
LIN6: A New Approach to Mobility Support in IPv6

Mitsunobu Kunishi

Graduate School of Science and Technology,

Keio University

Masahiro Ishiyama

Communication Platform Laboratory,

R&D Center, Toshiba Corporation

Keisuke Uehara

Keio Research Institute at SFC,

Keio University

Hiroshi Esaki

Information Technology Center,

University of Tokyo

Fumio Teraoka

Sony Computer Science

Laboratories Inc.

Abstract - This paper describes a new network
architecture called LINA (Location Independent
Network Architecture) that supports node mobil-
ity. It also describes a new protocol called LIN6

that is based on LINA. LIN6 is fully compatible
with IPv6 and free from the problems of Mobile
IPv6. Our prototype implementation of LIN6 has
a much lower processing overhead in comparison
with conventional IPv6.

Keywords: Network Protocol, Mobility, IPv6

I. Introduction

Although Mobile IPv6[1] is being standardized in
IETF to support IPv6[2] mobility, it has several prob-
lems. First, Mobile IPv6 has large header overhead
since it makes use of extension headers. For exam-
ple, in the case of communication between two mobile
nodes, the header overhead becomes 48 bytes, versus
the 40 bytes of the IPv6 base header. Second, the
location of the Home Agent (HA) is restricted by the
home address of the mobile node. This reduces tol-
erance to failures of the network and/or of the HA
itself. Third, Mobile IPv6 is potentially inconsistent
with IP security protocols[3]. These problems basi-
cally result from the lack of consideration taken in
designing IPv6's network architecture.
We describe a new network architecture called

LINA that provides node mobility. LINA is based
on separation of the node identi�er and the interface
locator. LINA avoids incurring header overhead. It
also avoids vanishing backward compatibility caused
by separation of the node identi�er and the interface
locator. We describe a new network protocol called
LIN6 to support IPv6 mobility as an application of
LINA to IPv6. LIN6 solves several of the problems
of Mobile IPv6.

II. LINA: Location Independent Network

Architecture

II.1 Basic concept

In conventional network architectures including
IPv4/IPv6, the network address of a node denotes

its location and also its identity. This feature causes
a critical problem when it comes to providing mobil-
ity in the network layer because there is no location
independent identity for a mobile node. To avoid this
problem, LINA introduces two new concepts that are
node identi�er and interface locator. The node iden-
ti�er recognizes the identity of the node. The node
identi�er does not depend on its attachment point to
the network interface. The interface locator denotes
the current point of attachment to the network. It is
assigned to the network interface of a node and is used
to route packet to the network interface. The node
identi�er is immutable whereas the interface locator
changes when the node moves.

II.2 Node Identi�er and Interface Locator

LINA uses a Mapping Agent(MA) to map the node
identi�er to the interface locator. The relation be-
tween the node identi�er and the interface locator is
called a mapping. A node registers its mapping peri-
odically with its mapping agents. It also registers a
new mapping when the node changes its location on
the network.

Application
Layer

Transport
Layer

Network
Layer

locator

locator

Identification
sublayer

Delivering
sublayer

mapping

NodeID

NodeID

NodeID

Figure 1: Network architecture model



II.3 Network Layer Model

The transport and upper layers can communicate
with the mobile node by specifying the node identi-
�er regardless of the interface location. This identi-
�er is called generalized identi�er. The conventional
network layer is divided into two sub layers: the iden-
ti�cation sub layer and the delivering sub layer (Fig-
ure 1). The generalized identi�er, which is passed to
network layer from the transport layer is mapped to
the interface locator in the identi�cation sub layer by
querying the MA. The delivering sub layer delivers
the packet in accordance with the interface locator.
However, the use of two headers in each sub layer
is ine�cient and causes a header overhead like that
of Mobile IPv6. LINA integrates the identi�cation
sub layer into the delivery sub layer header and thus
avoids header overhead. The node identi�er can be
obtained from the locator.

III. LIN6: An Application of LINA to IPv6

III.1 Addressing Method

A applying LINA to IPv6, require a new network
protocol, which we call LIN6. LIN6 is designed
so as to maintain compatibility with conventional
IPv6, i.e., so that there is minimal impact on the
existing IPv6 infrastructure. The LIN6 addressing
method is based on IPv6 Aggregatable Global Uni-
cast Address(AGUA)[4], in which the upper 64 bits
of the 128 bits IPv6 address indicates the network
pre�x to which the address belongs, and the lower 64
bits represents the interface ID. In LIN6, the inter-
face locator is 128 bits long, and the node identi�er
is 64 bits long.

FP
TLA
ID

RES
NLA
ID

SLA
ID

Interface ID (EUI-64)

public topology site
topology

64 bits 64 bits

(b) LIN/6 Address

LIN6 ID

(a) AGUA

Network Prefix

Network Prefix

Interface Address

Figure 2: Addressing method

Figure 2 shows the relation between an AGUA and
a LIN6 address. The LIN6 address indicates the cur-
rent locator of the LIN6 node. This address is gener-
ally an AGUA. The upper 64 bits of the LIN6 address
is the current network pre�x which indicates the cur-
rent interface locator and lower 64 bits of the LIN6

address is the node identi�er(LIN6 ID). The LIN6 ad-
dress is created by \embedding" the LIN6 ID in the
lower part of the IPv6 AGUA structure. The LIN6
ID is obtained by from the lower 64 bits of the LIN6
address. These operations are called embedment and
extraction.
LIN6 introduced LIN6 generalized identi�er for the

transport and upper layers identi�er. This identi�er
is as same as the generalized identi�er of LINA and
immutable whereas the LIN6 address changes when
the node moves.

III.2 Communication Mechanism

Figure 3 shows the LIN6 sending/receiving com-
munication mechanism.

LIN6 address

LIN6 prefixLIN6 ID

TCP/UDP Layer

Identification
Sublayer

Delivery
Sublayer

LIN6 ID

Mapping Table

LIN6 ID
mapping

extraction

embedment

embedment
extraction

LIN6 address

LIN6 generalized id

LIN6 generalized id

128bits

64bits

128bits

128bits

128bits

(a) Sending

(b) Receiving

IP Layer

TCP/UDP Layer

Identification
Sublayer

Delivery
Sublayer

IP Layer

current interface address

Datalink Layer

Datalink Layer

Figure 3: LIN6 communication mechanism

On sending(Figure 3(a)), the LIN6 generalized
identi�er is transferred to the LIN6 address by us-
ing the following procedure. The identi�cation sub
layer performs extraction from the LIN6 generalized



identi�er to obtain the LIN6 ID and sends a query to
MAs to obtain the mapping using the LIN6 ID as the
key. Since it can derive the current locator(interface
address) when it obtains the mapping, it performs
the embedment procedure and derives the LIN6 ad-
dress. LIN6 address is used for packet delivery in the
delivery sub layer.
On receiving(Figure 3(b)), the delivery sub layer

receives the packet and passes the packet to the iden-
ti�cation sub layer. The identi�cation sub layer per-
forms the extraction procedure. The LIN6 ID per-
forms the embedment procedure with a 64 bit �xed
network pre�x (LIN6 pre�x) to obtain the LIN6 gen-
eralized identi�er of the source node. Thus, the LIN6
address is transferred to the LIN6 generalized identi-
�er.

III.3 Compatibility with Conventional IPv6

When a LIN6 node wants to communicate with
a conventional IPv6 node, an application speci�es a
conventional IPv6 address, not a LIN6 generalized
identi�er, as the destination address. The identi�ca-
tion sub layer does not execute LIN6 speci�c opera-
tions such as embedment. As a result, the LIN6 node
communicates as the equivalent of a conventional
IPv6 node. However, when a LIN6 node communi-
cates with conventional IPv6 nodes, mobility cannot
be supported since node identi�ers are not used.

III.4 Distinguishing LIN6 addresses from conven-

tional IPv6 addresses

LIN6 addresses can't distinguish from conventional
IPv6 addresses. The LIN6 ID is used so that a LIN6
address can be identi�ed as such, that is, part of the
LIN6 ID to identify a LIN6 address. A LIN6 address
can coexist with AGUA, that is, we can use the same
pre�x as in AGUA on a visited network for the upper
64 bits of the LIN6 address, and we can use a LIN6
ID for the lower 64 bits. The lower 64 bits of AGUA
must be in EUI-64 format[2]. The upper 24 bits of
EUI-64 denote the Organizationally Unique Identi�er
(OUI) that is assigned by IEEE, and the lower 40 bits
are the value that is assigned by an administrator
who received an assignment of OUI[5]. If an OUI
is assigned for a LIN6 ID, we can identify a LIN6
address by examining the OUI part of the lower 64
bits of a received packet address.

III.5 Communication Example

Figure 4 depicts the LIN6 communication proce-
dures. There are two mobile nodes, MN1 and MN2,
which are assumed to have registered their mappings
with MA. The communication procedure is as follows:

1. MN1 sends a query to MA to obtain the current
locator of MN2.

2. MA returns the current locator of MN2 to MN1.

G1
N1

G2
N2

N3

Internet

MN1 MN2

MA

(1)(2)

(3)
(4) (5)

(6)

Figure 4: LIN6 communication procedure

3. MN1 creates the LIN6 address of MN2 and sends
a packet.

4. MN2 also sends a query to MA to obtain the
current locator of MN1.

5. MA returns the current locator of MN1 to MN2.

6. MN2 creates the LIN6 address of MN1 and sends
a packet.

MN2 caches the current locator of MN1. When MN1
moves to another subnet and get a new locator, it
sends a mapping update packet to MA and MN2.

III.6 Finding a Mapping Agent

We purpose using a scalable method for �nding
MAs. LIN6 makes use of the Domain Name System
(DNS) to locate the MA(s) of a mobile node. DNS
maintains the list of addresses of MAs of a mobile
node. When a correspondent node wants to send a
packet to a mobile node for the �rst time, the corre-
spondent node sends a query to the DNS server and
obtains the list of addresses of the MAs of the mobile
node.
Figure 5 shows the bootstrap sequence for a LIN6

node registering its current locator with its MA.

DNS server

LIN6 nodeRouter

resolve MA: MA1

registration

MA1
ACK of registrationnetwork prefix

query MA

Figure 5: Bootstrap sequence

III.7 Mapping Update

When a LIN6 node moves from from one network
to another, it gets a network pre�x and sends the cur-
rent mapping to its MAs. The LIN6 node also sends
the current mapping to all correspondent nodes. This



operation is called Mapping Update. When a corre-
spondent node receives a mapping update message
and obtains by inspecting its mapping cache. map-
ping update messages should have an Authentication

Header(AH)[6].

IV. Implementation

IV.1 Implementation Model

We implemented a prototype system of LIN6 on
NetBSD/i386 with KAME IPv6 stack. Figure 6
shows an overview of our implementation.

Mapping Agent Mapping Resolver

userland

kernel

Mapping Table

LIN6
socket

ip6_outputip6_input

LIN6_input LIN6_output

TCP/UDP
IP

Ethernet

Table

Figure 6: LIN6 implementation model

LIN6 basic operations such as embedment the node
identi�er to interface locator and extracting the node
identi�er from the interface locator were implemented
in the kernel with the mapping cache table. LIN6
mapping functions such as registration and acqui-
sition of mapping were implemented in application
program. This program is called Mapping Resolver.
Between the mapping resolver and kernel's mapping
table management functions communicate through a
socket called LIN6 socket. We implemented the Map-
ping Agent as an application program, and created a
DNS pseudo entry type to relate node identi�er to
MAs.

IV.2 Operation

For input, the network layer calls ip6_input().
LIN6 extracts the LIN6 ID from the received packet.
If the destination address is a LIN6 address, it calls
LIN6_input() and gets the generalized identi�er.
This process is delivered to upper layer after get-
ting generalized identi�er. For output, the IP upper
layer calls ip6_output(). If the destination address
is a generalized identi�er, it calls LIN6_output().
LIN6_output() extracts the LIN6 ID from the gen-
eralized identi�er and obtains the current locator of
the destination node. Mapping information is main-
tained in the mapping table in the kernel as a cache.
If an entry is found in the mapping table, the LIN6 ID
is embedded in the current locator. If an entry can't
be found in the mapping table, the mapping resolver
is called via LIN6 socket with the LIN6 ID. The map-
ping resolver sends a query to the MA and obtains

a current locator for the LIN6 ID. The mapping re-
solver give the current locator to the kernel via LIN6
socket. If destination address is not a LIN6 address,
it performs the conventional IPv6 operation since it
doesn't call either LIN6_input() or LIN6_output().

V. Evaluation

We measured packet processing overhead as a basic
performance test of our LIN6 prototype implementa-
tion, The mapping table manipulations were addi-
tion, deletion, and search of a mapping while increas-
ing the number of mapping entries in the mapping
table. The evaluation was performed on PC/AT com-
patible machines with a Pentium-III 550MHz proces-
sor. The processing times were measured with the
Pentium performance register.

V.1 Packet Processing Overhead

0.5 1 1.5 2 2.5 3 3.5 4 4.5

LIN6

IPv6

LIN6

0.842

0.849
(+0.83%)

2.77

4.05
(+46%)

processing time (microsecond)

IPv6

Output

Input

Figure 7: Operation overhead

Figure 7 shows the processing time of transmission
and reception in LIN6 and IPv6. For output, in LIN6,
a large overhead is incurred because LIN6 needs to
search for the mapping of the target packet to per-
form the embedment process. On the other hand, the
overhead is very small for input because LIN6 does
not perform the embedment process for input. As
the results show, the processing overhead of LIN6 is
negligible in comparison with communication time.

V.2 Mapping Table Performance

We measured the processing time of addition, dele-
tion, and search of a random mapping to/from the
mapping table while increasing the number of entries
in the table in steps of 10 randomly generated entries.
The processing time for each operation increases

only slightly with the number of mapping en-
tries(Figure 8) . Although a few monotonous in-
creases occur, these are not a serious problem since a
mobile node communicate with a large number of cor-
respondent nodes(about max. 120 nodes/2months).
The reason for the gradients is that the mapping ta-
ble implementation uses a normal hashing algorithm.
We can improve the performance by using a better
algorithm such as B-tree with the hash.



0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700 800 900 1000

Pr
oc

es
si

ng
 T

im
e 

(m
ic

ro
se

co
nd

)

number of mapping entries

addition
deletion
search

Figure 8: Mapping table processing time

VI. Comparison of LIN6 and Mobile IPv6

LIN6 does not have the problems of Mobile IPv6.
First, since LIN6 uses no extension headers of IPv6, it
has no header overhead whereas Mobile IPv6 has 48
bytes of header overhead at most. Second, in LIN6,
the MAs of a mobile node can be found without loca-
tion of a node identi�er of the mobile node whereas
the HA of a mobile node must be located on the sub-
net speci�ed by the home address of the mobile node.
This feature increases fault tolerance. Third, LIN6 is
consistent with the IP security protocols because the
node identi�er that is used above the transport layer
is immutable and the node identi�er appears in the
IPv6 base header.

VII. Futurework

VII.1 Micro Mobility for Smooth Hando�

In wireless communications, mobile nodes connect
to the Internet via base stations and change their
point of access frequently. A change of access point
during active data transmission or reception is called
a hando�. During or immediately after a hando�,
packet losses may occur due to delayed propagation of
location update information[7, 8]. These losses should
be minimized in order to avoid a degradation of ser-
vice quality as hando� become more frequent.

To solve this problem we must design a protocol
that provides mobility and hando� support for mo-
bile hosts that change base stations frequently. We
will study methods of local level smooth hando� and
a hierarchical approach to support wireless network
mobility.

VII.2 LIN6 with IPsec

Security issue is a potentially contentious in LIN6's
mapping update message. If the mapping update
message is attacked by another node, communication

packets aren't delivered to the actual LIN6 address,
LIN6 nodes can't communicate.
LIN6 needs IP level security such as IPsec[3]. map-

ping update messages should be authenticated with
IPsec AH[6]. When two LIN6 nodes communicate
with IPsec, IPsec Security Association should be es-
tablished using a generalized identi�er. When LIN6
node sends a mapping update message to an MA,
LIN6 needs to have security mechanisms such as se-
cure DNS update[9, 10].

References

[1] D. B. Johnson and C. Perkins, \Mobility Sup-
port in IPv6," draft-ietf-mobileip-ipv6-12.txt,
Internet-draft, IETF (2000) (Work in progress).

[2] S. Deering and R. Hinden, \Internet Protocol,
Version 6 (IPv6) Speci�cation," RFC2460, IETF
(1998).

[3] S. Kent, R. Atkinson, \Security Architecture for
the Internet Protocol," RFC2401, IETF (1998)

[4] R. Hinden, M. O'Dell, and S. Deering, \An IPv6
Aggregatable Global Unicast Address Format,"
RFC2374, IETF (1998).

[5] Guidelines for 64-bit Global Identi�er (EUI-64)
Registration Authority, http://standards.
ieee.org/regauth/oui/tutorials/EUI64.html,
IEEE (1997).

[6] S. Kent, \IP Authentication Header," RFC2402,
IETF (1998).

[7] Andras G. Valko, \Cellular IP: A New Approach
to Internet Host Mobility," ACM SIGCOMM

Computer Communication Review, vol.29, pp. 50-
65, Jan. 1999.

[8] R. Ramjee, T. La Porta, S. Thuel, K. Varad-
han, and S.Y. Wang, \HAWAII: A Domain-based
Approach for Supporting Mobility in Wide-Area
Wireless Networks," IEEE ICNP 1999, Oct. 1999.

[9] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound,
\Dynamic Updates in the Domain Name System,"
RFC2136, IETF(1997).

[10] D. Eastlake, \Secure Domain Name System Dy-
namic Update," RFC2137, IETF 1997.


