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Abstract- DFT Spread OFDM has been proposed recently to
reduce the Peak to Average Power Ratio (PAPR) of conventional
OFDM transmission. Besides PAPR reduction, an important
implication of DFT Spreading is that the independent parallel
sub-channels between the sub-carriers cease to exist. This in
turn leads to difference in its performance limits as compared to
the conventional OFDM system. This paper analyzes the error
probabilities of DFT Spread OFDM systems, and derives their
analytical closed form expressions for the AWGN, fading AWGN,
multipath and fading multipath channel scenarios. Simulation
results presented in last section confirm the validity of the derived
analytical expressions.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
proven to be an efficient underlying technology for wireless
communication. The major motivation for OFDM comes from
its relatively simple way of handling frequency selective
channels which are normally encountered in wireless mobile
systems [1], [2]. A major drawback of OFDM transmission,
however, is its high Peak to Average Power Ratio (PAPR)
which increases operational requirements of the Linear Power
Amplifier in the transmitting equipment leading not only to
an increased cost but also an increased power consumption
which is not desired especially at the uplink transmitter, the
User Equipment (UE).
Numerous techniques have been developed to reduce OFDM

PAPR [3], [4], [5] and DFT Spread OFDM (DFT-SOFDM)
[6] is one outcome of such investigations. With an extra DFT
block prior to the conventional OFDM transmitter, it proves to
be an effective way of combining the benefits of OFDM with
a low PAPR transmission signal. As such it has already been
selected as the uplink modulation scheme for the upcoming
Long Term Evolution of 3G systems under the work item of
Evolved-UTRA by 3GPP [7].

Fig. 1 shows the principle of DFT SOFDM transmission
applied to an uplink multiple access system whereby multiple
users transform their time domain symbols independently via
the DFT block to get the frequency domain sub-carriers. Each
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user then maps its sub-carriers onto a pre-assigned empty
portion of the overall system spectrum followed by IFFT and
CP insertion as in conventional OFDM transmission. Note
that N, represents the chunk size (the number of sub-carriers
assigned to a user) and N is the total number of sub-carriers
in the system.

Besides the PAPR reduction, an important implication of
DFT Spreading is that the independent parallel sub-channels
between the data symbols no longer exist. While in a con-
ventional OFDM system each sub-channel can be considered
as an AWGN channel with SNR determined by receiver noise
and channel response at that sub-channel only, the idea cannot
be applied to DFT-SOFDM. Analytical expressions for Symbol
Error Rate (SER) and Block or Packet Error Rate (PER) can
readily be found for OFDM optimal detection [8], but such
an analysis can not be extended to the case of DFT-SOFDM
optimum receiver.

In this paper, we analyze the error performance limits
of DFT-SOFDM systems, starting with the case of ZF and
MMSE equalizers. Analytical expressions for SER are derived
for AWGN, fading AWGN, multipath and fading multipath
channel scenarios. Finally we take a look at PER for the case
of linear as well as the optimal (ML) detection and obtain
closed form expression for an upper bound on PER.

II. SYSTEM MODEL

We consider the transmission of a N, dimensional symbol
vector s e CN_ which is transformed into the frequency
domain leading to X = Fs e CN_, where F e CN-XN-
is the unitary Fourier matrix i.e. FFH = I. Now owing to the
insertion of cyclic prefix of length v greater than the length L
of the channel impulse response, h e CL, and the IFFT and
FFT operations of the transmitter and receiver respectively the
following system model holds in the frequency domain [8],

Y =HX+ri (1)

where He CN X, N, is a diagonal matrix containing the
channel frequency response at the sub-carriers of interest i.e.
H = diag[FNp XLh], FNCXL is the respective portion of the
Fourier matrix FN e CNXN. The vectors Y and rj e CN-
contain the received symbols and noise in the frequency
domain. After the IDFT block at receiver, the system model
above can be written in the data symbol domain as

H Hy=F HFs+FHr, (2)

Fig. 1. DFT Spread OFDM Transmitter Structure
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and with a linear equalizer W e CN-XNc in place, the
reconstructed symbol can be expressed as

s =WFHHFs + Wi (3)

where r FHr, is statistically equivalent to the original noise
rj. Given the channel estimates, the equalizer can be designed
under the ZF or MMSE criterion and can be given, for the
case of uncorrelated noise Rr =r7I = Rj and uncorrelated
transmitted signal R. = oI, as [9]

WZF FH (HHH) 1 HHF
WZ= H H H H

WMMSE = FH I+HHHH HHF

III. SER ANALYSIS

(4)

(5)

A. AWGN Channel

Since an AWGN channel correspond to a flat channel
frequency response at all sub-carriers, the channel matrix under
the channel energy constraint E [IH,I2] = 1, reduces to an
identity. The ZF equalizer, as such, is also an Identity matrix
and its reconstruction expression can be given as

SZF = S +-)T

C. Multipath Channel
Now we come to the more interesting case of multipath

channels, where the channel matrix is an arbitrary diagonal
matrix but still with the energy constraint E [IH,i2] = 1. The
ZF reconstruction expression can be written as

s =s+FH(HHH)HH= s±+

where A,i, the ith effective noise component given as,

ITi = E: ( H i)

has a mean of zero, and its variance can be given as,

NC F*. 2
2 T2E Hj
J7i1J7H

(12)

(13)

(C j=l Hi )

where /3ZF can be termed as the ZF noise amplification factor.
It is worth appreciating here that or?i = ojr is independent of
the index i, and as such unlike the case of conventional OFDM,
all the symbols are equally likely to be in error. Because of the
presence of DFT spreading, the different sub-channel SNRs in
the frequency domain are averaged to a constant SNR in the
data-symbol domain. The SER for a symbol-wise slicer can
be expressed as

(6)

The MMSE equalizer for the under-consideration AWGN
Channel reduces to a scaled identity i.e. WMMSE = AI, with
A = 1/(1 +o('/o(J2) so that

SMMSE =A (S + r) (7)

We note that for the case of uncorrelated noise, both ZF and
MMSE reconstructions simplify to scalar equations and both
have the same symbol error probability (SER), that can be
given as [8],

PMMSE = PZF Pr(si ? si) Q ( 2E5) (8)

B. Fading AWGN Channel

The channel frequency response is still flat but the amplitude
no longer remains fixed at 1, rather it varies (say in accordance
with rayleigh fading) from one channel realization to other.
The diagonal channel matrix is assumed to be H = pI with
E [ pI2] = 1, to satisfy the energy constraint. The ZF equalizer
in this case reads as WZF= (1/p)I so that,

SZF = s +(1 pI) r7 (9)

and as such its SER can be given as

F(2E p 2

PZF =Pr(si 7? S1) = EH [Q N (10)

The MMSE equalizer again simplifies to a scaled identity i.e.
WMMSE= AI, with A = p*/(l p2 + Or2/(J2) so that,

SMMSE =Aps + Ani (1 1)

leading to the same SER expression as for ZF, i.e. PMMSE
PZF from (10).

PZF = Pr(si 7s1i) = Q (/)\_) (15)

The MMSE equalizer's reconstruction reads as

s = FH (I + HHH) HHHFs

+FH (41I+HHH) HHi (16)

and we proceed now by analyzing the noise, the desired signal
and the interference power at the equalizer output. The ith
effective noise component can now be given as,

(17)i = -,f)

and can be shown to have a mean of zero, and variance

2 E ( HO 2+ )2))=MMSE cun (18)

where /MMSE can be termed as the noise amplification factor
for the MMSE equalizer and can be shown to be less than
/ZF. Note again that is?i = or iS independent of the index
i, and as such all symbols experience the same noise power.
Nevertheless the noise covariance matrix can be shown to have
a non-diagonal structure indicating some degree of correlation
between the various noise components.

Examining the reconstruction expression in (16) further, we
note that the signal vector is being operated on by the matrix
A= WMMSEFHHF, whose entry in ith row and kth column
can be shown to be

NY2. FiFj, kI+ 12
a,k 2*** H2

+
2

J= 1 J 7/7
(19)

OZF 07
2 (14),q
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The diagonal entries of this matrix which scale the desired
symbol, simplify to

ai,i =I N H12+ (20)
N,3.-I -', 07

The effective desired signal power at the equalizer output can
therefore be given as

2 2 ( +2 /2 2 I07D = 0s -I: Hj
2±2
+ ,/a aEMMSE o78 (21)

where aIMMSE can be described as the desired signal amplifi-
cation factor. Note that the MMSE equalizer also accumulates
some interference power that can be given for the ith symbol
as

Na

07Ii =:
J E Iai, kl

k=l

IV. PER ANALYSIS

For the Block or Packet error rate, we introduce two
solutions. First, we note that for detection via ZF or MMSE
equalizer we may use the union bound [10] to arrive at an
upper bound on PER as follows,

Pr(s #? s) = Pr(ji# 51 US2 s 82 U... USN,p SNJ)

(27)
N,

< E: Pr(si 7?& s )
i=l

Plugging in the appropriate SER expression in above equation
gives a reasonably tight upper bound on the PER especially at
high SNRs.
We now turn our attention to the PER of optimal ML

detector operating directly on the received data symbols y
H Hy=F HFs+F r, =Hs+i4

lai,i 12)

OCMMSE)s(N8 E(: IHj 12 + a, /a,2
2

7MVSE Us

Interestingly, we note that the interference amplification fa(
YMMSE in (22), the desired signal amplification factor aw
in (21) and the noise amplification factor MMSE in (18)
all independent of the symbol index i. All the symbols
therefore expected to have the same error probability. Fins
we note that the noise and interference powers from (18)
(22) can be combined to get,

2 + 2 )lHj
T/ Ii NC tE IHj 12 + 52/2 + lHj 12 + U2/2J

- avMMSE 07,

2- Hj 2(2 /2 + Hj 1)2A
Nc j=l (I(Hj 12 + 72 /02)2 )

0fs(V/aMMSE MS)

2
-aMt,MSE (f s

(22)

Ator
MSE
are

(28)

The full-blown ML detector chooses s that maximizes the
likelihood, i.e.

s = argmax{P (yjH, si) = PT(y -Hsi)} = argmin Pi(y)
Si Si

(29)
so it needs to compute the following metrics

_r (g) = g- 2

Pi(y) =y _HSi for i =1,2,...,IM
2

CN, (30)

are and chooses s = si that leads to the minimum metric. Note
ally that C is the constellation size. The ML detector makes an
and error if say s1 was transmitted and F1 (y) is not the minimum.

Thus the PER in case of equiprobable transmissions can be
written as

Pr(s #? s) = Pr(Pi -z P2,P3,...,PtNMIi)
= I-Pr(i<Pr2nri<r3n...nri<mI-HI)

(31)
where X1l represents the hypothesis that si was transmitted.
Next we determine the Pr(Fi < ]ijl7(), by first defining a

(23) new variable

so that the SER expression for the MMSE equalizer, under the
loose assumption of interference being gaussian, can be given
as

PMMSE= Pr(si #s1i) =Q(

1(IS1-) (24)

D. Multipath Fading Channel

The analysis in the last sub-section for multipath channels
can easily be extended for the time varying (fading) multipath
channels. We note from the ZF and MMSE SER equations (15)
and (24), that RZF and aMMSE are dependent on the channel
realization. So we obtain the SER expressions for the fading
multipath channels by introducing an expectation operator in
respective equations for non-fading channels. Thus we have

PZF = EH [Q ( \)] (25)

PMMSE = EH [Q ( 1 )MSE(26)

T = (rl - rj ) I'H
H'H 'H'[,AsHHH HAs + ,AsHHH + 'Hft/A] (32)

where As = s -sj. The moments of this new gaussian
variable T are computed to be,

H 'HI-,u = -j s H H i\s
2 2 H 'H0U 2,7. 'ASHH H/AS 2,fT1 t

(33)
(34)

Thus we have T JV(,uT,IOT) and as such

Pr(Pi<Pj |Ri) = Pr(T <O) Q1Q( 2A2H)

(35)
we note however that (31) can be expanded in terms of these
individual probabilities only if the metrics Fj are independent,
which is not the case here. In our case we can only expand it
in terms of following conditional probabilities,

Pr(s zh s) = 1 - Pr(Fl< F2 n Fl <F3 n ... nOl <FM I(7l)
= 1 - Pr(Fi < F2'Hi) Pr(Fi < F3I i < F2, 7tl).)..
...Pr(Fl< FMIl < F2,Fl <F3,..F.,l < mj-H,7H )

(36)
Next we argue that the first term in the product would be much
higher than other probabilities which condition already that
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F, <Pk for some k's. This upper bound on PER can be even
strengthened by considering one of the nearest neighbours of
s, in the first place, so that we have

SER for DFT-SOFDM, Multipath Channel (Veh A)
T .. ...7 .. .. .... .... ..r .. ...

:: ::: ::: :::: - Simulated ZF Equalizer
:::::::::::::::::i -iSmulated MMSE Equalizer

0 :1Analytica ZF Equaiz er

SER for DFT-SOFDM, Fading Multipath Channel (Veh A)

:::... :: :: Simulated ZF Equalizer
Simulated MMSE Equalizer

........ El Analytical ZF Equaiz er
. Analytical MMSE Equalizer

1 0........:::::::::X:::::::::::::::::::::

Pr(s 7? s) < 1 - [Pr(Fl < Prearest | )]' 1 (37)

where the Pr(Fi < Fnearest X'Hj) can be evaluated using (35)
with As = /2Ee, where ep is a vector with a one at Pth
place and zeros elsewhere, so that

2EsepH (FHHF) (FHHF) ep

2E,epHFHHHHFep

2Es N,

tZ1
(38)

Hence, we finally have the upper bound on PER, that can be
expressed as follows,

Pr(s #? s) < K-I

L

(N 2E 1 EiN
Q 2EZ, ZH1 2

N, N, J=

M-1

Fig. 3. Multipath Channel with and without fading

PER for DFT-SOFDM, Multipath Channel (Veh A)
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V. SIMULATION RESULTS

A comparison of the derived analytical formulas for the
SER for different channel scenarios is made to the simulation
results. The system under consideration operates over a 20
MHz bandwidth with 2048 subcarriers, and the number of
sub-carriers assigned to the user under-consideration is NC=25.
These simulation parameters are adopted from E-UTRA specs

[7]. Vehicular A channel profile [11] is used for comparing
simulation and analytical results for a multipath channel.
Rayleigh fading has been adopted to analyze the performance
for fading scenarios.

The SER expressions derived for the case ofAWGN channel
are found to be in complete agreement to the simulation results
in Figure 2. Moreover it needs to be emphasized that the
performance of DFT-SOFDM over AWGN channel is identical
to that of conventional OFDM systems [8]. Figure 3 shows
the performance over multipath channel, where again the
agreement of the derived analytical expressions and simulated
results is exceptionally close.

SER for DFT-SOFDM, AWGN

Siiulated ZF/MMSE Equalizer
: Analytical ZF/MMSE Equalizer

SER for DFT-SOFDM, Fading AWGN
r r. .. . .. . .. .r ... .

i - i i - i i Simulated ZF/MMSE Equaizer
: Analytical ZF/MMSE Equalizer

101

0-4

Fig. 2. AWGN Channel with and without fading

Figure 4 depicts the performance results in terms of the
Packet Error Rate (PER). The union bound can be seen to be
quite a tight upper bound on PER especially at low PERs. At
high PERs, the approximation based ML upper bound proves

to be tighter than the union bound.

O~
4 6 8 10

SNR in dB
12 14 16

Fig. 4. PER on a Multipath Channel

VI. CONCLUSION

In this paper, we analyzed the error performance limits of
DFT Spread OFDM systems. Besides the reasonably close
bounds on packet error rate for the case of optimal ML
detection, we derived closed form analytical expressions of the
symbol error rate for the case of ZF and MMSE equalization
under both AWGN and multipath channels. The complete
agreement of the simulation results, presented in the last
section, with the analytical ones confirm the validity of the
derived expressions.
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