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Abstract—Direct volume rendering is an important tool for visualizing complex data sets. However, in the process of generating 2D
images from 3D data, information is lost in the form of attenuation and occlusion. The lack of a feedback mechanism to quantify the
loss of information in the rendering process makes the design of good transfer functions a difficult and time consuming task. In this
paper, we present the general notion of visibility histograms, which are multi-dimensional graphical representations of the distribution
of visibility in a volume-rendered image. In this paper, we explore the 1D and 2D transfer functions that result from intensity values and
gradient magnitude. With the help of these histograms, users can manage a complex set of transfer function parameters that maximize
the visibility of the intervals of interest and provide high quality images of volume data. We present a semi-automated method for
generating transfer functions, which progressively explores the transfer function space towards the goal of maximizing visibility of
important structures. Our methodology can be easily deployed in most visualization systems and can be used together with traditional
1D and 2D opacity transfer functions based on scalar values, as well as with other more sophisticated rendering algorithms.
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1 INTRODUCTION

DESPITE the proliferation of volume rendering software,
the design of effective transfer functions is still a chal-

lenge. The growing popularity of GPU-based volume render-
ing has advocated the use of a more exploratory approach,
where users can arrive at good transfer functions via trial-
and-error modification of opacity and color values. However,
effective transfer functions are often the product of time-
consuming tweaking of opacity parameters until meeting a
desired quality metric, often subjective. One possible expla-
nation for this ad hoc methodology is the lack of an objective
measure to quantify the quality of transfer functions. In this
paper, we propose the use of a visibility metric, which attempts
to measure the impact of individual samples on the image
generated by a volumetric object. Visibility has been studied in
the past, either to measure the quality of a given viewpoint [3],
or to enhance the rendering process with ghost and cutaway
views [33].

Visibility can be studied as a more fundamental quantity
that measures the quality of transfer functions. In our previous
work [7], we introduced the notion of visibility histograms as
an interactive aid for generating effective transfer functions,
which we called collectively visibility-driven transfer func-
tions. These visibility histograms represent the contribution
of each sample in the final resulting image. As such, these
histograms are opacity dependent, as can be seen in Figure 1,
and viewpoint-dependent, as seen in Figure 2. In this ex-
tended paper, we generalize the notion of visibility histograms
along a number of dimensions, including multi-dimensional
histograms, in particular 2D histograms that highlight bound-
aries (i.e., based on intensity and gradient magnitude) and
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viewpoint-independent visibility histograms, which encode the
average visibility along multiple viewing directions.

One key property of these histograms is their ability to act
as immediate feedback on the quality of the volume rendered
image, as the user changes the rendering parameters (opacity,
sampling distance, viewpoint, etc.) Therefore, a key challenge
is the ability to compute them in real-time. In this paper,
we present an efficient method for computing 2D visibility
histograms in programmable graphic processing units (GPUs),
using scattering operations. In our previous work, we were
limited by 1D transfer functions using intensity alone. In this
paper, we consider multiple dimensions for the creation of
more effective transfer functions. On one hand, 2D visibility
histograms provide immediate feedback for the handling of
2D histograms of intensity vs. gradient magnitude, helping
the user understand how arcs in these histograms correspond
to boundaries and their relative contribution to the final image.
On the other hand, visibility guides the semi-automatic gen-
eration of transfer functions, replacing the tedious exploration
of transfer function parameters with an automatic approach
that maximizes the visibility of features of interest. As we
incorporate more dimensions for classification and rendering,
such as gradient magnitude, the exploration becomes more
tedious. With a visibility-guided approach, the user does not
need to handle them directly but only specify the desired
visibility for a number of intervals of interest.

Examples of visibility histograms are shown in Figure 1. A
red plot describes the opacity mapping, where the x-coordinate
is the intensity value and the y-coordinate is opacity. The
purple plot represents the visibility histogram. In Figure 1(a)
we see that, even though the opacity mapping gives more
importance to the bones, they are barely visible, due to the
occluding muscle tissue. By reducing the opacity of occluding
tissue, we get more visibility of veins and bones, as seen
in Figure 1(a-right). Figure 1(b) shows the histogram for a
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(a) (b)

Fig. 1. Visibility histogram for two datasets. (a) The visibility histogram (purple plot) on a CT head data set reveals
that the opacity mapping, as defined by the user (red line strip), cannot show bone structures clearly. This is due
to muscle and tissue occluding underneath layers. The user then manipulates the opacity of the skin and muscle
intervals until the bone tissue has enough visibility. The VH provides immediate feedback that helps the user converge
to a solution. (b) For a vorticity simulation dataset, a different effect occurs. In this case, different intervals result in
decreasing visibility, but no particular interval acts as a strong occluder. We see that the visibility peaks for the yellow
and red isosurfaces do not change when moving the opacity from the blue to cyan intervals. This is often the case
when visualizing quantities that vary smoothly, i.e., when there are no maxima in the gradient with respect to intensity
value.

flow simulation dataset. Here, a different behavior is seen.
Because the scalar field varies smoothly, no particular interval
is a strong occluder. Notice how the visibility of the regions
selected towards the right of the histogram are not affected by
the change in the isosurface (from blue to cyan). Accordingly,
the same intervals have relatively the same visibility in both
images.

Our contributions are two-fold. On one hand, we present
the general notion of a visibility histogram, which represents
the visibility of the sample values from a given viewpoint. We
explore several dimensions of visibility histograms, depending
on the amount of information and dimensionality of their input
parameters. For example, visibility histograms can be 1D (typ-
ically intensity value), 2D (intensity vs. gradient magnitude)
or n-dimensional. Visibility histograms are typically view-
dependent, when computed for a single projection camera,
but can be omni-directional, when computed for a plenotpic
camera model. On the other hand, we show how visibility can
be used to formulate an objective function that is minimized
whenever the distribution of visible samples matches a desired
transfer function roughly defined by the user. We present a
mathematical formulation of this problem that can be solved

with a variety of optimization algorithms, such as steepest
descent and nonlinear conjugate gradient methods. We show
that this semi-automatic approach lets the user manipulate
the parameter space of the transfer functions more intuitively.
Users can initiate linear searches of specific parameters that
converge to optimal solutions with respect to visibility, without
requiring much manual intervention.

Direct manipulation of transfer function parameters is often
a tedious task that involves making small changes to a set
of parameters, sometimes impossible to specify by hand. Our
approach can explore these subtle variations more efficiently.
In addition, efficient classification of complex volume data
usually requires extra dimensions, such as gradient magnitude,
to isolate structures of interest. The semi-automatic design
handles the task of exploring the extra dimensions transpar-
ently without the need for complex classification spaces or the
user manual control of multi-dimensional widgets. Through a
series of examples we show that our approach can be deployed
in a variety of visualization applications and can be customized
quite easily for different application requirements.
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Fig. 2. View-dependent visibility histogram for a CT data set as the user changes view. Notice the increase and
decrease of some of the intervals of interest (e.g., skin, muscle tissue or bones), depending on how visible they are.

2 RELATED WORK
Transfer function design is an essential part of volume vi-
sualization. Approaches to this problem are often classified
as either data- or image-centric [21], depending on whether
they derive their parameters from the original data or the
resulting images, respectively. Data-centric approaches ana-
lyze the scalar field and its properties to guide the design of
transfer functions. The most commonly used is a 1D transfer
function based on scalar data value. Researchers have proposed
higher-dimensional transfer functions based on first and second
derivatives of the volume, i.e., gradient information [17], [14]
and curvature [13], [15]. To aid in the process of finding trans-
fer functions, these approaches often make use of histograms,
which represent graphically the distribution of values along the
different dimensions. For 2D transfer functions, for example,
surfaces of interest appear as arcs. Kniss et al. [16] exploit
this behavior to derive a set of manipulation widgets as a user
interface. As more dimensions are added, the N-dimensional
histogram becomes increasingly difficult to understand and
manipulate. Lum and Ma use a variant of the 2D histogram
with gradient-aligned samples instead of first derivatives. This
led to a different graphical representation of the distribution of
samples where regions of different degree of homogeneity can
be associated with different opacity and lighting parameters
[18]. Sereda et al. [29] generalize this notion and compute low
and high values for each sample as the result of path tracing
along the direction of the gradient. The resulting histogram,
called the LH histogram, represents the boundaries of materials
as blobs instead of arcs, which are also more robust to noise
and bias. These approaches, despite their popularity and ease
of implementation, cannot capture spatial information that may
provide a better visibility of features of interest. Roettger et al.
propose a solution by grouping spatially connected regions in
the 2D histograms used for classification [25]. Lundström et al.
suggest the use of local histograms [19] to represent the spatial
distribution of scalar samples. These histograms, however, are
discrete projections of an otherwise continuous scalar or vector
function. Carr [5] showed that, in fact, representing distribution
via histograms assumes that the reconstruction follows near-
est neighbor interpolation, and suggests isosurface statistics
instead. This computation was later revisited by Scheidegger
et al. [27], who weight the statistics by the gradient magnitude.

A similar derivation was obtained by Bachthaler and Weiskopf
[1], who pose the problem as a density transformation to define
continuous scatterplots. In our paper, we treat histograms
as discrete representations. However, we believe a visibility
continuous scatterplot can be derived by considering a view-
dependent density transformation and following their general
approach [1].

Instead of extracting material boundaries, a number of
techniques have been proposed that classify the local structure
of volume data. These include shape-based [26], size-based [6]
and topology-based [11] transfer functions. The exploration of
the histograms that ensue with such dimensions has been rather
limited and, in most cases, these methods demand new visual
and interaction metaphors. As an alternative to histograms, Ba-
jaj et al. propose the Contour Spectrum [2], which depicts a set
of data attributes as a series of 1D plots for fast isosurfacing.
To alleviate the complexity of handling multi-dimensional vi-
sual parameters, Tzeng et al. allow the users to “paint” directly
on the volume and derive high-dimensional transfer functions
using a neural network classifier [32]. Rezk-Salama et al.
present high-level semantics that abstract parametric models of
transfer functions [22]. In our paper, we follow a similar goal-
oriented approach. However, instead of high-level semantics,
we use a low-level quantity, visibility, to measure the quality
of transfer functions. Through optimization, visibility-guided
classification overcomes the need for managing a large number
of rendering parameters.

Unlike data-centric approaches, image-based methods op-
erate on the rendered images. He et al. use a stochastic
approach to search good transfer functions given a set of
rendered images [12]. Marks et al. present design galleries,
which organize a broad selection of volume rendered images
as the product of a series of transfer functions. The user can
explore the image-based space in the search for satisfactory
transfer functions [20]. Fang et al. describe another image-
based approach where a transfer function is defined as a se-
quence of image operations whose parameters can be explored
by the user to achieve a desired classification [9]. Wu and Qu
proposed a system that uses editing operations and stochastic
search of the transfer function parameters to maximize the
similarity between volume-rendered images given by the user
[34].
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Fig. 3. Computation of visibility histograms. Given a
viewpoint, the total opacity of a given sample, computed
as the product of the original opacity and the transfer
function and the accumulated opacity, is added to the
corresponding bin in the histogram.

In all of the above, the issue of visibility is more a conse-
quence of transfer function design than a design parameter. In
this paper, we propose to use visibility to guide transfer func-
tion design, for both manual and automatic searches. Image-
based approaches often recur to optimization approaches and
stochastic searches to find good transfer functions [12], [20],
[34]. Our approach is a data-centric approach with similar
goal-oriented searches, where an objective function, in our
case in terms of visibility, is minimized. The notion of
visibility has been used to find optimal viewpoints for volume
rendering, as described by Bordoloi and Shen [3]. In their
paper, visibility is used to construct an entropy function that
guides the selection of optimal viewpoints. A similar approach
is proposed by Takahashi et al. [31], although a volume is
now separated into feature components. In our paper, we use
visibility in a rather complementary way, which finds a transfer
function with maximum visibility from any given viewpoint.
Furthermore, we extend the notion of visibility for viewpoint
independent classification.

The need for maximizing visibility of feature of importance
has led to a number of techniques that operate in the ren-
dering space. Non-photorealistic rendering (NPR) operators
modulate the opacity of samples in a view-dependent manner,
increasing the visibility of otherwise occluded features [24].
Interactive cutaways achieve visibility by removing occluding
surfaces [8]. Importance-driven volume rendering achieves a
similar effect by mapping the importance of features to levels
of sparseness, which control the visibility of features [33].
Context-preserving volume rendering combines NPR opera-
tions with the accumulated opacity, or visibility, to reduce
the opacity of unimportant objects [4]. By keeping track of
the accumulated opacity into a layered data structure, Rezk-
Salama and Kolb propose opacity peeling, which helps reveal
occluded features of interest via a multi-layer metaphor [23].
In our paper, we follow a more fundamental approach, where
visibility is incorporated as part of the transfer function design
process.

3 VISIBILITY HISTOGRAMS
The visibility of a sample refers to the contribution of a sample
to the final image, in terms of opacity. This visibility can also
be measured as the accumulated opacity of a sample p to the
eye position E :

T (p) = e−
∫ E
p τ(t)dt (1)

where τ(t) is the attenuation coefficient of a sample, usually
represented as an opacity transfer function A. Therefore, the
visibility of a sample depends on the opacity of the sample,
A(X(p)), usually defined by the user, and the viewpoint, which
affects the accumulated opacity in front of the sample, where
X(p) is a classification value for point p, typically the scalar
or intensity value V (p).

A visibility histogram (VH) represents graphically the dis-
tribution of this visibility function in relation to the domain
values of the volume. Traditional data histograms weight each
sample value uniformly. For a visibility histogram, samples
are weighted by visibility and added into bins that partition
the range of values in the scalar field. For all sample values x
in a volume V :

VH(x) = A(x)
∫

p∈Ω
δ (p,x)T (p)dp (2)

where δ (p,x) is a function:

δ (p,x) =

{

1 V (p) = x
0 otherwise

(3)

In practice, the histogram is computed at discrete bins,
and the accumulated opacity is discretized with front-to-back
compositing at discrete intervals. For a point p:

VH[x] =VH[x]+T (p)A(x) (4)
T (p+Δp) = T (p)A(x)+(1−T (p))

where x= round(V (p))∈ [1, . . . ,N] are the quantized intensity
values in the range 1, . . . ,N. In the examples used throughout
this paper, we use histograms of N = 256 bins.

Fig. 3 illustrates this process. Bordoloi et al. use a similar
aggregation of visibilities to weight the data histogram and
compute the entropy of a volume rendered image from a
given viewpoint [3]. However, since only the final entropy is
required, they do not need to explicitly compute the visibility-
weighted histogram. In our case, the histogram itself is im-
portant as a visual aid.

Visibility histograms help discover occlusion patterns on the
data. For example, strong occluders, common in CT scans of
anatomical structures, tend to dominate the visibility distribu-
tion. If the occluder has a large enough opacity, it prevents the
occluded samples from being visible, making the histogram
heavily skewed towards the unoccluded values. Conversely, if
the occluder has a sufficiently small opacity, the VH now shifts
towards the newly visible samples. An example is shown in
Fig. 1(a), where muscle and fatty tissue dominate in terms of
visibility. In contrast, some datasets exhibit a rather uniform
distribution and no particular interval dominates in terms of
visibility. These are common in certain simulation data, where
scalar values vary evenly in the domain. An example is shown
in Fig. 1(b) for a vorticity simulation data set. In this case,
changing the opacity of the different isosurfaces does not have
a dramatic effect on the distribution of the visibility, which
reveals that no strong occluder is present in the data. Since
the quantity (in this case vorticity) varies smoothly, we do not
see the presence of a strong occluder.
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(a) 1-D Visibility Histogram (b) 2-D Visibility Histogram

Fig. 4. Visibility Histograms for a tooth data set. (a) A 1-D Visibility Histogram shows that the green isosurface
dominates visibility (highest purple peak). The interval in red, although with a lower opacity, has a significant relative
visibility compared to other intervals. This shows the presence of a strong occluder (b) A 2-D Visibility Histogram for
intensity and gradient magnitude as axes. Now, different structures can be more easily discernible. The 2D visibility
histogram is depicted as a heat map, where bright colors indicate higher visibility and darker colors indicate low
visibility.

3.1 Multi-dimensional Visibility Histograms

In general, transfer functions are multi-dimensional mappings
from intensity and other variables, such as first and second
derivatives to color and opacity. Therefore, in general, the
opacity mapping can be defined A : Rn #→ R, for n dimensions,
and the n-dimensional visibility histogram, as:

VH[x1, . . . ,xn] =VH[x1, . . . ,xn]+T (p)A(x1, . . . ,xn) (5)

for (x1, . . . ,xn) = X(p), a vector of classification values for
each point p. An example of such visibility histogram is for
2D transfer functions where one variable is intensity and the
other is gradient magnitude. For higher-dimensional transfer
functions, computing a visibility histogram becomes memory
intensive and costly to compute. For this reason, we limit
our implementation to 2D histograms. Figure 4 shows an
example of a 1D and a 2D visibility histogram on a tooth
CT data set. In Figure 4(b), two dimensions are plotted:
intensity on the X-axis and gradient magnitude on the Y-
axis. We can see a number of isosurfaces selected from the
2D data histogram (gray points) using mixtures of Gaussian
widgets (the corresponding color is highlighted). The visibility
histogram appears as a set of blobs encoded with a “heat”
color map. The more intense blobs correspond to highly visible
points. For example, the green isosurface dominates visibility.
However, since we use gradient magnitude, only the boundary
is rendered, allowing visibility of inner structures such as the
blue isosurface. Other isosurfaces, such as the orange structure
are occluded by the red and green isosurfaces and therefore
the visibility is reduced. The visibility visualization provides
an additional insight on the structure and shape of complex
2D histograms.

(a) Pre-Interpolation (b) Post-Interpolation

Fig. 5. (a) Pre-interpolated histograms corresponds to
rendering using nearest neighbor interpolation. The third
opacity peak does not exhibit visibility since there is
nodata in such interval (b) Post-interpolated histograms
show more visibility of intensities seemingly internal (yel-
low), due to the boundary added by interpolation. In ad-
dition, the third peak now exhibits visibility, corresponding
to interpolated layers (green). These can only be seen in
the post-interpolated data histogram (gray plot)

3.2 Pre- and Post-Interpolation Histograms
One of the issues with these visibility histograms is the
handling of fractional values. Eq. (5) considers samples s
along a ray, which may fall between two volume voxels
with intensities a and b. If we assume linear interpolation,
the visibility value will be added to the intensity value in-
terpolated between a and b, V (p) = wa+ (1 −w)b, for an
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interpolation weight w. In 3D, this is typically the product
of tri-linear interpolation, as a weighted sum of the 8 nearest
neighbors in 3D space. In the case of air-material boundaries,
this introduces values that may not exist in the actual data.
However, these are values that appear in the final rendered
image, since the GPU-based renderer also interpolates values
at fractional positions. We call these histograms interpolated
visibility histograms. Although these represent accurately the
actual intensities that are used in the rendered image, they
may cause confusion about the actual distribution of visibility
with respect to the intensity values present in the data set. As
an alternative, one can force the visibility histogram to only
consider intensity values present in the original data. There are
two ways to do this. One, similar to the approach followed by
Bordoloi et al. [3], is to align the samples as we gather the
visibility histograms with voxel centers. Later on, we show
that this can be achieved with a shear on the slices used to
sample the visibility function. Another possibility is to include
fractional histogram values. For a sample p, instead of adding
the visibility to the interpolated intensity value V (p), we add
the fraction wV (p) to the histogram bin corresponding to
intensity a and (1−w)V (p) to the histogram bin corresponding
to b. Figure 5 shows the difference between interpolated and
fractional visibility histograms for a sphere data set, where the
higher intensities (blue) are in the outer layers of the sphere.
With pre-interpolation, the visibility histogram is limited to
those values present in the original data. For example, the
third opacity peak does not get any visibility since there are
no intensities within that interval in the original data. The
visibility of the blue layers dominates and the yellow layers
are barely visible. This histogram is similar to the distribu-
tion of visibility of rendering the volume data using nearest
neighbor interpolation. In contrast, interpolated histograms
also include the values introduced by the interpolation. We
see that, although the blue layers still dominate visibility,
the yellow layers appear more visible, since there is a very
thin layer of yellow intervals due to the interpolation between
the high values (blue) and empty space (zero value). Also,
the third peak exhibits some visibility, accounting for the
interpolated values in the final image (green layers). Although
post-interpolated histograms introduce visibility of intensities
that may not be in the original data, it represents accurately
the distribution of visibility in the final image when using
post-classification transfer functions. This can be seen in the
post-interpolated data histogram (gray plot), which now shows
the presence of intensity values along the entire spectrum, as
introduced by interpolation. Throughout the paper, we rely on
post-interpolation histograms.

3.3 Viewpoint-independent Visibility Histograms
The notion of visibility described thus far is inherently view-
point dependent. Although this is important for finding the
best image for a given view, it is also desirable to find a
transfer function that can guarantee visibility of important
features independently of the viewpoint. To this purpose we
introduce two new types of histograms: omni-directional and
radial visibility histograms.

per viewpoint
Histogram

Visibility
Histogram

Total

angle
radius

Fig. 6. Approach for viewpoint independent visibility
histograms. Top: Omni-directional visibility histograms are
obtained by summing the histograms of a number of view-
points around the sphere (or cylinder) surrounding the
volume. Bottom: Radial visibility histograms, a cheaper
alternative, first transform the volume into spherical or
cylindrical coordinates, then compute the histogram using
the method described above.

Fig. 7. View-aligned vs. View-independent visibility his-
tograms.

3.3.1 Omni-directional Visibility Histogram (OVH)
An omni-directional visibility histogram encodes the distribu-
tion of visibility from all possible viewpoints. That is,

OVH(x) =
∫

ω∈W
VH(x) (6)

for all directions ω in an enclosing surface W , typically the
circumscribing sphere. Some datasets, namely medical, have a
clearly defined up direction, and viewpoints can be constrained
to be defined in a circumscribing cylinder instead of a sphere.
As shown in Figure 6(top), the approach to obtain such data set
is to sum all the histograms along for a discrete sampling of all
possible viewpoint directions. This, however, is an expensive
operation. Fortunately, it only needs to be computed when the
user changes the opacity function and not when the viewpoint
is changed.
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Move point to
corresponding bin
in 2D histogram

Intensity

Gradient Magnitude

PixelShader:

Generate point
primitives for each

intensity and 
gradient magnitude

pixel, containing

Vertex Shader:
Evaluate Visibility histogram

Read Generate
slices

+

Fig. 8. GPU-based computation of 2D visibility histogram. First, we generate view-oriented slices. For each slice, in
a pixel shader, we evaluate the visibility equation and keep the intensity and gradient magnitude values. For each
of the pixels, we generate a point primitive. In a vertex shader, we transform the position of each of this point to 2D
coordinates corresponding to the bin locations in the 2D histogram (i.e., the x coordinate is the intensity value and the
y coordinate is the gradient magnitude). These values are added up for all slices and finally read back to the CPU as
the visibility histogram.

(a) 32 (b) 64 (c) 128 (d) 256 (e) 512

(a) s = 0.5 (b) s = 1.0 (c) s = 2.0 (d) s=3.0 (e) s=4.0

Fig. 9. Effect of window size and sampling resolution. The window size determines the dimensions of the view-aligned
slices, while the resolution determines the number of slices along the view direction. We assume a base sampling of
1/512 (i.e. 512 slices) and s the proportion of these slices used for histogram computation. As the size of the view-
dependent slices decreases, the histogram is more prone to aliasing (top row). As the number of slices decreases,
the true visibility of some intervals (approximated as the one with highest sampling), may be misrepresented. Notice,
for example, the third peak from the left, which has more visibility than it appears to have in low resolution histograms.

3.3.2 Radial Visibility Histogram (RVH)
As an alternative to omni-directional visibility, one can also
use radial visibility to obtain a viewpoint-independent his-
togram. In this case, we measure the visibility along radial
rays, instead of view-aligned rays. This can be obtained easily
by transforming the volume points from cartesian coordinates
to spherical or cartesian coordinates. Therefore, the corre-
sponding histograms become:

RVH(x) = A(x)
∫

q∈Ω
δ (q,x)T (q)|JU |dq (7)

where q = U(p) is the transformation of the samples to a
new coordinate system defined by the transformation U , e.g.,
radius r, azimuth φ and angle θ for spherical and r and
θ for cylindrical coordinates. |JU | is the determinant of the
Jacobian of the transformation, which is |JU | = r2 sinφ and
|JU |= r for spherical and cylindrical coordinates, respectively.
This ensures that the volume element is correctly scaled as
we approach the center of the sphere or cylinder. In practice,
we can do this by considering the visibility of a transformed
volume where the coordinates x,y,z are replaced by cylindrical
or spherical coordinates and computing the visibility histogram
as defined above (taking into account the Jacobian of the

transformation). This is depicted in Figure 6 (bottom).
One of the issues of radial visibility functions is that they

may fail to capture the true visibility of structures that cannot
be seen radially, but that a different viewpoint would show.
The visibility will be misrepresented as zero. This is the case
when the intensity value is concentrated in an eccentric region
of the volume. In our experiments, we did not find a data set
that had such characteristics. An approach to overcome this
issue is to employ a hybrid visibility that combines both the
OVH and RVH. This derives from the observation that the
OVH is a sum of all the RVH that can be obtained by moving
the center of the spherical or cylindrical coordinates, i.e.:

OVH(x) =
∫

p∈Ω
RVHp(x)dp (8)

where RVHp(x) is the radial visibility histogram with respect
to a center point p in the volume domain Ω. Therefore, one can
approximate the OVH by considering only a reduced number
of center points p (e.g., 8, one for each octant).

An example of view-dependent and view-independent visi-
bility histograms is shown in Figure 7 for a hemisphere data
set. In this case, a view-aligned histogram shows visibility
of the internal hemispheres (yellow and blue) since they are
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visible from this view. However, they will not be visible for
half of the viewpoints where the red hemisphere becomes an
occluder. A transfer function designed from this viewpoint
would require to be redesigned for a different viewpoint. A
view-independent histogram circumvents this problem. Both
omni-directional and radial VH capture the reduced visibility
of the inner layers and the dominance of the red hemisphere.
The RVH, however, over estimates the visibility of the blue
intervals (notice that it is centered whereas the OVH is more
skewed towards the lower intensities).

3.4 GPU-assisted Computation
As described above, it becomes important to compute visibility
histograms at interactive rates. We have experimented with two
GPU-assisted implementations, based on gather and scatter
operations, respectively. In both approaches, there is a first
pass which renders the volume from a given viewpoint using
view-aligned slices. Each slice is used to compute the visibility
values of its samples and the accumulated opacity, which is
in turn required for the next slice.

3.4.1 Using Gathering
The difference of the two implementations is in the process
of gathering the visibility information of each slice. Our first
approach is based on the approach by Fluck et al. [10]. It
divides the screen area into tiles of 8× 8 tiles. Since each
pixel in the tile contains up to 4 components, the tile is used to
store a 256-bin histogram. Each component of this tile contains
the contribution of visibility to the sample value indicated by
its position. For instance, the RGBA components of the top
left pixel in the tile contains the visibility of all samples with
value 0,1,2 and 3, the next pixel those samples with values
4,5,6 and 7, and so on. Hardware-supported blending adds
the histograms of all the view-aligned slices. At the end, the
histogram is distributed along the different tiles. A hierarchical
gathering approach adds up the local histograms, and the result
is read back to the CPU.

3.4.2 Using Scattering
Another implementation uses scattering operations on the
GPU. In this case, we exploit the vertex texture fetch capabil-
ities of modern GPUs to scatter the pixel points to the right
bin in the histogram. Since it allows us to place each point
to the correct bin, we can extend it easily for 2D visibility
histograms. The overall process is depicted in Figure 8. Our
implementation is based on the approach by Scheuermann and
Hensley [28]. Similar to the above technique, we first slice
the volume into view-aligned slices. Each of the pixels in one
of these slices contain both the intensity value and gradient
magnitude. We then generate point primitives, one per pixel,
which are translated in a vertex shader to the corresponding bin
in the 2D histogram, i.e., the new x-coordinate becomes the
intensity value and the y-coordinate is the gradient magnitude.
Using blending, we can add up all the contributions for each
slice, and the 2D histogram is transferred to the CPU by
reading the screen area of a view port of size N×N, where N
is the number of bins. We use gradient magnitude as a second
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Fig. 10. Evaluation of GPU-based histogram algorithms.
Timing comparison between gather (red) and scatter al-
gorithm (green) in seconds (log scale) vs. size of view-
dependent volume. Note that scatter algorithm is faster
for sampling rates less than 1/512.

dimension due to its popularity and ease of computation.
However, any variable can be mapped to the second dimension.

Fig. 10(a) shows a comparison of these two methods in
terms of speed. We computed the histogram at varying res-
olutions. Each resolution indicates a window size where the
histogram is computed as well as a sampling resolution along
the view direction. We noticed that our algorithm based on
scatter operations was faster than the one based on gather for
sizes up to 2563. This is consistent with the results obtained by
Scheuermann and Hensley [28] for 2D images. However, the
cost grows faster and, at a size of 5123, the gather algorithm
outperforms the scatter algorithm. This can be explained due
to the differences in performance between vertex and pixel
processing capabilities in contemporary GPUs. The gather
operation works exclusively in pixel shaders, while the scatter
operation uses point primitives and vertex shaders. For large
sizes, the vertex shader overhead overcomes the pixel shader
overhead and we see a difference in performance. For this
reason, we used a resolution of 2563 to find the VH. Figure 9
summarizes the effects of slice size and slice resolution
(reciprocal of number of slices). Small slice sizes make the
histogram more prone to aliasing than a reduced number of
slices. In both cases, the true visibility of certain intervals may
be misrepresented.

4 VISIBILITY-DRIVEN TRANSFER FUNCTIONS

As described above, visibility histograms provide the basis for
generating visibility-driven transfer functions. In general, the
approach for generating a transfer function can be seen as a
way to maximize visibility of intensities of interest. This can
incorporated in current visualization systems as a feedback
mechanism for user-defined classification, or as a goal for
optimization in semi-automated transfer function design.
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4.1 User-defined Transfer Functions
A first approach consists of a manual transfer function design
with immediate feedback. As the user manipulates the opacity
transfer functions, the VH shows the user their impact on the
visibility distribution. An example is shown in Fig. 1(a). In
the first attempt to create a meaningful image, the user may
set the opacity of bone to high and of skin and muscle to
medium opacity. Despite this definition, the resulting image is
not effective to show bone. This can be seen immediately in
the visibility histogram. As a next step, the user can decrease
the opacity of muscle tissue until sufficient visibility for the
bone is obtained. The result in Fig.1(a-right) shows a better
depiction of the veins and bone structures, as seen in the shape
of the VH.

Furthermore, the VH is a useful tool for measuring the
quality of volume rendered images. Although image quality
is certainly the product of numerous factors, the visibility of
structures of interest is at the core of volume rendering. There-
fore, the selection of isosurfaces and rendering parameters can
be justified in the grounds that they provide enough visibility
of interesting features.

One of the issues with manual classification is that, despite
being guided by visibility, the transfer functions can contain
a large number of parameters that require to be managed
individually. As an alternative, we present a more automatic
approach.

4.2 Semi-automatic Transfer Functions
As described above, small changes in the opacity of samples
values may change dramatically the visibility of occluded
samples. In many cases, the user is required to perform
minuscule changes that are almost impossible to make using
mouse interaction. To automate this process, we formulate
the design of transfer functions as an energy minimization
problem.

We can formulate a transfer function as a parametric model
of opacity A(X(p),Θ), where Θ is a vector of parameters, p
is a sample position and X(p) is a vector of sample values.
For the case of 1D transfer functions, X(p) is the scalar
value at voxel p. In general, X(p) is an n-dimensional vector
containing all the classification dimensions, e.g., intensity and
gradient magnitude. The quality of a transfer function can be
seen as the reciprocal of a cost or energy function: E :Θ #→ R,
which is minimized when the transfer function is considered
best. In this paper, we define the cost of a transfer function in
terms of two components: user satisfaction and visibility.

Let us define A0(X(p)) an initial transfer function, defined
by the user or computed automatically using a gradient anal-
ysis as proposed in [14] or a topological decomposition [11].

We define the following energy components, designed to
highlight certain desired aspects of the transfer function:
User-satisfaction. To ensure user-satisfaction, we minimize

the mismatch between the computed opacity function and the
original one defined by the user. The simplest way to represent
this mismatch is via the square difference between the opacity
functions:
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Fig. 11. Convergence of different algorithms for transfer
function optimization. We plot energy vs. number of itera-
tions. Conjugate gradient reaches a good solution in less
than 10 iterations while steepest descent requires up to 5
times the number of iterations.

ES(Θ) = ∑
p∈Ω

(A(X(p),Θ)−A0(X(p)))2 (9)

where A0(X(p)) is the opacity function defined by the user,
and A(X(p),Θ) is the opacity function derived by the system
in terms of the opacity parameters Θ.
Visibility. The second component is used to maximize the

visibility of a given sample. Because not all the samples are
equally important, as defined in the opacity function A0, we
can weight the visibility of a sample by its opacity:

EV (Θ) = − ∑
p∈Ω

A0(X(p))T (p,Θ) (10)

where T (p,Θ) is the visibility of point p, as defined in Eq.1,
for the opacity mapping A(X(p),Θ). Note that the sign of this
component is negative, which is minimized as the visibility of
important values increases.
Constraints. Finally, we introduce constraints on the

parameter space Θ. These constraints are used to control the
minimum and maximum values opacities of value intervals in
the final opacity function. This is particularly important for
providing context in the resulting image. Without constraints,
it may be the case that simply making all unimportant values
transparent reveals the important ones. However, it provides
little context. For each parameter in θi ∈ Θ, we define an
interval of desired values [θ imin,θ

i
max]. The energy component

is:
EC(Θ) = ∑

i∈||Θ||

[

θ imin−θi
]2
+ +

[

θi−θ imax
]2
+ (11)

where [x]+ is a clamping operation, such that [x]+ = x if x> 0
or 0, otherwise.

After examination of these components, we define a good
transfer function as one that satisfies the minimization problem

argminΘβ1ES(Θ)+β2EV (Θ)+β3EC(Θ) (12)
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(a) β1 = 0.05,β2 = 0.95 (b) β1 = β2 = 0.5 (c) β1 = 0.95,β2 = 0.05

Fig. 12. Three results of automatic classification of a CT head dataset, depending on the optimization weights
(β3 = 1 for all three cases). (a) Giving more weight to user satisfaction does not deviate much from the original user
specification, but results in little visibility of important tissue (bone). (b) Uniform weighting achieves a balance between
user satisfaction and visibility. Now bone tissue is visible, while skin and muscle tissue are still represented, although
with little opacity. (c) Finally, giving more weight to visibility allows the system to decrease the opacity of occluding
tissue.

where β1,β2 and β3 are the weights for the matching, visibility
and constraint terms, respectively.

To validate this formulation, we first define the parameter
space as a mixture of Gaussians. That is, the opacity function
A is defined as:

A(x) =∑
i
αiGµi,σi(x) (13)

where Gµ,σ (x) is a Gaussian function of mean µ and stan-
dard deviation σ . The parameter space corresponds to Θ =
{αi,µi,σi : i∈ [1 . . .N]}, for N Gaussian functions. This model
has the advantage that good transfer functions can be obtained
with a small number of parameters, and the Gaussian falloff,
given by the standard deviation, prevents the appearance of
aliasing artifacts. Other parametric models can be considered,
such as triangular, rectangular functions, linear ramps, etc.

4.3 Optimization Algorithm
To solve the minimization problem, we follow a greedy
approach. Since the energy function cannot be easily derived
as an analytic function in general, finding a global optimum
might require an exhaustive search of the parameter space,
which is prohibitive. Instead, we use progressive search of the
optimal solution by exploring the parameter space in directions
that gradually decrease the energy function,

Θk+1 =Θk + γΛk (14)

where Λk is a search direction. A steepest direction ap-
proach goes in the direction opposite to the gradient of the

energy, Λk = −∇E. Unfortunately, this method converges
slowly. Alternatively, one can use nonlinear conjugate gradient
methods, which searches in directions conjugate to the ones
previously explored, in an attempt to converge more rapidly
to the optimal solution. To avoid reaching a local minimum,
we may introduce a resetting mechanism to the conjugate
gradient method that allows it to move in the steepest direction
when little improvement is achieved in a given conjugate
direction. We compared the results of both steepest descent
and conjugate gradient, as summarized in Fig.11 We see
that conjugate gradients converge more rapidly to the optimal
solution that steepest descent, making it more attractive for
interactive systems.

Fig. 12 shows the result of optimization for a CT head data
set. From left to right, we show the classification when shifting
the weight on Eq. 12 from user satisfaction to visibility. In
Fig.12(a), the system performs small changes on the opacity
function to match the user specification. However, bone tissues
have little visibility. As the weights in the objective function
become uniform (Fig.12(b)), the resulting opacity function
now provides visibility of the bone tissue, while satisfying the
user opacity function. Notice how the skin and muscle are still
represented, and we get a clearer view of bone structures, but
the muscle layers still dominate. Finally, Fig.12(c) shows the
case where the weights favor visibility over user satisfaction.
Now the opacity of the skin is reduced considerably while
muscle tissue is almost transparent, but we obtain a clear view
of the bone.
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(a) (b) (c)

Fig. 13. View-dependent nature of visibility-driven transfer functions for an abdominal CT data set (a) A transfer
function is obtained automatically to maximize the visibility of the kidneys (b) when the user changes the viewpoint,
the kidney is no longer visible. (c) A re-optimization yields a better depiction of the kidney, by decreasing the opacity
of occluding vessels and the stent graft.

4.4 Transfer Function Refinement
Because there may be many different local minima in the
parameter space, these iterative algorithms cannot guarantee
to converge to the optimal solution. Furthermore, in many
cases the user wants to explore the evolution of a number
of isosurfaces in the context of other that do not change.
We enable the user to initiate transfer function searches along
individual directions, i.e., changing one parameter at a time.
Instead of requiring to manually change the direction until
visibility is maximized, the system finds the parameter that
minimizes the energy cost in a given direction. Given a set
of transfer function parameters Θ0 and a direction δΘ, the
resulting transfer function is the one that results in a local
minima in the energies E(Θ0 + tδΘ), for t ∈ [1 . . .n], where
n is the maximum number of iterations. This mechanism has
been used to increase and decrease the opacity of specific
isosurfaces without compromising much the visibility of im-
portant regions.

4.5 Automatic Gradient Modulation
Since the optimization space can be defined along any set
of parameters, we can include extra dimensions that may
complicate the transfer function space. One example is gra-
dient magnitude modulation, designed to highlight material
boundaries without requiring to interact directly with a 2D
transfer function. A common approach is to define gradient
modulation as a global operation, where the opacity of a
point p is defined as A(V (p))||∇V (p)||k, where V (p) is the
scalar value and ||∇V (p))|| is the magnitude of the scalar field
gradient at point p, and k is a sensitivity parameter. In general,
one would like to set an adaptive exponent, K(x) (instead of a
global k), depending on the intensity value x. Since this implies
an additional dimension, the classification process doubles in
complexity. For our semi-automatic approach, we can include
this factor as an extra parameter in Θ to be considered in
the optimization. Figure 12 and Figure 15(c) depict some of
the results obtained when including gradient magnitude as a
parameter.

5 RESULTS
We applied our approach on a number of datasets, including
anatomical and flow simulation data.

Figure 13 shows a classification of an abdominal CT data
set. This example shows the view-dependent nature of visibil-
ity histograms. First, we show the result of classification when
most of the importance is given to the kidney (a), but when
we change the view (b), the kidney is occluded by the aorta
and stent graft. A re-optimization (c) yields a transfer function
that highlights most of the kidney. In this case, we combined
the intensity values to gradient magnitude to provide the best
visibility. The user does not need to control any parameters
for gradient magnitude modulation as it is done by the system
in the hopes of improving visibility. Note that the visibility of
the kidney and other structures with the same intensity is not
sacrificed.

Fig. 14 shows the classification of a vortex dataset [30].
Initially, the user sets the opacity function using a pre-defined
collection of Gaussian bells distributed along the data domain,
and modifies the desired opacity of entire intervals. We notice
that important isosurfaces (green to orange area) become
occluded by the isosurfaces coded in blue. Fig.14(b) shows
the result of automatic classification. The generated transfer
function exhibits a falloff in opacity for the unimportant
isosurfaces so that visibility is attained for the important
intervals. The resulting image clearly shows the inner features
while providing the outer shape of the features as a context.
Fig.14(c) shows the effect of shifting the importance to the
left (outer layers of features). The transfer function is adapted
interactively to reflect the change in importance. Note how
the outer layers in blue become more transparent, while the
isosurfaces in green become visible.

Fig. 15 shows the classification of a supernova data set.
Scientists are interested in visualizing the turbulent structures
near the core of the supernova in an effort to understand how
these explosions are formed. Initially, the user sets the opacity
as a number of Gaussian bells modulated in a linear ramp, to
highlight isosurfaces of increasing scalar value, in this case
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(a) (b) (c)

Fig. 14. Classification of vortex data. (a) The user sets the opacity function using a pre-defined collection of Gaussian
bells equally distributed along the data domain. We notice that important isosurfaces (green to orange area) become
occluded by the isosurfaces coded in blue. (b) The automatically generated transfer function exhibits a falloff in opacity
for the unimportant isosurfaces so that visibility is attained for the important intervals. The resulting image shows the
inner features while still providing context. (c) The user now shifts the importance to the interval between blue and
green isosurfaces. The outer layers in blue become more transparent, while the isosurfaces in green become visible.

entropy (Fig.15a). After optimization, the resulting transfer
function provides better visibility to the inner layers (Fig.15b).
In this case, we use a 1D transfer function based on intensity
alone. This proves to be insufficient to visualize the internal
flow. When we include gradient magnitude as an optimization
parameter, the system can explore an additional dimension to
improve the visibility. The result after optimization, as shown
in Figure 15(c), does a better job in depicting the intricate
relationships between the flow in yellow and blue. See the
accompanying video for an interactive demonstration of our
approach.

5.1 Limitations
The design of good transfer functions is still challenging. Even
with additional dimensions, such as gradient magnitude and
curvature, isolating structures of interest can be challenging.
In medical imaging, for example, radiologists often turn to
segmentation to extract features of interest. In this case,
visibility needs to take into account the semantics of the data
to provide better results. As seen in Figure 13(c), providing
visibility of the kidney also highlights structures with similar
intensity but that may not be important (e.g., in the spine). In
addition, view-dependent effects, such as ghosted views and
cutaways are often required to discard unimportant features
that cannot be removed entirely with transfer functions. We
believe that the optimization space can be easily extended to
account for more sophisticated rendering techniques.

Another limitation is the reliance on iterative algorithms
to find the optimal transfer function. Since the problem space
can be concave, these methods may converge to local minima.

Finding the global minima may prove to be difficult and time-
consuming, since it requires to know the energy function to all
possible combinations of the parameter values. Higher-order
algorithms, such as Newton-Raphson may also be explored.

6 CONCLUSIONS
We have presented a general notion of visibility histograms
and visibility-driven transfer functions. We provided two
methods, one manual and one automatic. The first makes
use of visibility histograms, which encode the distribution of
visibility values from a given viewpoint. The second method
finds the best parameters of an opacity transfer function
that maximizes visibility of important features. The use of
visibility histograms alone proves to be an important element
towards the understanding of complex datasets. On one hand, it
provides feedback to the user regarding the effectiveness of an
opacity transfer function. On the other hand, it gives cues about
the structure of the dataset and the distribution of visibility
helps discover intervals that result in more occlusion than
others. The use of visibility histograms can also improve the
understanding of other algorithms such as view selection and
importance-driven/cutaway volume rendering. In both cases,
the notion of visibility is essentially the same. Our GPU-
based technique to compute visibility histograms will provide
a better feedback of the inner workings of such techniques.
The optimization approach was tested only on 1D transfer
functions, but they can be extended to higher-dimensional
transfer functions. Furthermore, one can incorporate lighting
and view-dependent parameters to guide the creation of better
illustrative visualizations. We believe that this approach can
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(a) (b) (c)

Fig. 15. Semi-automatic 1D and 2D transfer function for a supernova data set. (a) The initial transfer function, although
gives more importance to inner flow, fails to show isosurfaces of interest near the supernova core. (b) Semi-automatic
1D transfer function generated using our approach. Although internal flow is more visibility, the reliance on a single
dimension cannot improve the visibility of inner flow. (c) By considering an extra dimension, in this case gradient
magnitude, we can obtain a better transfer function that now reveals the turbulent structure near the core. Semi-
automatic generation alleviates the need for the user to tweak an extra dimension for each transfer function widget.

help us obtain cutaway and ghosted views of volumes semi-
automatically, where the opacity of occluding surfaces is mod-
ified in a view-dependent manner to overcome the limitations
of 1D transfer functions. Because our approach computes the
visibility histogram on a view-oriented manner, much in the
way it is done for volume rendering, we believe that this can
be implemented and deployed in contemporary visualization
systems with little effort.
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