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� � ðlog log nÞ2

1000 log n ðlog log log nÞ d

and n is large enough, then G is Hamiltonian. We also show how our main
result can be used to prove that for every c> 0 and large enough n a Cayley
graph X (G,S ), formed by choosing a set S of c log5 n random generators in a
group G of order n, is almost surely Hamiltonian. � 2002 Wiley Periodicals, Inc. J Graph

Theory 42: 17–33, 2003
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1. INTRODUCTION

A Hamilton cycle in a graph is a cycle passing through all the vertices of this
graph. A graph is called Hamiltonian if it has at least one Hamilton cycle. The
notion of Hamilton cycles is one of the most central in modern Graph Theory, and
many efforts have been devoted to obtain sufficient conditions for Hamiltonicity.
One of the oldest such results is the celebrated theorem of Dirac [13], who showed
that if the minimal degree of graph G on n vertices is at least n=2, then G contains
a Hamilton cycle. This result is only one example of a vast majority of known
sufficient conditions for Hamiltonicity that mainly deal with graphs which are
fairly dense. On the other hand, it appears that not too much is known about
Hamilton cycles in relatively sparse graphs. Here we would like to propose one
such sufficient condition that works also in the sparse case. Our condition is not
based on degree or density conditions, rather it has to do with what is usually
called pseudo-randomness.

Pseudo-random graphs can be informally described as graphs whose edge
distribution resembles closely that of a truly random graph Gðn; pÞ of the same
edge density. Pseudo-random graphs have been a subject of intensive study during
the last two decades (see, e.g., [27], [28], [9], [26], [2], [22]).

In this article, we restrict our attention to pseudo-random regular graphs. This
will enable us to use the powerful and well developed machinery of Spectral
Graph Theory (see [8]) to connect between the eigenvalues of a graph and its edge
distribution. Some definitions are in place here. Let G ¼ ðV ;EÞ be a graph with
vertex set V ¼ f1; . . . ; ng. The adjacency matrix A¼AðGÞ is an n-by-n 0; 1-
matrix whose entry Aij is 1 whenever ði; jÞ 2 EðGÞ, and is 0 otherwise. As A is
a real symmetric matrix, all its eigenvalues are real. We thus denote the
eigenvalues of A, usually also called the eigenvalues of the graph G itself, by
�1 � �2 � � � � � �n. In case G is a d-regular graph, it follows from the Perron-
Frobenius Theorem that �1 ¼ d and j�ij � d for all 2 � i � n. Let now
� ¼ �ðGÞ ¼ maxfj�iðGÞj : i ¼ 2; 3; . . . ; ng. The parameter � is usually called
the second eigenvalue of G.

It is well known that the larger the so called spectral gap (i.e., difference
between d and �) is, the more closely the edge distribution of G approaches that
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of a random graph Gðn; d=nÞ. We will cite relevant quantitative results later, for
now we just state that the value of � will serve us as the measure of pseudo-
randomness.

The subject of this study is to show that under certain conditions pseudo-
randomness ensures the existence of a Hamilton cycle. The connection between
pseudo-randomness and Hamiltonicity has been already explored in several
articles ([27], [15], [16]). Note that if the vertex degree d ¼ dðnÞ satisfies d ¼ na,
where a is a constant close to 1, then already a very weak condition on the second
eigenvalue � guarantees Hamiltonicity. This follows immediately from the well
known theorem of Chvátal and Erdős [11]. They proved that if the connectivity of
graph G is at least as large as the size of maximal independent set, then G

contains a Hamilton cycle. The independence number of a d-regular graph G on
n vertices with the second eigenvalue � can be bounded from above by �n=d
(see Theorem 2.1 below), and the connectivity is dð1 � oð1ÞÞ if � � d. Plugging
these two estimates into the Chvátal-Erdős theorem, one immediately gets a
sufficient condition for Hamiltonicity. This approach has been used by Thomason
in [27], and recently the authors together with Vu and Wormald [23] applied it to
show that almost surely random regular graphs of high degree contain a Hamilton
cycle.

Here we state and prove a sufficient condition for a Hamilton cycle in a pseudo-
random regular graph G, which does not require its degree d to be a power of
jVðGÞj. Specifically, we prove the following theorem.

Theorem 1.1. Let G ¼ ðV;EÞ be a d-regular graph on n vertices and with

second largest by absolute value eigenvalue �. If n is large enough and

� � ðlog log nÞ2

1000 log nðlog log log nÞ d ;

then G is Hamiltonian.

It is known1 that �ðGÞ ¼ �ð
ffiffiffi
d

p
Þ for d � n=2. Therefore, for pseudo-random

graphs with the best possible order of magnitude of � ¼ �ðd; nÞ, our result starts
working already when the degree d is only polylogarithmic in n, i.e., for quite
sparse pseudo-random graphs.

It should be stressed that the definition of pseudo-random graphs used in this
study is rather restrictive and applies only to regular graphs. It seems plausible,
however, that our techniques can be used to prove Hamiltonicity of almost regular
graphs (i.e., graphs in which all degrees are very close to an average degree d)

1It is easy to see that if d � n=2, then �ðGÞ ¼ �ð
ffiffiffi
d

p
Þ. Indeed, let A be the adjacency matrix of G, then the

the trace of A2 satisfies

nd ¼ 2jEðGÞj ¼ trðA2Þ ¼
X
i

�2
i � d2 þ ðn� 1Þ�2ðGÞ � dn=2 þ ðn� 1Þ�2ðGÞ:

Therefore, �2ðGÞ � d=2 and �ðGÞ ¼ �ð
ffiffiffi
d

p
Þ.
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with a large enough eigenvalue gap. Proving Hamiltonicity in other models of
sparse pseudo-random graphs, for example in the so called jumbled graphs in-
troduced by Thomason in [27], appears to be an interesting and challenging task.

The rest of this article is organized as follows. In the next section we
summarize some useful quantitative results on the edge distribution of pseudo-
random regular graphs, which we use later in the proof. In Section 3, we present
the proof of our main theorem. In Section 4, we indicate how our main result can
be used to prove that for every c > 0 a Cayley graph XðG; SÞ, formed by choosing
a set S of c log5n random generators in a group G of order n, is almost surely
Hamiltonian. The last section of the article is devoted to concluding remarks and
discussion of relevant open problems.

We close this section with some conventions and notation. A graph G is called
ðn; d; �Þ-graph if it is d-regular, has n vertices and the second eigenvalue of G

equals to �. For a subset of vertices U � VðGÞ we denote by NðUÞ the set of all
vertices in V � U adjacent to some vertex in U. We also denote by eðUÞ the
number of edges spanned by U. If log has no suffix, it denotes the natural logari-
thm. Throughout the article, we omit occasionally the floor and ceilings signs for
the sake of convenience. We will also make no serious attempt to optimize our
absolute constants.

2. PROPERTIES OF PSEUDO-RANDOM GRAPHS

In this section we gather quantitative results on the edge distribution in pseudo-
random regular graphs, to be used later in the proof. Essentially all of them are
easy corollaries of the following well-known result whose proof can be found,
inter alia, in Chapter 9 of a monograph of Alon and Spencer [4].

Theorem 2.1. Let G ¼ ðV ;EÞ be an ðn; d; �Þ-graph. Then:

� For every two subsets B;C � V the number of edges of G with one endpoint

in B and the other in C satisfies:

eðB;CÞ � jBjjCjd
n

����
���� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jBjjCj

�
1 � jBj

n

�r
; ð1Þ

� For every subset B � V ,

eðBÞ � jBj2d
2n

�����
����� <

�jBj
2

: ð2Þ

In the propositions below we will assume that G ¼ ðV;EÞ is an ðn; d; �Þ-graph
with � < d=2.
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Proposition 2.1. Every subset V0 � V of cardinality jV0j � �n
d
spans at most

�jV0j edges.

Proof. By (2),

eðV0Þ �
jV0j2d

2n
þ �jV0j

2
� �n

d

djV0j
2n

þ �jV0j
2

¼ �jV0j
2

þ �jV0j
2

¼ �jV0j:

Proposition 2.2. For every subset V0 � V of cardinality jV0j � �2n
d2 ,

jNðV0Þj >
ðd � 2�Þ2

3�2
jV0j:

Proof. Denote NðV0Þ ¼ U. Then by Proposition 2.1, eðV0Þ � �jV0j. As the
degree of every vertex in V0 is d, we obtain:

eðV0;UÞ � djV0j � 2eðV0Þ � djV0j � 2�jV0j:

On the other hand, it follows from (1) that

eðV0;UÞ < jV0jjUjd
n

þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0jjUj

p
:

The above inequalities imply:

jV0jjUjd
n

þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0jjUj

p
> ðd � 2�ÞjV0j: ð3Þ

If jUj � ðd� 2�Þ2

3�2 jV0j, then

jV0jjUjd
n

þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0jjUj

p
� jV0j2ðd � 2�Þ2

d

3�2n
þ �jV0jðd � 2�Þffiffiffi

3
p

�

� �2n

d2
� ðd � 2�Þ2

djV0j
3�2n

þ ðd � 2�ÞjV0jffiffiffi
3

p

¼ ðd � 2�Þ2jV0j
3d

þ ðd � 2�ÞjV0jffiffiffi
3

p

<
ðd � 2�ÞjV0j

3
þ ðd � 2�ÞjV0jffiffiffi

3
p < ðd � 2�ÞjV0j

— a contradiction to (3).
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Proposition 2.3. For every subset V0 � V of cardinality jV0j > �2n
d2 ; jNðV0Þj >

n
2
� jV0j.

Proof. Set U ¼ VnðV0 [ NðV0ÞÞ. Then, clearly eðV0;UÞ ¼ 0. On the other

hand, by (1), eðV0;UÞ � jV0jjUjd
n

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0jjUjð1 � jUj

n
Þ

q
. Therefore,

jV0jjUjd
n

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV0jjUjð1 � jUj

n
Þ

q
, implying:

jUj
1 � jUj

n

� � � �2n2

d2jV0j
< n ;

and thus jUj < n=2. Hence jNðV0Þj ¼ jVj � jV0j � jUj > n=2 � jV0j.

Proposition 2.4. If disjoint subsets U1;U2 � VðGÞ are not connected by an

edge in G, then jU1j jU2j < �2n2=d2.

Proof. By (1), 0 ¼ eðU1;U2Þ > jU1jjU2jd=n� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jU1jjU2j

p
. Therefore,

jU1jjU2jd=n < �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jU1jjU2j

p
, and the claim follows.

Proposition 2.5. G is connected.

Proof. If G is disconnected, then G has a connected component V0 of size
jV0j � n=2. As NðV0Þ ¼ ;, it follows from Proposition 2.3 that jV0j � �2n=d2.

This contradicts Proposition 2.2 as jNðV0Þj � ðd� 2�Þ2jV0j
3�2 > 0.

3. PROOF OF THE MAIN THEOREM

We first show that a longest path in an ðn; d; �Þ-graph G, satisfying the conditions
of Theorem 1, has a length linear in n. Then we show that some path of a maximal
length in G can be closed to a cycle, which easily implies the Hamiltonicity of G
due to its connectivity, provided by Proposition 2.5. Our approach relies on the so
called rotation-extension technique, invented by Posa in [25] and applied in seve-
ral subsequent articles on Hamiltonicity of random graphs [21], [6], [16]. Our
notation and proof methodology are quite similar to those of [16].

A. Constructing an Initial Long Path

Let P0 ¼ ðv1; v2; . . . ; vlÞ be a longest path in G. If 1 � i < l and ðvi; vlÞ 2 EðGÞ,
then the path P0 ¼ ðv1; v2; . . . ; vi; vl; vl�1; . . . ; viþ1Þ is also of maximal length. We
say that P0 is a rotation of P with fixed endpoint v1, pivot vi and broken edge
ðvi; viþ1Þ (the reason for the last term being the fact that ðvi; viþ1Þ is deleted from
the edge set of P to get P0). We can then rotate P0 in a similar fashion to get a new
path P00 of the same length, and so on.
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For t � 0, let St ¼ fv 2 VðP0Þnfv1g: v is the endpoint of a path obtainable
from P0 by at most t rotations with fixed endpoint v1, and all broken edges in P0g.
Obviously, the sequence of sets fSt : t � 0g forms a family of nested sets, as
St � Stþ1 for all t � 0. Notice that due to the maximality of P0 all edges incident
to a vertex from St for some t � 0, have their second endpoint inside P0.

Proposition 3.1. For all t � 0,

jStþ1j �
1

2
jNðStÞj �

3

2
jStj:

Proof. Let

T ¼ fi � 2 : vi 2 NðStÞ; vi�1; vi; viþ1 62 Stg:

Obviously, jT j � jNðStÞj � 3jStj. Consider a vertex vi 2 VðP0Þ with i 2 T .
Then, vi has a neighbor x 2 St. This means that there exists a path Q with x as an
endpoint, obtainable from P0 by at most t rotations. Observe that if during the
repeated rotation process an edge from P0 gets deleted, then one of its vertices
should be an endpoint of some rotation of P0. As vi�1; vi; viþ1 62 St, both edges
ðvi�1; viÞ and ðvi; viþ1Þ are still present in Q. Rotating Q with a pivot vi and one of
the edges ðvi�1; viÞ, ðvi; viþ1Þ as a broken edge (which of these two edges is
chosen depends on their order along Q) will put one of vi�1; viþ1 in Stþ1. Suppose
for example it is vi�1. The only other vertex which can cause vi�1 to be put into
Stþ1 is vi�2. Therefore,

jStþ1j �
1

2
jT j � 1

2
jNðStÞj �

3

2
jStj: &

Let

t0 ¼ log n� 2 logðd=�Þ
2 log ðd=�Þ � 7

� �
þ 2;

� ¼ 2t0:

By Proposition 2.2, as long as jStj � �2n=d2 we get, jNðStÞj � ðd � 2�Þ2jStj=
ð3�2Þ and thus jStþ1j � ðd � 2�Þ2jStj=ð6�2Þ � 3

2
jStj. It can easily be proven by

induction that in this case jSjþ1j=jSjj � ðd � 2�Þ2=ð7�2Þ for all j � t. This implies
that after at most

log
�2n

d2

log
ðd � 2�Þ2

7�2

� t0 � 2
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steps we get jStj > �2n=d2. One additional step together with application of
Proposition 2.3 give us:

jStþ1j �
1

2
jNðStÞj �

3

2
jStj �

1

2

n

2
� jStj

� �
� 3

2
jStj

¼ n

4
� 2jStj �

n

4
� 2jStþ 1j:

Hence jStþ 1j � n
12

. This, by Proposition 2.4, implies in turn that jNðStþ 1Þj ¼
n� oðnÞ. Applying Proposition 2.3 once again, we obtain:

jStþ 2j �
1

2
jNðStþ 1Þj �

3

2
jStþ 1j �

1

2
ðn� oðnÞÞ � 3

2
jStþ 2j;

and therefore jStþ 2j � ð1 � oð1ÞÞn=5 > n=6.

Let Bðv1Þ ¼ St0 , A0 ¼ Bðv1Þ [ fv1g. For each v 2 Bðv1Þ we can use the above
argument to show the existence of a set BðvÞ, jBðvÞj � n=6, of endpoints of
maximum length paths with endpoint v. Note that each endpoint in BðvÞ was ob-
tained by at most t0 þ t0 ¼ 2t0 rotations. As clearly BðvÞ � VðP0Þ for each such
v, we get in particular that l � n=6, and thus P0 has a linear length.

To summarize, for each a 2 A0, b 2 BðaÞ there is a maximum length path
Pða; bÞ joining a and b and obtainable from P0 by at most � ¼ 2t0 rotations.

B. Closing a Maximal Path to a Hamilton Cycle

We consider the path P0 to be directed and divided into 2� disjoint segments
I1; . . . ; I2�, all of length at least bjVðP0Þjð2�Þc � bn=ð12�Þc. Notice that each path
Pða; bÞ as above is obtained from P0 by at most � rotations and therefore contains
at least � of the segments Ii untouched (but possibly traversed in the opposite
direction). We call each such segment unbroken in Pða; bÞ. These segments have
an absolute orientation induced by P0, and another, relative to this by Pða; bÞ
which we consider directed from a to b.

Let

k ¼ 2 max 1;
400��

d

� �� �
:

We consider sequences � ¼ Ii1 ; . . . ; Iik of k unbroken segments of P0 which occur
in this order in Pða; bÞ, where � specifies not only the order of segments in Pða; bÞ
but also their relative orientation. We say then that Pða; bÞ contains �. Note that
as Pða; bÞ has at least � unbroken segments Iij , Pða; bÞ contains at least �

k

	 

sequences �.

For a given � we denote by Lð�Þ the set of all pairs a 2 A0; b 2 BðaÞ, for which
the path Pða; bÞ contains �.
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The total number of possible sequences � is at most ð2�Þk2k. Therefore, by
averaging we obtain that there exists a sequence �0 for which

jLð�0Þj �
n2

64

�
k

	 

ð2�Þk2k

>
n2

64

�� k

2�� k

� �k
1

k!2k
:

It is easy to check that k � �=2. Then, ð�� kÞ=ð2�� kÞ � 1=3, and it follows
that there exists a sequence �0 for which jLð�0Þj � n2=ð64k!6kÞ. Fix such a
sequence.

Denote

� ¼ 1

64k!6k
:

Let Â ¼ fa 2 A0 : Lð�0Þ contains at least �n=2 pairs with a as the first elementg.
Then jÂj � �n=2. For each a 2 Â let B̂ðaÞ ¼ fb 2 BðaÞ : ða; bÞ 2 Lð�0Þg. The
definition of Â guarantees that jB̂ðaÞj � �n=2.

Let C1 be the union of the first k=2 segments of �0, in the fixed order and with
the fixed relative orientation in which they occur along any of the paths Pða; bÞ,
ða; bÞ 2 Lð�0Þ. Let C2 be the union of the last k=2 segments of �0. Notice that

jCij �
k

2

n

12�


 �
� 400��

d

n

12�


 �
>

32�n

d
: ð4Þ

Given a path P0 and a set S � VðP0Þ, a vertex v 2 S is called an interior point
of S with respect to P0 if both neighbors of v along P0 lie in S. The set of all
interior points of S will be denoted by intðSÞ.
Proposition 3.2. The set C1 contains a subset C0

1 with jintðC0
1Þj � nk=ð48�Þ so

that every vertex v 2 C0
1 has at least 14� neighbors in intðC0

1Þ.
Proof. We start with C0

1 ¼ C1 and as long as there exists a vertex vj 2 C0
1 for

which dintðC0
1
ÞðvjÞ < 14�, we delete vj and repeat. If this procedure continued

for r ¼ jC1j=7 steps then we get a subset R ¼ fv1; . . . ; vrg so that jintðC0
1Þj �

jintðC1Þj � 3r ¼ ð1 � oð1ÞÞjC1j � 3r > jC1j=2 and eðR; intðC0
1ÞÞ � 14�r ¼

14�jC1j=7. But according to (1) and (4),

eðR; intðC0
1ÞÞ �

jRjjintðC0
1Þjd

n
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRjjintðC0

1Þj
q

� jC1j
7

jC1j
2

d

n
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC1j

7

jC1j
2

r
¼ jC1j2d

14n
� �jC1jffiffiffiffiffi

14
p

� 32�n

d

jC1jd
14n

� �jC1jffiffiffiffiffi
14

p ¼ �jC1j
16

7
� 1ffiffiffiffiffi

14
p

� �

>
14�jC1j

7

— a contradiction. &
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Obviously, an analogous statement holds for C2 as well. We fix the obtained
sets C0

1 and C0
2.

Proposition 3.3. There is a vertex â 2 Â connected by an edge to intðC0
1Þ.

Proof. Recall that jÂj � �n=2 and jintðC0
1Þj � nk=ð48�Þ. Therefore, by

Proposition 2.4, the claim will follow if we will show that ð�nÞðnk=�Þ 	 �2n2=d2,
or (substituting the value of �) d2=ð�2�Þ 	 ðk � 1Þ!6k.

Consider first the case when 400��=d � 1. In this case,

k ¼ 2
ð1 þ oð1ÞÞ400��

d
¼ 800�

d

ð1 þ oð1Þ log n

log ðd=�Þ

� ð1 þ oð1ÞÞ800 log n
1000 log nðlog log log nÞ

ð log log nÞ2 � log log n

¼ ð1 þ oð1ÞÞ0:8 log log n

log log log n
;

and thus ðk � 1Þ!6k < ðlognÞ0:9
. On the other hand,

d2

�2�
� d2

�2

log ðd=�Þ
ð1 þ oð1ÞÞ log n

� log2n ðlog log log nÞ2

ðlog log nÞ4

log log n

ð1 þ oð1ÞÞlog n
>

ð1 þ oð1ÞÞ log n

ðlog log nÞ3

	 ðlog nÞ0:9;

as required.
In the second case, when 400��=d � 1, we get k ¼ 2, and then the expression

ðk � 1Þ!6k is an absolute constant, while d2=ð�2�Þ ¼ ðd=�Þðd=ð��ÞÞ � 400d=
� ! 1. The proposition follows. &

Repeating the same argument, mutatis mutandis, gives:

Proposition 3.4. There exists a vertex b̂ 2 B̂ðâÞ connected by an edge to intðC0
2Þ.

Let now x be a vertex separating C0
1 and C0

2 along Pðâ; b̂Þ. We consider two half
paths P1 and P2 obtained by splitting Pðâ; b̂Þ at x. Our idea is as follows: rotating
each Pi while keeping x as a fixed point and using vertices in intðC0

iÞ as pivots, we
wish to achieve the situation where the corresponding endpoint sets V1, V2 are
large enough. Then, Proposition 2.4 will show that there is an edge between V1

and V2. This edge closes a path of maximal length to a cycle. As G is connected
by Proposition 2.5, any non-Hamilton cycle can be extended to a path covering
some additional vertices. Therefore, the assumption about the maximality of P0

implies that P0 is a Hamilton path, and thus the above created cycle is Hamilton
as well.
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Consider P1. Let Ti ¼ fv 2 C0
1nfxg : v is the endpoint of a path obtainable from

P1 by i rotations with fixed endpoint x, all pivots in intðC0
1Þ and all broken edges

in P1g.

Proposition 3.5. There exists an i for which jTij � �n=d.

Proof. It is enough to prove that there exists a sequence of sets Ui � Ti such
that jUij ¼ 1 and jUiþ1j ¼ 2jUij, as long as jUij < �n=d. Note that according to
Proposition 3.4 â has a neighbor in intðC0

1Þ, and therefore T1 6¼ ;. Note also that if
we perform a rotation at a vertex from intðC0

1Þ and a broken edge in P1, then the
resulting endpoint is in C0

1.
Suppose we have found sets U1; . . . ;Ui as stated above, and still jUij < �n=d.

Similarly to the proof of Proposition 3.1 one has that

jTiþ1j �
1

2
jNðUiÞ \ intðC0

1Þj �
3

2

Xi

j¼ 1

jUjj:

As
Pi

j¼ 1 jUjj < 2jUij, the claim will follow if we will prove that jNðUiÞ\
intðC0

1Þj � 10jUij. Since Ui � C0
1, every vertex u 2 Ui has at least 14� neighbors

in intðC0
1Þ. Therefore, the number of edges with one endpoint in Ui and another

one in intðC0
1Þ is at least 14�jUij. Set Wi ¼ NðUiÞ \ intðC0

1Þ. If jWij < 10jUij,
then by (1) one has:

eðUi;WiÞ �
jUijjWijd

n
þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUijjWij

p
¼ 10jUij2d

n
þ

ffiffiffiffiffi
10

p
�jUij

<
�n

d

10jUijd
n

þ
ffiffiffiffiffi
10

p
�jUij < 14�jUij

— a contradiction. Therefore jWij � 10jUij, as required. &

Hence, the set V1 of endpoints of all rotations of P1 has cardinality jV1j ��n=d.
As by Proposition 3.5, b̂ has a neighbor in intðC0

2Þ, the same argument can be
carried out for P2 to show that the set V2 of endpoints of its rotations has at
least �n=d vertices as well. Then, by Proposition 2.4 there is an edge connecting
V1 and V2 and thus closing a Hamilton cycle. This completes the proof of
Theorem 1.1. &

4. ON HAMILTONICITY OF RANDOM CAYLEY GRAPHS

The (undirected) Cayley graph XðG; SÞ of a group G with respect to a set S of
elements in the group (generators) is a graph with vertex set G, whose edge set is
the set of all unordered pairs ffg; gsg : s 2 Sg. This is obviously a regular graph
of degree jS [ S�1j � 2jSj.
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The question of Hamiltonicity of Cayley graphs has drawn quite an amount of
attention of many researchers over the years. It is enough to mention that a survey
article by Curran and Gallian [12] on Hamiltonicity of Cayley graphs has eighty
nine references. Much of the focus of the research has been centered around the
following conjecture.

Conjecture 4.1. Every connected Cayley graph with more than 2 vertices is

Hamiltonian.

So far only special cases of the above conjecture have been proven, the most
important of them undoubtedly being the case when the group G is Abelian (see,
e.g., [24], Chapter 12, Problem 17 for a proof ).

Given the apparent difficulty in proving this conjecture, it is quite natural to
prove it for the case where the set of generators S is chosen at random according
to some probability distribution. A result of this type has been obtained by Meng
and Huang [20], who proved that almost all Cayley graphs of a group G are
Hamiltonian (the asymptotic parameter here is the order n ¼ jGj of the group G).
The proof proceeds by showing that almost all Cayley graphs of the group G

with n elements are two-connected and d-regular for d � n=3, and then by
invoking a result of Jackson [19], according to which the last two conditions are
sufficient to guarantee Hamiltonicity. As the last sentence indicates, a random set
S of generators almost surely has size linear in n, thus resulting in quite dense
graphs.

As it turns out, the main result of this article can be used to show that the
Cayley graph XðG; SÞ is almost surely Hamiltonian for a random set S of
generators of much smaller size. To do so, we first apply an approach of Alon and
Roichman [3] to bound the eigenvalue gap of such a graph, and then invoke our
Theorem 1.1 to prove Hamiltonicity. Here is a result and an outline of its proof.

Theorem 4.1. Let G be a group of order n. Then for every c > 0 and large

enough n a Cayley graph XðG; SÞ, formed by choosing a set S of c log5n random
generators in G, is almost surely Hamiltonian.

Proof. Let � be the second largest by absolute value eigenvalue of XðG; SÞ.
Note that the Cayley graph XðG; SÞ is d regular for d � c log5n. Therefore, to
prove Hamiltonicity of XðG; SÞ, by Theorem 1.1, it is enough to show that almost
surely �=d � Oðlog nÞ. We will briefly sketch how this can be done using an
approach of Alon and Roichman [3], referring an interested reader to their article
for more details.

It is enough to show that the expected value Eð�=dÞ is bounded by Oðlog�1nÞ.
Then one can finish the proof by considering an appropriate martingale, which
shows that � is concentrated around its expectation as it is done in [3]. Let A be
the adjacency matrix of XðG; SÞ and let B ¼ 1

d
A. Then, it is easy to see that for

every natural number m we have

� � ðTrðA2mÞ � d2mÞ1=2m:
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This, by Jensen’s inequality, implies:

E
	
�=d



� ðEðTrðB2mÞÞ � 1Þ1=2m:

Denote by P2m the probability of a walk of length 2m in our Cayley graph to
be closed. Since a Cayley graph is vertex transitive EðTrðB2mÞÞ ¼ nEðP2mÞ, and
hence:

E
	
�=d



� ðnEðP2mÞ � 1Þ1=2m: ð5Þ

Next we need the following lemma.

Lemma 4.1.

EðP2mÞ � 22m
	
2m=c log5n


m þ 1=nþ O
	
m=n2



:

Proof. As in [7] and [3] we consider a dynamic process for choosing a
random set S and a random walk on XðG; SÞ. This is done as follows.

(a) We choose in the free group Fc log5n (generated by c log5n distinct letters
and their inverses) a random word of length 2m.

(b) We assign to each letter an element of the group G at random.

It is easy to see that this process is equivalent to the one in which a random
Cayley graph XðG; SÞ with jSj ¼ c log5n is chosen first and a random walk of
length 2m in it is chosen afterwards.

In order to obtain an upper bound for EðP2mÞ, we estimate the probabilities of
the following two events whose union includes the event that our walk of length
2m is closed.

(A) There is no letter such that the total number of appearances of this letter
together with its inverse in this word is exactly one.

(B) (A) does not hold, but after the assignment of the chosen elements in the
group G to the corresponding letters the word is reduced to the unity.

Obviously EðP2mÞ � PrðAÞ þ PrðBÞ.
First we estimate PrðAÞ. Let W be the word of length 2m which satisfies the

conditions of ðAÞ. Clearly, the number of distinct symbols (letter and its inverse
are the same symbol) that appear in W is at most m. We expose the letters of W in
the following order. First, we expose the subset consisting of the first occurrence
of each symbol that appears in the word. Second, we expose the other letters. For
each letter in the second subset, the probability that it equals to the letter or the
inverse of the letter which has appeared in the first subset is at most 2m=c log5n.
The number of possibilities to place the first subset is at most 22m. Hence
Pr ðAÞ � 22m

	
2m=c log5n


m
.
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Next we bound PrðBÞ. Let � be a symbol (a letter or its inverse) that appears
only once in the word. We expose the assignments of all the letters except that
of � . Denote by xð�Þ the assignment of � . The event whose probability we wish to
estimate is now the event gxð�Þh ¼ 1 where g; h are some known elements in G.
The probability that xð�Þ solves this equation is at most 1=ðn� 2mÞ ¼ 1=nþ
Oðm=n2Þ. Therefore, PrðBÞ � 1=nþ Oðm=n2Þ. This implies the assertion of
the lemma. &

To finish the proof of the Theorem 4.1, fix now m ¼ log n
2 log log n

. Combining
Lemma 4.1 with (5) we obtain,

E
	
�=d



�ðnEðP2mÞ � 1Þ1=2m�

	
n
	
22m

	
2m=c log5n


mþ1=nþO
	
m=n2




�1


1=2m

� n1=2m
	
22m

	
2m=c log5n


m
1=2mþ
	
n
	
1=nþ O

	
m=n2




�1


1=2m

� 2n1=2m 2m

c log5n

� �1=2

þO
	
ðm=nÞ1=2m
 ¼ O

	
log�1n



:

This completes the proof of the theorem. &

Remark. The bound of Theorem 4.1 is probably far from being tight. It is well
known that the Cayley graph XðG; SÞ of a group G of order n with respect to a
random set S of Oðlog nÞ generators is almost surely connected. Therefore,
Conjecture 4.1 suggests that already Oðlog nÞ random generators are enough to
guarantee Hamiltonicity of XðG; SÞ.

5. CONCLUDING REMARKS

In this study we provide a sufficient condition for the existence of a Hamilton
cycle in pseudo-random graphs. A distinctive feature of our result, Theorem 1.1,
is that it connects between spectral properties of a graph and Hamiltonicity. This
connection has a potential to be useful in proving Hamiltonicity of certain classes
of regular graphs as sometimes is much easier to bound the eigenvalue gap than to
show the existence of a Hamilton cycle directly.

In particular, our result can be used to give another proof that for d > log2n,
the random d-regular graph on n vertices Gn;d is almost surely Hamiltonian.
Indeed, by Theorem 1.1, it is enough to show that the second eigenvalue of Gn;d

satisfies � < dðlog log nÞ=log n. For d � n1=2 this can be done directly in the so
called configuration model, using an approach of Kahn and Szemerédi from [14].
For d 	 n1=2, this follows from the recent results of the authors together with Vu
and Wormald [23]. In the intermediate range d 


ffiffiffi
n

p
, one can for example prove

first that almost surely the number of copies of C4 and C6 in Gn;d is asympto-
tically equal to the expected number of copies of these two cycles in the binomial
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random graph Gðn; d=nÞ, and then derive the required upper bound on � by
considering the trace of A6, where A is the adjacency matrix of Gn;d.

Another feature of our argument is that it is in fact algorithmic. Indeed, it is
easy to see that our argument works even if in Section 3.1 instead of a longest
path in G we will consider any path P0 which is maximum by inclusion. Such a
path can be found efficiently by the greedy algorithm. Therefore, our proof
provides a polynomial time algorithm for finding a Hamilton cycle in a graph
satisfying the conditions of Theorem 1.1. This may be quite valuable especially
taking into account the notorious difficulty of the Hamilton cycle problem, both
theoretically and practically (see, e.g., [18]). Notice also that this observation
combined with the remark above about the second eigenvalue of a random d-
regular graph Gn;d, provides an algorithm for finding almost surely a Hamilton
cycle in Gn;d for d > log2n. This solves a problem posed by Frieze and
McDiarmid ([17], Research Problem 3) for this range of degrees d.

Our bound is not known to be tight. In fact, we suspect that a much stronger
result should be true. We propose the following conjecture.

Conjecture 5.1. There exists a positive constant C such that for large enough n,
any ðn; d; �Þ-graph that satisfies d=� > C contains a Hamilton cycle.

This conjecture is closely related to another well known problem. The tough-
ness tðGÞ of a graph G is the largest real t so that for every positive integer x � 2
one should delete at least tx vertices from G in order to get an induced subgraph
of it with at least x connected components. G is t-tough if tðGÞ � t. This para-
meter was introduced by Chv�atal in [10], where he observed that Hamiltonian
graphs are 1-tough and conjectured that t-tough graphs are Hamiltonian for large
enough t. He even suggested that t ¼ 2 should be enough, but this was recently
refuted in [5]. On the other hand, one can show (see, e.g., [1]) that if G is an
ðn; d; �Þ-graph, then the toughness of G satisfies tðGÞ > �ðd=�Þ. Therefore, the
conjecture of Chvátal implies our conjecture.
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