Autopilot: Adaptive Control of Distributed
Applications

R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed

Department of Computer Science
University of lllinois

Presenter:
Chia-Jui Hsu

November 10, 2005

Autopilot

» Autopilot is a software infrastructure for dynamic
performance tuning of heterogeneous computational
grids based on closed loop control.

% CMSC714
w Qh Nov. 10, 2005

Outline

* Introduction

» Autopilot Overview

» Autopilot Software Components
* Fuzzy Logic Control

» Autopilot Performance

* PPFS II: An Autopilot Testbed

» Current Status

FAERSIT,

St CMSC714
* * Nov. 10, 2005
e S

R

Software Performance Tuning

» Traditional a posteriori approach
1. Application instrumentation
— Instrumented automatically by object code patching or compiler.
— Manually insert instrumentation library calls.
2. Execute, measure, and extract performance data
3. Analysis and visualization
— ldentify performance bottlenecks
4. Application optimization
— Modify program, adjust runtime policies
e This tuning model presumes repeatability
— Application has repeatable behavior.

RSiry

) CMSC714
Nov. 10, 2005

S
18

Ko
ARV

L3

Heterogeneous Computational Grids

» Grids
— Hardware and software infrastructure.
— Provide access to computational capabilities.
— Integrate large numbers of geographically distributed resources.

» Grid application behavior is rarely repeatable
— Complex and multidisciplinary.
— Time varying resource demands / requirements.
— Dynamically changing resource availability.

» The a posteriori performance tuning model is not suited
to heterogeneous computational grids applications.

SERSIT,
St

] CMSC714
* * Nov. 10, 2005
LIS
ARV

Real-time Adaptation

» Applying real-time adaptive control techniques to dynamically adapt
the system to different resource demands and resource availability.

» Autopilot

Integrate dynamic performance instrumentation.
Configurable resource management algorithms.
Real-time adaptive control mechanisms.

Based on application request patterns and observed
performance.

Automatically configure and manage resources.

ST,

o CMSC714
1: Qh Nov. 10, 2005

ARV

Autopilot Software Components

L= | — —— _-— L= | — S— o
 Distributed sensors
— Capture run-time data and send data to clients.
» Software actuators
— Receive commands from clients, and adjust application behavior
(parameter values) and resource policies.
» Clients (sensor and actuator clients)
— Monitor sensor data and issue commands to actuators.
» Distributed name servers (Autopilot manager)
— Remote sensors and actuators register in name servers.
— Clients request for sensors and actuators (based on their properties)
through name servers.
» Decision mechanism
— Select right resource management policies (fuzzy logic) based on
application requests and sensor data.
SERSIT,
§ % CMsC714
* : Nov. 10, 2005
CIES
Autopilot Adaptive Control Infrastructure
. . L . P— - . . L — -

Application

Resource

policy

Rsin,

% CMSC714
w Qh Nov. 10, 2005

o
ARV

Close Loop Control

. . - AR — = '-‘ . . - AR — = '-|
» Sensor: sense and transmit data to client.
» Client: decide and send commands to actuator.
» Actuator: actuate application behavior and resource policies.
FAERSIT,
o CMSC714
* * Nov. 10, 2005
T 2
R
Nexus Toolkit
.. . . | ARl — _ W | | ARl — -

» The Autopilot software is built on Nexus Toolkit (communication
substrate).

» Endpoint (Nexus term) refers to a global address and specifies a set
of message handlers.

» Startpoint (Nexus term) identifies a pointer to an endpoint.

» The Autopilot manager is a daemon name server process.
* Sensors and actuators register at the Autopilot manager.

» A client obtains startpoints to sensors and actuators through the
Autopilot manager, then it can communicate to sensors and
actuators.

e Sensors and actuators also need to obtain startpoint to their clients
before communication.

JERSIT
S % CMSC714
w 5 Nov. 10, 2005

Ko
ARV

Autopilot Manager

Sensor/actuator controls Remote

Client Task(s)

Sensor data

Autopilot
Manager
SERSIT,
S CMSC714
" “ Nov. 10, 2005
T 2
Lhsesa

Autopilot Sensor Design Principles

» Autopilot sensors should be lightweight, low overhead, minimally
perturbing, remotely accessible, and applicable to multiple
architectures and programming models.

* Minimize data capture / extraction / transmission overhead in order
to less perturb the system.

» To avoid oscillating decision due to stale sensor data, the latency
between data collection and decision making must be small.

» Transmit raw data v.s. compute and transmit derived metrics.
» Balance transmission frequency v.s. buffer size

— Transmission Frequency {, transmission overhead |,
buffer size 1, latency t.

SEe, CMSC714
1: Qh Nov. 10, 2005
RS

Autopilot Sensor / Actuator Features

» Property list
— Every sensor and actuator is associated with a set of properties.
« Name, type, network address, and user-defined attribute-value pairs.

— Clients specify property lists in queries to the Autopilot manager. The
manager then replies startpoints that satisfy the query.

« Activation modes

— Threaded mode: a monitoring thread records data at specified interval.

— Non-threaded mode: it relies on insertion of sensor monitoring calls.
» Attached functions

— Sensors can have attached functions for data reduction.

¢ E.g., Computing sliding window average.

— Actuators can have attached functions to mediate remote commands.

» Dynamic activation and deactivation.

FAERSIT,
S CMSC714
* * Nov. 10, 2005

LIS
Lhsesa

Distributed Name Servers

» Autopilot managers act as name servers and coordinate
connections between sensors, actuators, and clients.

» Sensors and actuators register their properties and Nexus
startpoints with an Autopilot manager after creation, and also inform
the manager when they are destroyed.

» Clients specify a set of desired properties, and the manager
provides startpoints to the sensors or actuators that match the
request.

— Clients can acquire remote sensors and actuators without knowledge of
their location.

— Clients can dynamically attach to distributed software components,
exercise control, then relinquish the attachment.

JERSIT
S CMSC714

1: Qh Nov. 10, 2005
RS

Clients

- . — —— » '-‘ - . — —— » '-|
» Clients establish direct communications to sensors and actuators.
» Sensors send data to all the connected remote clients.
» Clients process data, make decisions, and issue commands to
remove actuators to implement decisions.
» Clients can change sensor / actuator behaviors.
— Activation, buffer size, sampling rate.
St CMSC714
* * Nov. 10, 2005
4""!::1 !\‘S
Sensor Registration Code
. I T - . P— _ W | . I T - . P— -
/I Define Properties for RequestSize Sensor
ApProperties RequestSizeProperties(progName, mgrName);
RequestSizeProperties.addProperty("Name", "RequestSizeSensor");
RequestSizeProperties.addProperty("Application”, "PPFS II");
/I Construct RequestSizeSensor.
AplintegerSensor RequestSizeSensor("RequestSizeSensor",
RequestSizeProperties, requestSize, variableCount=1, bufferSize=8);
/I Register Sensor with Autopilot Manager
RequestSizeSensor.registerStartPoint();
e\qf.ksip_
S % CMSC714
w 5 Nov. 10, 2005

E sl

. al
ARV

Decision Mechanisms — Fuzzy Logic

» Closed loop adaptive control.
* Fuzzy logic
— Fuzzy logic incorporates an empirical rule-based IF - THEN
approach to solve control problem rather than attempting to
model a system mathematically.
— Balance potentially conflicting goals (e.g., minimize response
time and maximize throughput).
— By changing the fuzzy logic rule base, they can adjust the control

system or even retarget to a new domain without extensive
software development.

B % CMSC714
* * Nov. 10, 2005
T 2

R

Fuzzy Logic Decision Process

.. . . L | ARl — - L | ARl — -
Autopilot includes a fuzzy logic engine that accepts sensor inputs, fuzzifies the
values, computes the relative truth of each rule, and defuzzifies the consequents
to activate remote actuators.

Rsin,

% CMSC714
w Qh Nov. 10, 2005

o
ARV

Fuzzy Logic

* Fuzzifier
— Scales and maps input variables to fuzzy sets.

» Decision mechanism
— Interpret IF-THEN rules.
— If the premise (input) is true in a rule to some degree.

— Then the consequent (output) of the rule is true to the same
degree.

— Multiple rules can be active for the same input.

o Defuzzifier

— Combine multiple rule outputs through a defuzzification method
(combination can yield complex behavior).

— Generates final output.

St CMSC714
’: .: Nov. 10, 2005
CIES

Fuzzy Logic Example

1 1

L OW HIGH
e HIGH '
0

= 0%
=
[} 0. 1
\ l
s) MEDIUM

s

MEDIUM

ulx}

()

£
Ei

|
] LES 1
1

0s

wlx}

LOW

ERSIT,
e\‘l oV

% CMSC714
w 5 Nov. 10, 2005

Ko
ARV

Autopilot Performance

» Performance depends on the following factors:
— Sensor buffer sizes.
— Threaded and non-threaded sensor modes.
— Number of clients/sensor.
— Dynamic data reduction via attached functions.
— Complexity of fuzzy logic rules.
— Distance of sensors/actuators/clients.
— Available network bandwidth.
— Data throttling via sensor activation/deactivation.
— Actuator synchronization.

» This paper only discusses data buffering and fuzzy rule complexity.

— Sun Ultra 1 Model 170 (170 MHz UltraSPARC processor) with 64 MB of
memory, and an SGI Origin2000 with 32 195MHz R10000 processors
and 4 GB of memory.

FAERSIT,
S CMSC714
* * Nov. 10, 2005

LIS
Lhsesa

Buffer Size v.s. Round-trip Latency

¢ The round trip delay including data buffering and transmission in wide area,
local area, and intra-system contexts as a function of the sensor buffer size.

1000

—— Sun Local (TCP) For small buffer sizes,
m Sun Fast Echarmac TCP communication
= SGIMPI e . .
5 SCIthmam a overhead is dominated
o ——5GlLocal TCP i . .
g o T SGlocy by communication
E e latency, ranging from 1
g —— ms between multi-
= processor in SGI share
o
£ v —— memory system to 40
e, o " o o . .
H R e I i X }L ms in wide area
xﬂ I e /
b e Dol A e network.
1 "
1 10 100 1000 10000
Data Size {bytes)
SERSIT,
S % CMSC714
w 5 Nov. 10, 2005
ko)
LIRS

11

Fuzzy Rule Complexity v.s. Decision Time

* The time to evaluate a rule base as a function of both the number of rules
and the resolution of the fuzzy sets (the number of sample points).

¢ Rule evaluation overhead is linear in both the number of rules and the fuzzy
set resolution.

Tk 20 point resclulion —— /
40 point resalution ——- —~

Dedisian Time (milliscands)

L L L L
20 25 30 35 an
Number of Rules

SR

F g, CMSC714
’: .: Nov. 10, 2005
ARy
PPFS Il
. B T | ARl — _ W | . B T | ARl — -

e PPFS IlI: an adaptive parallel file /0O system.

— ltis designed to operate on top of either parallel systems or
PC/workstation clusters.

» Use Autopilot to adapt PPFS Il in real-time .
* Sense
— Quantitative data: I/O instrumentation (e.g., read size, write size, ...)
— Qualitative data: access pattern (e.g., sequential writes, ...)
* Actuate
— Cache block size, cache size, cashing policy.
» Fuzzy logic control
— 9rules.
* Application
— PPFS Il benchmark.

JERSIT
S CMSC714

1: Qh Nov. 10, 2005
RS

12

PPDS Il Integration Overview

Application
using [/O
PPES II Decision Server I
PPFS II System
Native file system/OS

S, CMSC714

* : Nov. 10, 2005
CIES

PPES Il Architecture

PPFS II Library Client

. Autopilot Manager .

Decision Server

EI0 APL l Preferences | ibrary Exit Sensor

File Open Sensor

File Close Sensor, Control

T/O Statistics &
Classifier

Eequest Sensor I

Caching Decision
Procedure

Classification
Feriod

" Cache Rize

~ Cache Block Size = Decision

Procedure =

l Base File
I Actuator >

Disk I Sensor

™ ttached Function
—

" Replacement Policy

Rsin,

% CMSC714
]

" /s Nov. 10, 2005
e

13

PPFES Il Experiments

e Benchmark:
— A 128 MB file is first written sequentially in 16 KB units. Then a

32 MB section of the file is read randomly four times using 16 KB
access sizes.

» Compare non-adaptive to adaptive approach

— For non-adaptive approach, PPFS Il uses default caching
parameters: 4 KB cache blocks and a 16 MB client cache.

— For adaptive approach, a fuzzy logic decision procedure
continuously monitors and adjusts the file system using Autopilot
infrastructure.

e Phase | (Write): 8MB cache and 60 KB block
¢ Phase Il (Read): 30MB cache and 80 KB block

St CMSC714
’: .: Nov. 10, 2005
CIES

Adaptive I/O Rule Base

« Small input/output requests are best managed by aggregation, pre-fetching,
caching, and write-behind.

« Large requests are better served by streaming data directly to or from
storage devices and application buffers.

if (ReadWriteMix == READONLY && Sequentiality == NONSEQUENTIAL &&
RequestSize == LARGE)

{ CachingEnable = DISABLED; }

if (ReadWriteMix == READONLY && Sequentiality == NONSEQUENTIAL &&
RequestSize == TINY)

{ CachingEnable = ENABLED; CacheSize = HUGE; BlockSize = LARGE; }

if (ReadWriteMix == WRITEONLY && Sequentiality == SEQUENTIAL)

{ CachingEnable = ENABLED; CacheSize = SMALL; BlockSize = LARGE;

ReplacementPolicy = MOSTRECENTLYUSED; }

ERSIT,
e\‘l oV

% CMSC714
1: Qh Nov. 10, 2005
RS

14

PPFS Il I/O Benchmark

200 T T T

Request Duration (millisec onds)

Dynamic adaptation decreases the benchmark execution time from over 80
seconds to less than 70 seconds.

200 T T T T

T T T
I i I
180 = o ' = ~—Sequential Writes ——— 0 !
| | |

- R il Ly

160 -——— Sequential Writes ———= | : 1
1 I
40 [y o0 Random b i
& Reads | Randorm
1201 o -] ! Reads |
MY - A I

|
|

I

|

I

|

I

100 [6%, o i
e o
|

|

60

Timestamp seconds) Timestamp (seconds)

ATERSIT,
Sy CMSC714
" * Nov. 10, 2005
ER)Y]
Ayl b
Current Status
.. I . Rl ARl ™ = -‘ .. I . Rl ARl ™ = -,

Pablo research group in the Department of Computer Science at the
University of lllinois at Urbana-Champaign.

Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A.
Reed, "Autopilot: Adaptive Control of Distributed Applications,"
Proceedings of the 7th IEEE Symposium on High-Performance
Distributed Computing, Chicago, IL, July 1998.

Software distribution:
http://pablo.renci.org/Software/Autopilot/autopilot.htm

CMSC714

w 5 Nov. 10, 2005

15

References

1. Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A. Reed, "Autopilot:
Adaptive Control of Distributed Applications," Proceedings of the 7th IEEE
Symposium on High-Performance Distributed Computing, Chicago, IL, July 1998.

2. http://pablo.renci.org/Project/Autopilot/AutopilotOverview.htm
http://pablo.renci.org/Publications/Presentations/HPDC7/index.htm
4. http://pablo.renci.org/Publications/Presentations/Autopilot%200verview/index.htm

w

SERSIT,
e, ¥

&) % CMSC714
* * Nov. 10, 2005

T 2
Lhsesa

16

