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Abstract

Neuroevolution is currently the strongest method
on the pole-balancing benchmark reinforcement
learning tasks. Although earlier studies sug-
gested that there was an advantage in evolv-
ing the network topology as well as connec-
tion weights, the leading neuroevolution sys-
tems evolve fixed networks. Whether evolv-
ing structure can improve performance is an
open question. In this article, we introduce
such a system, NeuroEvolution of Augmenting
Topologies (NEAT). We show that when struc-
ture is evolved (1) with a principled method of
crossover, (2) by protecting structural innova-
tion, and (3) through incremental growth from
minimal structure, learning is significantly faster
and stronger than with the best fixed-topology
methods. NEAT also shows that it is possi-
ble to evolve populations of increasingly large
genomes, achieving highly complex solutions
that would otherwise be difficult to optimize.

1 INTRODUCTION

Many tasks in the real world involve learning with sparse
reinforcement. Whether navigating a maze of rubble in
search of survivors, controlling a bank of elevators, or mak-
ing a tactical decision in a game, there is frequently no im-
mediate feedback available to evaluate recent decisions. It
is difficult to optimize such complex systems by hand; thus,
learning with sparse reinforcement is a substantial goal for
AI.

Neuroevolution (NE), the artificial evolution of neural net-
works using genetic algorithms, has shown great promise in
reinforcement learning tasks. For example, on the most dif-
ficult versions of the pole balancing problem, which is the
standard benchmark for reinforcement learning systems,

NE methods have recently outperformed other reinforce-
ment learning techniques (Gruau et al. 1996; Moriarty and
Miikkulainen 1996).

Most NE systems that have been tested on pole balancing
evolve connection weights on networks with a fixed topol-
ogy (Gomez and Miikkulainen 1999; Moriarty and Miik-
kulainen 1996; Saravanan and Fogel 1995; Whitley et al.
1993; Wieland 1991). On the other hand, NE systems that
evolve both network topologies and connection weights
simultaneously have also been proposed (Angeline et al.
1993; Gruau et al. 1996; Yao 1999). A major question in
NE is whether such Topology and Weight Evolving Artifi-
cial Neural Networks (TWEANNs) can enhance the perfor-
mance of NE. On one hand, evolving topology along with
weights might make the search more difficult. On the other,
evolving topologies can save the time of having to find the
right number of hidden neurons for a particular problem
(Gruau et al. 1996).

In a recent study, a topology-evolving method called Cel-
lular Encoding (CE; Gruau et al., 1996) was compared to
a fixed-network method called Enforced Subpopulations
(ESP) on the double pole balancing task without velocity
inputs (Gomez and Miikkulainen 1999). Since ESP had no
a priori knowledge of the correct number of hidden nodes
for solving the task, each time it failed, it was restarted
with a new random number of hidden nodes. However,
even then, ESP was five times faster than CE. In other
words, evolving structure did not improve performance in
this study.

This article aims to demonstrate the opposite conclusion:
if done right, evolving structure along with connection
weights can significantly enhance the performance of NE.
We present a novel NE method called NeuroEvolution of
Augmenting Topologies (NEAT) that is designed to take
advantage of structure as a way of minimizing the dimen-
sionality of the search space of connection weights. If
structure is evolved such that topologies are minimized and
grown incrementally, significant performance gains result.
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Figure 1: A Genotype to Phenotype Mapping Example. A
genotype is depicted that produces the shown phenotype. Notice
that the second gene is disabled, so the connection that it specifies
(between nodes 2 and 4) is not expressed in the phenotype.

Evolving structure incrementally presents several technical
challenges: (1) Is there a genetic representation that allows
disparate topologies to crossover in a meaningful way? (2)
How can topological innovation that needs a few genera-
tions to optimize be protected so that it does not disappear
from the population prematurely? (3) How can topologies
be minimized throughout evolution without the need for a
specially contrived fitness function that measures complex-
ity?

The NEAT method consists of solutions to each of these
problems as will be described below. The method is val-
idated on pole balancing tasks, where NEAT performs 25
times faster than Cellular Encoding and 5 times faster than
ESP. The results show that structure is a powerful resource
in NE when appropriately utilized.

2 NEUROEVOLUTION OF
AUGMENTING TOPOLOGIES (NEAT)

NEAT is designed to address the three problems with
TWEANNs raised in the Introduction. We begin by ex-
plaining the genetic encoding used in NEAT, and continue
by describing the components that specifically address each
issue.

2.1 GENETIC ENCODING

NEAT’s genetic encoding scheme is designed to allow cor-
responding genes to be easily lined up when two genomes
crossover during mating. Thus, genomes are linear repre-
sentations of network connectivity (figure 1). Each genome
includes a list of connection genes, each of which refers to
two node genes being connected. Each connection gene
specifies the in-node, the out-node, the weight of the con-
nection, whether or not the connection gene is expressed
(an enable bit), and an innovation number, which allows
finding corresponding genes (as will be explained below).

Mutation in NEAT can change both connection weights and
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Figure 2: The two types of structural mutation in NEAT.
Both types, adding a connection and adding a node, are illustrated
with the genes above their phenotypes. The top number in each
genome is the innovation number of that gene. The innovation
numbers are historical markers that identify the original historical
ancestor of each gene. New genes are assigned new increasingly
higher numbers.

network structures. Connection weights mutate as in any
NE system, with each connection either perturbed or not at
each generation. Structural mutations occur in two ways
(figure 2). Each mutation expands the size of the genome
by adding gene(s). In the add connection mutation, a sin-
gle new connection gene is added connecting two previ-
ously unconnected nodes. In the add node mutation an ex-
isting connection is split and the new node placed where the
old connection used to be. The old connection is disabled
and two new connections are added to the genome. This
method of adding nodes was chosen in order to integrate
new nodes immediately into the network.

Through mutation, the genomes in NEAT will gradually
get larger. Genomes of varying sizes will result, some-
times with completely different connections at the same
positions. How can NE cross them over in a sensible way?
The next section explains how NEAT addresses this prob-
lem.

2.2 TRACKING GENES THROUGH HISTORICAL
MARKINGS

It turns out that there is unexploited information in evolu-
tion that tells us exactly which genes match up with which
genes between any individuals in a topologically diverse
population. That information is the historical origin of each
gene in the population. Two genes with the same historical
origin must represent the same structure (although possibly
with different weights), since they are both derived from
the same ancestral gene from some point in the past. Thus,
all a system needs to do to know which genes line up with
which is to keep track of the historical origin of every gene
in the system.
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Figure 3: Matching Up Genomes for Different Network
Topologies Using Innovation Numbers. Although Parent 1 and
Parent 2 look different, their innovation numbers (shown at the
top of each gene) tell us which genes match up with which. Even
without any topological analysis, a new structure that combines
the overlapping parts of the two parents as well as their differ-
ent parts can be created. In this case the parents are equally fit
and the genes are inherited from both parents. Otherwise, the off-
spring inherit only the disjoint and excess genes of the most fit
parent.

Tracking the historical origins requires very little compu-
tation. Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and
assigned to that gene. The innovation numbers thus repre-
sent a chronology of the appearance of every gene in the
system. As an example, let us say the two mutations in
figure 2 occurred one after another in the system. The new
connection gene created in the first mutation is assigned the
number

�
, and the two new connection genes added during

the new node mutation are assigned the numbers � and � . In
the future, whenever these genomes mate, the offspring will
inherit the same innovation numbers on each gene; innova-
tion numbers are never changed. Thus, the historical origin
of every gene in the system is known throughout evolution.

The historical markings give NEAT a powerful new capa-
bility, effectively avoiding the problem of competing con-
ventions (Montana and Davis 1989; Radcliffe 1993; Schaf-
fer et al. 1992). The system now knows exactly which
genes match up with which (figure 3). When crossing over,
the genes in both genomes with the same innovation num-
bers are lined up. These genes are called matching genes.
Genes that do not match are either disjoint ( � ) or excess

( � ), depending on whether they occur within or outside the
range of the other parent’s innovation numbers. They rep-
resent structure that is not present in the other genome. In
composing the offspring, genes are randomly chosen from
either parent at matching genes, whereas all excess or dis-
joint genes are always included from the more fit parent,
or if they are equally fit, from both parents. This way, his-
torical markings allow NEAT to perform crossover using
linear genomes without the need for expensive topological
analysis.

By adding new genes to the population and sensibly mating
genomes representing different structures, the system can
form a population of diverse topologies. However, it turns
out that such a population on its own cannot maintain topo-
logical innovations. Because smaller structures optimize
faster than larger structures, and adding nodes and connec-
tions usually initially decreases the fitness of the network,
recently augmented structures have little hope of surviving
more than one generation even though the innovations they
represent might be crucial towards solving the task in the
long run. The solution is to protect innovation by speciat-
ing the population, as explained in the next section.

2.3 PROTECTING INNOVATION THROUGH
SPECIATION

Speciation is commonly applied to multimodal function
optimization and the coevolution of modular systems,
where its main function is to preserve diversity (Mahfoud
1995; Potter and De Jong 1995). We borrow the idea from
these fields and bring it to TWEANNs, where it protects in-
novation. Speciation allows organisms to compete primar-
ily within their own niches instead of with the population at
large. This way, topological innovations are protected in a
new niche where they have time to optimize their structure
through competition within the niche.

The idea is to divide the population into species such that
similar topologies are in the same species. This task ap-
pears to be a topology matching problem. However, it again
turns out that historical markings offer a more efficient so-
lution.

The number of excess and disjoint genes between a pair
of genomes is a natural measure of their compatibility.
The more disjoint two genomes are, the less evolutionary
history they share, and thus the less compatible they are.
Therefore, we can measure the compatibility distance � of
different structures in NEAT as a simple linear combination
of the number of excess ( � ) and disjoint ( � ) genes, as well
as the average weight differences of matching genes ( � ):

��� 	�
 ��  	�� ��  	���� ��� (1)

The coefficients, 	�
 , 	�� , and 	 � , allow us to adjust the im-



portance of the three factors, and the factor
�

, the number
of genes in the larger genome, normalizes for genome size
(
�

can be set to 1 if both genomes are small, i.e. consist of
fewer than 20 genes).

The distance measure � allows us to speciate using a com-
patibility threshold ��� . Genomes are compared to each
species one at a time; if a genomes’ distance to a ran-
domly chosen member of the species is less than ��� , it is
placed into this species. Each genome is placed into the
first species where this condition is satisfied, so that no
genome is in more than one species. Measuring � for a
pair of genomes is linear in the number of connections even
though � precisely expresses compatibility between multi-
dimensional topologies. This efficiency is possible because
of the historical markings.

As the reproduction mechanism for NEAT, we use explicit
fitness sharing (Goldberg and Richardson 1987), where or-
ganisms in the same species must share the fitness of their
niche. Thus, a species cannot afford to become too big
even if many of its organisms perform well. Therefore, any
one species is unlikely to take over the entire population,
which is crucial for speciated evolution to work. The origi-
nal fitnesses are first adjusted by dividing by the number of
individuals in the species. Species then grow or shrink de-
pending on whether their average adjusted fitness is above
or below the population average:

���� � ����� "! 
$#  %�# & (2)

where
� � and

� �� are the old and the new number of indi-
viduals in species ' , #  %� is the adjusted fitness of individual(

in species ' , and # is the mean adjusted fitness in the en-
tire population. The best-performing ) % of each species
is randomly mated to generate

� �� offspring, replacing the
entire population of the species. 1

The net effect of speciating the population is that topolog-
ical innovation is protected. The final goal of the system,
then, is to perform the search for a solution as efficiently
as possible. This goal is achieved through minimizing the
dimensionality of the search space.

2.4 MINIMIZING DIMENSIONALITY THROUGH
INCREMENTAL GROWTH FROM MINIMAL
STRUCTURE

TWEANNs typically start with an initial population of ran-
dom topologies (Angeline et al. 1993; Dasgupta and Mc-
Gregor 1992; Gruau et al. 1996; Zhang and Muhlenbein

1In rare cases when the fitness of the entire population does not
improve for more than 20 generations, only the top two species are
allowed to reproduce, refocusing the search into the most promis-
ing spaces.

1993). This way topological diversity is introduced to the
population from the outset. However, it is not clear that
such diversity is necessary or useful. A population of ran-
dom topologies has a great deal of unjustified structure that
has not withstood a single fitness evaluation. Therefore,
there is no way to know if any of such structure is nec-
essary. It is costly though because the more connections
a network contains, the higher the number of dimensions
that need to be searched to optimize the network. There-
fore, with random topologies the algorithm may waste a lot
of effort by optimizing unnecessarily complex structures.

In contrast, NEAT biases the search towards minimal-
dimensional spaces by starting out with a uniform popu-
lation of networks with zero hidden nodes (i.e. all inputs
connect directly to outputs). New structure is introduced
incrementally as structural mutations occur, and only those
structures survive that are found to be useful through fitness
evaluations. In other words, the structural elaborations that
occur in NEAT are always justified. Since the population
starts minimally, the dimensionality of the search space is
minimized, and NEAT is always searching through fewer
dimensions than other TWEANNs and fixed-topology NE
systems. Minimizing dimensionality gives NEAT a perfor-
mance advantage compared to other approaches, as will be
discussed next.

3 POLE BALANCING EXPERIMENTS

3.1 POLE BALANCING AS A BENCHMARK
TASK

There are many reinforcement learning tasks where the
techniques employed in NEAT can make a difference.
Many of these potential applications, like robot navigation
or game playing, are open problems where evaluation is
difficult. In this paper, we focus on the pole balancing do-
main because it has been used as a reinforcement learn-
ing benchmark for over 30 years (Anderson 1989; Barto
et al. 1983; Gomez and Miikkulainen 1999; Gruau et al.
1996; Michie and Chambers 1968; Moriarty and Miik-
kulainen 1996; Saravanan and Fogel 1995; Watkins and
Dayan 1992; Whitley et al. 1993; Wieland 1991, 1990),
which makes it easy to compare to other methods. It is
also a good surrogate for real problems, in part because
pole balancing in fact is a real task, and also because the
difficulty can be adjusted.

Earlier comparisons were done with a single pole, but this
version of the task has become too easy for modern meth-
ods. Therefore, we demonstrate the advantage of evolv-
ing structure through double pole balancing experiments.
Two poles are connected to a moving cart by a hinge and
the neural network must apply force to the cart to keep
the poles balanced for as long as possible without going



beyond the boundaries of the track. The system state is
defined by the cart position ( * ) and velocity ( +* ), the first
pole’s position ( , 
 ) and angular velocity ( +, 
 ), and the sec-
ond pole’s position ( , � ) and angular velocity ( +, � ). Control
is possible because the poles have different lengths and re-
spond differently to control inputs.

Double-pole balancing is sufficiently challenging even for
the best current methods. Neuroevolution generally per-
forms better in this task than standard reinforcement learn-
ing based on value functions and policy iteration (such as
Q-learning and VAPS; Watkins and Dayan 1992, Meauleau
et al. 1999, Gomez and Miikkulainen 2002). The question
studied in this paper is therefore whether evolving structure
can lead to greater NE performance.

3.2 COMPARISONS

Two versions of the double pole balancing task are used:
one with velocity inputs included and another without ve-
locity information. The first task is Markovian and allows
comparing to many different systems. Taking away veloc-
ity information makes the task more difficult because the
network must estimate an internal state in lieu of velocity,
which requires recurrent connections.

On the double pole balancing with velocity (DPV) prob-
lem, NEAT is compared to published results from four
other NE systems. The first two represent standard
population-based approaches (Saravanan and Fogel 1995;
Wieland 1991). Saravanan and Fogel used Evolutionary
Programming, which relies entirely on mutation of connec-
tion weights, while Wieland used both mating and muta-
tion. The second two systems, SANE (Moriarty and Miik-
kulainen 1996) and ESP (Gomez and Miikkulainen 1999),
evolve populations of neurons and a population of network
blueprints that specifies how to build networks from the
neurons that are assembled into fixed-topology networks
for evaluation. SANE maintains a single population of neu-
rons. ESP improves over SANE by maintaining a separate
population for each hidden neuron position in the complete
network. To our knowledge, the results of ESP are the best
achieved so far in this task.

On the double pole balancing without velocity problem
(DPNV), NEAT is compared to the only two systems that
have been demonstrated able to solve the task: Cellular En-
coding (CE; Gruau et al., 1996), and ESP. The success of
CE was first attributed to its ability to evolve structures.
However, ESP, a fixed-topology NE system, was able to
complete the task five times faster simply by restarting
with a random number of hidden nodes whenever it got
stuck. Our experiments will attempt to show that evolution
of structure can lead to better performance if done right.

3.3 PARAMETER SETTINGS

We set up our pole balancing experiments as described
by Wieland (1991) and Gomez (1999). The Runge-Kutta
fourth-order method was used to implement the dynamics
of the system, with a step size of 0.01s. All state vari-
ables were scaled to -/.�01� 2 & 01� 243 before being fed to the net-
work. Networks output a force every 0.02 seconds between-5.�0�2 & 0�243 � . The poles were 0.1m and 1.0m long. The ini-
tial position of the long pole was 076 and the short pole was
upright; the track was 4.8 meters long.

The DPV experiment used a population of 150 NEAT net-
works while the DPNV experiment used a population of
1,000. The larger population reflects the difficulty of the
task. ESP evaluated 200 networks per generation for DPV
and 1000 for DPNV, while CE had a population of 16,384
networks. The coefficients for measuring compatibility
were 	 
 �804�%2 and 	 � �804�%2 for both experiments. For
DPNV, 	�� �:9;� 2 and � � �:<;�%2 . For DPV, 	�� �:2;� < and���=�>9?�%2 . The difference in the 	 � coefficient reflects the
size of the populations; a larger population has more room
for distinguishing species based on connection weights,
whereas the smaller population relies more on topology.

If the maximum fitness of a species did not improve in 15
generations, the networks in that species were not allowed
to reproduce. Otherwise, the top <@2@A (i.e. the elite) of
each species reproduced by random mate selection within
the elite. In addition, the champion of each species with
more than five networks was copied into the next genera-
tion unchanged and each elite individual had a 0.1% chance
to mate with an elite individual from another species. The
offspring inherited matching genes randomly from either
parent, and disjoint and excess genes from the better parent,
as described in section 2.2. While other crossover schemes
are possible, this method was found effective and did not
cause excessive bloating of the genomes.

There was an 80% chance that the connection weights of an
offspring genome were mutated, in which case each weight
had a 90% chance of being uniformly perturbed and a 10%
chance of being assigned a new random value. The sys-
tem tolerates frequent mutations because speciation pro-
tects radically different weight configurations in their own
species. In the smaller population, the probability of adding
a new node was 0.03 and the probability of a new link was
0.05. In the larger population, the probability of adding a
new link was 0.3, because a larger population has room for
a larger number of species and more topological diversity.

We used a modified sigmoidal transfer function, B�CD*FEG�

IH$JLK4MON PRQ , at all nodes. The steepened sigmoid allows more
fine tuning at extreme activations. It is optimized to be
close to linear during its steepest ascent between activa-
tions .S2;�%T and 2;�%T .



Method Evaluations Generations No. Nets
Ev. Programming 307,200 150 2048
Conventional NE 80,000 800 100
SANE 12,600 63 200
ESP 3,800 19 200
NEAT 3,578 24 150

Table 1: Double Pole Balancing with Velocity Informa-
tion. Evolutionary programming results were obtained by Sara-
vanan (1995). Conventional neuroevolution data was reported by
Wieland (1991). SANE and ESP results were reported by Gomez
(1999). NEAT results are averaged over 120 experiments. All
other results are averages over 50 runs. The standard deviation for
the NEAT evaluations is 2704 evaluations. Although standard de-
viations for other methods were not reported, if we assume similar
variances, all differences are statistically significant (UWVYX4Z X�X1[ ),
except that between NEAT and ESP.

3.4 DOUBLE POLE BALANCING WITH
VELOCITIES

The criteria for success on this task was keeping both poles
balanced for 100,000 time steps (30 minutes of simulated
time). A pole was considered balanced between -36 and 36
degrees from vertical.

Table 1 shows that NEAT takes the fewest evaluations to
complete this task, although the difference between NEAT
and ESP is not statistically significant. The fixed-topology
NE systems evolved networks with 10 hidden nodes, while
NEAT’s solutions always used between 0 and 4 hidden
nodes. Thus, it is clear that NEAT’s minimization of di-
mensionality is working on this problem. The result is im-
portant because it shows that NEAT performs as well as
ESP while finding more minimal solutions.

3.5 DOUBLE POLE BALANCING WITHOUT
VELOCITIES

Gruau et al. introduced a special fitness function for this
problem to prevent the system from solving the task sim-
ply by moving the cart back and forth quickly to keep the
poles wiggling in the air. (Such a solution does not re-
quire computing the missing velocities.) Because both CE
and ESP were evaluated using this special fitness function,
NEAT uses it on this task as well. The fitness penalizes os-
cillations. It is the sum of two fitness component functions,# 
 and # � , such that \]�^2;�"0 # 
 _2?�%� # � . The two functions
are defined over 1000 time steps:

# 
 ��`Ia?0�212b2 (3)

# � � c 2 if `edf0�2b2 ,g�h iOj�^kl"m k K@nDopo�qpr s l r H rpts l r H r u ln r H r tu ln r v otherwise. (4)

where t is the number of time steps the pole remains bal-
anced during the 1000 total time steps. The denominator

Method Evaluations Generalization No. Nets
CE 840,000 300 16,384
ESP 169,466 289 1,000
NEAT 33,184 286 1,000

Table 2: Double Pole Balancing without Velocity Information
(DPNV). CE is Cellular Encoding of Gruau (1996). ESP is En-
forced Subpopulations of Gomez (1999). All results are averages
over 20 simulations. The standard deviation for NEAT is 21,790
evaluations. Assuming similar variances for CE and ESP, all dif-
ferences in number of evaluations are significant (U�VwX1Z X�X1[ ).
The generalization results are out of 625 cases in each simulation,
and are not significantly different.

in (4) represents the sum of offsets from center rest of the
cart and the long pole. It is computed by summing the ab-
solute value of the state variables representing the cart and
long pole positions and velocities. Thus, by minimizing
these offsets (damping oscillations), the system can maxi-
mize fitness. Because of this fitness function, swinging the
poles wildly is penalized, forcing the system to internally
compute the hidden state variables.

Under Gruau et al.’s criteria for a solution, the champion
of each generation is tested on generalization to make sure
it is robust. This test takes a lot more time than the fitness
test, which is why it is applied only to the champion. In
addition to balancing both poles for 100,000 time steps, the
winning controller must balance both poles from 625 dif-
ferent initial states, each for 1000 times steps. The number
of successes is called the generalization performance of the
solution. In order to count as a solution, a network needs
to generalize to at least 200 of the 625 initial states. Each
start state is chosen by giving each state value (i.e. * , +* , , 
 ,
and +, 
 ) each of the values 0.05, 0.25, 0.5, 0.75, 0.95 scaled
to the respective range of the input variable ( T1xy�{z@|1T ).
At each generation, NEAT performs the generalization test
on the champion of the highest-performing species that im-
proved since the last generation.

Table 2 shows that NEAT is the fastest system on this
challenging task. NEAT takes 25 times fewer evaluations
than Gruau’s original benchmark, showing that the way in
which structure is evolved has significant impact on per-
formance. NEAT is also 5 times faster than ESP, showing
that structure can indeed perform better than evolution of
fixed topologies. There was no significant difference in the
ability of any of the 3 methods to generalize.

4 DISCUSSION AND FUTURE WORK

4.1 EXPLAINING PERFORMANCE

Why is NEAT so much faster than ESP on the more dif-
ficult task when there was not much difference in the eas-
ier task? The reason is that in the task without velocities,



Figure 4: A NEAT Solution to the DPNV Problem. Node 2
is the angle of the long pole and node 3 is the angle of the short
pole. This clever solution works by taking the derivative of the
difference in pole angles. Using the recurrent connection to itself,
the single hidden node determines whether the poles are falling
away or towards each other. This solution allows controlling the
system without computing the velocities of each pole separately.
Without evolving structure, it would be difficult to discover such
subtle and compact solutions.

ESP needed to restart an average of 4.06 times per solu-
tion while NEAT never needed to restart. If restarts are
factored out, the systems perform at similar rates. NEAT
evolves many different structures simultaneously in differ-
ent species, each representing a space of different dimen-
sionality. Thus, NEAT is always trying many different
ways to solve the problem at once, so it is less likely to
get stuck.

Figure 4 shows a sample solution network that NEAT de-
veloped for the problem without velocities. The solution
clearly illustrates the advantage of incrementally evolving
structure. The network is a compact and elegant solution to
this problem, in sharp contrast to the fully-connected large
networks evolved by the fixed-topology methods. It shows
that minimal necessary structures are indeed found, even
when it would be difficult to discover them otherwise.

A parallel can be drawn between structure evolution
in NEAT and incremental evolution in fixed structures
(Gomez and Miikkulainen 1997; Wieland 1991). NE is
likely to get stuck on a local optimum when attempting to
solve a difficult task directly. However, after solving an
easier version of the task first, the population is likely to
be in a part of fitness space closer to a solution to a harder
task, allowing it to avoid local optima. This way, a difficult
task can be solved by evolving networks in incrementally
more challenging tasks. Adding structure to a solution is
analogous to this process. The network structure before the

Figure 5: Visualizing speciation. The fixed-size population is
divided into species, shown horizontally with newer species ap-
pearing at right. Time, i.e. evolution generations, are shown ver-
tically. The color coding indicates fitness of the species (lighter
colors are better). Two species began to close in on a solution
soon after the 20th generation. Around the same time, some of
the oldest species became extinct.

addition is optimized in a lower-dimensional space. When
structure is added, the network is placed into a more com-
plex space where it is already close to a solution. This pro-
cess is different from incremental evolution in that adding
structure is automatic in NEAT whereas the sequence of
progressively harder tasks must be designed by the experi-
menter, and can be a challenging problem in itself.

4.2 VISUALIZING SPECIATION

To understand how innovation takes place in NEAT, it is
important to understand the dynamics of speciation. How
many species form over the course of a run? How often do
new species arise? How often do species die? How large
do the species get? We answer these questions by depicting
speciation visually over time.

Figure 5 depicts a typical run of the double pole balancing
with velocities task. In this run, the task took 29 genera-
tions to complete, which is slightly above average. In the
visualization, successive generations are shown from top to
bottom. Species are depicted horizontally for each genera-
tion, with the width of each species proportional to its size
during the corresponding generation. Species are divided



from each other by white lines, and new species always ar-
rive on the right hand side. Gray-scale shading is used to
indicate the fitness of each species. A species is colored
dark grey if it has individuals that are more than one stan-
dard deviation above the mean fitness for the run, and light
grey if they are two standard deviations above. These two
tiers identify the most promising species and those that are
very close to a solution. Thus, it is possible to follow any
species from its inception to the end of the run.

Figure 5 shows that only one species existed in the popu-
lation until the 5th generation, that is, all organisms were
sufficiently compatible to be grouped into a single species.
In successive generations, the initial species shrank dramat-
ically in order to make room for the new species, and even-
tually became extinct in the 21st generation. Extinction is
shown by a white triangle between the generation it expired
and the next generation. The initial species with minimal
structure was unable to compete with newer, more innova-
tive species. The second species to appear in the population
met a similar fate in the 19th generation.

In the 21st generation a structural mutation in the fourth
species connected the long pole angle sensor to a hidden
node that had previously only been connected to the cart
position sensor. This innovation allowed the networks to
combine these observations, leading to a significant boost
in fitness (and brightening of the species in figure 5). This
innovative species subsequently expanded, but did not take
over the population. Nearly simultaneously, in the 22nd
generation, a younger species also made its own useful con-
nection, this time between the short pole velocity sensor
and long pole angle sensor, leading to its own subsequent
expansion. In the 28th generation, this same species made
a pivotal connection between the cart position and its al-
ready established method for comparing short pole velocity
to long pole angle. This innovation was enough to solve the
problem within one generation of additional weight muta-
tions. In the final generation, the winning species was 11
generations old and included 38 neural networks out of the
population of 150.

Most of the species that did not come close to a solution
survived the run even though they fell significantly behind
around the 21st generation. This observation is important,
because it visually demonstrates that innovation is indeed
being protected. The winning species does not take over
the entire population.

4.3 FUTURE WORK

NEAT strengthens the analogy between GAs and natural
evolution by not only performing the optimizing function
of evolution, but also a complexifying function, allowing
solutions to become incrementally more complex at the

same time as they become more optimal. This is potentially
a very powerful extension, and will be further explored in
future work.

One potential application of complexification is continual
coevolution. In a companion paper (Stanley and Miikkulai-
nen 2002) we demonstrate how NEAT can add new struc-
ture to an existing solution, achieving more complex behav-
ior while maintaining previous capabilities. Thus, an arms
race of increasingly more sophisticated solutions can take
place. Strategies evolved with NEAT not only reached a
higher level of sophistication than those evolved with fixed-
topologies, but also continued to improve for significantly
more generations.

Another direction of future work is to extend NEAT to tasks
with a high number of inputs and outputs. For such net-
works, the minimal initial structure may have to be defined
differently than for networks with few inputs and outputs.
For example, a fully connected two-layer network with 30
inputs and 30 outputs would require 900 connections. On
the other hand, the same network with a five-unit hidden
layer would require only 300 connections. Thus, the three-
layer network is actually simpler, implying that the mini-
mal starting topology for such domains should include hid-
den nodes.

Finally, the NEAT method can potentially be extended to
solution representations other than neural networks. In any
domain where solutions can be represented with different
levels of complexity, the search for solutions can begin with
a minimal representation that is progressively augmented
as evolution proceeds. For example, the NEAT method
may be applied to the evolution of hardware (Miller et al.
200a,b), cellular automata (Mitchell et al. 1996), or ge-
netic programs (Koza 1992). NEAT provides a principled
methodology for implementing a complexifying search
from a minimal starting point in any such structures.

5 CONCLUSION

The main conclusion is that evolving structure and connec-
tion weights in the style of NEAT leads to significant per-
formance gains in reinforcement learning. NEAT exploits
properties of both structure and history that have not been
utilized before. Historical markings, protection of innova-
tion through speciation, and incremental growth from min-
imal structure result in a system that is capable of evolv-
ing solutions of minimal complexity. NEAT is a unique
TWEANN method in that its genomes can grow in com-
plexity as necessary, yet no expensive topological analysis
is necessary either to crossover or speciate the population.
It forms a promising foundation on which to build rein-
forcement learning systems for complex real world tasks.
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