Appearance Modeling for Tracking in Multiple Non-overlapping Cameras

Omar Javed Khurram Shafique Mubarak Shah
Computer Vision Lab, Computer Vision Lab, Computer Vision Lab,
University of Central Florida  University of Central Florida  University of Central Florida
Orlando, FL, U.S.A Orlando, FL, U.S.A Orlando, FL, U.S.A
ojaved@cs.ucf.edu khurram@cs.ucf.edu shah@cs.ucf.edu
Abstract is by finding a transformation that maps the appearance of an ob-

ject in one camera image to its appearance in the other camera

When viewed from a System of muitipie cameras with non- image. HOWeVer, for a giVen pail‘ of cameras, thIS transformation
overlapping fields of view, the appearance of an object in one cam- iS not unique and also depends upon the scene illumination and
era view is usually very different from its appearance in another camera parameters. In this paper, we show that despite depend-
camera view due to the differences in illumination, pose and cam- ing upon a large number of parameters, for a given pair of cam-
era parameters. In order to handle the change in observed colors eras, all such transformations lie in a low dimensional subspace.
of an object as it moves from one camera to another, we show thatThe proposed method learns this subspace of mappings (bright-
all brightness transfer functions from a given camera to another ness transfer functions) for each pair of cameras from the training
camera lie in a low dimensional subspace and demonstrate thatdata by using probabilistic principal component analysis. Thus,
this subspace can be used to compute appearance similarity. Ingiven appearances in two different cameras, and the subspace of
the proposed approach’ the System learns the subspace of interbrightness transfer functions learned during the training phase, we
camera brightness transfer functions in a training phase during can estimate the probablllty that the transformation between the
which object correspondences are assumed to be known. Once th@Ppearances lies in the learnt subspace.
training is complete, correspondences are assigned using the max-  In the following section, we discuss the related research. In
imum a posteriori (MAP) estimation framework using both loca- Section 3, we show that all BTFs from a given camera to another
tion and appearance cues. We evaluate the proposed method undegamera lie in a low dimensional SUbSpace. In Section 4, we present

several real world scenarios obtaining encouraging results. a method to learn this subspace from the training data. In Section
5, we use a probabilistic formulation for tracking in multiple cam-

eras and employ the BTF subspace to determine how likely it is
for observations in different cameras to belong to the same object.

In Section 6, we present experiments which validate the proposed
The problem of estimating the trajectory of an object as the ob- approach.

ject moves in an area of interest is knowrti@skingand it is one
of the major topics of research in computer vision. In most cases,
it is not possible for a single camera to observe the complete area2 Related Work
of interest because the camera field of view is finite, and the struc-
tures in the scene limit the visible areas. Therefore, surveillance of ~ Makris et al. [10] and Rahimi et al. [14] used the information
wide areas requires a system with the ability to track objects while gained from observing location and velocity of objects moving
observing them through multiple cameras. Moreover, it is usually across multiple non-overlapping cameras to determine spatial rela-
not feasible to completely cover large areas with cameras havingtionships between cameras. Object correspondences were not as-
overlapping views due to economic and/or computational reasons.sumed to be known in [10], while they were assumed to be known
Thus, in realistic scenarios, the system should be able to handlen [14]. Appearance of objects was not used by both methods. In
multiple cameras with non-overlapping fields of view. this paper we demonstrate that appearance modelling can supple-
A commonly used cue for tracking in a single camera is the ment the spatio-temporal information for robust tracking.
appearance of the objects. Appearance of an object can be mod- Huang and Russel [5] presented a probabilistic approach for
elled by its color or brightness histograms, and it is a function of tracking vehicles across two cameras on a highway. The object
scene illumination, object geometry, object surface material prop- appearance was modeled by the mean of the color of the whole
erties (e.g., surface albedo) and the camera parameters. Among alhbject, which is not enough to distinguish between multi-colored
these, only the object surface material properties remain constanbbjects like people. Inter-camera transition times were modeled
as an object moves across cameras. Thus, the color distributioras Gaussian distributions and the problem was transformed into
of an object can be fairly different when viewed from two differ- a weighted assignment problem for establishing correspondence.
ent cameras. One way to match appearances in different camerakettnaker and Zabih [9] used a Bayesian formulation of the prob-

1. Introduction



lem of reconstructing the paths of objects across multiple non- over an object is considered negligible [4] and may be replaced
overlapping cameras. Their system required manual input of thewith a constant.

topology of allowable paths of movement and the transition prob-  If X,(¢) is the time of exposure, ang; is the radiometric
abilities. The appearance of objects was represented by color histesponse function of the came€s, then the measured (image)
tograms. Kang et al.[8] presented a method for tracking in over- brightness of poinp, B;(p,t), is related to the image irradiance
lapping stationary and pan-tilt-zoom cameras. The object appear-as

ance was modeled by partitioning the object region into its polar

representation. In each partition a Gaussian distribution modeled Bi(p,t) = gi (Ei(p,t)X:(t))

the color variation. However, in case of non-overlapping cam- = gi(M(p)G:()Yi(t)Xi(t)),

eras, there can be a significant difference in illumination in each

of the viewable regions, therefore directly matching the color dis- j e_ the brightness3;(p, ¢), of the image of a world point at time
tributions of objects would not give accurate results. One possi- instantt, is a nonlinear function of the product of its material prop-
ble solution to this problem was proposed by Porikli [13]. In his  erties A7 (p), geometric propertie€’; (¢), and camera parameters,
approach, a brightness transfer function (BT, is computed  y;(¢) andX;(¢). Consider two cameras}; andC;. Assume that
for every pair of camerag’; andC;, such thatf;; maps an ob- 3 world pointp is viewed by cameras); andC; at time instants;

served color value in Came(; to the corresponding observation andt; respectively. Since material propertizs of a world point
in CameraC;. Once such a mapping is known, the correspondence remain constant, we have,

problem is reduced to the matching of transformed histograms or

appearance models. Unfortunately, this mapping, i.e., the BTF, is g7 (Bi(p,t:)) g; ' (B;(p,ty))

not unique and it varies from frame to frame depending on a large M(p) = Gi(t:)Yi(t) Xa(t:) - G, (t;)Y;(t)X,(t;) ®)

number of parameters that include illumination, scene geometry, e SNSRI

exposure time, focal length, and aperture size of each camera.  Hence, the brightness transfer function from the image of camera
C; at timet; to the image of camer@&@; at timet; is given by:

3 The Space of Brightness Transfer Func- LAY (EN X (b
tions Bt = o (G (51)

1

In this section, we show that the BTFs for a given pair of cam- - (w(ti’ ti)g: (Bilp, ti))) ’ @)
eras lie in a small subspace of the space of all possible BTFs. ThiSynereq(t,, ¢;) is a function of camera parameters and illumina-
subspgce is Iea_rned from training data and is used for appearancggn/scene geometry of camerd@s andC; at time instants; and
matching of objects during a test phase. Note that a necessary, - respectively. Since Equation 4 is valid for any poinon the
condition, for the existence of a one-to-one mapping of brightness gyiect visible in the two cameras, we may drop the argurpent
values from one camera to another, is that the objects are planagqm the notation. Also, since it is implicit in the discussion that
and only have diffuse reflectance. the BTF is different for any two pair of frames, we will also drop

LetLi(p, t) denote the scene radiance ata (world) ppiotan e arguments; andt; for the sake of simplicity. Lef;; denote a
object that is illuminated by white light, when viewed from camera g from camerac; to cameraC;, then

C; attime instant. By the assumption that the objects do not have

specular reflectance, we may write(p, t) as a product of (a) ma- Bj = g; (wg; ' (Bi)) = fij (Bi). (5)

terial related terms)M;(p,t) = M (p) (for example, albedo) and

(b) iIIumipation/camera geometry and object shape related terms, |, this paper, we use a non-parametric form of the BTF by sam-

Gi(p,t), i.e., pling f;; at a set of fixed increasing brightness valugg1) <

Li(p,t) = M(p)Gi(p, t). (1) Bi(2) < ... < Bi(d), and representing it as a vector. That is,

The above given Bi-directional Reflectance Distribution Func- (Bj(1),. .., B;(d))=(fi;(B:i(1)),..., fi;(Bi(d))). We denote

tion (BRDF) model is valid for commonly used BRDFs, such as, the space of brightness transfer functions (SBTF) from cafigra

the Lambertian model and the generalized Lambertian model [12] to cameraC; by I';;. Itis easy to see that the dimensioriaf can

(See Table 1). By the assumption of planarity;(p,t) = be at most/, whered is the number of discrete brightness values
Gi(g,t) = G;(t), for all pointsp andq on a given object. Hence,  (For most imaging systems, = 256). However, the following
we may write,L;(p, t) = M (p)G.(t). theorem shows that BTFs actually lie in a small subspace of the
The image irradianc®; (p, t) is proportional to the scene radi- ~ dimensional space (Please see Appendix | for proof).
anceL;(p, t) [4], and is given as: Theorem 1 The subspace of brightness transfer functidhs
has dimension at most: if for all a,z € R, gj(ax) =
Ei(p,t) = Li(p, 1)Yi(t) = M(p)Gi(t)Yi(t), @) ™ ru(a)su(z), whereg; is the radiometric response function
5 5 of cameraC};, and for all u,1 <« < m, r, ands,, are arbitrary,

whereY;(t) = <ZE?)> cos*ai(p,t) = % (222) ¢, isa but fixed 1D functions.
function of camera parameters at time; (¢) andd; (¢) are the fo- From Theorem 1, we see that the upper bound on the dimen-
cal length and diameter (aperture) of lens respectivelypafigl ¢) sion of subspace depends on the radiometric response function of
is the angle that the principal ray from pojnmakes with the op- cameraC;. Though the radiometric response functions are usu-
tical axis. The fall off in sensitivity due to the termos* o (p, t) ally nonlinear and differ from one camera to another, they do not



Model M G
Lambertian ) L coso;
Generalized Lambertian p | L cos; |1 — Ugf{)’;g + U%'}r%‘fgg cos (¢; — ¢, ) sin atan 8

Table 1. Commonly used BRDF models that satisfy Equation 1. The subsdrigtslr denote the incident and the reflected
directions measured with respect to surface nornfals the source intensity, is the albedog is the surface roughness, =

max (05, 6,) and 3 = min (6;,6,.). Note that for generalized Lambertian model to satisfy Equation 1, we must assume that the
surface roughnessis constant over the plane.

have exotic forms and are well-approximated by simple paramet-
ric models. Many authors have approximated the radiometric re-
sponse function of a camera by a gamma function [2, 11], i.e.,
g(z) = Az + p. Then, for alla, z € R,

o
W

o
oW

=
4

glaz) = Maz)" +p = da'z" +p = ri(a)s1(z) +r2(a)s2(),

e
™

where,r1(a) = a7, si(x) = Ax7, r2(a) = 1, andsz(z) = p.
Hence, by Theorem 1, if the radiometric response function of cam-
eraC; is a gamma function, then the SBTFE; has dimensions at
most 2. As compared to gamma functions, polynomials are a more 0aldd
general approximation of the radiometric response function. Once
again, for a degreg polynomialg(z) = >-2_ A,z and for any
a,z € R, we can writeg(az) = >.7_ ru(a)s.(x) by putting 0 01 02 03 04 05 05 07 06 09
ru(a) = a* ands,(z) = Az, foral 0 < u < g. Thus, the tmage Iaviance x Bxposure Time (59
dimension of the SBTH';; is bounded by one plus the degree of
the polynomial that approximates. It is shown in [3] that most Figure 1. Response Curves assigned to each synthetic
of the real world response functions are sufficiently well approxi- camera.
mated by polynomials of degrees less than or equal to 10.
To show empirically that the assertions made in this subsec-
tion remain valid for real world radiometric response functions, . . . . .
) . : in pose. Thus, we employ normalized histograms of object bright-
we consider 10 synthetic camer@s, 1 < u < 10 and assign . .
. . . ness values for the BTF computation. Such histograms are rela-
each camera a radiometric response function of some real world

. . - tively robust to changes in object pose [15]. In order to compute
camera/film (These response functions are shown in Figure 1). For, : .
. . . the BTF, we assume that the percentage of image points on the ob-
each synthetic camel@;, we generate a collection of brightness

transfer functions, front; to C;, by varyingw in the equation 5 served objecD; Wlth brlghtngss Igss than or equaIB%a!s qual to
L ) : . the percentage of image points in the observa@igrwith bright-
and perform the principal component analysis on this collection.

The plot of percentage of total variance over the number of com- gg(s)s t':;i thgrogsrbi?uirfgjl-\la'\lgtre[;? ?;’Oitzi:';aé_?gagggzevgz?m_
ponents is shown in Figure 2. It can be seen from the results that P y 9 Y

; L . .- ages taken from the same camera of the same view but in different
in most of the cases, 4 or less principal components capture signif-, A " . .
. . =~ _.dllumination conditions. Now, ifH; and H; are the normalized
icant percentage of the variance of the subspace and hence, JUStIf}é - . . J.

umulative histograms of object observatiansand O; respec-

the theoretical analysis. . _ N — HL(f (R,
In the next section, we will give a method for estimating the E\gg’ thenHi(Bi) = H;(B;) = Hy(fi;(B:)). Therefore, we

BTFs and their subspace from training data in a multi-camera
tracking scenario.

—— Agfa Color Futura 100 Red
—— Agfa color HDC 100 plus Green
Agfacalor Ultra 050 plus Green
Agfachrome RSX2 050 Blue

Kodak Ektachrome-100 plus Green
Gamma Curve, w=0.4

Cannon Cptura

Sony DXC-950

Fuji F400 Green

Kodak Max Zoorn 800 Green

MNormalized Brightness
o
in

Fig(Bi) = Hy " (Hi(By), (6)
whereH ~! is the inverted cumulative histogram.
. . . . We use Equation 6 to estimate the brightness transfer function
4  Estimation of inter-camera BTFs and their f;; for every pair of observations in the training set. L&t be

subspace the collection of all the brightness transfer functions obtained in
this manner, i.e {fs;), , )5, - - - » £ij)n } - TO larn the subspace
Consider a pair of camera andC;. Corresponding observa- of this _collection we use the_ probabi_listic Principal Component

tions of an object across this camera pair can be used to computé*Nalysis PPCA [16]. According to this model,d&adimensional
an inter-camera BTF. One way to determine this BTF is to esti- B 1 fij, can be written as:
mate the pixel to pixel correspondence between the object views _
in the two cameras (see Equation 5). However, finding pixel to fiy =Wy + £ +e @)
pixel correspondences from views of the same object in two dif- Herey is a normally distributed, dimensional latent (subspace)
ferent cameras is not possible due to self-occlusion and differencevariable,q < d, W is ad x ¢ dimensional projection matrix that



= appearance constraints can be employed along with inter-camera

spatiotemporal models to establish correspondence.
) 5 Formulation of the Multi-Camera Track-
ing Problem
§ ff‘f Suppose that we have a systemrodamera<’, Co, ..., C,
"o ~— Aga Color i 100 ed with non-overlapping views. Further, assume that thererare
/ —— Agfa color HDC 100 plus Green . . . H 1
/  sfecolor it 050 lus Green objects in the environment (the number of the objects is not as-
oof — GammaCuneyos sumed to be known). Each of these objects are viewed from
:gg;v;;ucgfgen different cameras at different time instants. Assume that the
o8 + T e T S task of single camera tracking is already solved, andgt=
e compenes {0;1,0;2,...,0;m, } be the set ofn; observations that were
. . observed by the camer@;. Each of these observations; , is a
Figure 2. PIOt‘?’ O.f the percentage of tot_al variance ac- track of some object from its entry to its exit in the field of view of
counted bym principal components (x-axis) of the sub- ) .
. . . cameraC;, and is based on two features, appearance of the object
space of brightness transfer functions from synthetic cam- d ime f f the obi |
eraC; to cameraC;. The plot confirms that a very hight Qj‘“(app) an .space—tlme eatures of the O.Jél‘?t’“(St) (OC".’l' .
! v . i i tion, velocity, time etc.). The problem of multi-camera tracking is
percentage of total variance is accounted by first 3 or 4 prin- ' . . .
: to find which of the observations in the system of cameras belong
cipal components of the subspace. .
to the same object.

For a formal definition of the above problem, we let a corre-
spondencésg’jf define the hypothesis that the observatichs,

relates the subspace variables to the observed BT, the mean andO.,q are observations of the same object in the environment,
with the observatiorO,, ;, preceding the observatiof. 4. The

of the collection of BTFs, and is isotropic Gaussian noise, i.e., 7 ) ’
¢ ~ N(0,02I). Given thaty ande are normally distributed, the problem of multi-camera tracking is to find a set of correspon-
dencesk = {k:,j’j} such thatc,'{ € K if and only if O, , and

distribution of f;; is given as
_ O.,q correspond to successive observations of the same object in
fi ~ N(fi5,2), (®) the environment. LeE be the solution space of the multi-camera

whereZ = WW7 + 521, Now, as suggested in [16], the projection tracking problem. We assume that_each observation of an objectis
preceded or succeeded by a maximum of one observation (of the

matri i im . : . :
atrix Wis estimated as same object). We define the solution of the multi-camera track-
W = U, (E, — 02l)1/2R7 ) ing pro_blem to be a hy_po_thesis’ in the so.Iutlc_)n spac.;E that
maximizes the a posteriori probability, and is given by:
where theg column vectors in thel x ¢ dimensionalJ, are the
eigenvectors of the sample covariance matrik 9f E, is theg x ¢ ;o _ _ b
diagonal matrix of corresponding eigenvalues. . ., \,, andR K= arg e H P (Ol’“(app)’ Oj‘b(app”ki*“)

is an arbitrary orthogonal rotation matrix and can be set to an iden- kb eK

tity matrix. The value ot2, which is the variance of the informa- )

tion ‘lost’ in the projection, is calculated as p <Oi,a(5t)7 Oj,b(St)|kZ:2> P (Ci, Cy) ) : (11)

2 1 Z Ay (10) If the space-time and appearance probability density func-
tions are known then the posterior can be maximized us-

ing a graph theoretic approach. The details of the formu-

Once the values o5 and W are known, we can compute the lation and the maximization scheme are given in our pre-

probability of a particular BTF belonging to the learned subspace vious work [7]. We now discuss the choice of appear-

of BTFs by using the distribution in Equation 8. ance and space-time pdfs, i.é?.(Oi,a(st), Oj,b(st)lkf’s) and

Note that till now we have been dealing with only the bright- ’

ness values of images and computing the brightness transfer func’ <0i,a(app)7 0, v(app)|kl7).

tions. To deal with color images we treat each channel, Re., Note that, the training phase provides us the subspace of color

G and B separately. The transfer function for each color channel transfer functions between the cameras, which models how colors

(color transfer function) is computed exactly as discussed above.of an object can change across the cameras. During the test phase,

The subspace parametéksando? are also computed separately  if the mapping between the colors of two observations is well ex-

for each color channel. Also note that we do not assume the plained by the learned subspace then it is likely that these obser-

knowledge of any camera parameters and response functions fowations are generated by the same object. Specifically, for two

the computation of these transfer functions and their subspace. observationsD; , and O;,, with color transfer functions (whose

In the next section, we present a formulation of the multi- distribution is given by Equation Sfffj andffj,we define the
camera tracking problem, and discuss how the subspace basegrobability of the observations belonging to same object as



each of these cases are analyzed by using the above defined track-
- ing evaluation measure. The results are summarized in Figures
Pi,;(Oi,a(app), Ojp(app)|ki,) = 8(a) and 8(b) and are explained below for each of the experimen-
-1 (%h _7) T (zehy-1 (fj;_@) tal setup.

1CAM 2 E,D

| A

[eneqrc.my W

whereZ = WW™ + 2. Thech superscript denotes the color

channel for which the value d andf;; were calculated. For [_7 = N p\ |

each color channel, the valueswfando? are computed from the CAN o 2 DCAM\ ’ L omas
training data using Equation 9 and Equation 10 respectively.

The Parzen window technique is used to estimate the space- (a) (b) (©)
time pdfs between each pair of cameras. Suppose we have a sam-
ple S consisting ofn, d dimensional, data points;, Xz, ..., Xn Figure 3. (a)Two camera configuration for the first
from a multi-variate distributiop(x) , then an estimatg(x) of experiment. The green region is the area covered by
the density ak can be calculated using grass.(b)Camera setup for sequence 2. All cameras were
n mounted outdoors. (c) Camera setup for sequence 3. Itis
p(x) = E‘Hr% Z /s(H’%(x — X)), (12) an Indoor/Outdoor SequenceCamera 3 is placed indoor
n i=1 while Cameras 1 and 2 are outdoor.

where thed variate kernek(x) is a bounded function satisfying

J k(x)dx = 1, andH is the symmetriel x d bandwidth matrix. ] ) )

The position/time feature vectar, used for learning the space- The first experiment was conducted with two cameras, Camera
time pdf's from camerd; to C;, i.e., P(O; a(st), O;.4(st) k), 1and Camera 2, in an outdoor setting. The camera_topology is

is a vector, consisting of the exit location and entry locations in Shown in Figure 3(a). The scene viewed by Camera 1 is a covered
cameras, exit velocities, and the time interval between exit and en-aréa under shade, whereas Camera 2 views an open area illumi-
try events. Each time, a correspondence is made during the train/1ated by the sunlight (please see Figure 5). It can be seen from
ing phase, the observed feature is added to the safpreorder the figure that there is a significant difference between the global

to reduce the complexityH is assumed to be a diagonal matrix, illumination of the two scenes, and matching the appearances is
i.e.H = diag[h? h3,... h2). considerably difficult without accurate modeling of the changes in

appearance across the cameras. The training for the first camera

setup was performed by using a five minute sequence. In Figure 4
6 Results the transfer functions obtained from the first five correspondences

from Camera 1 to Camera 2 are shown. Note that lower color

In this section, we present the results of the proposed method invalues from Camera 1 are being mapped to higher color values
three different multi-camera scenarios. The scenarios differ from in Camera 2 indicating that the same object is appearing much
each other both in terms of camera topologies and scene illumi-brighter in Camera 2 as compared to Camera 1. The test phase
nation conditions, and include both indoor and outdoor settings. consisted of a twelve minute long sequence. In this phase, a to-
Each experiment consists of a training phase and a testing phasdal of 68 tracks were recorded in the individual cameras and the
In both phases, the single camera object detection and tracking in-algorithm detected 32 transitions across the cameras. Tracking ac-
formation is obtained by using the method proposed in [6]. In the curacy for the test phase is shown in Figure 8(a).
training phase, the correspondences are assumed to be known and Our second experimental setup consists of three cameras, as
this information is used to compute the density of the space-time shown in Figure 3(a). Testing was carried out on a fifteen minute
features (entry and exit locations, exit velocity and inter-camera sequence. A total of 71 tracks in individual cameras were obtained
time interval) and the subspaces of transfer functions for eachand the algorithm detected 45 transitions within the cameras. All
color channel (red, blue, and green). In the testing phase, thesghe correspondences were established correctly when both space-
correspondences are computed using the proposed multi-camertime and appearance models were used (see Figure 8).
correspondence algorithm. The performance of the algorithm is  In the third experiment, three cameras were used for an in-
analyzed by comparing the resulting tracks to the ground truth. We door/outdoor setup Figure 3. Camera 1 was placed indoor while
say that an object in the scene is trackedrectlyif it is assigned the other two cameras were placed outdoor. Training was done
a single unique label for the complete duration of its presence in on an eight minute sequence in the presence of multiple persons.
the area of interest. Theacking accuracyis defined as the ratio  Testing was carried out on a fifteen minute sequence. Figure 6
of the number of objects tracked correctly to the total number of shows some tracking instances for the test sequence. It is clear
objects that passed through the scene. from Figure 8(a) that both the appearance and space-time models
In order to demonstrate the superiority of the subspace basedare important sources of information as the tracking results im-

method, this approach is compared to direct color matching for prove significantly when both the models are used jointly.
establishing correspondence. Moreover to demonstrate that the In Table 2, we show the number of principal components (for
appearance matching supplements the spatio-temporal constraintsach pair of cameras in all three sequences) that accoup®¥6r
for tracking we also show results for i) only space-time model, of the total variance in the inter-camera brightness transfer func-
i) only appearance model, and iii) both models. The results of tions that were computed during the training phase. Note that even
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Figure 4. The transfer functions for the Red color channel
from Camera 1 to Camera 2, obtained from the first five cor-
respondences from the training data (sequence 1). Note that
mostly lower color values from Camera 1 are being mapped
to higher color values in Camera 2 indicating that the same
object is appearing much brighter in Camera 2 as compared
to Camera 1 (as shown in Figure 3(a)).

Seq. #| Camera Paill # of PCs| # of PCs| # of PCs
(Red) | (Green) | (Blue)
1 1-2 6 5 5
2 1-2 7 7 7
2 2-3 7 7 6
3 1-3 7 6 7
3 2-3 7 7 7

Table 2. The number of Principal Components (PCs) that
account for 99% of the variance in the BTFs. Note that
for all camera pairs a maximum of 7 principal components
were sufficient to account for the subspace of the BTFs.

though the experimental setup does not follow the assumptions of
Section3, such as diffuse reflectance or planar objects, the small
number of principal components indicates that the inter-camera
BTFs lie in a low dimension subspace even in more general con-
ditions.

In order to demonstrate the superiority of the subspace
based method we compare it with the direct use of colors
for tracking. For direct color base matching, instead of us-
ing Equation 12 for the computation of appearance probabili-
ties Pi j(Oi.a(app), O (app)|k]2), we define it in terms of the

Bhattacharraya distance between the normalized histograms of the

observation®); , andO, s, i.e.,

Pi,j (Oi,a(app)a Oy,b(appﬂkffs) = Ve_WD(hi,hj)v (13)

whereh; andh; are the normalized histograms of the observations
0;,, andO;;, and D is the modified Bhattacharraya distance [1]

3 | =

(@) Cam1 (b) Cam 2
Figure 5. Frames from sequence 1. Note that multiple
persons are simultaneously exiting from camera 2 and en-
tering at irregular intervals in camera 1. The first camera is
overlooking a covered area while the second camera view
is under direct sun light, therefore the observed color of ob-
jects is fairly different in the two views (also see Figure 7).
Correct labels are assigned in this case due to accurate color
modeling.

(b) Cam

(a) Cam 3

Figure 6. Frames from Sequence 3 test phase. A person
is assigned a unique label as it moves through the camera

views.

Once again, the tracking accuracy was computed for all three
multi-camera scenarios using the color histogram based model
(Equation 13). The comparison of the proposed appearance mod-
eling approach with the direct color based appearance matching
is presented in Figure 8(b), and clearly shows that the subspace
based appearance model performs significantly better.
For further comparison of the two methods, we consider

two observationsO, and Oy, in the testing phase, with his-

between two histograms. The coefficient ranges between zero andograms H(O,) and H(Os) respectively. We first compute a

one and is a metric.

BTF, f, between the two observations and reconstruct the BTF,



Sequence # Average BTF
Reconstruction Erro

(Correct Matches)

Average BTF
Reconstruction Errot
(Incorrect Matches)

1 .0003 .0016
2 .0002 .0018
3 .0005 .0011

Table 3. The average normalized reconstruction errors for
BTFs between observations of the same object and also be-
tween observation of different objects.

f*, from the subspace estimated from the training data,fi.es
WW7 (f —f) + f. HereW is the projection matrix obtained in

the training phase. The first observation is then transformed
using f*, and the histogram of the obje€, is matched with

the histograms of botl®, andf*(O,) by using the Bhattachar-
raya distance. When both the observatiGhsand O, belong to

the same object, the transformed histogram gives a much better
match as compared to direct histogram matching, as shown in Fig-
ure 7 (more results are available in the supplemental file). How-
ever, if the observation®, and O, belong to different objects
then the BTF is reconstructed poorly, (since it does not lie in the
subspace of valid BTFs), and the Bhattacharraya distance for the
transformed observation either increases or does not change sig-
nificantly. The aggregate results for the reconstruction effer,
Reconstruction Erroff — f*||/7, wherer is a normalizing con-
stant, for the BTFs between the same object and also between dif-
ferent objects are given in Table 3. The above discussion suggests
the applicability of the BTF subspace for the improvement of any
multi-camera appearance matching scheme that uses color as one
of its components.

7. Conclusions
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Figure 8. (a) Tracking Results. Tracking accuracy for
each of the three sequences computed for three different
cases. 1. by using only space-time model, 2. by using only
appearance model, and 3. both models. The results improve
greatly when both the space-time and appearance models
are employed for establishing correspondence.(b) Tracking
accuracy: comparison of the BTF subspace based tracking
method to simple color matching. A much improved match-
ing is achieved in the transformed color space relative to
direct color comparison of objects. The improvement is
greater in the first sequence due to the large difference in
the scene illumination in the two camera views.

Appendix |

In this paper, we showed that given some assumptions, all
brightness transfer functions from a given camera to another cam
era lie in a low dimensional subspace. We also demonstrated em
pirically that even for real scenarios this subspace is low dimen-
sional. The knowledge of camera parameters like focal length,
aperture etc was not required for computation of the subspace of®

all

BTFs. The proposed system learned this subspace by using prob-
abilistic principal component analysis on the BTFs obtained from
the training data and used it for the appearance matching. The ap-
pearance matching scheme was combined with space-time cues in
a Bayesian framework for tracking. We have presented results on

Proof:Theorem 1 Let g; andg; be the radiometric response

functions of camera&’; andC); respectively. Also assume that for

a,r € R, gj(ax) =>."

u=1

ru(a)s.(x), wherer, ands, are

some arbitrary (but fixed) 1D function$, < v < m. Let f;; be
brightness transfer function from camérato cameraC}, then
according to Equation 5;; is given as:

fij

i (wg; ' (By))
l97 (wg; " (Bi(1))) ... gj (wg; " (Bi(n)))]"

Sincegj(ax) = Y. | ru(a)su(x), we may writef;; as fol-

realistic scenarios to show the validity of the proposed approach. |ows:

Acknowledgements fis

This material is based upon work funded in part by the U. S.
Government. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the U.S. Government.

resented as a linear combination f vectors, s., (g;

= > ruw) [sulgr (Bi(1)) - su (977 (Bu(m))]”
= > raw)s. (gt (B))

Thus, each brightness transfer functifp € I';; can be rep-

(Bi))1
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Figure 7. (a) Observation®, and O, of the same object from camera 1 and camera 2 respectively from camera setup 1. (b)
Histogram of observatio®, (All histograms are of the Red color channel). (¢) Histogram of observaionThe Bhattacharraya

distance between the two histograms of the same object is 0.537. (d) The Histogéanatier undergoing color transformation

using the BTF reconstruction from the learned subspace. Note that after the transformation the histdgrdm.0f) looks fairly

similar to the histogram ab,. The Bhattacharraya distance reduces to 0.212 after the transformation. (e) Observation from camera

1 matched to an observation from a different object in camera 2. (f,g) Histograms of the observations. The distance between
histograms of two different objects is 0.278 . Note that this is less than the distance between histograms of the same object. (h)
Histogram after transforming the colors using the BTF reconstructed from the subspace. The Bhattacharraya distance increases to
0.301. Simple color matching gives a better match for the wrong correspondence. However, in the transformed space the correct
correspondence gives the least bhattacharraya distance.
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