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Autopilot

• Autopilot is a software infrastructure for dynamic 
performance tuning of heterogeneous computational 
grids based on closed loop control.
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Software Performance Tuning

• Traditional a posteriori approach
1. Application instrumentation

– Instrumented automatically by object code patching or compiler.
– Manually insert instrumentation library calls.

2. Execute, measure, and extract performance data
3. Analysis and visualization

– Identify performance bottlenecks
4. Application optimization

– Modify program, adjust runtime policies

• This tuning model presumes repeatability
– Application has repeatable behavior.
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Heterogeneous Computational Grids

• Grids
– Hardware and software infrastructure.
– Provide access to computational capabilities.
– Integrate large numbers of geographically distributed resources.

• Grid application behavior is rarely repeatable
– Complex and multidisciplinary.
– Time varying resource demands / requirements.
– Dynamically changing resource availability.

• The a posteriori performance tuning model is not suited 
to heterogeneous computational grids applications.
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Real-time Adaptation

• Applying real-time adaptive control techniques to dynamically adapt 
the system to different resource demands and resource availability.

• Autopilot
– Integrate dynamic performance instrumentation.
– Configurable resource management algorithms.
– Real-time adaptive control mechanisms.
– Based on application request patterns and observed 

performance.
– Automatically configure and manage resources.
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Autopilot Software Components

• Distributed sensors
– Capture run-time data and send data to clients.

• Software actuators
– Receive commands from clients, and adjust application behavior 

(parameter values) and resource policies.
• Clients (sensor and actuator clients)

– Monitor sensor data and issue commands to actuators.
• Distributed name servers (Autopilot manager)

– Remote sensors and actuators register in name servers.
– Clients request for sensors and actuators (based on their properties) 

through name servers.
• Decision mechanism

– Select right resource management policies (fuzzy logic) based on
application requests and sensor data.
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Autopilot Adaptive Control Infrastructure
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Close Loop Control

• Sensor: sense and transmit data to client.
• Client: decide and send commands to actuator.
• Actuator: actuate application behavior and resource policies.
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Nexus Toolkit

• The Autopilot software is built on Nexus Toolkit (communication 
substrate).

• Endpoint (Nexus term) refers to a global address and specifies a set 
of message handlers.

• Startpoint (Nexus term) identifies a pointer to an endpoint.

• The Autopilot manager is a daemon name server process.
• Sensors and actuators register at the Autopilot manager.
• A client obtains startpoints to sensors and actuators through the 

Autopilot manager, then it can communicate to sensors and 
actuators.

• Sensors and actuators also need to obtain startpoint to their clients 
before communication.
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Autopilot Manager
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Autopilot Sensor Design Principles

• Autopilot sensors should be lightweight, low overhead, minimally
perturbing, remotely accessible, and applicable to multiple 
architectures and programming models.

• Minimize data capture / extraction / transmission overhead in order 
to less perturb the system.

• To avoid oscillating decision due to stale sensor data, the latency 
between data collection and decision making must be small.

• Transmit raw data v.s. compute and transmit derived metrics.
• Balance transmission frequency v.s. buffer size

– Transmission Frequency ↓, transmission overhead ↓, 
buffer size ↑, latency ↑.
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Autopilot Sensor / Actuator Features

• Property list
– Every sensor and actuator is associated with a set of properties.

• Name, type, network address, and user-defined attribute-value pairs.
– Clients specify property lists in queries to the Autopilot manager. The 

manager then replies startpoints that satisfy the query. 
• Activation modes

– Threaded mode: a monitoring thread records data at specified interval.
– Non-threaded mode: it relies on insertion of sensor monitoring calls.

• Attached functions
– Sensors can have attached functions for data reduction.

• E.g., Computing sliding window average.
– Actuators can have attached functions to mediate remote commands.

• Dynamic activation and deactivation.
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Distributed Name Servers

• Autopilot managers act as name servers and coordinate 
connections between sensors, actuators, and clients.

• Sensors and actuators register their properties and Nexus 
startpoints with an Autopilot manager after creation, and also inform 
the manager when they are destroyed.

• Clients specify a set of desired properties, and the manager 
provides startpoints to the sensors or actuators that match the 
request.
– Clients can acquire remote sensors and actuators without knowledge of 

their location.
– Clients can dynamically attach to distributed software components, 

exercise control, then relinquish the attachment.



8

CMSC714
Nov. 10, 2005

Clients

• Clients establish direct communications to sensors and actuators.
• Sensors send data to all the connected remote clients.
• Clients process data, make decisions, and issue commands to 

remove actuators to implement decisions.
• Clients can change sensor / actuator behaviors.

– Activation, buffer size, sampling rate.
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Sensor Registration Code

// Define Properties for RequestSize Sensor
ApProperties RequestSizeProperties(progName, mgrName);
RequestSizeProperties.addProperty("Name", "RequestSizeSensor");
RequestSizeProperties.addProperty("Application", "PPFS II");
// Construct RequestSizeSensor.
ApIntegerSensor RequestSizeSensor("RequestSizeSensor", 

RequestSizeProperties, requestSize, variableCount=1, bufferSize=8);
// Register Sensor with Autopilot Manager
RequestSizeSensor.registerStartPoint();
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Decision Mechanisms – Fuzzy Logic

• Closed loop adaptive control.
• Fuzzy logic

– Fuzzy logic incorporates an empirical rule-based IF - THEN 
approach to solve control problem rather than attempting to 
model a system mathematically.

– Balance potentially conflicting goals (e.g., minimize response 
time and maximize throughput). 

– By changing the fuzzy logic rule base, they can adjust the control 
system or even retarget to a new domain without extensive 
software development.
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Fuzzy Logic Decision Process

Autopilot includes a fuzzy logic engine that accepts sensor inputs, fuzzifies the 
values, computes the relative truth of each rule, and defuzzifies the consequents 
to activate remote actuators.
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Fuzzy Logic

• Fuzzifier
– Scales and maps input variables to fuzzy sets.

• Decision mechanism 
– Interpret IF-THEN rules.
– If the premise (input) is true in a rule to some degree.
– Then the consequent (output) of the rule is true to the same 

degree.
– Multiple rules can be active for the same input.

• Defuzzifier
– Combine multiple rule outputs through a defuzzification method 

(combination can yield complex behavior).
– Generates final output.
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Fuzzy Logic Example
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Autopilot Performance

• Performance depends on the following factors:
– Sensor buffer sizes.
– Threaded and non-threaded sensor modes.
– Number of clients/sensor.
– Dynamic data reduction via attached functions.
– Complexity of fuzzy logic rules.
– Distance of sensors/actuators/clients.
– Available network bandwidth.
– Data throttling via sensor activation/deactivation.
– Actuator synchronization.

• This paper only discusses data buffering and fuzzy rule complexity.
– Sun Ultra 1 Model 170 (170 MHz UltraSPARC processor) with 64 MB of 

memory, and an SGI Origin2000 with 32 195MHz R10000 processors 
and 4 GB of memory.
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Buffer Size v.s. Round-trip Latency

• The round trip delay including data buffering and transmission in wide area, 
local area, and intra-system contexts as a function of the sensor buffer size.

• For small buffer sizes, 
communication 
overhead is dominated 
by communication 
latency, ranging from 1 
ms between multi-
processor in SGI share 
memory system to 40 
ms in wide area 
network.
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Fuzzy Rule Complexity v.s. Decision Time

• The time to evaluate a rule base as a function of both the number of rules 
and the resolution of the fuzzy sets (the number of sample points).

• Rule evaluation overhead is linear in both the number of rules and the fuzzy 
set resolution.
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PPFS II

• PPFS II: an adaptive parallel file I/O system.
– It is designed to operate on top of either parallel systems or 

PC/workstation clusters.
• Use Autopilot to adapt PPFS II in real-time .
• Sense

– Quantitative data: I/O instrumentation (e.g., read size, write size, …)
– Qualitative data: access pattern (e.g., sequential writes, …)

• Actuate
– Cache block size, cache size, cashing policy.

• Fuzzy logic control
– 9 rules.

• Application
– PPFS II benchmark.
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PPDS II Integration Overview

CMSC714
Nov. 10, 2005

PPFS II Architecture
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PPFS II Experiments

• Benchmark:
– A 128 MB file is first written sequentially in 16 KB units. Then a 

32 MB section of the file is read randomly four times using 16 KB 
access sizes.

• Compare non-adaptive to adaptive approach
– For non-adaptive approach, PPFS II uses default caching 

parameters: 4 KB cache blocks and a 16 MB client cache.
– For adaptive approach, a fuzzy logic decision procedure 

continuously monitors and adjusts the file system using Autopilot 
infrastructure.

• Phase I (Write): 8MB cache and 60 KB block
• Phase II (Read): 30MB cache and 80 KB block
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Adaptive I/O Rule Base

• Small input/output requests are best managed by aggregation, pre-fetching, 
caching, and write-behind.

• Large requests are better served by streaming data directly to or from 
storage devices and application buffers.

if ( ReadWriteMix == READONLY && Sequentiality == NONSEQUENTIAL &&
RequestSize == LARGE )

{ CachingEnable = DISABLED; }
if ( ReadWriteMix == READONLY && Sequentiality == NONSEQUENTIAL &&

RequestSize == TINY )
{ CachingEnable = ENABLED; CacheSize = HUGE; BlockSize = LARGE; }
... ...
if ( ReadWriteMix == WRITEONLY && Sequentiality == SEQUENTIAL )
{ CachingEnable = ENABLED; CacheSize = SMALL; BlockSize = LARGE;
ReplacementPolicy = MOSTRECENTLYUSED; }
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PPFS II I/O Benchmark

• Dynamic adaptation decreases the benchmark execution time from over 80 
seconds to less than 70 seconds.
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Current Status

• Pablo research group in the Department of Computer Science at the 
University of Illinois at Urbana-Champaign.

• Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A. 
Reed, "Autopilot: Adaptive Control of Distributed Applications,"
Proceedings of the 7th IEEE Symposium on High-Performance 
Distributed Computing, Chicago, IL, July 1998.

• Software distribution: 
http://pablo.renci.org/Software/Autopilot/autopilot.htm
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