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The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) 3C-like prote@%eof3CL

MP) js an attractive target for the development of anti-SARS drugs because of its crucial role in the viral
life cycle. In this study, a compound database was screened by the structure-based virtual screening approach
to identify initial hits as inhibitors of SARS-CoV 3CL. Out of the 59 363 compounds docked, 93 were
selected for the inhibition assay, and 21 showed inhibition against SARS-CoW°3{ls, < 30 uM), with

three of them having common substructures. Furthermore, a search for analogues with common substructure
in the Maybridge, ChemBridge, and SPECS_SC databases led to the identification of another 25 compounds
that exhibited inhibition against SARS-CoV 3 (ICso = 3—1000uM). These compounds, 28 in total,

were subjected to 3D-QSAR studies to elucidate the pharmacophore of SARS-Ca@V. 3CL

Introduction 3CLP (pdb ID: 1Q2W and 1UK4) was independently solved
by two groups. Rao et al. reported the structure of SARS-CoV
3CLPin complex with a covalently attached substrate-analogue
inhibitor, thus providing insights into the substrate binding %ite.
Although a number of non-peptide inhibitors of SARS-CoV

Severe acute respiratory syndrome (SARS), an epidemic that
rapidly spread in Asia, North America, and Europe resulted in
severe illness and deaths in early 2063 his disease is mainly

spread by respiratory droplets containing the virus, and many . X ) PO -
studies show that a previously unrecognized coronavirus called3CLp;(z; such as blfugct|onal aryl boronic aciéf§safin der_lva;-
SARS-CoV (SARS-associated coronavirus) could be the cause! V€S polyphen_olsz, etacrynic acid analoguéScinanseriry

of SARS35 The genome of SARS-CoV contains414 major and other chemically diverse small molecéleg® have been
open-reading frames and encodes several proteins, including th dentified, onlytatlhfe\g/_ of these ?how polt;ent _||nh|]E)|to:y at(gXIFtin
epcase poprotes. S (ke prtar) potmerase, W (mem. (515 S e AECouery oA 1ve o o pont AR
brane protein), N (nucleocapsid protein) and E (small envelope studies. Virtual (in silico) screening by the molecular docking

protein)6-8 . . _— . ,
. of chemical databases in combination with 3D-QSAR studies
SARS-CoV 3C-like protease (SARS-CoV 3€Y), as a part is one of the most powerful approaches used to discover small

of the replicase polyproteins, cleaves a functional polypeptide molecule inhibitors. The present study aimed to design novel
and, consequently, leads to the maturation of SARS-CoV. non-peptide inhibitors against SARS-CoV 3TLusing the
Because of its functional importance in the SARS-CoV replica- knowledge obtained from the 3D structure of SARS-CoV
tion cycle, SARS-CoV 3CP?° is considered a potential target 3CLPP. We conducted a virtual screening study using the
to develop novel anti-SARS druggrevious homology model- DOCK4.0.281 program to identify novel small molecule inhibi-
ing studies for SARS-CoV 3GI° "' made it possible to design tors of éAFéS-CoV 3CP° The lead compounds were subse-
inhibitors using various computer-aided drug design metHoéfs. quently analyzed by several 3D-QSAR techniques to fully
For example, an 8-mer peptide was docked into the 3D model explore the pharmacophore of SARS-CoV 3@land to guide

of SARS-CoV 3CPP, and the possible binding profile between further lead optimization

SARS-CoV 3CIP° and this substrate was elucidafédin ’
another case, a pharmacophore model generated from a Sma'lk/laterials and Methods

peptide was used as a query for screening possible SARS-CoV

3CLP inhibitors through several chemical databa$e8 Fur- Virtual Screening. The X-ray structure of the complex of SARS-
thermore, the crystal structures of the coronavirus 3CL proteasesCoV 3CLP (pdb code 1UK4F with an octapeptidyl CMK inhibitor
from the transmissible gastroenteritis virus (TGE\&nd human ~ Was Ch%sie” as the template in the virtual screening. The DOCK4.0.2
coronavirus 229E (HCoV-229E)were available to facilitate progrant’ was used to screen a commercially available small

o ) molecule database, the Maybridge database, obtained from the
inhibitors design. Recently, the crystal structure of SARS-CoV Maybridge Chemical Company (Tintagel, Cornwall, England). The

rule of five was applied as a filter to select the drug-like compounds
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ext. 35713. Fax. 886-37-586-456. E-mail: suying@nhri.org.tw (S.-Y.W.). compounds, was screened and scored on a 64-processor Hpcserv2
Tel: 886-3-5742759. Fax: 886-3-571-5934. E-mail: thlin@life.nthu.edu.tw | jnux cluster with AMD Athlon MP 2006 1.7 GHz CPUs.
(T';",L"-'.)' . R Residues within a radiusf@& A around the center of the CMK
ational Tsing Hua University. PR . . . .
# Institute of Biological Chemistry, Academia Sinica. peptide inhibitor were defined as the active site to construct a grid
$ Genomics Research Center, Academia Sinica. for the virtual screening. The active site included residues His41,
I'National Health Research Institutes. Phel40, Leul4l, Asnl42, Glyl143, Serl44, Cysl145, His163,
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Table 1. The Chemical Structures of 28 Inhibitors and Their Corresponding V@lues against SARS-CoV 3€I
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Met165, Glul66, and His172. Before docking, Kollmann-all atom substrate were plotted against the inhibitor concentrations to obtain
charge® were assigned to the protein atoms, and Gasteigekélu the 1G5 by using the following equation

charge® 3% were assigned to compound atoms using the SYBYL

6.9.1 prograni® The position and conformation of each compound

were optimized first by the anchor fragment orientation and then Alll =A[0] x {1 - [—]}

by the torsion minimization method implemented in the DOCK4.0.2 (] +1Cs0

program. Fifty configurations and the maximum of 100 anchor

orientations for each compound were generated, and all of the whereA[l] is the enzyme activity with inhibitor concentration [I],
docked configurations were energy minimized by 100 iterations. andA[0] is the enzyme activity without the inhibitor.

SARS-CoV 3CLP© Inhibition Assay. The SARS-CoV 3Cp° CoMFA, CoMSIA, and Pharmacophore 3D-QSAR Models.
inhibition assay was performed on the basis of the published Twenty-eight inhibitors were divided into training and test sets
procedure’’37 As described by Kuo et at’, the gene encoding  containing 18 and 10 inhibitors, respectively, for 3D-QSAR studies.
the SARS-CoV 3CP° was cloned from the viral whole genome  The compounds of the test set were selected first on the basis of
by using PCR with the forward primet-&EGTATTGAGGGTCG- published rules? and they were as follows: compounds?, 8,
CAGTGGTTTTAGG-3 and the reverse primef-BGAGGAGAGT- 11, 12, 14, 15, 18, 21, and23 (Table 1). The CoMFA steric and
TAGAGCCTTATTGGAAGGTAACACC-3 into the pET32Xa/ electrostatic potential fields were calculated using the SYBYL 6.9.1
LIC vector. The FXa cleavage site was included in these primers. program with a regularly spaced grid of 2.0 A. A C.3 carbon atom
The plasmid was transformed ino coli BL21 to express the His-  with a radius of 1.52 A and a charge $f1.0 was used as a probe
tagged protease. The purified SARS-CoV 3ClLcleaved by FXa to calculate the steric and electrostatic energies between the probe
protease to remove the His-tag, has an authentic sequence withouand the molecules using the Tripos force fieldThe truncation
extra amino acids, as confirmed hyterminal sequencing and mass for both the steric and electrostatic energies was set30 kcal/
spectroscopy. All of the kinetic measurements were performed in mol. The CoMFA steric and electrostatic fields were scaled by the
20 mM bis[(2-hydroxyethyl)amino]tris(hydroxymethyl)methane (pH default value given in the program.

7.0) at 25°C. Enhanced fluorescence was monitored at 538 nm A C.3 atom with a radius of 1.0 A and a charge-61.0 was

with excitation at 355 nm by using a fluorescence plate reader used as the probe to calculate the CoMSIA similarity indices defined
upon the cleavage of the fluorogenic substrate peptide (Dabcyl- by Klebe?® with a spaced grid of 2.0 A. The similarity indices were
KTSAVLQ-SGFRKME-Edans). The initial velocities of the inhib-  calculated using the Gaussian-type distance dependence between
ited reactions of 50 nM SARS-CoV 3@k and 6uM fluorogenic the probe and each atom of the molecules. The attenuation factor
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o was set as 0.3. Both CoMFA and CoMSIA results were cross-
validated using the SYBYL PLS (partial-least-squares) module. The
minimum-sigma (column filtering) was set to 2.0 kcal/mol to
improve the signal-to-noise ratio by omitting the grid points of
energy variation less than this threshold. The CoMFA and CoMSIA
descriptors were treated as independent variables, whereas the pIC
values were treated as dependent variables in the PLS regressiol
analyses to derive the 3D-QSAR models. The number of compo-
nents used in the final nonvalidated model was optimized to give
the highest cross-validateé(q?) and the lowest standard error of
prediction. The noncross-validated models were assessed by the
conventional correlation coefficiend, standard error of prediction,
andF-values.

The training set for COMFA and CoMSIA studies was used for
constructing pharmacophore models by the Catalyst 4.9 protjram.
All of the parameters used were default values except for the Uncert
value, which was set to 1.6 or 1.5. Each compound was energy §
minimized using the CHARMM-like force fief# within the
Catalyst 4.9 program and subjected to a conformational analysis
using the Poling algorithrf® The maximum number of conformers ] o ' )
allowed for each compound was set to 250. On the basis of the Figure 1. Active site of SARS-CoV 3CE° with the bound hexapep-
CoMSIA results, four pharmacophore features, E (excluded vol- t|quI_CMK pept_|de inhibitor. Tht_e subsites that complement substrate
umes), H (hydrophobic), D (hydrogen-bond donor), and A (hydrogen- binding are designated as S1 (His163, Glu166, Cys145, Serl44, G_Iy143,
bond acceptor group), were selected to generate hypotheses. Th@Nd Phel140), S2 (Cys145 and Thr25), S3 (Met165, Met49, and His41),
significance of the best hypothesis generated was cross-validate 4 (Glu166), and S5 (GIn189, Met165, and Glu166).
using the CatScramble module of the Catalyst 4.9 program. To
obtain a 95% confidence level, 19 random spreadsheets werewas used as the target site to perform virtual screening on the
generated and then analyzed by the HypoGen module using themaybridge database, a database of approximately 60 000
sagedparagweteés as thgs:e 'rl‘ ;_he |_r}|t|al ||run|. e the bindin f commercially available small molecules. The binding site
enelrrg]jymg Aéese_cg\e/r%yo{?;ﬁ; |208n.inrc1)itc)?t1(;:rl; a:lveereepalparlm:lgtrirze: 4 includes the catalytic center (His41 and Cys145) and several

. subsites, designated as S1(His163, Glul66, Cysl145, Serl44,

by the Parm9% and the AMBER force field (GAFF)? The partial
charges of each compound were calculated using the HF/6-31G(d)/ClY143, and Phel40), S2 (Cys145 and Thr25), S3 (Met165,

RESP methotf and were fitted by the multiple RESP approach. Met49, and His41), S4 (Glu166), and S5 (GIn189, Met165, and
The series of calculations were conducted by AMBERShe Glu166) (Figure 1). The catalytic dyad characterized by Cys145
binding free energies for the 28 inhibitors were computed as follows and His41 is located inside subsites S1, S2, and S3. The virtual

- —

G=Hg .+ Gy~ TS (1) screening was conducted using the DOCK4.0.2 program, and
’ the docked molecules were ranked by the two scoring functions
AGyinging= AGcompiex— AGieceptor— AGigand 2 implemented in the program. The first one was the internal

whereHgasis the gas-phase enerdgysoy is the solvation free energy, ligand—receptor binding energy, W.h'Ch measures the sum of
and Sy is the sum of translational, rotational, and vibrational € van der Waals and electrostatic energies. The second one
entropies determined by normal-mode analysig.included the was the electrostatic energy between the docked ligand and the
electrostatic and van der Waals interactions between the proteinprotein. The top 200 compounds ranked by each scoring function
and the inhibitor. A distance-dependent dielectric was used to were further screened by analyzing their H-bonding patterns
compute electrostatic interactions, and a continuum model correctionusing IDEA2.0 (http://www.breadth.com.tw). Because H-bond-
for energy was used to compute van der Waals interactions. Bothing interactions play an important role in ligand binding, as
interactions were calculated in AMBERS using the default param- reyealed by the proteassubstrate complex structure, the top
eters.Gsoy was computed using the GB model developed by Tsui ranked compounds making more than two H bonds with the
and Casé® The hydrophobic contribution to the solvation free protease were selected for bioassay. The number of compounds

energy and the implicit solvation free energy were computed from o S
the s%¥vent-accessﬁble area (SA) by Paul ngroza’s Molspurf module preliminarily screened for the inhibition assay was 93. Of these,

of AMBER. The MM/GBSA approach was used to estimate the 21 compounds (hit rate of 22%) were found to exhibit SARS-

Hgas+ Gsorterms in eq 1. The protein complexes were solvated by C0V 3CLPwith ICsovalues less than 3@M. A careful analysis
the GB model, and instead of neutralizing the whole system by Of these active compounds revealed that three of the compounds

explicit cations, the salt contribution for calculating the generalized shared similar chemical structure and a core structure of
Born energy was set at 0.1 M. All His residues were protonated at N-phenyl-2-(2-pyrimidinylthio)acetamide (Figure 2) was identi-
the epsilon nitrogen (N except for His41 and His172, which were  fied. The core structure was then used as a query structure to
protonated at the epsilon and delta nitrogens)(Nor the rest of search for analogues in Maybridge, ChemBridge, and SPEC-
the acidic and basic residues in the protein, the default protonationg gc databases. This resulted in identifying 28 structural
states in AMBERS8 were applied. The translational and rotational arTangues including the three from the initial round, to be
entropies were calculated as described by McQuéfriehereas evaluated ;‘or the SARS-CoV SARS 3€tinhibitory acti\'/ity

the vibrational entropy was calculated by a normal-mode analysis . - AT .
using the Nmode module of AMBER. For the simulation of each (Table 1). The series of compounds exhibited inhibition with

complex, geometry optimization was performed by 200 steps of !Cso values in the range of-31000uM and were subjected to
steepest descent followed by conjugated gradient minimization to further 3D-QSAR studies.

converge to an energy criterion of T0kcalmol-1-A-1, CoMFA and CoMSIA Models. To proceed with the 3D-
. . QSAR studies, compountd (Table 1), with the highest score
Results and Discussion ranked by program DOCK4.0.2 and DOCKS5.1.1, was chosen
Virtual Screening. The binding site of SARS-CoV 3CLY as a template, and the rest of the compounds were aligned with

substrate-analouge CMK complex structure (pdb code:18%4) it. The core structure for the 28 compound&phenyl-2-(2-
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Table 2. Summary of CoMFA and CoMSIA Results Obtained from the Training Set

CoMSIA cross validation noncross validation
CoMFA SARS-CoV 3CIPro18
SARS-CoV3CIPr18 inhibitors inhibitors PC OPev CF SEE r2 F
Qoo 0.689 S 2 0.674 2 0.216 0.923 89.446
ey 0.673 E 3 0.340 2 0.216 0.927 59.557
CF 2 H 4 0.613 2 0.161 0.963 83.600
r2 0.987 D 1 -0.177 2 0.686 0.164 3.131
SEE 0.095 A 1 —0.456 2 0.637 0.279 6.180
PC 4 S+ E 4 0.763 2 0.097 0.987 238.212
F 248.719 StH 5 0.629 2 0.116 0.982 131.326
steric contribution 62.3% $D 4 0.611 2 0.233 0.921 38.057
electrostatic contribution 37.7% BA 3 0.301 2 0.225 0.921 54.390
S+E+H 5 0.767 2 0.077 0.992 298.523
S+E+D 5 0.705 2 0.085 0.990 245.926
S+E+A 5 0.494 2 0.085 0.990 249.856
S+E+D+A 5 0.401 2 0.079 0.992 289.995
S+E+H+D 5 0.611 2 0.075 0.993 321.358
S+E+H+A 5 0.647 2 0.070 0.993 362.985
all fields 5 0.559 2 0.085 0.990 246.172

300 leave-one-outgZ, :

F-values; S: steric field; E: electrostatic field; H: hydrophobic field; A: H-

Ge

G, G,
S—d\ s
N
G/ (o) G,
Figure 2. Core structure identified by three original hits. The core
structure highlighted in blue served as the correspondence points for
the structural alignment of 28 inhibitors to construct the CoMFA and

CoMSIA models. G1, G2, G3, G4, G5, G6, and G7 could be any
substitute or hydrogen atom.

pyrimidinylthio)acetamide, served as the correspondence points,

in the alignment (Figure 2). The aligned training set containing
18 inhibitors was then analyzed by the SYBYL CoMFA,
CoMSIA, and PLS algorithm. The results of the CoMFA and
CoMSIA models are summarized in Table 2. The best CoOMFA
result yielded a leave-one-out (loo) validat@(h?) of 0.689,
g%y of 0.673, andr? of 0.987. The CoMSIA model was

constructed in a stepwise manner, and the results are presente

in Table 2. Five different field indices (steric, denoted as S;
electrostatic, denoted as E; hydrophobic, denoted as H; H-bon
acceptor, denoted as A; and H-bond donor, denoted as D) wer
employed one by one or as a combination of various fields to

€

cross-validation; CF: column filteringZ conventional; SEE: standard error of estimate; PC: principal comporfénts;

bond acceptor; and D: H-bond donor.

are listed in Table 3, whereas those for the test set are given in
Table 4. The template structurgQ, was also included in the
training set. The correlation coefficient), a measure of the
correlation between the predicted versus experimental activities,
for the training set and test set given by the best COMFA model
were 0.987 and 0.886, respectively. The best CoMSIA model
yielded the correlation coefficients? of 0.992 and 0.940 for

the training set and test set, respectively. The results reveal that
the activities predicted by the CoMFA and CoMSIA models
are in agreement with the experiment data, demonstrating the
predictive ability of both models.

Mapping the CoMFA and CoMSIA Models onto the
Protein Active Site. The contour maps generated by the
CoMFA and CoMSIA models were mapped on the active site
of SARS-CoV 3CIP° and analyzed with respect to the subsites
of the protease. The most active compound, compduadd
the template compound, compoufh@ are displayed with the
contour maps to aid in visualization and discussion. Both the
?oMFA and CoMSIA contour maps identify favored regions
or steric interactions (displayed as green contours in both

dCoMFA and CoMSIA maps), which are around binding pocket

S5 (Figures 1 and 3). The CoMFA and CoMSIA contour maps
also show that there are disfavored regions for steric interactions

perform the CoMSIA study. The S field gave a better statistical (displayed as yellow contours) around the 3,5-dich|oro-benz_ene
result (%y = 0.674) compared to those of other fields and, thus, group of1 (Figure 3a-1 and 3b-1) and the benzene sulfonamide

was selected for further analyses by systematically adding the 9r°UP 010 (Figure 3c-1 and 3d-1), pointing toward the binding
other four fields. A combination of the S and E fields improved POcket S2. The favored regions for hydrophobic interactions

the g%, value to 0.763, which was applied to the next cycle of
calculations where each of the rest of the three fields (H, D,
and A) was sequentially added to the combined S and E fields.
The combination of S, E, and H fields produced the best
CoMSIA model with ag?, value of 0.767 (Table 2). There
was no apparent improvement by a further addition of either
the D or the A fields to the combined § E + H fields or
upon the combination of all five fields. Therefore, the interac-
tions of the inhibitors in the training set with the target protein
SARS-CoV 3CIF°is best described by a combination of S, E,
and H fields. A decomposition of the combinedHSE + H
fields gave the contributions of 42.6%, 40.5%, and 17.0% from
the S, E, and H fields, respectively. This result indicated that
the S and E fields dominated the present COMSIA model,
although the addition of the H field could slightly improve it.
The experimental and predicted biological activities by the
best COMFA and CoMSIA models for each training set inhibitor

identified by the CoMSIA model are displayed as cyan contours
for both 1 and 10 (Figure 3b-1 and 3d-1). These are correctly
mapped onto the hydrophobic surface of the protease (displayed
as a gray surface in Figure 3b-2 and 3d-2). In comparison, the
disfavored hydrophobic regions of these two compounds, shown
as white contours in the CoMSIA map (Figure 3b-1 and 3d-1),
indicate that the substitution with polar groups in this region
could improve the binding to the protein. In the CoMFA map,
the red contours representing the favorable negative charge area
suggest that the substitution with electron rich groups is
preferable around the pyrimidine d{Figure 3a-1) and dihydro-
pyrimidine of 10 (Figure 3c-1). In addition, the blue contours
representing the favorable positive charge area are also correctly
mapped onto the electrostatic regions of the protease (Figure
3a-2 and 3c-2).

Pharmacophore Generation with the Catalyst Program.
The structural features, including hydrophobic, hydrogen-bond
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Table 3. Measured and Predicted Activities of the Training Set Obtained from CoMFA, CoMSIA, and Hypol

CoMFA  CoMSIA catalyst pharmacophore hypothesis Hypol
SARS-CoV 3ClIere act pred pred actlGo predIGyo act activity  pred activity
inhibitors pICso plCso plCso (uM) (uM) error scalé scalé uncert  principal supplier
1 5.52 5.45 5.52 3 6.3 +2.1 +++ +++ 1.6 2 Maybridge
2 5.00 5.20 5.04 10 15 +1.5 +++ +++ 1.6 0 Maybridge
3 4.95 4.94 4.95 11 21 +1.9 +++ +++ 1.6 0 Maybridge
5 4.85 491 4.90 14 8.3 -1.7 +++ +++ 1.6 0 Maybridge
6 4.82 4.74 4.79 15 9.6 -1.6 +++ +++ 1.6 0 Maybridge
9 4.52 431 4.33 30 41 +1.4 +++ +++ 1.6 0 ChemBridge
10 4.39 4.37 4.38 40 29 —-1.4 +++ +++ 1.6 2 ChemBridge
13 4.22 4.17 4.18 60 55 -1.1 ++ ++ 1.6 0 ChemBridge
16 3.69 3.69 3.79 200 310 +16 ++ ++ 1.6 0 ChemBridge
17 3.69 3.66 3.67 200 130 -16 ++ ++ 1.6 0 Maybridge
19 3.69 3.73 3.66 200 82 —2.4 ++ ++ 1.6 0 Maybridge
20 3.69 3.71 3.65 200 270 +14 ++ ++ 1.6 0 SPECS SC
22 3.52 3.60 3.59 300 290 -10 ++ ++ 1.6 0 ChemBridge
24 3.52 3.52 3.60 300 450  +1.5 ++ ++ 1.6 0 ChemBridge
25 3.45 3.46 3.48 350 260 -1.3 ++ ++ 1.6 0 ChemBridge
26 3.39 3.37 3.36 400 340 -1.2 ++ ++ 1.6 0 Maybridge
27 3.30 3.24 3.26 500 450 1.1 + + 15 1 ChemBridge
28 <3.00 3.06 2.98 >1000 1000 +1.0 + + 15 1 ChemBridge
a Activity scale: highly active €50 uM, +++), moderately active (560450 uM, ++), and inactive £ 450 uM, +).
Table 4. Measured and Predicted Activities of the Test Set Obtained from CoMFA, CoMSIA, and Hypol
catalyst
CoMFA CoMSIA pharmacophore hypothesis Hypol
SARS-CoV 3CIere act pred pred act 1Gso pred 1Go act activity pred activity
inhibitors pICso pICso pICso (uM) (uM) error scalé scalé supplier
4 4.92 5.00 4.84 12 11 -1.1 +++ +++ Maybridge
7 4.82 4.75 4.90 15 15 -1.0 +++ +++ Maybridge
8 4.82 4.77 4.84 15 6.3 —-2.4 +++ +++ Maybridge
11 4.39 4.13 4.02 40 350 +8.8 +++ ++ Maybridge
12 4.34 4.17 4.05 45 42 -1.1 +++ +++ ChemBridge
14 4.22 4.21 3.85 60 130 +2.1 ++ ++ ChemBridge
15 4.00 3.79 4.04 100 440 +4.4 ++ ++ SPECS SC
18 3.69 3.30 3.44 200 230 +1.2 ++ ++ ChemBridge
21 3.60 3.63 3.30 250 290 +1.2 ++ ++ Maybridge
23 3.52 3.78 331 300 760 +2.5 ++ + ChemBridge

a Activity scale: highly active €50 uM, +++), moderately active (56450 uM, ++), and inactive €450 uM, +).

acceptor, hydrogen-bond donor, and excluded volume, wereTable 5. Information of Statistical Significance and Predictive Power
selected on the basis of the best COMSIA results (Table 2) to Presented in Cost Values for the Top 10 Hypotheses Genérated

generate the pharmacophore hypotheses for SARS-CoV"BCL  hypothesis rms correlation
inhibitors using the Catalyst 4.9 program. Among the 10 no. total cost  Acost deviation (r)
hypotheses generated by Catalyst 4.9, the Hypol hypothesiswas 1 64.320 95.564 0.919 0.966
the best pharmacophore hypothesis as characterized by the 2 77.009 82.875 1.506 0.906
lowest error cost, highest cost differencecost), lowest root- 3 77813 82.011 1.537 0.902
Y . . 4 78.190 81.694 1.547 0.901
mean-square deviation, and the best correlation coefficient 5 81.873 78.011 1654 0.886
(Table 5). The configuration cost of Hypol hypothesis was only 6 83.518 76.366 1.726 0.875
10.4 bits, which was also smaller than the criterion of 17 bits 7 87.336 72.548 1.845 0.856
for a good hypothesis. The Hypo1 hypothesis was then validated g g;-?ig gg-izi %gig 8-222
using the CatScramble module of the Catalyst 4.9 program. The 10 04.749 65135 5 059 0817

validation proceeded with a random reassignment of activity
values, that is, the generation of random spreadsheets among
the molecules of the training set. To achieve a confidence level
of 95% (significance= 1—((1+0)/(19+1)) x 100% = 95%), (ICsp < 50 uM), ++ for moderately active (I = 50—450
19 random spreadsheets (random hypotheses) were generategM), and+ for inactive (1Go > 450uM). The accuracy of the
and the corresponding statistics are listed in Table 6. The hypothesis can be judged by the agreement of the predicted
validation clearly shows that the Hypol hypothesis is not activities with the measured ones (Tables 3 and 4). The
generated by chance because its statistics are far more superigprediction accuracy of the Hypol hypothesis for the training
to those of the 19 random hypotheses generated (Table 6). set is 100% because all of the activity scales of the predicted
The Hypo 1 hypothesis was also evaluated for its capability ones were consistent with the measured ones (Table 3).
to predict compound activities using the same training and test However, the prediction accuracy for the test set is 80% because
sets as those in the CoMFA and CoMSIA studies. The the activity scales of two compounds], and23, were in conflict
HypoRefine module of the Catalyst 4.9 program was used to with the measured ones (Table 4). Linear regression of the
further refine the Hypol hypothesis. The activities predicted predicted versus measured activities for the training and test
by the refined Hypol hypothesis (Tables 3 and 4) were labeled sets yielded correlation coefficients of 0.966 and 0.875,
according to the activity scales defineddas+ for highly active respectively.

aNull cost of top-ten score hypotheses is 159.884 bits. Fixed cost is
.547 bits. Configuration cost is 10.456 bits.
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CoMFA Contour MAP CoMSIA Contour MAP

Fig. 3a-1 compound 1 Fig. 3b-1 compound 1

CoMFA Contour MAP CoMSIA Contour MAP

Fig. 3c-1 compound 10 Fig. 3d-1 compound 10

Fig. 3d-2 compound 10

g

Figure 3. (a) CoMFA contour map displayed withand superimposed on the SARS-CoV 3Clactive site. (b) CoOMSIA contour map displayed

with 1 and superimposed on the SARS-CoV 3Clactive site. (¢) COMFA contour map displayed with and superimposed on the SARS-CoV

3CLP active site. (d) CoMSIA contour map displayed with and superimposed on the SARS-CoV 3Clactive site. The red contours represent
favored regions for negative charge, blue contours represent favored regions for positive charge, yellow contours represent disfavored regions fo
steric interaction, green contours represent favored regions for steric interaction, cyan contours represent favored regions for hydeoattanic int

and white contours represent disfavored regions for hydrophobic interaction.

Mapping the Hypol Hypothesis onto the Protein Active S5, where hydrophobic interactions are preferable as represented
Site. The Hypol hypothesis displayed with template structure by gray surfaces. The hydrogen-bond donor features, represented
10 was superimposed on the active site of SARS-CoVBCL by magenta spheres, were also correctly mapped onto subsite
(Figure 4). As shown in Figure 4, the hydrophobic feature S2, near Thr25 (Figure 4). Furthermore, the hydrogen-bond
represented by blue spheres was correctly mapped onto subsitecceptor features shown by green spheres of the Hypol
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Table 6. Validation of the Hypol Hypothesis using the CatScramble
Program Implemented in the Catalyst Package

validation  total fixed rms correlation configuration
no. cost cost deviation r) cost
results for unscrambled
64.320 56.547  0.919 0.966 10.456
results for scrambled
trial 01 77.177 57.932 1.434 0.913 11.840
trial 02 110.535 52.911 2.524 0.695 6.820
trial 03 ~ 106.805 55.589 2.373 0.741 9.497
trial 04  106.482 55.880  2.369 0.743 9.789
trial 05  134.756 53.770  2.997 0.562 7.679
trial 06 122.493 57.562 2.680 0.650 11.471
trial 07 107.593 56.547 2.355 0.744 10.456
trial 08  110.834 55.880  2.467 0.705 9.789
trial 09 123.938 52.911 2.803 0.595 6.820
trial 10  154.702 44.966 3.491 0.000 0.000
trial 11 100.979 58.007 2.174 0.786 11.916
trial 12 90.083 56.547 1.777 0.864 10.456
tr!a: ii 12222}1 izlg:éé gggg gggé lcl)ggg Figure 4. Features of the Hypol hypothesis displayed viithand
:::ZI 15 66.481 55.376 1110 0.948 9285 superimposed on the SARS-CoV 3active site. The pharmacophore
trial 16 81002 52911 1766 0.863 6.820 features of the Hypol hypothesis are color coded as follows: the black
trial 17 03.446 55880 2.036 0.813 9.789 spheres represent two ex_cluded volumes (E1 and E2), the blue spheres
trial 18 90.438 55.880 1.924 0.834 9.789 represent the hydrophobic (H) feature, the magenta spheres represent
trial 19  156.513 44.966  3.520 0.000 0.000 the hydrogen-bond donor (D), and the green spheres represent the

hydrogen-bond acceptor (A).
aNull cost= 159.884. yereg ptor (A)

hypothesis were observed around subsite S4 near Arg188. Togroup, the hydrogen-bond donor for all these inhibitors. The
further explore the nature of the pharmacophore of SARS-CoV hydrogen-bond acceptor features were mapped onto the S atom
3CLP™, the Hypol hypothesis was mapped onto the structures of the thiazole group of, the N atom of the methyl-pyrazole

of eight highly active SARS-CoV 3CI° inhibitors, wherel, group of2, the S atom of the thiophene group3®fthe S atom

2, 3, 5, and6 were selected from the training set (Table 3 and of thiazole group ob, the N atom of the isoxazole group 6f
Figure 5a-e), and4, 7, and8 were selected from the test set the S atom of the thiophene group 4f the N atom of the
(Table 4 and Figure 5fh). All of these inhibitors matched well  isoxazole group o7, and the N atom of the isoxazole group of
with three features, including hydrogen-bond donor, hydrogen- 8 (Figure 5). The hydrophobic features are mapped onto various
bond acceptor, and hydrophobic features. The hydrogen-bondsubstituted aryl or heteroaryl groups, such as chlorobenzene,
donor features were mapped onto the N atom of the amide dichlorobenzene, and thiazole. Finally, the features of the

Table 7. Measured Activities and Calculated Binding Free Energy of the SARS-Co\P'3Gthibitors

SARS-CoV 3CIPro energy components calculated for binding ﬂ
inhibitor AHygw AHelec AGgp AGpp —TASons AGpinding 1Cse?

1 —50.40 —29.75 40.17 —6.22 23.03 —-23.17 3
2 —40.74 —20.61 27.48 —-5.97 17.16 —22.68 10
3 —54.02 -16.31 28.01 —6.35 24.17 —24.50 11
4 —36.36 —-20.81 28.82 —4.22 9.27 —-23.30 12
5 —47.97 —27.08 35.10 —5.38 21.57 —23.76 14
6 —49.38 —25.46 30.05 —6.00 29.27 —21.52 15
7 —45.96 —29.07 33.28 —6.19 26.86 —21.08 15
8 —39.58 —30.68 37.54 —5.41 16.34 —21.79 15
9 —37.96 —43.40 46.54 —4.96 17.91 —21.87 30
10 —45.31 —50.22 60.04 —4.48 24.91 —15.06 40
11 —38.80 —15.00 27.73 —4.97 11.96 —19.08 40
12 —38.02 —31.16 36.97 —3.86 12.86 —-17.32 45
13 —42.11 —-37.27 45.11 —5.62 23.15 —16.74 60
14 —40.03 —52.47 58.68 —5.84 22.21 —17.45 60
15 —-37.31 —34.14 36.34 —5.14 20.31 —19.94 100
16 —-36.17 —33.27 28.74 —3.56 22.28 —21.98 200
17 —42.37 —36.72 37.85 —3.99 24.58 —20.65 200
18 —42.18 —36.39 37.81 —5.14 23.50 —22.40 200
19 —47.39 —29.60 36.67 —6.32 29.62 —-17.02 200
20 —38.08 —28.02 40.05 —-5.11 14.75 —-16.41 200
21 —38.90 —-31.77 36.29 —5.41 25.09 —-14.70 250
22 —39.35 —21.99 32.60 —3.40 17.15 —14.99 300
23 —44.11 —36.49 45.95 —5.66 25.83 —14.48 300
24 —-31.76 —48.47 53.06 —4.44 18.58 —-13.02 300
25 —-30.07 —-43.11 45.69 —3.61 18.06 —13.04 350
26 —46.91 —23.44 34.00 —5.75 29.18 —-12.92 400
27 —35.30 —-13.75 22.93 —5.46 19.30 —12.28 500
28 —35.86 —-27.12 29.23 —4.76 30.91 —7.60 >1000

aAll values are in kcal/mol at 300 KAHyqw, van der Waals energyAHeiec, Coulombic energyAGgs, polar solvation free energyAGy,, nonpolar
solvation free energyAHgas = AHvaw + AHelec and AGsoy = AGgp + AGnp, TASons, total entropy contributionAGuinging (binding free energy)=
AHgas+ AGsoy — TASont. ® Measured 1@ values are inuM.
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Fig. S5a Compound 1 Fig. 5b Compound 2

Figure 5. Features of the Hypol hypothesis mapped onto the structures of eight highly active SARS-Ct\Mr8titors 1, 2, 3, 5, 6, 4, 7, and
8. The pharmacophore features are color coded as follows: the black spheres represent two excluded volumes, the blue spheres represent the
hydrophobic feature, the violet spheres represent the hydrogen-bond donor, and the green spheres represent the hydrogen-bond acceptor.

excluded volume represented by black spheres were correctlyincluded in the calculation. The calculated binding free energies
located because no bulky groups were found around those(AGyinding Of 28 inhibitors and their corresponding experimental
spheres (Figure 5). activities (1Go) are shown in Table 7. The correlation between
Correlation between Binding Free Energy and Inhibitory calculated binding energies and experimental activities gave a
Activity. The MM/GBSA (molecular mechanics-generalized correlation coefficientr) of 0.667. To further understand major
Born surface area) simulation method was applied to calculate determinants for the binding of inhibitors to the protein, the
the binding free energies of 28 inhibitors. The solvent contribu- binding free energy of each inhibitor was decomposed to
tion and entropy penalty upon binding to the protein were different contributions (i.e., van der Waals energy, Coulombic
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Figure 6. Superposition of the best inhibitdr(cyan) with the worst inhibito28 (magenta) in the active site of SARS-CoV 3®LThe secondary
structure elements are shown as a ribbon drawing, and the important residues involved in inhibitor binding are labeled. The green and yellow dotted
lines represent H bonding and hydrophobic interaction$ with SARS-CoV 3CIP", respectively.

energy, solvation free energy, and entropy). As shown in Table inhibition of the target protein. These 3D-QSAR models could,
7, both van der Waals and electrostatic interactions with the therefore, guide the direction for compounds modification and
protein dominate the binding process. Particularly, the van der facilitate further lead optimization. Moreover, the compound
Waals interactions are a major contributor to the binding of activities predicted by all of these 3D-QSAR models are in good
inhibitors. Furthermore, superimposition of the predicted com- agreement with experimental data, demonstrating their predictive
plex structure of the best inhibitod) with that of the worst ability and indicating that they could be used to estimate the
one @8) provides insights into their difference in binding (Figure activities of new inhibitors. Finally, the binding free energy of
6). The core structure df superimposes well with that &8 each inhibitor is calculated to gain insights into their binding
except for the slight movement of the benzene group to have ato the protein and assist in the explanation of the strueture
better fit with the surrounding residues including Gly143 and activity relationship obtained.

Cys145. However, the two additional aromatic rings Iof In conclusion, our study proves that the combination of
thiazole and benzene groups, form strong interactions with structure-based virtual screening and 3D-QSAR study could be
Glul6e6, Leul67, Prol68, and GIn192, leading to its increased a useful approach to efficiently identify novel inhibitors from a
potency over28 (Figure 6). All of these results demonstrate large chemical database and provide rationales for further lead
that the MM/GBSA analysis could be used to predict the binding optimization. Our 3D-QSAR models could also be employed
free energy that correlates with experimental activities and, to give reasonable estimations of the activity of newly designed
consequently, could be combined with current 3D-QSAR studies inhibitors before biological testing so that inhibitors predicted
to design the next generation of drug leads with more potency to have strong affinity could be prioritized for chemical
against SARS-CoV. synthesis.
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