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Volumic Segmentation using Hierarchical Representation andTriangulated SurfaceJacques-Olivier LachaudAnnick MontanvertOctober 95AbstractThis research report presents a new algorithm for segmenting three-dimensional images.It is based on a dynamic triangulated surface and on a pyramidal representation. Thetriangulated surface, which follows a physical modelization and which can as well modifyits geometry as its topology, segments images into their components by altering its shapeaccording to internal and external constraints. In order to speed up the whole process,an algorithm for pyramid building with any reduction factor allows us to transformthe image into a set of images with progressive resolutions. This organization into ahierarchy, combined with a model that can adapt its mesh re�nement to the resolutionof the workspace, authorizes a fast estimation of the general forms included in the image.After that, the model searches for �ner and �ner details while relying successively onthe di�erent levels of the pyramid.Keywords: three-dimensional segmentation, deformable model, three-dimensional pyramid, com-plex topology, triangulated surface, multi-scaleR�esum�eCe rapport de recherche pr�esente un nouvel algorithme de segmentation d'images tridi-mensionnelles par utilisation de pyramides et de triangulation de surface dynamique.La triangulation, dot�ee d'une mod�elisation physique et capable de changer sa topologie,va, en se d�eformant suivant certaines contraintes, segmenter l'image en ses constituants.A�n d'acc�el�erer le processus, un algorithme de construction de pyramide de facteur der�eduction quelconque permet de transformer l'image en un ensemble d'images de r�e-solution progressive. Cette hi�erarchisation, coupl�ee �a un mod�ele capable d'adapter lapr�ecision de sa maille �a la r�esolution de son espace de travail, permet d'estimer tr�esrapidement les formes g�en�erales contenues dans une image. Une fois ceci fait, le mod�elerecherche les d�etails de plus en plus petits en s'appuyant successivement sur les di��erentsniveaux de la pyramide.Mots-cl�es: segmentation tridimensionnelle, mod�ele d�eformable, triangulation de surface, topolo-gie variable, multi-r�esolution, pyramide tridimensionnelle



Volumic Segmentation using Hierarchical Representation andTriangulated SurfaceJacques-Olivier Lachaud and Annick MontanvertLIP, ENS-Lyon, URA CNRS 139846, all�ee d'Italie, 69364 LYON Cedex 7tel: 72.72.85.03 or 72.72.85.86fax: 72.72.80.80e-mail: (jolachau, montanv)@lip.ens-lyon.frNovember 9, 19951 IntroductionVolumic segmentation has become a major research topic in the last years. This is due to theappearance of three-dimensional data in medical, geological or biological domains. This kind ofdata can come from either MR, tomography or confocal microscopy. Whereas bi-dimensional seg-mentation tries to mimic the vision process of the human being, volumic segmentation widens thedetection of forms to the reconstruction of complex volumes, which is a di�cult operation for ourmind.Unfortunately the analysis of three-dimensional data and the detection of objects inside set alot of additional problems, like the control of objects with complex topology or the computationalcost of the operations in a volumic space. Moreover, at the present time, the means of acquisitionintroduces noises in the data. Thus direct segmentations are often inadequate and the resort to adeformable model is then essential.Hence the �rst purpose has been to evaluate the state of the art in order to develop a deformablemodel, semi-discrete, dynamical, and possessing a variable topology. Then, in order to overstep thescope of classical segmentation and to accelerate the processing, we associate a scalar continuous�eld with the image and we introduce the notion of pyramids composed of three-dimensional images.Eventually, we have tested our model and we have measured the savings given by the use of ahierarchical approach. A part of this work is described in [11].2 Deformable surface2.1 Overview of the deformable modelsA deformable model is a model that follows a general principle: the object is deformed until itminimizes an energy function. The formulation of the minimization can be one of the followings:� either directly: the energy function is explicit and calculable. We use a mathematical tool,such as least-square method for instance, in order to �nd the minimum. After this stage, wededuce the parameters of the model. 1



� or indirectly: the model constrained by internal and external forces evolves until it stops atan equilibrium point. Once this is done, the current parameters minimize the energy functionlinked with the constraint system.Thus, for the bi-dimensional case, the snake (or active contour) is a deformable curve whichsegments images using energy minimization [8] [5]. The snake escapes the problems of a globalminimization by making a certain number of local minimizations until it reaches a stable point.The least-square method is then applied locally. Because the snake can be extended to more generalproblems, many three-dimensional models are based on this principle.For the three-dimensional case, the modelizations based on quadrics, superquadrics [23] [1] andhyperquadrics [9] are very popular. These models segment images by computing both local andglobal parameters. In [23], a set of forces depending on the image and on the model propertiesis applied in order to direct it toward the desired solution. In [1], the authors compute �rstsome global parameters by a least-square method and then they sharpen the result by adjusting acontrol-box. Unfortunately these two methods require objects homologous to a sphere for correctresults.Volumes can also be designed by implicit functions (or blobs)[25]. These active blobs behave likebi-dimensional snakes because they perform a lot of local minimizations of the model parameters.The main drawback is the computational cost needed to solve non-linear di�erential equations.A similar approach is the front propagation [15]. The form is de�ned as an implicit functionof IR4 ! IR. This de�nition allows the use of any topology in IR3. On the other hand, thecomputational cost is greatly increased due to the use of an upper dimension.Deformable meshes are more classical approaches and, in this case, the segmentation is done byconstraining the model on its vertices. The mesh can be either a triangulated surface [17] [10], acubic spline [13], or any other structure. Whichever structure is chosen, a set of local constraintsis applied to preserve the homogeneity of the model. The problem is then to solve the topologicalbreaks. For the spline case, [12] gives a partial solution to this problem.2.2 A 
exible triangulated surfaceIn order to segment three-dimensional images, we have chosen our model according to two essentialcriteria: the quickness and the quality of results.The last approach, the triangulated mesh, seems to be the best choice after the examination ofeach model. Being a direct extension of the bi-dimensional snake, its advantages are quite clear:� simplicity,� quickness(O(N2) vertices for a volumic image with edges of N voxels),� fast and easy rendering.To these points we can add the opportunity of extracting features of the object, such as thearea and the volume de�ned by the object, moments and topological informations. Thus theapplication domain is considerably widen and meets a lot of various domains: segmentation, volumerepresentation, CAD, : : :This model isn't su�ciently e�cient for our purpose, so we have improved it with both a physicalmodelization and a 
exible geometry. The �rst aspect, described in section 3.2 characterizes thedeformation principle of the object under forces built from the image and from internal constraints.The second one, described in section 3.3 manages a constant coherence between the analyticalshape of the object and its geometry. In other terms, the model will always represent a real shape,even if the constraints force it to modify its geometry or its topology.2



3 Overview of the model3.1 Triangulated MeshOur segmentation is based on a deformable surface. We de�ne it as a closed oriented triangulatedmesh. With this de�nition the surface always represents the boundary of a real volume. Thefollowing rules give a formal de�nition of a closed oriented triangulated mesh � :� � is a �nite reunion of triangles,� two di�erent triangles have either an empty intersection, an intersection reduced to a vertexor an intersection reduced to an edge,� any edge belongs to exactly two distinct triangles,� two locally distinct surface elements can't meet at one vertex,� the orientation must globally de�ne an inner and an outer part.Our surface may thus be composed of several connected components, all closed and oriented.3.2 Physical AspectThe mesh is assimilated to a dynamic system of particles, which are the vertices of the triangles,following both constraints of other particles and of the environment. Practically, interactionsbetween particles occur only between direct neighbours. [21] models a dynamic particle systemtoo, but he doesn't rely on the connections of triangulated meshes in order to �nd quickly theinvolved particles.Hence we use the geometry of our surface to detect the neighbours of the vertices, that is thedirect connected ones. We de�ne two internal forces that depend on the neighbouring of eachvertex: the force of curvature resistance Fc which smoothes the shape, and the force of surfaceelasticity Fe which spreads localized deformations along the whole surface.8S; ���!Fc(S) = �c � "���������!X(S)Xg(S)�� NS�1Xi=0 1NSi � ���������!X(Si)Xg(Si)�# (1)where8><>: �c is the coe�cient of curvature resistance.X(S) are the coordinates of the vertex S.���!Xg(S) is the barycenter of the neighbours of S.8S; ���!Fe(S) = NS�1Xi=0 �e � �
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 (2)where( �e is the sti�ness coe�cient.dG is the global average length of the edges.These two forces follow the action/reaction principle. The �rst one brings back vertices to theirlocal tangent plane. It represents the surface tension energy. The second one regularizes the edgelengths along the entire surface. It expresses the binding energy.3



Our main purpose is the segmentation of objects, parts of a volumic image. To do so, we expressthe in
uence of the image, noted I , as a set of constraints on our model. Physical constraints mustbe de�ned everywhere, so we consider our workspace as a continuous scalar �eld of IR3. Startingfrom a discrete image I , we compute a potential function from IR3 toward [0; 1] noted �I . Thistransformation, described in section 4.1, allows us to de�ne two external forces Fi and Fdi derivedfrom the continuous scalar �eld and intended for di�erent purposes:8S; ���!Fi(S) = �i� ��0 � �I(���!X(S))� � ���!Xn(S) (3)Let �!vdi be �riI ����!X(S)� �~{+�rjI ����!X(S)� � ~| +�rkI ����!X(S)� � ~k8S; ����!Fdi(S) = ��(�di � �di)��!vdi � ���!Xn(S)� � ���!Xn(S) + �di � �!vdi� (4)where8>>>>>>><>>>>>>>: �i is the interaction coe�cient and �0 the searched value in the potential function;�di(resp. �di) is the coe�cient of gradient interaction along ���!Xn(S)(resp.(���!Xn(S))?);�F ( ~X) is the interpolation of the discrete image F at point ~X;(riI;rjI;rkI)(i; j; k) is the gradient vector at point (i; j; k);���!Xn(S) is the surface normal at vertex S:� The force Fi is meant to search for the isopotential surface of value �0. Its principle is toin
ate or de
ate locally the model as long as it doesn't �t on the desired isopotential surface.A positive value is expected for the coe�cient �i if the potential function tends toward onead in�nitum, a negative one when it tends toward zero.� The force Fdi is a classical gradient descent. The coe�cient �di modulates it along the surfacelocal normal, �di along the local tangent plane. There's absolutely no contour tracking orreconstruction, as [18] does, but only a direct use of the gradient vector.Both forces are normalized by the parameter � (see section 3.3.1). � is the invariant controllingthe re�nement of the triangulated mesh, i. e. the edge length.The algorithm carrying out the displacement of the surface can be summarized to an iterationof the following steps:1. Computing of the internal forces and of the forces deduced from the image for all vertices.2. Re-sampling of the time scale to limit the vertex displacements.3. Application of the Dynamic Fundamental Law for each vertex.4. E�ective displacement of the vertices.We must note that this process expresses only the analytical displacement of the surface (changesof coordinates) and not the intrinsic geometrical or topological modi�cations.4



3.3 Geometrical aspectTriangulated meshes tend to intertwine and to intersect when they are left on their own. A directchecking over all triangles would be very costly in term of computational time. So [10] introducesa global invariant � which bounds the minimal and maximal sizes of each edge (see section 3.3.1).By this way, the local geometrical modi�cations are made easier and tests over vertex distance aresu�cient to detect collisions between pieces of surface. We control topological breaks with the helpof the Euler-Poincar�e's characteristic (see section 3.3.2).3.3.1 Introduction of an invariant �The invariant � is a positive scalar which determines globally the re�nement of the mesh. Formallyspeaking, it de�nes three geometrical constraints:8(U; V ) couple of neighbouring vertices, � � 
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 � 2:5 � (6)8(U; V ) couple of non-neighbouring vertices, 2:5p3 � � 
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 (7)(5) and (6) express the upper and lower bounds of one edge length. They force the triangulatedsurface to remain regularly sampled. The violation of (7) expresses a collision between two distinctparts of the surface. We use it to detect and solve topological breaks. The numerical constantsintroduced in these three equations guarantee the independence of the constraints de�ned aboveand assure a correct collision detection. Section 3.4 describes the geometrical and topologicalmodi�cations essential to the preservation of these rules.3.3.2 Use of the Euler-Poincar�e's characteristicSurface theory o�ers a simple way to classify surfaces according to some topological invariants.[6] brings out three distinct fundamental topological invariants for a given surface S: the numberof boundary curves denoted �(S), the Euler-Poincar�e characteristic �(S), and the orientabilitynumber denoted q(S). These invariants are totally independent of any proper paneling of S. Inother words the re�nement degree of a surface has no in
uence on its invariants.Our kind of triangulated surface allows us to simplify the surface characterization: our surfaceis closed, hence �(S) is nil, and it is an oriented one, so q(S) is nil too. Therefore we can classifyall our triangulated meshes according to this only criterion �(S). Moreover �(S) is easily workedout for that kind of surface. (8) de�nes it as:�(S) = s(S)� a(S) + f(S); where 8><>: s(S) is the number of vertex of S;a(S) is the number of edge of S;f(S) is the number of facet of S; (8)We can add another relation for closed triangulated meshes: 2 a(S) = 3 f(S) (9)From (8) and (9) we can deduce: �(S) = s(S)� 13 a(S) (10)5



Figure 1 summarizes the four main topology changes for a closed oriented surface. The twoothers will be discussed later. We recall the variations of �(S) generated by these changes. Weauthorize the surface S to represent several connected components. In that case its characteristic�(S) is the sum of the characteristics of all components of S. Only the global variation of thewhole surface S is examined. We build our transformations with the help of the surface operationsde�ned in [6].
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Figure 1: Description of the four main topology accidents for a closed oriented surface of IR3� Axial melting: it occurs when two surface elements, which are not locally neighbours,collide. According to the rules of surface building described in [6], the transformation can besplit up into the following operations:1. a piece of surface is cut out of each surface element. It de�nes two contours C1 and C2,2. a bridge is created between the two contours and joins them into one contour C,3. the gap of contour C is �lled in by a lid, thus closing the surface.This process either creates a topological hole in the surface S or join two distinct connectedcomponents into one. The achieved surface S1 possesses a characteristic �(S1) as:�(S1) = �(S)� 2 (11)� Annular constriction: it appears when a piece of surface is too narrow and turns in onitself. The surface splits up into two parts precisely at this location. The following operationsmodelize this transformation:1. a piece of surface is cut out near this location, creating a contour C,2. the bridge joining the pieces of surface and builded along contour C is removed from thesurface, thus creating two contours C1 and C2,3. the two gaps de�ned by these contours are �lled in by a lid; the surface is now closed.6



This process either eliminates a topological hole or creates a new connected component. Theachieved surface S1 possesses a characteristic �(S1) as:�(S1) = �(S) + 2 (12)� Axial constriction: it is the dual transformation of the axial melting (by reversing theinside and the outside). The � variation is so identical to the one of (11).� Annular melting: it is the dual transformation of the annular constriction (by reversingthe inside and the outside). The � variation is so identical to the one of (12).There are two other topology changes which are independent of the previous ones: the appear-ance and the disappearance of a surface component. The �rst one creates a connected componentand is directed by the user. It follows (12). The second one eliminates a connected component andoccurs when a surface element becomes too small. It follows (11). From all that has been writtenso far, it is quite easy to demonstrate by recurrence:8S; �(S) = 2 (N(S)�H(S)) where ( N(S) is the number of connected components of S;H(S) is the number of topological holes of S: (13)
(a) (b) (c) (d)Figure 2: Intermediate forms between two legal surfaces: (a) a surface before an axial melting (� = �0), (b)the same with just one common vertex (� = �0 � 1), (c) the same with one common edge and two commonvertices (� = �0 � 1), (d) the surface after the axial melting (� = �0 � 2).We notice that each transformation modi�es the value of � by two. Strangely the intermediatedegenerate surfaces possess an intermediate � too (see �gure 2). This property could be relevantand usable to justify the changes of homotopy class.3.4 ImplementationThe triangulated mesh is meant to deform under the action of several forces. The geometricalconstraints de�ned by the invariant (see section 3.3.1) may be violated. The geometry of thesurface must then be modi�ed in order to eliminate problematic vertices, edges or facets. Theveri�cation process of these constraints is performed after each vertex displacement. Arising prob-lems are solved immediately. In section 3.4.1 we explain how we manage the local coherence onthe surface. In section 3.4.2 we explain how we classify and we solve the collidings between twosurface elements. 7



3.4.1 Solution of local accidentsWe use equations (5) and (6) to detect self-intersections. The constraints over each edge lengthkeep the surface from crossing itself.For every couple of vertices (U; V ) with direct common neighbours (SU ; SV ); we denote:d = 



�!UV 



 and d0 = 
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nU = number of neighbours of UnV = number of neighbours of VThe table 1 describes the veri�cations of edge lengths for each couple of neighbouring verticesand the correspondingly transformation applied. Figure 3 describes the geometrical transforma-tions that may be applied on the surface of the mesh.In the case of a melting, a particular checking is done before trying to melt the two vertices.The following algorithm describes this veri�cation:MELTING+nU = 3 and nV = 3 true=) Tetrahedron to be deleted. End+nSU = 3 true=) Vertices SU is useless, deleted+  �  -nSV = 3 and nSU > 3 true=) Vertices SV is useless, deleted+  �  -E�ective melting ...This �rst pass eliminates some problematic con�gurations. Now we are able to check if themelting is just a geometrical problem or a topological one (see section 3.4.2).
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S(a) (b)Figure 3: (a) Creation or inversion if U and V are too far away - (b) Fusion or annular problem if U and Vare too close.We now verify that our geometrical transformations don't modify the Euler-Poincar�e's charac-teristic. We use the notations de�ned in section 3.3.2 (where �(S) = s(S)� a(S) + f(S)):8



� � d0 < 2:0 � � � d0 < 2:0 � 2:0 � < d0 2:0 � < d0nU > 3 and nV > 3 nU = 3 or nV = 3 nU > 3 and nV > 3 nU = 3 or nV = 3d < � MELTING MELTING MELTING MELTING� � d � 2:5 � INVERSION(*) nothing INVERSION(*) nothing2:5 � < d INVERSION CREATION CREATION CREATION(*) INVERSION occurs only if d > 1:6d0.Table 1: Logical array used for deciding the geometrical transformation to apply in order that thesurface keeps following the constraints de�ned by the invariant.If S creation�! S 0, then 0B@ s(S 0) s(S) + 1a(S 0) a(S) + 3f(S 0) f(S) + 2 1CA and �(S 0) = �(S)If S fusion�! S 0, then 0B@ s(S 0) s(S)� 1a(S 0) a(S)� 3f(S 0) f(S)� 2 1CA and �(S 0) = �(S)If S inversion�! S 0, then 0B@ s(S 0) s(S)a(S 0) a(S)f(S 0) f(S) 1CA and �(S 0) = �(S)The solutions given to local accidents are thus coherent with the predictions imposed by theEuler-Poincar�e's characteristic.3.4.2 Solution of global accidentsWe �rst reduce the problem from four con�gurations to two: the axial melting and the annularconstriction for instance. We can use indeed the duality between the inside and the outside of avolume. Because we represent our volume with a border surface (even if it is an oriented border),there is no distinction to make between an axial melting and an axial constriction or between anannular constriction and an annular melting.Axial meltings occur when two plane parallel surfaces which are inversely oriented are too closefrom each other. On a discrete level, two vertices U and V transgress (7). U and V cannot beneighbours, but some of the neighbouring vertices of U may be in the neighbourhood of V . That'swhy we make distinctions between some of the axial meltings and when (7) is violated, we denoteK the number of groups of consecutive common vertices to both U and V (see �gure 4). We callK the order of the axial topology rupture.What really means the order K? We can interpret it as the kind of topological problem:0-order rupture it is two non-connected surfaces that are facing each other. It is a simple axialmelting or constriction.1-order rupture it is generally a crossing of vertices on a signi�cantly bent surface. This kind ofrupture comes down to a preservation of the local convexity.2-order rupture and more : : : the surface tightens around the two vertices. One (if K = 2) ormore (if K > 2) tunnel-like surface became too narrow on these points. Such a problem ismore an annular melting or an annular constriction.9



(a) (b) (c)Figure 4: Examples of classi�cation according to the order of the rupture: (a) 0-order rupture - (b) 1-orderrupture - (c) 2-order rupture.A speci�c solution of all di�erent cases is impossible, but we cannot ignore such cases, even ifthey are relatively uncommon. So our approach is to transform each rupture into a 0-order rupturebefore solving the problem.To do this, we create intermediary vertices between U and its neighbouring vertices and betweenV and its neighbouring vertices. Even if the vertices and edges created by this process don't followin general the rules deduced from the invariant, such a transformation reduces all axial ruptures toa 0-order axial rupture (see Figure 5a). After this step, we realize a triangulation between theseintermediary vertices in order to build a surface (which is internal or external depending upon thesurface orientation around U and V ) between the two non-connected surfaces (see Figure 5b).After having created this tunnel, we remove the vertices U and V just as their links to their ancientneighbourhood. An overall veri�cation is then done on the vertices implied in the topologicalrupture and some geometrical transformations are realized according to equations (5) and (6).Remark: We emphasize that this general solution of axial breaks puts aside the problem of apossible annular break for instance (case K � 2). However it reduces entirely the problem of theirdetection to one single con�guration, which remains its purpose.
intermediary points

Creation of
Triangulation(a) (b)Figure 5: Solution of axial breaks: (a) creation of intermediary vertices - (b) triangulation between the twosurfaces and deletion of the two old vertices.Now annular ruptures can be detected by a simple veri�cation: the presence of what we callillicit meltings. They occur when two neighbouring vertices don't represent a surface anymore but10



a volume: generally the neighbourhood of the two vertices is just a piece of surface (topologicallyequal to a square for instance), but in the case of an illicit melting the neighbourhood of the twovertices connects to itself on one side (or more) and forms a surface that cannot be shrunk (itde�nes indeed an essential aspect of the whole surface) (see �gure 6). A melting of these twovertices becomes impossible without creating an error in the topology of the model.
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OFigure 6: Two examples of illicit meltings.On a practical level, two vertices de�ne a surface that cannot be shrunk when they possess morethan two common neighbours. Two of these common neighbours are compulsory, because they arejust the remaining vertices of the two facets containing U and V at the same time. If U and Vpossess other common vertices, their melting is far more complex than an usual one, because it isa topology break.The solution of such breaks is based on the dividing of a virtual facet, which is de�ned by thevertices U , V and the other common vertex. There is no facet at this place, but we divide thesurface exactly at this location and then we close the two splitted-in-two surfaces by two facetsOUV whose orientations are opposite (see �gure 7). We reorganize the neighbourhood aroundthe new facets O1U1V1 and O2U2V2 and we remove the old vertices O, U and V meantime. We cannow melt the two edges U1V1 and U2V2 separately (see also �gure 7).One may note that the process has just to be iterated on the critical edge if the illicit meltingpossesses more than three common vertices at this edge. Speaking on an algorithmic level, as soonas we have to make a fusion, we check if it can be done normally, and, if this is not the case, theannular problem is solved as described previously, and we call back this routine on each dividededge.
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according to the predictions given in section 3.3.2. We use the notations de�ned in the samesection (where �(S) = s(S)�a(S)+ f(S)) and we denote nX the number of neighbours of a vertexX : If S interm. vertices�! S 0 triangulation�! S 00, then0B@ s(S 0) s(S) + nU + nVa(S 0) a(S) + 3 � (nU + nV )f(S 0) f(S) + 2 � (nU + nV ) 1CA and 0B@ s(S 00) s(S 0)� 2a(S 00) a(S 0)� (nU + nV ) + (nU + nV )f(S 00) f(S 0)� (nU + nV ) + (nU + nV ) 1CA ,and we have �(S 00) = �(S)� 2If S illicit melting�! S 0, then 0B@ s(S 0) s(S) + 3a(S 0) a(S) + 3f(S 0) f(S) + 2 1CA and �(S 0) = �(S) + 2The implementation of topology ruptures and of geometrical modi�cations respect fully thepredictions given in section 3.3.2. The implementation of the axial melting or the axial con-striction follows well (11). In the same way the implementation of the annular melting or theannular constriction follows well (12). Moreover, the geometrical modi�cations applied when usingthe preservation rules (5) and (6) don't modify the Euler-Poincar�e's characteristic of the surface.Therefore all geometrical or topological transformation rules are coherent and transform a closedoriented surface into a surface of the same kind. Thus, the geometrical description of a surface isalways coherent to its analytical description. Figure 8 represents a simple application of dynamicaltopology: it is the transformation from an object homologous to a sphere to a torus-like object.
(a) (b) (c)Figure 8: Example of axial break: (a) Object homologous to a sphere - (b) axial melting - (c) torus-likeobject.3.5 Initialization of the triangulated meshThe triangulated surface is initialized with one icosahedron embracing the volumic image in realcoordinates or with several icosahedra scattered in the image. The surface is then globally divided(see section 5.1) until it follows our geometrical constraints. After that, the surface is free toevolve according to its dynamic and geometrical rules.12



4 Image workspace and pyramids4.1 Transformation toward a continuous scalar �eldIn section 3.2 we have de�ned two external forces Fi and Fdi, assuming that the volumic imageis a continuous scalar �eld. However volumic means of acquisition provides discrete image. Wepropose a transformation from discrete to continuous space by �rst degree interpolation.Let I(i; j; k) be our discrete image, with i = 0 : : :M � 1, j = 0 : : :N � 1, k = 0 : : :P � 1. Let�, �, � be its real size: it corresponds to the volume really occupied by the image in space.We determine the continuous potential function �I(x; y; z), with x 2 [0; �[, y 2 [0; �[, z 2 [0; �[,by interpolating I() with help from:x0 = x � M� ; y0 = y � N� ; z0 = z � P� ; (x0; y0; z0) coordinates of (x; y; z) in [0;M [�[0; N [�[0; P [Let i = bx0c; j = by0c; k = bz0c; then, by letting � = x0 � i; � = y0 � j; 
 = z0 � k0BBB@ �I(x; y; z) = (1� �)(1� �)(1� 
)I(i; j; k)+ �(1� �)(1� 
)I(i+ 1; j; k)+(1� �)�(1� 
)I(i; j+ 1; k) + ��(1� 
)I(i+ 1; j + 1; k)+(1� �)(1� �)
I(i; j; k+ 1) + �(1� �)
I(i+ 1; j; k+ 1)+(1� �)�
I(i; j+ 1; k+ 1) + ��
I(i+ 1; j + 1; k+ 1) 1CCCA (14)Figure 9 shows an example of �rst degree interpolation in a two-dimensional space. Withinthis context, the potential function is linear when one variable is �xed, and quadratic in the generalcase. Within the context of three-dimensional space, the potential function is linear with two �xedvariables, quadratic when just one variable is �xed, cubic in the other cases.In this way we obtain a continuous scalar �eld, but which is not derivable everywhere. That iswhy we cannot derive directly the gradient from the interpolation. An interpolation of the discretegradient computed from the discrete volumic image is then preferred.
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Figure 9: Example of bi-linear interpolationUnfortunately this transformation toward a continuous �eld produces some losses of knowledgeon the contours and the gradient vectors at these points are distinctly softened. One solution couldbe the resort to a higher degree interpolation (two or three for instance) despite the considerableincrease of computational cost. Figure 10 illustrates these problems.13
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(a) (b)Figure 10: Possible gradient loss with interpolation (one dimensional case): (a) linear interpolation, (b)third degree interpolation.On the other hand, whatever interpolation degree is chosen, the computed scalar �eld can beinterpreted as a stack of isopotential surfaces. This interpretation justi�es the de�nition of theexternal constraint Fi (see section 3.2) and thus summarizes the search for forms and contoursto a simple search for corresponding isopotential surfaces.4.2 Multi-scale approach with 3-D pyramids4.2.1 MotivationDirect approach of image segmentation is not totally satisfactory. The in
uence of the potentialfunction derived from image is indeed localized around vertices (according to the de�nitions of theexternal forces Fi and Fdi in section 3.2) and doesn't make any sense if the triangulated meshhas not a preciseness greater or equal than the discretization preciseness of the three-dimensionalimage (i. e. its resolution). Two kinds of solutions may be used to solve this problem:� The �rst one consists in using a triangulated mesh with a re�nement comparable to the oneof the image. The surface is then coherent with the frequency domain which it evolves in.The drawback is the need of using a so �ne surface that the computational cost is very high.� The second one consists in using a less �nely triangulated mesh, and in taking an interestin a wider area around each vertex. A direct application of this principle is not very usefulbecause the savings done by the use of fewer vertices are o�set by the losses due to the longerimage examination around vertices.In order to take advantage of both solutions, we propose to compute once and for all the in
uenceof the image areas at di�erent scales. This mixed solution can be done by the computation of athree-dimensional image pyramid, where all reductions correspond to distinct re�nement of thetriangulated mesh. The model will exploit the results obtained at inferior resolution levels in orderto start the calculation at a �ner precision with more e�ciency.4.2.2 Pyramids in image processingThe notion of information contained in an image is closely linked to the resolution the image mustbe considered. Therefore multi-scale analysis has become common, mainly because it structuresimage contents by organizing it into a hierarchy; it can be used as well for dealing with objects(entities) as with images.Pyramidal image representations as proposed by [22] have been the �rst to de�ne and exploitimage reduction. However several purposes may be aimed for, among which are the fast computa-tion of parameters, compression, signal decomposition, segmentation, etc [7].14



Pyramids of frequency decomposition presented in [2][3] provide a set of images at decreasingresolutions which are closed to the visual perception of an observer at increasing distance. Theapplication of a Gaussian kernel �lters image high frequencies. After this �ltering, a sampling oflower resolution provides the image of higher level. Practically one operator combines the operationsof �ltering and re-sampling. This process builds the Gaussian pyramid, taking advantage of thefact that a Gaussian kernel does not create any wrong contours. When its size is 5 � 5 in atwo-dimensional space, the waveband is reduced from one octave, hence the sampling frequency isreduced from the same factor.To get the best out of pyramidal representations we need to de�ne them for volumic imagecomposed of non-cubic voxels and to link them together with our model of surface representation.These points are tackled in section 5.2.4.2.3 Induced problemsOur segmentation is thus based on a dynamical triangulated surface working in a multi-scale space.Its implementation arises some new problems:� choice of the pyramid: usual pyramids are not always well suited for volumic segmentation.So we have developed an algorithm for creating volumic pyramids of any reduction factor (seesection 4.3).� constant appropriateness preservation between the resolution of the current image and there�nement of the triangulated surface: pyramidal approach entails scale variations of thegeometrical structure representation. Section 5.1 shows the way to manage them.4.3 3-D image pyramids of any reduction factorIn order to segment three-dimensional images, our surface model must follow the discontinuityzones at nearest while embracing homogeneous regions.A multi-scale treatment of the 3-D image will provide us a coarse-to-�ne access to the image.Coupled together with the evolution of our surface model, it will speed up the segmentation process(a critical aspect in 3-D) and assure the process convergence toward a \visually correct" solution.We �rst recall the building of a classical Gaussian pyramid.The successive levels of that kind of pyramid are computed by the convolution of a Gaussiankernel of side 5 pixels (or voxels). It guarantees a low cost �ltering without phase translation linkedto a reduction factor of two for each image dimension [4].Let G0 be the initial image of 3-D voxels and the base of the pyramid. The computation ofGh+1 (image of level h + 1 in the pyramid) according to Gh (image of level h in the pyramid) isgiven by the discrete convolution formula:Gh+1(i0; j 0; k0) = 2Xm=�2 2Xn=�2 2Xp=�2!(m;n; p) �Gh(2i0 +m; 2j 0+ n; 2k0 + p) (15)where ! is a Gaussian convolution kernel of size 5 voxels: � 116[1 4 6 4 1]�3:Within our context, we have to take into account two major constraints:15



� voxels are not bound to be cubic (sampling frequencies are highly dependent of the acquisitionmeans and are not identical in the general case { for instance the ratio between di�erent axesmay vary between 1 and 5 in confocal microscopy),� the reduction factor of the re-sampling must be coherent to the surface representation.That is why the previous formulation (15) is not usable as it is.Making our voxel space isotropic in order to apply convolution operators coherently would bevery memory expensive (the resolution would become the lowest common multiple of the samplingfrequencies). Instead, by de�ning a real workspace corresponding to the discrete structure includingthe initial data, we will realize the convolution operations e�ciently.Our goal is to determine a list of volumic discrete images that we denote G0; G1; : : : ; Gmax andwhich represents the three-dimensional pyramid. G0 is the initial image (given for segmentation)of sizes M , N and P . It is the image that possesses the greatest amount of informations. Gmaxwill be the image that includes only the lowest frequencies. Let Mh, Nh and Ph be the sizes ofthe discrete image Gh for h between 0 and max. Their values are still unknown. Let Ih be theCartesian space Mh �Nh � Ph. With these de�nitions a discrete image Gh is a function from Ihtoward [0; 1].We denote IR the space de�ned by the real image of size [0; �[�[0; �[�[0; �[. Because all imagesGh represent at di�erent scale the same real image, all of them have a real size of �; �; �. Theimmersion of a voxel (i; j; k) of a discrete image Gh into the real image space IR is given by thetransformation Th (depending on the level of the pyramid) as below:Th : Ih �! IR(i; j; k) �! �i �Mh ; j �Nh ; k �Ph� (16)It is so an immersion preserving the real proportions of a 3-D discrete image in the parallelepipedde�ned by its real image.We call unit of the real space and we denote it Uh the value min(�=Mh; �=Nh; �=Ph). It's thesmallest distance between the immersions of two voxels in the real image (see section 5.2). In thecase of an isotropic image, we got Uh = �=Mh = �=Nh = �=Ph.In order to build the successive pyramid levels, we need to know the reduction factor. Beingfor the moment unpredictable (see section 5.1), our pyramid construction must authorize anyreduction factor. Unlike purely discrete formulations, the transformation into a continuous image(see section 4.1) associated with our immersion process allows us to build pyramids of any factor.We can nevertheless notice that [19] has adapted the building mechanism of discrete pyramidsto rational reduction factors. However the so-de�ned transformation is not a convolution process;thus the �lters are not low-pass ones and the resulting signals are not well de�ned.Another constraint consists in respecting the coherence of the �ltering/re-sampling operation:we must verify that the �ltering of high frequencies is in harmony with the reduction factor value.We have chosen to keep a convolution kernel of side 5. Therefore the reduction factor per dimension,denoted T , must be less than two.Let V0 be the base of our pyramid of real three-dimensional images. V0 is given by the immersionthen by the interpolation of the discrete data. As a matter of fact V0 = �G0 . Let Vh be the level hof the real image pyramid. Vh+1 is calculated from Vh. The number and the localization (in IR) ofthe points to be calculated are determined by the reduction factor T , and the values are obtainedafter convolution of some points of Vh. Their storing after computation on the real image space isof course done in an array of voxels, assimilated to the discrete pyramid (Gi) at level h+ 1.16



The discrete sizes Mh, Nh, Ph and the measure unit Uh correspond to a real image Vh. Its realsizes (�; �; �) are of course constant for all h. Its characteristics are de�ned recursively with:M0 = M N0 = N P0 = P U0 = min(�=M; �=N; �=P )Mh+1 = �MhT � Nh+1 = �NhT � Ph+1 = �PhT � Uh+1 = Uh � T (17)Let R(i0; j 0; k0) be a voxel of the discrete data of Gh+1. Our goal is to �nd its value for any(i0; j 0; k0).Its immersion RV in the real image Vh+1 has coordinates of Th+1(i0; j 0; k0) alias �i �Mh ; j �Nh ; k �Ph�(see �gure 11a).In order to establish the value of R, the convolution operation is de�ned over points of Vh. Thecentral point has the same position in Vh and in Vh+1. The localization of the other points involvedin the convolution (53 � 1 in 3-D for a kernel of size 5) is determined via the use of the unit Uh todiscretize Vh around the point RV (see �gure 11b). So we obtain the convolution formula below:Supposing Gh is known, Vh is then de�ned by �Gh and we gotGh+1(i0; j 0; k0) = 2Xm=�2 2Xn=�2 2Xp=�2!(m;n; p) � Vh(Th+1(i0; j 0; k0) + (mUh; nUh; pUh)) (18)Gh+1 de�ned then Vh+1 implicitly (Vh+1 = �Gh+1).Because of the unknown reduction factor, the 53 points involved in the convolution doesn'tcoincide with given points of Gh in the general case (see �gure 11c). Moreover there usually won'tbe any cover between points involved in two neighbouring convolutions.Besides, each point of Vh compulsory for the convolution computation is interpolated from 8data points of Vh (so stored in Gh) which form the parallelepiped containing this point (see (14) insection 4.1 and �gure 11c too).The Gaussian convolution kernel (of size 53) is applied successively along the three dimensionsbecause of its separable property. We can estimate the optimization savings by using the followingnotations and equations: Let T be the reduction factor, 5 the size of one side of the Gaussiankernel, t0 the access time to a point value, t1 the execution time of a classical algorithm, t2 theexecution time of the optimized algorithm. We got:t1t0 = 53Mh+1Nh+1Ph+1 t2t0 = 5Mh+1NhPh + 5Mh+1Nh+1Ph + 5Mh+1Nh+1Ph+1Hence t2t1 = 125(T 2 + T + 1) (19)The optimized algorithm is thus faster when the reduction factor T is between 0 and �1+p972(approximately 4:42). An overview of the 3-D pyramid building algorithm is given in appendix A.5 Segmentation5.1 Image/Model AppropriatenessIn section 4.2.1 we have chosen to express surface-image interaction with constraints locallycomputed around each vertex. The use of a pyramid of three-dimensional images requires a model17
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exible to adapt its re�nement to image precision. The edges of our model shouldneither be too long, otherwise the high frequency contours could be missed, nor too small, becauseit would then represent just the decomposition of a small contour of two voxels. In order to obtaina correct appropriateness between the surface and the pyramid images, we must �rst examine therelations linking the model precision to the resolution of an image, and secondly, we must establishan algorithm of surface re�nement, which ensures the appropriateness surface-image during thewhole coarse-to-�ne process.5.1.1 Surface-image relationshipsSection 3.3.1 has introduced a geometrical invariant � which bounds the edge lengths. It is espe-cially useful to simplify the solution of crossing problems in deformable polyhedrizations. Accordingto equations (5) and (6), let dmin be the minimal edge length, dmax be the maximal edge length.We have dmin = � and dmax = 2:5 �. 18



The re�nement of a triangulated surface can so be de�ned entirely with the invariant �. Let �hbe the invariant � at level h of the pyramid. dhmin and dhmax are de�ned as same.The image resolution is closely linked to the unit Uh previously de�ned in section 4.3. Wetake an interest to the case where images are isotropic (i. e. resolutions are identical along all threeaxes), the other case being solved in section 5.2. We recall that Uh is the real size of a voxel edge(cubic for an isotropic image) at level h of the pyramid. We can deduce the relationships between�h and Uh with the help of the following considerations:1. According to �gure 12, an edge can represent a contour formed by two 6-connected voxels(distant of Uh), so dhmin � Uh,2. According to �gure 12, an edge can represent a contour formed by two stricly 26-connectedvoxels (distant of p3 Uh), so dhmax � p3 Uh.Hence, p32:5 � Uh�h � 1 with Uh = min� �Mh ; �Nh ; �Ph� (20)Whatever the value of Uh, an invariant �h which satis�es (20) may thus be found.
3.U

U
(a) (b) (c) (d)Figure 12: Appropriateness between edge length and voxel size: (a) ideal edge length, (b) example of6-connected contour, (c) example of 18-connected contour, (d) example of 26-connected contour.5.1.2 Surface re�nementUnfortunately a surface of given invariant � may be built only during its initialization. After that,all modi�cations of this invariant are bound to geometrical constraints.Now, the surface works in an image pyramid and, consequently, must re�ne its precision everytime it goes down a level of the pyramid (see �gure 13). We propose a process re�ning triangulatedsurface with a factor K. This factor will determine the reduction factor T of the pyramid.Re�nement process of the triangulated surface (or global surface division) (see �gure 14):1. in a �rst pass, a new vertex is created in the center of each facet of the model; the vertex isconnected to the three vertices that delimit its facet,2. in a second pass, the edges, which link together the old vertices (those which were not createdduring the �rst pass), are reversed in order to regularize edge lengths in a systematic way.Such an algorithm reduces the average edge length to 1=p3 of the old one. We may so applyto the invariant a reduction factor whose value is also p3, so K = p3. In order that the inegality(20) be respected at the initialization moment and during all successive pyramid levels, an identicalreduction factor is chosen for the pyramid construction:19



(a) (b) (c)(d) (e) (f)Figure 13: Resolution of a pyramidal image and precision of a triangulated mesh: (d) evolves in (a), (e) in(b), (f) in (c).T = k = p3 and 8(h = 0 : : :hmax � 1); 8><>: �hmax = �init; and �h = �h+1=KU0 = U; and Uh+1 = Uh � Twe got thus p32:5 � Uh�h � 1 (21)At the initialization moment, a bubble or a set of bubbles, whose invariant �init is consistentwith (20) at level hmax, are created. After that, the recursive process described by (21) guaranteesa correct surface-image appropriateness, whichever are the iteration or the current level in thepyramid.
(a) (b) (c)Figure 14: Example of a global division process over a polyhedron with sixty facets: (a) before globaldivision, (b) after �rst pass, (c) after second pass.5.2 Treatment of image anisotropyWe have to solve di�erenly image anisotropy according to the computation step, i. e. during thepyramid construction and during the image segmentation of a pyramid level.20



5.2.1 Anisotropy during the pyramid constructionIt is compulsory that the convolution mask applied during the construction be isotropic with respectto the real space where the image is immersed. If this is not properly done, pyramids will tend tomaintain the contours following a direction where image resolution is �ne, and to soften too muchthose following a direction where image resolution is proportionnaly coarse. That is why we haveintroduced in section 4.3 the unit Uh, h indicating the level of the pyramid.Within the context of anisotropic images, the applied �lter is therefore de�ned from the unitUh = min(�=Mh; �=Nh; �=Ph) and we realized the convolution process as described in section 4.3.5.2.2 Anisotropy during segmentationDuring the segmentation process, the edges have to keep their meaning with regards to the voxelspace. On one hand, if we decide to work in the real image with sizes (�; �; �), edges loose theircoherence with respect to the resolution and the precision of the informations. On the other hand,working in a real image where voxels are cubic, modi�es the constraints that must be applied; thephysical modelization looses then some of its realism. So we have drawn three di�erent ways todeal with this problem:� The surface evolves in a real space of sizes (�; �; �) and respects the constraints of the physicalmodelization. The surface-voxel appropriateness is therefore guaranteed only on the �neresolution axes.� The surface evolves in a real space derived from the space (�; �; �) by a�ne transformation.This space has the same proportions than the discrete image it interpolates and its sizes arethus (� �Mh; � �Nh; � � Ph). The internal forces have a slightly di�erent behaviour than theone they would have in the real physical space.� The surface evolves in a real space of sizes (�; �; �) which we equip with an anisotropic metrics.This metric is de�ned from the current discrete image (Mh; Nh; Ph) and maintains a constanttriangulated mesh-voxel coherence along all axes while following the physical modelization.The �rst method gives good results when the anisotropy is weak; the second one provides goodresults even if the anisotropy is more relevant; the last one, harder to implement (especially forthe vectors operations), is a suitable solution whichever is the context. However, this last methodis far from being essential within the segmentation framework, where the physical modelizationis not supposed to simulate a very �ne behaviour and is just a support to guide the surface. Animplementation of these methods is presented in section 6.6 ResultsWe �rst test our model on a volumic image of a human skull 1 of discrete sizes 256� 256� 68 andof real sizes 1:0 � 1:0 � 1:0625. This image being highly anisotropic, we use the second methoddescribed in section 5.2.2 in order to solve this problem. We set the physical parameters to thefollowing values: �c = 0:05 and �e = 0:0 for the internal forces, �i = �1:0, �0 = 0:08, �di = 0:0and �di = 0:0 for the external forces. The segmentation algorithm with pyramid is described inappendix B. Few forces are needed because we neither wish to track the gradient maxima norwish to obtain a regularly sampled triangulated mesh.1Thanks to Yves Usson (TIMC-IMAG) for the volumic database.21



Moreover we provide our process with a full reliable heuristic that quickens the treatment ofmotionless or quasi-motionless vertices. The segmentation process is run two times for comparisonpurposes:� We �rst run the process directly on the volumic image without using a pyramid. Figure 15shows surface evolution during its deformations: the surface slowly sticks on the outer part ofthe skull and then goes inside to segment its inner part (orbits of the eyes, brain cavity, : : : ).More than 400 iterations are necessary for the surface to stick perfectly on the inner part ofthe skull. The image possessing a very �ne resolution, the initialization with an adequatetriangulated mesh leads to a too costly segmentation in terms of computational time; so themodel just segments the corresponding image of level one in the pyramid. That fact justi�esall the more the use of pyramids as the ones we proposed.� We run after the process by making use this time of the pyramid built up from this volumicimage with a reduction factor of p3. The process waits for its complete convergence at onepyramid level before going down one level. Figure 16 represents surface evolution in animage pyramid. The surface, at �rst coarse, looks quickly like the wanted shape and relies onthe segmentation of one level to outline the object on next level.
(a) (b) (c) (d)Figure 15: Surface evolution during a segmentation without pyramid: (a) iteration 0 on image G1, (b)iteration 100 on image G1, (c) iteration 250 on image G1, (d) iteration 700 on image G1.
(a) (b) (c) (d)Figure 16: Surface evolution during a pyramidal segmentation: (a) iteration 0 on image G3, (b) iteration225 on image G3, (c) iteration 333 on image G2, (d) iteration 461 on image G1.Figure 17 analyzes the behaviour of both algorithms. The one of the classical segmentationalgorithm is quite simple: the kinetic energy curve shows the slow segmentation convergence (see�gure 17b), the vertex number (see �gure 17d) and the average edge length (see �gure 17c)22
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(c) (d)Figure 17: Statistics over a skull segmentation process and comparison between the approach without apyramid (in dotted line) and the pyramidal approach (in solid line): (a) duration of each iteration, (b)evolution of the average kinetic energy accumulated along the surface normals, (c) average edge lengthaccording to the iteration, (d) vertex number of the surface according to the iteration.
23



are subject to few changes, the time cost (see �gure 17a) slowly decreases but only because ofthe use of the heuristic. The behaviour of the pyramidal segmentation algorithm displays thefour used pyramid levels: the vertex number (see �gure 17d) and the average edge length (see�gure 17c) show that the triangulated mesh has gone down a level at the iterations 226, 334and 462. The kinetic energy evolution (see �gure 17b) highlights the convergences at each stepand the duration graph of each iteration (see �gure 17a) explains the time savings provided by acoarse-to-�ne process.Figure 18 and �gure 19 show some di�erent views of the totally segmented skull. Thetriangulated surface has one connected components and twenty-three topological holes.
(a) (b)Figure 18: Final results of the segmentation of G0 (at the 560th iteration the surface possesses 82473vertices, 247551 edges and 165034 facets): (a) front view, (b) side view.We then test our model on a more problematic image: a phase contrast MR angiographicimage 2. Its discrete sizes are 256�256�124. We can observe that such images are mainly composedof vessels whose proportions are not suited for a pyramidal representation. Within this context, thetop image of the pyramid represents nearly nothing (there are few low frequency informations) andthe initialization of the pyramid is very bad. Even in this case, the model succeeded in following thevessels to recover the forgotten ones as shown by �gure 20, but the convergences at each pyramidlevel are slower than in the �rst example. The physical parameters were set to the following values:�c = 0:07 and �e = 0:0 for the internal forces, �i = �1:0, �0 = 0:05, �di = 0:0 and �di = 0:0 forthe external forces.We eventually test our model on a synthetic fractal image (the classical Sierpinski's cube). Itsdiscrete sizes are 81�81�81. We can observe that such images involve a lot of topology breaks. Itis a good example to test the pyramid approach and the model has a correct behaviour, even if thegreat amount of topological problem slows the process (see �gure 21). The physical parameterswere set to the following values: �c = 0:05 and �e = 0:001 for the internal forces, �i = �1:0,�0 = 0:4, �di = 0:0 and �di = 0:0 for the external forces.2Acknowledgements to the UMDS Image Processing Group, London, for the angiographic image.24



(a) (b)Figure 19: Final results of the segmentation of G0 (at the 560th iteration the surface possesses 82473vertices, 247551 edges and 165034 facets): (a) bottom view, (b) three quarters view of the same surface aftera smoothing obtained with a modi�cation of the curvature resistance parameter (�c = 0:3).7 ConclusionWe have designed and developed an e�cient volumic segmentation algorithm by means of a de-formable triangulated surface evolving in a three-dimensional image pyramid. The obtained resultsshow that their quality is identical to other similar algorithms; the tests, as for them, demonstratethe e�ciency and the quickness of our algorithm.Several points may be nevertheless explored:� The �rst convergence step can be greatly speeded up if the surface initialization containsmore information. For instance, it would be very interesting to recover the surface comingfrom a Marching Cube process applied on the highest level of the pyramid ([14] and [16] fora parallelization). The surface computation, very fast because of the very coarse resolution,provides a �rst approximation of the object to segment. The algorithm bene�ts from aquicker convergence on the �rst level while avoiding the main problem set by marching-cubealgorithm: the noise sensibility. However the coherence problem of the so-computed surfaceis still to be solved. The marching-cube algorithm indeed doesn't ensure at all the surfaceclosing. Several enhanced versions are under consideration [20].� The convergence may be also guided by some new constraints, for instance by introducingattractive forces generated either by sure points of the object or by particular edges detectedduring a pre-treatment.� In order to widen the application scope of our model, one can complete the physical formu-lation by adding global physical parameters, such as global speed or instantaneous rotationvector. Local components must of course be preserved in order to represent deformations.� The overall speed can be improved by accelerating the detection of topological breaks. Forinstance [24] proposes an e�cient algorithm for detecting self-collision. Therefore a more25



(a) (b) (c) (d)Figure 20: Surface evolution during the segmentation of an angiographic image with pyramid: (a) Afterconvergence on image G3, (b) After convergence on image G2,(c) After convergence on image G1, (d) Finalresult
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A Building of three-dimensional pyramidsLet I be the work-image of discrete sizes M �N � P and of real sizes �� � � �.We denote T the reduction factor and Tmax the desired maximal reduction.h 0; G0 I;M0 M;N0  N;P0 P .While (T h < Tmax) docomputation of Mh+1; Nh+1; Ph+1.convolution of Vh, derived from Gh along the �rst axis by the �lter[1 4 6 4 1]=16; the result is stored in G0h of sizes Mh+1 �Nh � Ph.convolution of V 0h, derived from G0h along the second axis by the �lter[1 4 6 4 1]=16; the result is stored in G00h of sizes Mh+1 �Nh+1 � Ph.convolution of V 00h , derived from G00h along the third axis by the �lter[1 4 6 4 1]=16; the result is stored in Gh+1 of sizes Mh+1 �Nh+1 � Ph+1.memory clearing of G0h and G00h.h h+ 1.End of whileB Volumic segmentation algorithmh hmax an � > 0 is de�ned by the user.Initialization of a bubble with adequate re�nement � according to the image Gh.RepeatRepeatComputation of normals and barycenters for each surface vertices.Vertex displacement according to internal forces and constraints de�nedby image Gh.RepeatChecking of the local geometric constraints and modi�cation ofthe surface geometry accordingly.rupture presence of a topological rupture.if (rupture) then solution of the topological problem.Until (rupture == false)Ec  average kinetic energy of displacements normal to surface.Until (Ec � �)Surface global division, �  �=p(3).h h� 1Until (h < 0)
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