
to a steady accumulation of all particle sets in the channel core and an accumulation
of the two smaller types of particles near the wall. The core accumulation stems
from turbulence intensities being too low there to support significant dispersion. The
near-wall accumulation (which has also been observed by McLaughlin 1989, Brooke
et al. 1992 and Pedinotti et al. 1992) we attribute to the low Reynolds number and
the particle size. The smaller particles do not extend far enough from the wall to
interact with the flow structures responsible for sweeping the larger particles away.
One could also argue that the larger particles possess more momentum and therefore
rebound further upon striking the wall. However, even these particles were trapped
near the wall in a DNS we performed at a lower Reynolds number (Rouson & Eaton
1994).

Despite this trapping phenomenon, the particle velocity statistics become stationary
after a few fluid time scales or particle time constants, whichever is larger. Eulerian
velocity statistics were averaged over X1, X3, t, and over the direction of reflectional
symmetry on either side of the channel centreplane. All of this was implemented in
the Vectoral language on a Cray C-90 at the Pittsburgh Supercomputer Center. The
reader is referred to Rouson et al. (1997) for discussion of the software implementation
and the attendant issues of numerical stability and accuracy.

3. Results
3.1. Particle distribution

Two extremes exist in dispersed particles’ response to turbulence. High-Stokes-number
particles respond to so little of the spectrum of turbulent eddies that their motion
lacks coherent mechanisms for non-random clustering. Low-Stokes-number particles
act as flow tracers. Their mean spacing is fixed by the continuity constraint, so they
are precluded from clustering near a point.

Between these two extremes exists a range of Stokes numbers within which particles
respond to some eddies but not to others. One expects these particles to preferentially
concentrate in certain flow structures. Examples are the clustering of particles in
convergence zones (cf. Eaton & Fessler 1994) and the aforementioned clustering of
particles in low-speed streaks of wall-bounded flows.

Precisely which structures cause preferential concentration varies from flow to flow.
Whereas the large vortex rings characteristic of forced jets might be responsible for
the preferential concentration in that flow (cf. Longmire & Eaton 1992), the small,
dissipative eddies that result from strong vortex stretching might be responsible in
other flows (cf. Wang & Maxey 1993). In the former case, the Stokes number based
on the large-eddy turnover time would determine the level of non-randomness in
the particle distribution, whereas in the latter case, the Stokes number based on
the Kolmogorov time scale might be more relevant. Whichever is the case, none of
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the state-of-the-art models for turbulent dispersion are capable of predicting such
structural behaviour. We seek here to parametrize this behaviour for channel flow.

Figure 3 gives direct visual evidence that the smallest of our particles are distributed
in a non-random fashion at the channel centreplane. The Lycopodia show large voids
surrounded by bands of high concentration. Similar behaviour was discerned in the
Lycopodium particles illuminated by a laser sheet at the centreplane of the Fessler
et al. wind tunnel. The simulated glass particles exhibit voids but primarily along
lengthy streamwise bands reminiscent of the near-wall streaks. In the experimental
photographs of Fessler et al., one might argue there exists some structure on the scale
of the photograph’s dimensions, but there is not the streakiness of the simulation. The
copper distributions appear random for both the DNS and the experiment. Neither
significant voids nor distinct clusters appear in either case.

The presence of streaks in the simulated glass distributions deserves further dis-
cussion since it was not observed in the experiment. The most likely reason for the
difference is the Reynolds number difference. In the simulations, the near-wall region
containing the longitudinal vortices occupies a larger fraction of the channel. Particles
collected in the low-speed streaks are swept outward all the way to the channel cen-
treplane by these near-wall vortices. Also, note that the Stokes number based on wall
variables is smaller in the simulation since we match the Stokes numbers based on
the Kolmogorov scale. The collection of particles in the low-speed streaks is probably
best characterized by St+. It will be shown in § 3.2 that there is no correlation between
particle location and local turbulence structure in the centreplane region. Therefore,
the concentration distribution at the centreplane must be an artifact of structure
closer to the wall.

Fessler et al. digitized multiple photographs and plotted histograms of the particle
number density computed on a regular grid of square cells. They compared the
resulting curves with the expected histograms for randomly distributed particles.
Here ‘random’ is defined as the situation in which any given particle is equally likely
to appear in any given cell. With only this condition, one can show that the number
of particles per cell is binomially distributed and that this binomal distribution
approaches a Poisson distribution as the total numbers of particles and cells increases
while holding their ratio constant. For the number of particles and cells employed
here, the terms ‘binomial’ and ‘Poisson’ are interchangeable.

The Poisson distribution is characterized by a single parameter, the mean value.
Hence, Fessler et al. compared the actual particle histograms with Poisson distributions
of the same mean. Such comparisons obviously depend on the cell width chosen. At
cell widths smaller than the Kolmogorov length scale, there exist no turbulent eddies
to generate preferential concentration. At cell widths greater than the channel width,
the histograms are averaged over multiple large eddies. It follows that histograms
computed on very fine grids and very coarse grids will be randomly distributed,
whereas distributions computed with intermediate cells can be non-random.

We assembled histograms from eleven snapshots of the particles near our channel
centreplane, each snapshot separated by approximately 40 wall units in time. Each
snapshot contained approximately 2000–3000 particles, so Np ≈ 22 000–33 000. We
divided each image into at least 75 cells and at most 4800, so Nc = 825–52 800.

Figure 4 shows the calculated particle histograms at the cell width of peak deviation
from randomness for each particle set. We will not make a direct comparison of these
to the experiments since that would require matching the mean number of particles
per cell. The figure does, however, show binomial distributions with the same Np and
Nc for comparison. Note that the cell width for maximum particle organization, ∆,
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Figure 3. Particles near channel centreplane: Lycopodia (a), glass (b), copper (c). Each plot shows
particles across the entire channel width (approximately 754 wall units), above which white space is
added for labelling purposes.
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Figure 4. Particle number density histograms at maximum coherence:
Lycopodia (a), glass (b), copper (c).

ranges from 0.25h–0.28h, which is approximately 125 times the Kolmogorov length
scale at the channel centreplane. It can be clearly discerned from the figure that the
copper particles are randomly distributed at this scale. This was true at all length
scales studied. The Lycopodia and the glass particles, however, exhibit considerable
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Figure 5. Variation of distribution randomness with cell width normalized by channel half-width:
simulation (a) and experiment (b).

deviation from randomness at the scale shown. They are more randomly distributed
at both larger and smaller scales, not shown here.

To illustrate this trend, we use a parameter that describes each distribution’s
deviation from randomness:

Σ ≡ σ − σPoisson

λ
, (3.1)

where σ and σPoisson are the standard deviations of the actual and Poisson distributions,
respectively, and λ is the mean value. For particles preferentially concentrated by
turbulence, one expects large positive values of Σ corresponding to a flat distribution.
Randomly distributed particles generate values of Σ near zero.

Figure 5 shows the variation of Σ with cell width for the simulation as well
as for the experiment. In both cases, we see the aforementioned trends, that is
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Figure 6. Dependence of maximal non-randomness on Stokes number (based on the Kolmogorov
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maximum randomness (minimum Σ) at very small and very large length scales with
minimum randomness (maximum Σ) occurring at intermediate cell size widths. Both
the DNS and experiment show that the copper particles’ distribution deviates little
from randomness at any length scale and that the non-randomness of the Lycopodia
and the glass are of the same order. The Σ values for these two particle sets should
vanish at much greater and smaller scales, but studying smaller scales would require
more particles, and larger scales more snapshots, than the current flow domain and
computational resources allow.

Figure 6 shows the peak deviation from randomness, Σmax, for the three particle
sets studied. It is difficult to determine detailed trends given only three data points;
however, the simulation data are consistent with the observation of Fessler et al. that
the point of peak Σmax is of O(1).

Fessler et al. pointed out that the results shown in figure 6 left some ambiguity
as to which particles are most affected by the turbulence. Those in figure 5 implied
that the answer to this question depended on the length scale at which one asks the
question. Thus, they employed the correlation dimension introduced by Grassberger
& Procaccia (1983) and first applied to particulate distributions by Tang et al. (1992).
The correlation dimension is computed by choosing a base particle in one of the
centreplane snapshots and then counting the number, N, of particles within a circle
of radius ` centred at the base particle. For this purpose, we projected all particles
in the snapshot onto the centreplane. If the particles uniformly cover this two-
dimensional space, then N will scale with the area of the circle (N ∝ `2). If the
particles are organized along thin lines, N will scale linearly with `. Between these
extremes, N scales with some fractional power of `. This power is the correlation
dimension, ν, a fractal descriptor of the particle spatial distribution. One expects
ν → 2 as StK → 0 and as St→∞.

We chose ten values of ` in the range 0.2–0.4 channel half-widths, the range over
which preferential concentration is strongest in figure 5. For each value of `, we
averaged N over 1000 base particles in each of the eleven snapshots used for figure
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Figure 7. Dependence of correlation dimension on Stokes number (based on the Kolmogorov
time scale).

5. Figure 7 shows the resulting values of ν for each Stokes number studied in the
experiment and the DNS. Again the Lycopodia and glass particles exhibit similar
levels of preferential concentration whereas the copper particles are more randomly
dispersed than both. Again the DNS results are consistent with the experimental
result of peak non-randomness at StK ∼ 1.

3.2. Flow topology

We next seek to relate this non-randomness to coherent flow structures using the
structural classifcation scheme employed by Blackburn et al. (1996). This scheme was
chosen over that of Hunt et al. (1988) because the Blackburn et al. scheme provides
an objective classification that eliminates the arbitrary choice of threshold values used
in the Hunt et al. algorithm. Single parameter descriptors, such as vorticity magnitude
or II , cannot uniquely select a structure type. Blackburn et al. (1996) showed that
all topologies in incompressible flow fall into the four types illustrated in figure 1:
unstable focus/compressing, stable focus/stretching, stable node/saddle/saddle and
unstable node/saddle/saddle. The first two are vortical flow regions. The last two
are essentially convergence zones. We applied this classification system to the same
eleven fields studied in § 3.1. Thus, we computed Q and R at each fluid grid point in
each of four regions: the viscous sublayer (y+ < 5), the buffer region (5 6 y+ < 35),
the logarithmic layer (35 6 y+ < 150), and the core region (y+ > 150). We also
conditionally sampled Q and R at the positions of solid particles in order to determine
if the particles show any preference for or against any of the aforementioned four
topologies.

Figure 8 shows four decades of the resulting joint probability density function
(PDF) of Q and R in the viscous sublayer. Note that Q and R are both zero for the
mean flow, and that zero is their most probable value for all instantaneous realizations
studied. Moving away from the origin, the PDF sampled at the fluid grid points shows
the same preference for the second and fourth quadrants that Blackburn et al. found
in other regions of the flow. They, however, studied only one instantaneous realization
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Figure 8. Viscous sublayer (X+
2 < 5) joint PDF of Q, R conditionally sampled at fluid grid points

(a), Lycopodium particle positions (b), glass particle positions (c), and copper particle positions (d).

and thus did not have enough samples to document this trend in the viscous sublayer.
The preferred quadrants correspond to the stable focus/stretching and the unstable
node/saddle/saddle topologies. The points associated with the latter topologies are
found along the positive-R side of the D = 0 line, indicating that the most of the
high-strain-rate eddies are near-vortical in some sense, providing evidence of the
predominance of vortex stretching in turbulence.

Conditionally sampling this PDF at the positions of the Lycopodium spores pro-
duces strikingly different results. The Lycopodia clearly do not sample the strongest
vortical regions in either of the first two quadrants. The streamline curvature char-
acteristic of foci flings particles out of the vortex core. This mechanism is enhanced
in the second quadrant by outflow from the critical point along the vortex axis of
symmetry (cf. figure 1). The particles also avoid the strongest vortex-stretching regions



164 D. W. I. Rouson and J. K. Eaton

5.0

2.5

0.0

–2.5

–5.0

–4.0 –2.0 0.0 2.0 4.0

D = 0

Q

R

(a)
5.0

2.5

0.0

–2.5

–5.0

–4.0 –2.0 0.0 2.0 4.0

D = 0

Q

R

(b)

Figure 9. Buffer region (5 6 X+
2 < 35) joint PDF of Q, R conditionally sampled at fluid grid

points (a) and Lycopodium particle positions (b).

along the positive-R, zero-D line. The one region of Q,R space not much affected by
the conditional sampling is the stable node/saddle/saddle region in the third quad-
rant. Topologies in this region have two principle axes along which the flow converges
toward the critical point, thus providing a mechanism for accumulating particles. The
effectiveness of this mechanism is limited, however, by the incompressibility constraint,
which requires outflow on the third axis. The unstable focus/stretching topology of
figure 1 is the only one for which no such limiting factor exists. Both the flow along
the symmetry axis and the surrounding vortex can be expected to induce low particle
number densities.

The above results corroborate the visual evidence presented elsewhere by the current
authors (Rouson & Eaton 1994) showing that the particle distribution in the viscous
sublayer is very closely related to the coherent structure in that region. This statement
is less true for the glass particles and completely false for the copper particles. The
PDFs of figure 8 correspondingly show the glass position samples approaching the
fluid curves. Sampling at copper positions appears to produce an even broader PDF
than the fluid; however, this PDF is poorly resolved because of the difficulty in
obtaining a large number of samples in the sublayer for particles too big to fit very
close to the wall and large enough to be easily swept away from it.

We have observed similar behaviour in the other three flow regions, but the trends
become progressively less pronounced with increasing distance from the wall. Figures
9–11 show the same plots for the fluid grid points and conditionally sampled at
the Lycopodium positions in the buffer, logarithmic, and core regions of the flow.
It is apparent that the particles are much more randomly dispersed relative to the
turbulence structures than in the sublayer. Similar trends were observed for the other
two sets of particles studied. Far from the wall, conditionally sampling Q and R
at particle positions yields plots equivalent to sampling on a uniform grid. This
fact deserves further discussion in the light of the clear evidence presented in § 3.1
that the smaller particles are distributed non-randomly at the channel centreplane.
Two causes appear likely: either the structures responsible for that non-random
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Figure 10. Logarithmic-layer (35 6 X+
2 < 150) joint PDF of Q, R conditionally sampled at fluid

grid points (a) and Lycopodium particle positions (b).
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Figure 11. Core-region (X+
2 > 150) joint PDF of Q, R conditionally sampled at fluid grid points
(a) and Lycopodium particle positions (b).

distribution are not collocated with the particle clusters they induce or they are too
weak in this measure to detect anything meaningful. Recall the centreplane streaks
in the glass particle snapshot of figure 3. Such streaks are more characteristic of
near-wall turbulence. Combine this with the fact that the vortical structures in the
outer flow have predominantly spanwise orientation (Robinson 1990) and that the
invariants decrease dramatically away from the wall. Blackburn et al. (1996) showed
Q decreasing by two orders of magnitude from the buffer region to the core region at
a mean-flow Reynolds number twice ours. Since Q only scales linearly with mean-flow
Reynolds number, the decrease would be of the same order in our case. Finally, note
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Figure 12. Mean streamwise velocity components: Simulation (a) and experiment (b).

that the non-collocation hypothesis would most affect those particles light enough to
preferentially concentrate but massive enough to attain significant slip velocities. The
glass particles best fit this description. Thus, it seems likely that a combination of
weaker turbulence at the centreplane and particle slip complicates the task of relating
centreplane particle distributions to flow structure.

3.3. Eulerian statistics

From the non-random distribution of the particles in both physical and phase space,
one might expect the particle velocity and number density statistics to differ apprecia-
bly from those for fluid elements. We now substantiate this hypothesis by examining
mean velocities and number density profiles.

Figure 12 presents the fluid- and solid-phase mean velocities from the present
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simulation and the experiment of Kulick et al., all normalized by conventional
wall variables. The figure clearly demonstrates that the preferential concentration of
the lighter particles in low-speed streaks acts against the streamwise gravitational
acceleration and supresses the particles’ mean velocities to below that of the fluid.
Consequently, the Lycopodia lag the flow throughout the buffer region and well into
the viscous sublayer. The glass particles do so only in the upper part of the buffer
region. Note that this region contains the strong vortices responsible for turbulence
production. These vortices likely have a centrifuge-like effect that separates out the
moderate-Stokes-number particles. The ones that deposit in the near-wall region
are then induced towards the low-speed streaks by the vortices (cf. Robinson 1990)
causing the preferential concentration noted by previous authors. The most important
conclusion to be drawn from the present results is that even first-order velocity
statistics would be difficult to predict with a statistical model devoid of structure
information. Such models have only recently been proposed for single-phase flow (cf.
Kassinos & Reynolds 1999). The authors know of none for particle-laden flow.

The copper particles have the most inertia. Therefore, they lead the flow throughout
the channel. Although their absolute velocities decrease on approaching the wall, their
slip velocities increase dramatically there. The experiment shows qualitatively similar
behaviour except near the wall, where the absolute particle velocities increase near
the wall. This sort of behaviour is observed early in the simulation as fast-moving
particles from the core region mix into the initially vacant near-wall region. Over
time, the near-wall velocities decrease to the values shown. This trend indicates that a
combination of non-uniform loading and insufficient wind tunnel development length
could produce the excessive near-wall velocities in the experiment. The experiment
includes a 5.2 m long development section which takes the copper particles 5 to 8
time constants to traverse. However, the development section of the channel was
fashioned from particle board whereas the test section was acrylic. A. D. Paris
(private communication) recently examined the possible effects of roughness in the
development section following the analysis of Sommmerfeld (1992). Sommerfeld
argued that the particles’ motion is wall-collision dominated when their radii satisfy

a >
1

2

√
18µh

0.7v′pρp
= 60 µm, (3.2)

where ρp is the particle mass density and where the final value was computed by Paris
for the laboratory conditions of Kulick et al. The motion of the 70 µm diameter copper
particles must be considered collision-dominated by the above measure. Hence, the
accuracy of the particle–wall interaction model is critical to simulating the Kulick et
al. experiment. Our choice of specular reflection corresponds to assuming frictionless,
elastic collisions with a smooth wall. While this model approximates well the acrylic
test section where Kulick et al. made their measurements, it probably does not match
well their particle-board development section upstream of the measurement stations.

4. Conclusions
Direct numerical simulations of low-Reynolds-number turbulent channel flow were

performed with Lagrangian tracking of a large number of passive particles. The
particle parameters were chosen to match those for three sets of particles studied
experimentally by Kulick et al. (1994). The channel flow Reynolds number of the
experiments was too large to match in the simulations. However, overall trends in the
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particle spatial distribution were captured by the simulations, justifying the use of the
simulations to evaluate statistics unavailable experimentally.

Particles with Stokes numbers based on the Kolmogorov time scale of the order
of unity were preferentially concentrated into longitudinal bands extending across
the entire channel, whereas the larger particles remained randomly distributed. This
dependence of the spatial distribution on the Stokes number supports earlier findings
of Squires & Eaton (1991) and Wang & Maxey (1993) in homogeneous turbulence
simulations. It also corroborates the experimental observations of Fessler et al. (1994)
in the fully developed channel flow and resolves the issue of whether their results
were affected by modification of the turbulence.

The topological descriptors developed by Blackburn et al. (1996) were used to
determine the correlation of the particle positions with the local flow topology.
Very near the wall, strongly vortical regions described as focii in the topological
classification are depleted of particles as would be expected if the local flow is
producing the concentration inhomogeneity. The resultant accumulation of particles
in low-speed streaks supresses their mean velocity below the fluid mean velocity at the
same wall-normal location. Farther away from the wall, similar levels of concentration
non-uniformity were observed. However, the concentration fluctuations away from
the wall were not correlated with the topological descriptors. This indicates that the
concentration inhomogeneities are formed in the intense turbulence near the wall and
then are convected into regions of less intense turbulence where they break down
slowly.
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