
1

Autopilot: Adaptive Control of Distributed
Applications

R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed

Department of Computer Science
University of Illinois

Presenter:
Chia-Jui Hsu

November 10, 2005

CMSC714
Nov. 10, 2005

Autopilot

• Autopilot is a software infrastructure for dynamic
performance tuning of heterogeneous computational
grids based on closed loop control.

2

CMSC714
Nov. 10, 2005

Outline

• Introduction
• Autopilot Overview
• Autopilot Software Components
• Fuzzy Logic Control
• Autopilot Performance
• PPFS II: An Autopilot Testbed
• Current Status

CMSC714
Nov. 10, 2005

Software Performance Tuning

• Traditional a posteriori approach
1. Application instrumentation

– Instrumented automatically by object code patching or compiler.
– Manually insert instrumentation library calls.

2. Execute, measure, and extract performance data
3. Analysis and visualization

– Identify performance bottlenecks
4. Application optimization

– Modify program, adjust runtime policies

• This tuning model presumes repeatability
– Application has repeatable behavior.

3

CMSC714
Nov. 10, 2005

Heterogeneous Computational Grids

• Grids
– Hardware and software infrastructure.
– Provide access to computational capabilities.
– Integrate large numbers of geographically distributed resources.

• Grid application behavior is rarely repeatable
– Complex and multidisciplinary.
– Time varying resource demands / requirements.
– Dynamically changing resource availability.

• The a posteriori performance tuning model is not suited
to heterogeneous computational grids applications.

CMSC714
Nov. 10, 2005

Real-time Adaptation

• Applying real-time adaptive control techniques to dynamically adapt
the system to different resource demands and resource availability.

• Autopilot
– Integrate dynamic performance instrumentation.
– Configurable resource management algorithms.
– Real-time adaptive control mechanisms.
– Based on application request patterns and observed

performance.
– Automatically configure and manage resources.

4

CMSC714
Nov. 10, 2005

Autopilot Software Components

• Distributed sensors
– Capture run-time data and send data to clients.

• Software actuators
– Receive commands from clients, and adjust application behavior

(parameter values) and resource policies.
• Clients (sensor and actuator clients)

– Monitor sensor data and issue commands to actuators.
• Distributed name servers (Autopilot manager)

– Remote sensors and actuators register in name servers.
– Clients request for sensors and actuators (based on their properties)

through name servers.
• Decision mechanism

– Select right resource management policies (fuzzy logic) based on
application requests and sensor data.

CMSC714
Nov. 10, 2005

Autopilot Adaptive Control Infrastructure

5

CMSC714
Nov. 10, 2005

Close Loop Control

• Sensor: sense and transmit data to client.
• Client: decide and send commands to actuator.
• Actuator: actuate application behavior and resource policies.

CMSC714
Nov. 10, 2005

Nexus Toolkit

• The Autopilot software is built on Nexus Toolkit (communication
substrate).

• Endpoint (Nexus term) refers to a global address and specifies a set
of message handlers.

• Startpoint (Nexus term) identifies a pointer to an endpoint.

• The Autopilot manager is a daemon name server process.
• Sensors and actuators register at the Autopilot manager.
• A client obtains startpoints to sensors and actuators through the

Autopilot manager, then it can communicate to sensors and
actuators.

• Sensors and actuators also need to obtain startpoint to their clients
before communication.

6

CMSC714
Nov. 10, 2005

Autopilot Manager

CMSC714
Nov. 10, 2005

Autopilot Sensor Design Principles

• Autopilot sensors should be lightweight, low overhead, minimally
perturbing, remotely accessible, and applicable to multiple
architectures and programming models.

• Minimize data capture / extraction / transmission overhead in order
to less perturb the system.

• To avoid oscillating decision due to stale sensor data, the latency
between data collection and decision making must be small.

• Transmit raw data v.s. compute and transmit derived metrics.
• Balance transmission frequency v.s. buffer size

– Transmission Frequency ↓, transmission overhead ↓,
buffer size ↑, latency ↑.

7

CMSC714
Nov. 10, 2005

Autopilot Sensor / Actuator Features

• Property list
– Every sensor and actuator is associated with a set of properties.

• Name, type, network address, and user-defined attribute-value pairs.
– Clients specify property lists in queries to the Autopilot manager. The

manager then replies startpoints that satisfy the query.
• Activation modes

– Threaded mode: a monitoring thread records data at specified interval.
– Non-threaded mode: it relies on insertion of sensor monitoring calls.

• Attached functions
– Sensors can have attached functions for data reduction.

• E.g., Computing sliding window average.
– Actuators can have attached functions to mediate remote commands.

• Dynamic activation and deactivation.

CMSC714
Nov. 10, 2005

Distributed Name Servers

• Autopilot managers act as name servers and coordinate
connections between sensors, actuators, and clients.

• Sensors and actuators register their properties and Nexus
startpoints with an Autopilot manager after creation, and also inform
the manager when they are destroyed.

• Clients specify a set of desired properties, and the manager
provides startpoints to the sensors or actuators that match the
request.
– Clients can acquire remote sensors and actuators without knowledge of

their location.
– Clients can dynamically attach to distributed software components,

exercise control, then relinquish the attachment.

8

CMSC714
Nov. 10, 2005

Clients

• Clients establish direct communications to sensors and actuators.
• Sensors send data to all the connected remote clients.
• Clients process data, make decisions, and issue commands to

remove actuators to implement decisions.
• Clients can change sensor / actuator behaviors.

– Activation, buffer size, sampling rate.

CMSC714
Nov. 10, 2005

Sensor Registration Code

// Define Properties for RequestSize Sensor
ApProperties RequestSizeProperties(progName, mgrName);
RequestSizeProperties.addProperty("Name", "RequestSizeSensor");
RequestSizeProperties.addProperty("Application", "PPFS II");
// Construct RequestSizeSensor.
ApIntegerSensor RequestSizeSensor("RequestSizeSensor",

RequestSizeProperties, requestSize, variableCount=1, bufferSize=8);
// Register Sensor with Autopilot Manager
RequestSizeSensor.registerStartPoint();

9

CMSC714
Nov. 10, 2005

Decision Mechanisms – Fuzzy Logic

• Closed loop adaptive control.
• Fuzzy logic

– Fuzzy logic incorporates an empirical rule-based IF - THEN
approach to solve control problem rather than attempting to
model a system mathematically.

– Balance potentially conflicting goals (e.g., minimize response
time and maximize throughput).

– By changing the fuzzy logic rule base, they can adjust the control
system or even retarget to a new domain without extensive
software development.

CMSC714
Nov. 10, 2005

Fuzzy Logic Decision Process

Autopilot includes a fuzzy logic engine that accepts sensor inputs, fuzzifies the
values, computes the relative truth of each rule, and defuzzifies the consequents
to activate remote actuators.

10

CMSC714
Nov. 10, 2005

Fuzzy Logic

• Fuzzifier
– Scales and maps input variables to fuzzy sets.

• Decision mechanism
– Interpret IF-THEN rules.
– If the premise (input) is true in a rule to some degree.
– Then the consequent (output) of the rule is true to the same

degree.
– Multiple rules can be active for the same input.

• Defuzzifier
– Combine multiple rule outputs through a defuzzification method

(combination can yield complex behavior).
– Generates final output.

CMSC714
Nov. 10, 2005

Fuzzy Logic Example

11

CMSC714
Nov. 10, 2005

Autopilot Performance

• Performance depends on the following factors:
– Sensor buffer sizes.
– Threaded and non-threaded sensor modes.
– Number of clients/sensor.
– Dynamic data reduction via attached functions.
– Complexity of fuzzy logic rules.
– Distance of sensors/actuators/clients.
– Available network bandwidth.
– Data throttling via sensor activation/deactivation.
– Actuator synchronization.

• This paper only discusses data buffering and fuzzy rule complexity.
– Sun Ultra 1 Model 170 (170 MHz UltraSPARC processor) with 64 MB of

memory, and an SGI Origin2000 with 32 195MHz R10000 processors
and 4 GB of memory.

CMSC714
Nov. 10, 2005

Buffer Size v.s. Round-trip Latency

• The round trip delay including data buffering and transmission in wide area,
local area, and intra-system contexts as a function of the sensor buffer size.

• For small buffer sizes,
communication
overhead is dominated
by communication
latency, ranging from 1
ms between multi-
processor in SGI share
memory system to 40
ms in wide area
network.

12

CMSC714
Nov. 10, 2005

Fuzzy Rule Complexity v.s. Decision Time

• The time to evaluate a rule base as a function of both the number of rules
and the resolution of the fuzzy sets (the number of sample points).

• Rule evaluation overhead is linear in both the number of rules and the fuzzy
set resolution.

CMSC714
Nov. 10, 2005

PPFS II

• PPFS II: an adaptive parallel file I/O system.
– It is designed to operate on top of either parallel systems or

PC/workstation clusters.
• Use Autopilot to adapt PPFS II in real-time .
• Sense

– Quantitative data: I/O instrumentation (e.g., read size, write size, …)
– Qualitative data: access pattern (e.g., sequential writes, …)

• Actuate
– Cache block size, cache size, cashing policy.

• Fuzzy logic control
– 9 rules.

• Application
– PPFS II benchmark.

13

CMSC714
Nov. 10, 2005

PPDS II Integration Overview

CMSC714
Nov. 10, 2005

PPFS II Architecture

14

CMSC714
Nov. 10, 2005

PPFS II Experiments

• Benchmark:
– A 128 MB file is first written sequentially in 16 KB units. Then a

32 MB section of the file is read randomly four times using 16 KB
access sizes.

• Compare non-adaptive to adaptive approach
– For non-adaptive approach, PPFS II uses default caching

parameters: 4 KB cache blocks and a 16 MB client cache.
– For adaptive approach, a fuzzy logic decision procedure

continuously monitors and adjusts the file system using Autopilot
infrastructure.

• Phase I (Write): 8MB cache and 60 KB block
• Phase II (Read): 30MB cache and 80 KB block

CMSC714
Nov. 10, 2005

Adaptive I/O Rule Base

• Small input/output requests are best managed by aggregation, pre-fetching,
caching, and write-behind.

• Large requests are better served by streaming data directly to or from
storage devices and application buffers.

if (ReadWriteMix == READONLY && Sequentiality == NONSEQUENTIAL &&
RequestSize == LARGE)

{ CachingEnable = DISABLED; }
if (ReadWriteMix == READONLY && Sequentiality == NONSEQUENTIAL &&

RequestSize == TINY)
{ CachingEnable = ENABLED; CacheSize = HUGE; BlockSize = LARGE; }
... ...
if (ReadWriteMix == WRITEONLY && Sequentiality == SEQUENTIAL)
{ CachingEnable = ENABLED; CacheSize = SMALL; BlockSize = LARGE;
ReplacementPolicy = MOSTRECENTLYUSED; }

15

CMSC714
Nov. 10, 2005

PPFS II I/O Benchmark

• Dynamic adaptation decreases the benchmark execution time from over 80
seconds to less than 70 seconds.

CMSC714
Nov. 10, 2005

Current Status

• Pablo research group in the Department of Computer Science at the
University of Illinois at Urbana-Champaign.

• Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A.
Reed, "Autopilot: Adaptive Control of Distributed Applications,"
Proceedings of the 7th IEEE Symposium on High-Performance
Distributed Computing, Chicago, IL, July 1998.

• Software distribution:
http://pablo.renci.org/Software/Autopilot/autopilot.htm

16

CMSC714
Nov. 10, 2005

References

1. Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A. Reed, "Autopilot:
Adaptive Control of Distributed Applications," Proceedings of the 7th IEEE
Symposium on High-Performance Distributed Computing, Chicago, IL, July 1998.

2. http://pablo.renci.org/Project/Autopilot/AutopilotOverview.htm
3. http://pablo.renci.org/Publications/Presentations/HPDC7/index.htm
4. http://pablo.renci.org/Publications/Presentations/Autopilot%20Overview/index.htm

