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Abstract

When viewed from a system of multiple cameras with non-
overlapping fields of view, the appearance of an object in one cam-
era view is usually very different from its appearance in another
camera view due to the differences in illumination, pose and cam-
era parameters. In order to handle the change in observed colors
of an object as it moves from one camera to another, we show that
all brightness transfer functions from a given camera to another
camera lie in a low dimensional subspace and demonstrate that
this subspace can be used to compute appearance similarity. In
the proposed approach, the system learns the subspace of inter-
camera brightness transfer functions in a training phase during
which object correspondences are assumed to be known. Once the
training is complete, correspondences are assigned using the max-
imum a posteriori (MAP) estimation framework using both loca-
tion and appearance cues. We evaluate the proposed method under
several real world scenarios obtaining encouraging results.

1. Introduction

The problem of estimating the trajectory of an object as the ob-
ject moves in an area of interest is known astrackingand it is one
of the major topics of research in computer vision. In most cases,
it is not possible for a single camera to observe the complete area
of interest because the camera field of view is finite, and the struc-
tures in the scene limit the visible areas. Therefore, surveillance of
wide areas requires a system with the ability to track objects while
observing them through multiple cameras. Moreover, it is usually
not feasible to completely cover large areas with cameras having
overlapping views due to economic and/or computational reasons.
Thus, in realistic scenarios, the system should be able to handle
multiple cameras with non-overlapping fields of view.

A commonly used cue for tracking in a single camera is the
appearance of the objects. Appearance of an object can be mod-
elled by its color or brightness histograms, and it is a function of
scene illumination, object geometry, object surface material prop-
erties (e.g., surface albedo) and the camera parameters. Among all
these, only the object surface material properties remain constant
as an object moves across cameras. Thus, the color distribution
of an object can be fairly different when viewed from two differ-
ent cameras. One way to match appearances in different cameras

is by finding a transformation that maps the appearance of an ob-
ject in one camera image to its appearance in the other camera
image. However, for a given pair of cameras, this transformation
is not unique and also depends upon the scene illumination and
camera parameters. In this paper, we show that despite depend-
ing upon a large number of parameters, for a given pair of cam-
eras, all such transformations lie in a low dimensional subspace.
The proposed method learns this subspace of mappings (bright-
ness transfer functions) for each pair of cameras from the training
data by using probabilistic principal component analysis. Thus,
given appearances in two different cameras, and the subspace of
brightness transfer functions learned during the training phase, we
can estimate the probability that the transformation between the
appearances lies in the learnt subspace.

In the following section, we discuss the related research. In
Section 3, we show that all BTFs from a given camera to another
camera lie in a low dimensional subspace. In Section 4, we present
a method to learn this subspace from the training data. In Section
5, we use a probabilistic formulation for tracking in multiple cam-
eras and employ the BTF subspace to determine how likely it is
for observations in different cameras to belong to the same object.
In Section 6, we present experiments which validate the proposed
approach.

2 Related Work

Makris et al. [10] and Rahimi et al. [14] used the information
gained from observing location and velocity of objects moving
across multiple non-overlapping cameras to determine spatial rela-
tionships between cameras. Object correspondences were not as-
sumed to be known in [10], while they were assumed to be known
in [14]. Appearance of objects was not used by both methods. In
this paper we demonstrate that appearance modelling can supple-
ment the spatio-temporal information for robust tracking.

Huang and Russel [5] presented a probabilistic approach for
tracking vehicles across two cameras on a highway. The object
appearance was modeled by the mean of the color of the whole
object, which is not enough to distinguish between multi-colored
objects like people. Inter-camera transition times were modeled
as Gaussian distributions and the problem was transformed into
a weighted assignment problem for establishing correspondence.
Kettnaker and Zabih [9] used a Bayesian formulation of the prob-
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lem of reconstructing the paths of objects across multiple non-
overlapping cameras. Their system required manual input of the
topology of allowable paths of movement and the transition prob-
abilities. The appearance of objects was represented by color his-
tograms. Kang et al.[8] presented a method for tracking in over-
lapping stationary and pan-tilt-zoom cameras. The object appear-
ance was modeled by partitioning the object region into its polar
representation. In each partition a Gaussian distribution modeled
the color variation. However, in case of non-overlapping cam-
eras, there can be a significant difference in illumination in each
of the viewable regions, therefore directly matching the color dis-
tributions of objects would not give accurate results. One possi-
ble solution to this problem was proposed by Porikli [13]. In his
approach, a brightness transfer function (BTF)fij is computed
for every pair of camerasCi andCj , such thatfij maps an ob-
served color value in CameraCi to the corresponding observation
in CameraCj . Once such a mapping is known, the correspondence
problem is reduced to the matching of transformed histograms or
appearance models. Unfortunately, this mapping, i.e., the BTF, is
not unique and it varies from frame to frame depending on a large
number of parameters that include illumination, scene geometry,
exposure time, focal length, and aperture size of each camera.

3 The Space of Brightness Transfer Func-
tions

In this section, we show that the BTFs for a given pair of cam-
eras lie in a small subspace of the space of all possible BTFs. This
subspace is learned from training data and is used for appearance
matching of objects during a test phase. Note that a necessary
condition, for the existence of a one-to-one mapping of brightness
values from one camera to another, is that the objects are planar
and only have diffuse reflectance.

LetLi(p, t) denote the scene radiance at a (world) pointp of an
object that is illuminated by white light, when viewed from camera
Ci at time instantt. By the assumption that the objects do not have
specular reflectance, we may writeLi(p, t) as a product of (a) ma-
terial related terms,Mi(p, t) = M(p) (for example, albedo) and
(b) illumination/camera geometry and object shape related terms,
Gi(p, t), i.e.,

Li(p, t) = M(p)Gi(p, t). (1)

The above given Bi-directional Reflectance Distribution Func-
tion (BRDF) model is valid for commonly used BRDFs, such as,
the Lambertian model and the generalized Lambertian model [12]
(See Table 1). By the assumption of planarity,Gi(p, t) =
Gi(q, t) = Gi(t), for all pointsp andq on a given object. Hence,
we may write,Li(p, t) = M(p)Gi(t).

The image irradianceEi(p, t) is proportional to the scene radi-
anceLi(p, t) [4], and is given as:

Ei(p, t) = Li(p, t)Yi(t) = M(p)Gi(t)Yi(t), (2)

whereYi(t) = π
4

(
di(t)
hi(t)

)2

cos4 αi(p, t) = π
4

(
di(t)
hi(t)

)2

c, is a

function of camera parameters at timet. hi(t) anddi(t) are the fo-
cal length and diameter (aperture) of lens respectively, andαi(p, t)
is the angle that the principal ray from pointp makes with the op-
tical axis. The fall off in sensitivity due to the termcos4 αi(p, t)

over an object is considered negligible [4] and may be replaced
with a constantc.

If Xi(t) is the time of exposure, andgi is the radiometric
response function of the cameraCi, then the measured (image)
brightness of pointp, Bi(p, t), is related to the image irradiance
as

Bi(p, t) = gi (Ei(p, t)Xi(t))

= gi (M(p)Gi(t)Yi(t)Xi(t)) ,

i.e., the brightness,Bi(p, t), of the image of a world pointp at time
instantt, is a nonlinear function of the product of its material prop-
ertiesM(p), geometric propertiesGi(t), and camera parameters,
Yi(t) andXi(t). Consider two cameras,Ci andCj . Assume that
a world pointp is viewed by camerasCi andCj at time instantsti

andtj respectively. Since material propertiesM of a world point
remain constant, we have,

M(p) =
g−1

i (Bi(p, ti))

Gi(ti)Yi(ti)Xi(ti)
=

g−1
j (Bj(p, tj))

Gj(tj)Yj(tj)Xj(tj)
. (3)

Hence, the brightness transfer function from the image of camera
Ci at timeti to the image of cameraCj at timetj is given by:

Bj(p, tj) = gj

(
Gj(tj)Yj(tj)Xj(tj)

Gi(ti)Yi(ti)Xi(ti)
g−1

i (Bi(p, ti))

)

= gj

(
w(ti, tj)g

−1
i (Bi(p, ti))

)
, (4)

wherew(ti, tj) is a function of camera parameters and illumina-
tion/scene geometry of camerasCi andCj at time instantsti and
tj respectively. Since Equation 4 is valid for any pointp on the
object visible in the two cameras, we may drop the argumentp
from the notation. Also, since it is implicit in the discussion that
the BTF is different for any two pair of frames, we will also drop
the argumentsti andtj for the sake of simplicity. Letfij denote a
BTF from cameraCi to cameraCj , then,

Bj = gj

(
wg−1

i (Bi)
)

= fij (Bi) . (5)

In this paper, we use a non-parametric form of the BTF by sam-
pling fij at a set of fixed increasing brightness valuesBi(1) <
Bi(2) < . . . < Bi(d), and representing it as a vector. That is,
(Bj(1), . . . , Bj(d))=(fij(Bi(1)), . . . , fij(Bi(d))). We denote
the space of brightness transfer functions (SBTF) from cameraCi

to cameraCj by Γij . It is easy to see that the dimension ofΓij can
be at mostd, whered is the number of discrete brightness values
(For most imaging systems,d = 256). However, the following
theorem shows that BTFs actually lie in a small subspace of thed
dimensional space (Please see Appendix I for proof).
Theorem 1. The subspace of brightness transfer functionsΓij

has dimension at mostm if for all a, x ∈ R, gj(ax) =∑m
u=1 ru(a)su(x), wheregj is the radiometric response function

of cameraCj , and for all u,1 ≤ u ≤ m, ru andsu are arbitrary,
but fixed 1D functions.

From Theorem 1, we see that the upper bound on the dimen-
sion of subspace depends on the radiometric response function of
cameraCj . Though the radiometric response functions are usu-
ally nonlinear and differ from one camera to another, they do not
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Model M G

Lambertian ρ I
π cos θi

Generalized Lambertian ρ I
π cos θi

[
1− 0.5σ2

σ2+0.33 + 0.15σ2

σ2+0.09 cos (φi − φr) sin α tan β
]

Table 1. Commonly used BRDF models that satisfy Equation 1. The subscriptsi andr denote the incident and the reflected
directions measured with respect to surface normal.I is the source intensity,ρ is the albedo,σ is the surface roughness,α =
max (θi, θr) andβ = min (θi, θr). Note that for generalized Lambertian model to satisfy Equation 1, we must assume that the
surface roughnessσ is constant over the plane.

have exotic forms and are well-approximated by simple paramet-
ric models. Many authors have approximated the radiometric re-
sponse function of a camera by a gamma function [2, 11], i.e.,
g(x) = λxγ + µ. Then, for alla, x ∈ R,

g(ax) = λ(ax)γ +µ = λaγxγ +µ = r1(a)s1(x)+r2(a)s2(x),

where,r1(a) = aγ , s1(x) = λxγ , r2(a) = 1, ands2(x) = µ.
Hence, by Theorem 1, if the radiometric response function of cam-
eraCj is a gamma function, then the SBTFΓij has dimensions at
most 2. As compared to gamma functions, polynomials are a more
general approximation of the radiometric response function. Once
again, for a degreeq polynomialg(x) =

∑q
u=0 λuxu and for any

a, x ∈ R, we can writeg(ax) =
∑q

u=0 ru(a)su(x) by putting
ru(a) = au andsu(x) = λuxu, for all 0 ≤ u ≤ q. Thus, the
dimension of the SBTFΓij is bounded by one plus the degree of
the polynomial that approximatesgj . It is shown in [3] that most
of the real world response functions are sufficiently well approxi-
mated by polynomials of degrees less than or equal to 10.

To show empirically that the assertions made in this subsec-
tion remain valid for real world radiometric response functions,
we consider 10 synthetic camerasCu, 1 ≤ u ≤ 10 and assign
each camera a radiometric response function of some real world
camera/film (These response functions are shown in Figure 1). For
each synthetic cameraCi, we generate a collection of brightness
transfer functions, fromC1 to Ci, by varyingw in the equation 5
and perform the principal component analysis on this collection.
The plot of percentage of total variance over the number of com-
ponents is shown in Figure 2. It can be seen from the results that
in most of the cases, 4 or less principal components capture signif-
icant percentage of the variance of the subspace and hence, justify
the theoretical analysis.

In the next section, we will give a method for estimating the
BTFs and their subspace from training data in a multi-camera
tracking scenario.

4 Estimation of inter-camera BTFs and their
subspace

Consider a pair of camerasCi andCj . Corresponding observa-
tions of an object across this camera pair can be used to compute
an inter-camera BTF. One way to determine this BTF is to esti-
mate the pixel to pixel correspondence between the object views
in the two cameras (see Equation 5). However, finding pixel to
pixel correspondences from views of the same object in two dif-
ferent cameras is not possible due to self-occlusion and difference

Figure 1. Response Curves assigned to each synthetic
camera.

in pose. Thus, we employ normalized histograms of object bright-
ness values for the BTF computation. Such histograms are rela-
tively robust to changes in object pose [15]. In order to compute
the BTF, we assume that the percentage of image points on the ob-
served objectOi with brightness less than or equal toBi is equal to
the percentage of image points in the observationOj with bright-
ness less than or equal toBj . Note that, a similar strategy was
adopted by Grossberg and Nayar [3] to obtain a BTF between im-
ages taken from the same camera of the same view but in different
illumination conditions. Now, ifHi andHj are the normalized
cumulative histograms of object observationsOi andOj respec-
tively, thenHi(Bi) = Hj(Bj) = Hj(fij(Bi)). Therefore, we
have

fij(Bi) = H−1
j (Hi(Bi)) , (6)

whereH−1 is the inverted cumulative histogram.
We use Equation 6 to estimate the brightness transfer function

fij for every pair of observations in the training set. LetFij be
the collection of all the brightness transfer functions obtained in
this manner, i.e.,

{
f(ij)1 , f(ij)2 , . . . , f(ij)N

}
. To learn the subspace

of this collection we use the probabilistic Principal Component
Analysis PPCA [16]. According to this model, ad dimensional
BTF, fij, can be written as:

fij = Wy + fij + ε. (7)

Herey is a normally distributedq dimensional latent (subspace)
variable,q < d, W is ad × q dimensional projection matrix that

3



1 2 3 4 5 6 7 8
88

90

92

94

96

98

100

Principal Components

P
er

ce
nt

 o
f t

ot
al

 V
ar

ia
nc

e

Agfa Color Futura 100 Red
Agfa color HDC 100 plus Green
Agfacolor Ultra 050 plus Green
Agfachrome RSX2 050 Blue
Kodak Ektachrome100 plus Green
Gamma Curve,  γ=0.4
Cannon Optura
Sony DXC�950
Fuji F400 Green
Kodak Max Zoom 800 Green

Figure 2. Plots of the percentage of total variance ac-
counted bym principal components (x-axis) of the sub-
space of brightness transfer functions from synthetic cam-
eraC1 to cameraCi. The plot confirms that a very hight
percentage of total variance is accounted by first 3 or 4 prin-
cipal components of the subspace.

relates the subspace variables to the observed BTF,fij is the mean
of the collection of BTFs, andε is isotropic Gaussian noise, i.e.,
ε ∼ N(0, σ2I). Given thaty andε are normally distributed, the
distribution offij is given as

fij ∼ N (fij,Z), (8)

whereZ = WWT +σ2I . Now, as suggested in [16], the projection
matrixW is estimated as

W = Uq(Eq − σ2I)1/2R, (9)

where theq column vectors in thed × q dimensionalUq are the
eigenvectors of the sample covariance matrix ofFij , Eq is theq×q
diagonal matrix of corresponding eigenvaluesλ1, . . . , λq, andR
is an arbitrary orthogonal rotation matrix and can be set to an iden-
tity matrix. The value ofσ2, which is the variance of the informa-
tion ‘lost’ in the projection, is calculated as

σ2 =
1

d− q

d∑
v=q+1

λv. (10)

Once the values ofσ2 andW are known, we can compute the
probability of a particular BTF belonging to the learned subspace
of BTFs by using the distribution in Equation 8.

Note that till now we have been dealing with only the bright-
ness values of images and computing the brightness transfer func-
tions. To deal with color images we treat each channel, i.e.,R,
G andB separately. The transfer function for each color channel
(color transfer function) is computed exactly as discussed above.
The subspace parametersW andσ2 are also computed separately
for each color channel. Also note that we do not assume the
knowledge of any camera parameters and response functions for
the computation of these transfer functions and their subspace.

In the next section, we present a formulation of the multi-
camera tracking problem, and discuss how the subspace based

appearance constraints can be employed along with inter-camera
spatiotemporal models to establish correspondence.

5 Formulation of the Multi-Camera Track-
ing Problem

Suppose that we have a system ofr camerasC1, C2, . . . , Cr

with non-overlapping views. Further, assume that there aren
objects in the environment (the number of the objects is not as-
sumed to be known). Each of these objects are viewed from
different cameras at different time instants. Assume that the
task of single camera tracking is already solved, and letOj ={
Oj,1, Oj,2, . . . , Oj,mj

}
be the set ofmj observations that were

observed by the cameraCj . Each of these observationsOj,a is a
track of some object from its entry to its exit in the field of view of
cameraCj , and is based on two features, appearance of the object
Oj,a(app) and space-time features of the objectOj,a(st) (loca-
tion, velocity, time etc.). The problem of multi-camera tracking is
to find which of the observations in the system of cameras belong
to the same object.

For a formal definition of the above problem, we let a corre-
spondencekc,d

a,b define the hypothesis that the observationsOa,b

andOc,d are observations of the same object in the environment,
with the observationOa,b preceding the observationOc,d. The
problem of multi-camera tracking is to find a set of correspon-

dencesK =
{

kc,d
a,b

}
such thatkc,d

a,b ∈ K if and only if Oa,b and

Oc,d correspond to successive observations of the same object in
the environment. LetΣ be the solution space of the multi-camera
tracking problem. We assume that each observation of an object is
preceded or succeeded by a maximum of one observation (of the
same object). We define the solution of the multi-camera track-
ing problem to be a hypothesisK′ in the solution spaceΣ that
maximizes the a posteriori probability, and is given by:

K′ = arg max
K∈Σ

∏

k
j,b
i,a∈K

(
P

(
Oi,a(app), Oj,b(app)|kj,b

i,a

)

P
(
Oi,a(st), Oj,b(st)|kj,b

i,a

)
P (Ci, Cj)

)
. (11)

If the space-time and appearance probability density func-
tions are known then the posterior can be maximized us-
ing a graph theoretic approach. The details of the formu-
lation and the maximization scheme are given in our pre-
vious work [7]. We now discuss the choice of appear-

ance and space-time pdfs, i.e.,P
(
Oi,a(st), Oj,b(st)|kj,b

i,a

)
and

P
(
Oi,a(app), Oj,b(app)|kj,b

i,a

)
.

Note that, the training phase provides us the subspace of color
transfer functions between the cameras, which models how colors
of an object can change across the cameras. During the test phase,
if the mapping between the colors of two observations is well ex-
plained by the learned subspace then it is likely that these obser-
vations are generated by the same object. Specifically, for two
observationsOi,a andOj,b with color transfer functions (whose
distribution is given by Equation 8)fRi,j ,fGi,j andfBi,j ,we define the
probability of the observations belonging to same object as

4



Pi,j(Oi,a(app), Oj,b(app)|kj,b
i,a) =

∏
ch∈{R,G,B}

1

(2π)
d
2 |Zch| 12

e
− 1

2

(
fch
ij −fch

ij

)T
(Zch)−1

(
fch
ij −fch

ij

)
,

whereZ = WWT + σ2I . Thech superscript denotes the color
channel for which the value ofZ and fij were calculated. For
each color channel, the values ofW andσ2 are computed from the
training data using Equation 9 and Equation 10 respectively.

The Parzen window technique is used to estimate the space-
time pdfs between each pair of cameras. Suppose we have a sam-
ple S consisting ofn, d dimensional, data pointsx1,x2, . . . ,xn

from a multi-variate distributionp(x) , then an estimatêp(x) of
the density atx can be calculated using

p̂(x) =
1

n
|H|− 1

2

n∑

i=1

κ(H−
1
2 (x− xi)), (12)

where thed variate kernelκ(x) is a bounded function satisfying∫
κ(x)dx = 1, andH is the symmetricd × d bandwidth matrix.

The position/time feature vectorx, used for learning the space-
time pdf’s from cameraCi to Cj , i.e.,P (Oi,a(st), Oj,b(st)|kj,b

i,a),
is a vector, consisting of the exit location and entry locations in
cameras, exit velocities, and the time interval between exit and en-
try events. Each time, a correspondence is made during the train-
ing phase, the observed feature is added to the sampleS. In order
to reduce the complexity,H is assumed to be a diagonal matrix,
i.e.,H = diag[h2

1, h
2
2, . . . , h

2
d].

6 Results

In this section, we present the results of the proposed method in
three different multi-camera scenarios. The scenarios differ from
each other both in terms of camera topologies and scene illumi-
nation conditions, and include both indoor and outdoor settings.
Each experiment consists of a training phase and a testing phase.
In both phases, the single camera object detection and tracking in-
formation is obtained by using the method proposed in [6]. In the
training phase, the correspondences are assumed to be known and
this information is used to compute the density of the space-time
features (entry and exit locations, exit velocity and inter-camera
time interval) and the subspaces of transfer functions for each
color channel (red, blue, and green). In the testing phase, these
correspondences are computed using the proposed multi-camera
correspondence algorithm. The performance of the algorithm is
analyzed by comparing the resulting tracks to the ground truth. We
say that an object in the scene is trackedcorrectly if it is assigned
a single unique label for the complete duration of its presence in
the area of interest. Thetracking accuracyis defined as the ratio
of the number of objects tracked correctly to the total number of
objects that passed through the scene.

In order to demonstrate the superiority of the subspace based
method, this approach is compared to direct color matching for
establishing correspondence. Moreover to demonstrate that the
appearance matching supplements the spatio-temporal constraints
for tracking we also show results for i) only space-time model,
ii) only appearance model, and iii) both models. The results of

each of these cases are analyzed by using the above defined track-
ing evaluation measure. The results are summarized in Figures
8(a) and 8(b) and are explained below for each of the experimen-
tal setup.

(a) (b) (c)

Figure 3. (a)Two camera configuration for the first
experiment. The green region is the area covered by
grass.(b)Camera setup for sequence 2. All cameras were
mounted outdoors. (c) Camera setup for sequence 3. It is
an Indoor/Outdoor Sequence.Camera 3 is placed indoor
while Cameras 1 and 2 are outdoor.

The first experiment was conducted with two cameras, Camera
1 and Camera 2, in an outdoor setting. The camera topology is
shown in Figure 3(a). The scene viewed by Camera 1 is a covered
area under shade, whereas Camera 2 views an open area illumi-
nated by the sunlight (please see Figure 5). It can be seen from
the figure that there is a significant difference between the global
illumination of the two scenes, and matching the appearances is
considerably difficult without accurate modeling of the changes in
appearance across the cameras. The training for the first camera
setup was performed by using a five minute sequence. In Figure 4
the transfer functions obtained from the first five correspondences
from Camera 1 to Camera 2 are shown. Note that lower color
values from Camera 1 are being mapped to higher color values
in Camera 2 indicating that the same object is appearing much
brighter in Camera 2 as compared to Camera 1. The test phase
consisted of a twelve minute long sequence. In this phase, a to-
tal of 68 tracks were recorded in the individual cameras and the
algorithm detected 32 transitions across the cameras. Tracking ac-
curacy for the test phase is shown in Figure 8(a).

Our second experimental setup consists of three cameras, as
shown in Figure 3(a). Testing was carried out on a fifteen minute
sequence. A total of 71 tracks in individual cameras were obtained
and the algorithm detected 45 transitions within the cameras. All
the correspondences were established correctly when both space-
time and appearance models were used (see Figure 8).

In the third experiment, three cameras were used for an in-
door/outdoor setup Figure 3. Camera 1 was placed indoor while
the other two cameras were placed outdoor. Training was done
on an eight minute sequence in the presence of multiple persons.
Testing was carried out on a fifteen minute sequence. Figure 6
shows some tracking instances for the test sequence. It is clear
from Figure 8(a) that both the appearance and space-time models
are important sources of information as the tracking results im-
prove significantly when both the models are used jointly.

In Table 2, we show the number of principal components (for
each pair of cameras in all three sequences) that account for99%
of the total variance in the inter-camera brightness transfer func-
tions that were computed during the training phase. Note that even
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Figure 4. The transfer functions for the Red color channel
from Camera 1 to Camera 2, obtained from the first five cor-
respondences from the training data (sequence 1). Note that
mostly lower color values from Camera 1 are being mapped
to higher color values in Camera 2 indicating that the same
object is appearing much brighter in Camera 2 as compared
to Camera 1 (as shown in Figure 3(a)).

Seq. # Camera Pair # of PCs # of PCs # of PCs
(Red) (Green) (Blue)

1 1-2 6 5 5
2 1-2 7 7 7
2 2-3 7 7 6
3 1-3 7 6 7
3 2-3 7 7 7

Table 2. The number of Principal Components (PCs) that
account for 99% of the variance in the BTFs. Note that
for all camera pairs a maximum of 7 principal components
were sufficient to account for the subspace of the BTFs.

though the experimental setup does not follow the assumptions of
Section3, such as diffuse reflectance or planar objects, the small
number of principal components indicates that the inter-camera
BTFs lie in a low dimension subspace even in more general con-
ditions.

In order to demonstrate the superiority of the subspace
based method we compare it with the direct use of colors
for tracking. For direct color base matching, instead of us-
ing Equation 12 for the computation of appearance probabili-
tiesPi,j(Oi,a(app), Oj,b(app)|kj,b

i,a), we define it in terms of the
Bhattacharraya distance between the normalized histograms of the
observationsOi,a andOi,b, i.e.,

Pi,j(Oi,a(app), Oj,b(app)|kj,b
i,a) = γe−γD(hi,hj), (13)

wherehi andhj are the normalized histograms of the observations
Oi,a andOj,b andD is the modified Bhattacharraya distance [1]
between two histograms. The coefficient ranges between zero and
one and is a metric.

(a) Cam 1 (b) Cam 2

Figure 5. Frames from sequence 1. Note that multiple
persons are simultaneously exiting from camera 2 and en-
tering at irregular intervals in camera 1. The first camera is
overlooking a covered area while the second camera view
is under direct sun light, therefore the observed color of ob-
jects is fairly different in the two views (also see Figure 7).
Correct labels are assigned in this case due to accurate color
modeling.

(a) Cam 3 (b) Cam 2 (c) Cam 1

Figure 6. Frames from Sequence 3 test phase. A person
is assigned a unique label as it moves through the camera
views.

Once again, the tracking accuracy was computed for all three
multi-camera scenarios using the color histogram based model
(Equation 13). The comparison of the proposed appearance mod-
eling approach with the direct color based appearance matching
is presented in Figure 8(b), and clearly shows that the subspace
based appearance model performs significantly better.

For further comparison of the two methods, we consider
two observations,Oa and Ob, in the testing phase, with his-
togramsH(Oa) and H(Ob) respectively. We first compute a
BTF, f, between the two observations and reconstruct the BTF,

6



Sequence # Average BTF Average BTF
Reconstruction Error Reconstruction Error

(Correct Matches) (Incorrect Matches)
1 .0003 .0016
2 .0002 .0018
3 .0005 .0011

Table 3. The average normalized reconstruction errors for
BTFs between observations of the same object and also be-
tween observation of different objects.

f∗, from the subspace estimated from the training data, i.e.,f∗ =
WWT

(
f − f

)
+ f. HereW is the projection matrix obtained in

the training phase. The first observationOa is then transformed
using f∗, and the histogram of the objectOb is matched with
the histograms of bothOa and f∗(Oa) by using the Bhattachar-
raya distance. When both the observationsOa andOb belong to
the same object, the transformed histogram gives a much better
match as compared to direct histogram matching, as shown in Fig-
ure 7 (more results are available in the supplemental file). How-
ever, if the observationsOa and Ob belong to different objects
then the BTF is reconstructed poorly, (since it does not lie in the
subspace of valid BTFs), and the Bhattacharraya distance for the
transformed observation either increases or does not change sig-
nificantly. The aggregate results for the reconstruction error,f∗-
Reconstruction Error=‖f − f∗‖/τ , whereτ is a normalizing con-
stant, for the BTFs between the same object and also between dif-
ferent objects are given in Table 3. The above discussion suggests
the applicability of the BTF subspace for the improvement of any
multi-camera appearance matching scheme that uses color as one
of its components.

7. Conclusions

In this paper, we showed that given some assumptions, all
brightness transfer functions from a given camera to another cam-
era lie in a low dimensional subspace. We also demonstrated em-
pirically that even for real scenarios this subspace is low dimen-
sional. The knowledge of camera parameters like focal length,
aperture etc was not required for computation of the subspace of
BTFs. The proposed system learned this subspace by using prob-
abilistic principal component analysis on the BTFs obtained from
the training data and used it for the appearance matching. The ap-
pearance matching scheme was combined with space-time cues in
a Bayesian framework for tracking. We have presented results on
realistic scenarios to show the validity of the proposed approach.
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(a)

(b)

Figure 8. (a) Tracking Results. Tracking accuracy for
each of the three sequences computed for three different
cases. 1. by using only space-time model, 2. by using only
appearance model, and 3. both models. The results improve
greatly when both the space-time and appearance models
are employed for establishing correspondence.(b) Tracking
accuracy: comparison of the BTF subspace based tracking
method to simple color matching. A much improved match-
ing is achieved in the transformed color space relative to
direct color comparison of objects. The improvement is
greater in the first sequence due to the large difference in
the scene illumination in the two camera views.

Appendix I

Proof:Theorem 1 Let gi andgj be the radiometric response
functions of camerasCi andCj respectively. Also assume that for
all a, x ∈ R, gj(ax) =

∑m
u=1 ru(a)su(x), whereru andsu are

some arbitrary (but fixed) 1D functions,1 ≤ u ≤ m. Let fij be
a brightness transfer function from cameraCi to cameraCj , then
according to Equation 5,fij is given as:

fij = gj

(
wg−1

i (Bi)
)

= [gj

(
wg−1

i (Bi(1))
)
. . . gj

(
wg−1

i (Bi(n))
)
]T

Sincegj(ax) =
∑m

u=1 ru(a)su(x), we may writefij as fol-
lows:

fij =

m∑
u=1

ru(w)
[
su(g−1

i (Bi(1))
)
. . . su

(
g−1

i (Bi(n))
)
]T

=

m∑
u=1

ru(w)su

(
g−1

i (Bi)
)

Thus, each brightness transfer functionfij ∈ Γij can be rep-
resented as a linear combination ofm vectors,su

(
g−1

i (Bi)
)
,
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Figure 7. (a) ObservationsOa andOb of the same object from camera 1 and camera 2 respectively from camera setup 1. (b)
Histogram of observationOa (All histograms are of the Red color channel). (c) Histogram of observationOb. The Bhattacharraya
distance between the two histograms of the same object is 0.537. (d) The Histogram ofOa after undergoing color transformation
using the BTF reconstruction from the learned subspace. Note that after the transformation the histogram of(f∗(Oa)) looks fairly
similar to the histogram ofOb. The Bhattacharraya distance reduces to 0.212 after the transformation. (e) Observation from camera
1 matched to an observation from a different object in camera 2. (f,g) Histograms of the observations. The distance between
histograms of two different objects is 0.278 . Note that this is less than the distance between histograms of the same object. (h)
Histogram after transforming the colors using the BTF reconstructed from the subspace. The Bhattacharraya distance increases to
0.301. Simple color matching gives a better match for the wrong correspondence. However, in the transformed space the correct
correspondence gives the least bhattacharraya distance.

1 ≤ u ≤ m. Hence, the dimension of spaceΓij is at mostm.
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