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Abstract

This paper deals with the problem of spreading rumors in a distributed environment using
randomized communication. In particular, we envisage the class of so-called epidemic algo-
rithms which are commonly used for the lazy transmission of updates to distributed copies of
a database. We introduce the random phone call modelin order to investigate the possibilities
and limits of this class of broadcasting algorithms. In this model, n players communicate in
parallel communication rounds. In each round, each player calls a randomly selected commu-
nication partner. Whenever communication is established between two players, each one must
decide which rumors to transmit. The major problem (arising due to the randomization) is
that players do not know which rumors their communication partners have already received.
In order to illustrate this problem, we will give a simple example of a commonly used algorithm
in which each individual rumor is transmitted ©(nInn) times.

In this paper, we investigate whether a large communication overhead is inherent to epi-
demic algorithms using randomized rumor spreading or can be reduced significantly. We show
that there is an algorithm using only O(Inn) rounds and O(nInlnn) transmissions. We prove
the robustness of this algorithm against adversarial node failures and inaccuracies in the ran-
domized selection of the communication partners. Furthermore, we show that our algorithm is
optimal among those algorithms in which the actions of the players do not depend on the ad-
dresses of their communication partners. Finally, we give a lower bound for general algorithms
showing that time- and communication-optimality cannot be achieved simultaneously. In par-
ticular, we prove that any algorithm (based on the random phone call model) that distributes
a rumor in O(In n) rounds needs to send w(n) messages on expectation.
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1 Introduction

We investigate the problem of spreading rumors in a distributed environment using randomized
communication. Suppose n players exchange information in parallel communication rounds over
an indefinite time. In each round ¢, the players are connected by a communication graph G;. This
graph is generated at random in distributed fashion, that is, in each round, each player u selects
a communication partner v at random and wu calls v. Rumors can be started in any round by any
player and can be transmitted along the edges in the graph G4 in round ¢. The goal is to spread
the rumor among all participating players using a small number of rounds and a small number of
transmissions.

The motivation for using randomized communication is that it naturally provides robustness,
simplicity, and scalability. For example, consider the following so-called push algorithm. Starting
with the round in which a rumor is generated, each player that holds the rumor forwards it to a
communication partner selected independently and uniformly at random (i.u.r.). The algorithm
is terminated after some fixed number of O(Inn) rounds. At this time all players are informed,
with high probability (w.h.p.)%.

Clearly, one can also inform all players in O(Inn) using a deterministic interconnection of
constant degree, e.g., a shuffle network. (For an overview of deterministic information dissemina-
tion we refer to [5],[6].) The advantage of the push algorithm, however, is its implicit robustness
against several kinds of failures compared to the deterministic case where either additional time
is needed [4] or the error fraction is polynomial [11]. For example, consider node failures, i.e., a
player (different from the player starting the rumor) fails to communicate or simply crashes and
forgets its rumors. Obviously, when using a sparse deterministic network, even a single node fail-
ure can result in a large fraction of players not receiving the rumor. When using the randomized
push algorithm, however, the effects of node failures are very limited. In fact, it is not difficult to
prove that F' node failures (specified by an oblivious adversary) result in only O(F’) uninformed
players, w.h.p.

Unfortunately, the push algorithm produces a large communication overhead. In fact, it
forwards each individual rumor for @(nlnn) times until all players are informed, in comparison
to a deterministic scheme which requires only n — 1 transmissions. It seems that the large number
of transmissions is the price for the robustness. This gives rise to the question whether this
additional communication effort is a special property of the above push algorithm or is inherent
to rumor spreading using randomly generated communication graphs in general.

1.1 Background

Demers et al. [2] introduced the idea of using so-called epidemic algorithms for the lazy update
of data objects in a data base replicated at many sites, e.g., yellow pages, name servers, or server
directories. In particular, they propose the following two concepts:

o Anti-entropy: FEvery site regularly chooses another site at random and by exchanging
database contents with it resolves any differences between the two.

e Rumor mongering: When a site receives a new update it becomes a “hot rumor”. While a
site holds a “hot rumor”, it periodically chooses another site at random and ensures that
the other site has seen the rumor.

!The term with high probability (w.h.p.) means with probability at least 1 — O(r™®) for some positive constant



It turns out that anti-entropy is extremely reliable but produces an enormous amount of commu-
nication such that it cannot be used too frequently. The idea of rumor mongering is to exchange
only recent updates and thereby reducing the communication overhead significantly. In this paper,
we investigate algorithms implementing the rumor mongering concept.

The original idea for rumor spreading was to send rumors only from the caller to the called
player (push transmission) [2]. Several termination mechanisms deciding when a rumor becomes
“cold” so that it transmission is stopped were investigated. All these algorithms share the same
phenomenon: the fraction u of players that do not know a particular rumor decreases exponentially
with the number of transmissions ¢ (i.e., messages that contain this rumor). Mean field equations
lead to the conjecture that u = exp(—t/n) for all investigated variants of the push algorithm.
Thus, a push algorithm needs about nlnn transmissions for sending a rumor to all players.

A further idea introduced in [2] is to send rumors from the called to the calling player (pull
transmission). It was observed that the number of uninformed players decreases much faster using
a pull scheme instead of a push scheme if updates occur frequently so that (almost) every player
places a random call in each round. Experiments and mean field equation lead to the conjecture
u ~ exp(—(t/n)?) (for some specific pull algorithms) so that nv/Inn transmissions are sufficient
to inform all players.

The work of Demers et al. initiated an enormous amount of experimental and conceptual
studies of epidemic algorithms. For example, there is a variety of research issues for distributed
epidemic algorithms like consistency, correctness, data structures, and efficiency [1, 7, 8, 9, 10].
In this extended abstract, we concentrate only on the efficiency of these randomized algorithms.
In particular, we study their time and communication complexity using a simple model for the
underlying randomized communication.

1.2 The random phone call model

Let V denote the set of players. The communication graph G, = (V, E; C V x V) of round
t is obtained by a distributed, randomized process. In each round, each player u chooses a
communication partner » from V at random and u calls v. Unless otherwise stated, we assume
that all players choose their communication partners i.u.r. from V.

Even though we envisage an application (such as the lazy transmission of updates to dis-
tributed copies of a database) in which rumors are constantly generated by different players, our
analysis is concerned with the distribution of a single rumor only. We focus on the lifetime of
the rumor and the number of transmissions rather than the number of connections established
because the latter cost is amortized over all the rumors using that connection.

In round ¢, the rumor and other information can be exchanged only along the edges of G.
Whenever a connection is established between two players, each one of them (if holding the rumor)
has to decide whether to transmit the rumor to the other player, typically without knowing
whether this player has received the rumor already. Communication in each round is assumed to
proceed in parallel, that is, any information received in a round cannot be forwarded to another
player in the same round. We do not limit the size of the information exchanged. Fach information
exchange between neighboring players in a round is counted as a single transmission. (We point
out that our algorithms only add small counter values to rumors, whereas our lower bounds hold
even for algorithms in which players exchange their complete history whenever the rumor is sent
in either direction.)

An algorithm is called distributed if all decisions (whether to sent a rumor) are based on local
knowledge only. In particular, the decision whether player sends a message to a communication
partner in round ¢t depends only on the player’s state in that round. The initial state of a player



is defined by the player’s address, the number of players, and possibly a random bit string. In
general the state of a player in round ¢ is a function of its initial state, the addresses of the
neighbors in the communication graphs G4, ..., Gy, and the information received in the rounds 1
to t — 1. (For our lower bounds one may also assume that the state depends also on a globally
known round number as well as the birth date of the considered rumor.)

Finally, an algorithm is called address-independent if a player’s state in round ¢ does not
depend on the addresses of the neighbors in ¢ but only on the number of neighbors in G;. (For
example, all rumor spreading algorithms proposed by Demers et al. [2] are address-independent.)

1.3 New results

We prove that the number of transmissions can be reduced significantly when the rumor is sent
in either direction, that is, when using push and pull rather than only push operations. We
introduce a simple pushé&pull algorithm spreading the rumor to all players in O(In n) rounds using
only O(nlnlnn) transmissions rather than O(nlnn) as the push algorithm

The drawback of the push&pull-algorithm is that its success heavily relies on a very exact,
global estimation of the right termination time. This mechanism is very sensitive to any kind of
errors that influence the expansion of the set of informed players. We devise a distributed termi-
nation scheme, called the median-counter algorithm, that is provably robust against adversarial
node failures and stochastic inaccuracies in establishing the random connections.

In particular, we show that the efficiency of the algorithm does not rely on the fact that
players choose their communication partners uniformly from the set of all players. Suppose all
players use the same arbitrary probability distribution D : V' — [0, 1] rather than the uniform
distribution. We show that the median-counter algorithm takes O(lnn) rounds and needs only
O(nlnlnn) transmissions regardless of the probability distribution used for establishing the ran-
dom connections. For example, this feature allows sampling from an arbitrary address directory
(possibly with redundant addresses and some non-listed players as in a telephone book) rather
than sampling uniformly from the set of players itself. Thus, the algorithm can be executed even
without global knowledge about the set of players.

In addition, we provide lower bounds on the number of required transmissions assuming that
the communication graphs are obtained using the uniform probability distribution. The algo-
rithms above are address-independent and perform O(nlnlnn) transmissions. We prove a cor-
responding lower bound showing that any address-independent algorithm needs Q(nloglogn)
transmissions in order to inform all players. We point out that this bound holds independently
of the number of rounds executed.

The situation changes substantially when considering address-dependent algorithms. Allow-
ing O(nlogn) rounds, an address-dependent algorithm can spread the rumor using only n — 1
transmissions. For example, the player initiating the rumor can simply wait until each of the
other players appears as communication partner for the first time and then forward the rumor to
this player. Clearly, this is not a practical algorithm as it takes too many rounds. Nevertheless,
it illustrates the additional possibilities of address-dependent algorithms.

The above example leads to the question of whether address-independent algorithms can
spread a rumor in a small number of rounds while using only a linear number of transmissions. We
give a lower bound answering this question negatively. In particular, we show that any randomized
rumor spreading algorithm running O(logn) rounds requires w(n) transmissions, regardless of
the amount of information that can be attached to the rumors. Thus, there is a fundamental
gap between rumor spreading algorithms based on random interconnections and deterministic
broadcasting schemes.



2 Upper Bounds

2.1 The advantage of push&pull

First, let us explain the differences in the propagation of the rumor obtained by push transmissions
on the one hand and pull transmissions on the other hand.

e Consider a push scheme in which every informed player, in every round, forwards the rumor
to the player it calls until all players are informed. In this case the set of informed player
grows exponentially until about n/2 players are informed. At about this time the exponential
growth of the set of informed players stops. Starting from this point of time, let us consider
the set of uninformed players. Once half of the players are informed, this set shrinks by
a constant factor in each round. At the end of the rumor spreading process this factor is
about 1 —1/e since the fraction of players that do not receive a call in a round is about 1/e.
Thus, the shrinking phase takes ©(In n) rounds until every player has received the rumor,
and the push algorithm sends ©(n) messages in each of these rounds.

o Now consider a pull scheme in which only called players send the rumor towards the calling
players. In this case, the player starting the rumor may have to wait some rounds until it is
called for the first time so that the propagation in the first rounds becomes unpredictable.
But eventually (after O(Inn) rounds, w.h.p.) about n/2 of the players will be informed.
From this time on, the pull algorithm has an advantage against the push algorithm as the
fraction of uninformed players roughly squares from round to round. This is because in
a round starting with en uninformed players, each individual player has probability 1 —
to receive the rumor, so that the probability of staying uninformed is €, resulting in an
expected number of €2n uninformed players at the end of the round. Thus, we can expect
that the shrinking phase only takes ©(Inln n) rounds so that only ©(nlnln n) messages are
sent during this phase.

In order to combine the predictability of the push scheme with the quadratic-shrinking property
of the pull scheme, we simply sent the rumor in both directions whenever possible. In detail,
our push&pull scheme works as follows. The creator of the rumor initiates a time-counter with 0
representing the age of the rumor. The age is incremented in every round and distributed with
the rumor. In every round every informed player pushes and pulls unless the age of the rumor
is higher than tyay = loggn + O(loglogn). In the following theorem, we assume the uniform
distribution and a perfect interconnection without failures.

Theorem 2.1 The push&pull-scheme informs all players in time logs n + O(loglog n) using
O(nloglogn) messages w.h.p.

Proof. Let S be the set of informed players and Uy the set of uninformed players at the end of
round ¢. Define s, = |Sy| and u; = |Uy|. We distinguish four consecutive phases.

1. The startup phase starts in the round in which the rumor is created and ends with the first
round after which execution there are at least (In n)* informed players for the first time. At
the beginning of the first round only one player holds the rumor. If we execute ¢ rounds
then the probability that this player has called at least once an uninformed player (i.e., did
not call itself) is 1 — n=°. Thus, we double the number of players in ¢ rounds, w.h.p. In
general, starting with at most (In n)* informed players, we need at most ¢ rounds to double
the number of informed players, w.h.p. Thus O(Ilnlnn) rounds are sufficient to achieve
(Inn)* informed players.



2. The exponential-growth phase ends with the round after which execution there are at least
n/Inn informed players for the first time. The expected number of messages (containing
the rumor) sent during round ¢ in this phase is 2s,_1 because each player holding the rumor
calls one player and is called by one player on expectation. Applying a Chernoff bound
yields that the number of actually sent messages is m = (24 0(1/Inn))s;_1, w.h.p, applying
si—1 > (Inn)* (Due to space limitations, we dot not explain the mathematical details
behind the application of Chernoff bounds in this extended abstract.) Unfortunately, some
of these messages are wasted as they are directed to the same player or an informed player.
As interconnections are chosen at random, the probability that a particular message is
wasted is at most s,_y/n + m/n. This expression is bounded above by (3 +o(1/Inn))/Inn
because s;_; < n/Inn. As a consequence,

3+o0(1/1nn)

Inn

E [s¢] zst_l—l—m<1— ) =s5-1(3—=0(1/1nn))

Applying a Chernoff bound yields
ss=(1+o0(1/Inn)E[s)] =513+ 0(1/Inn)) ,

since E[s;] > (Inn)*. Assuming this expansion factor in each round, we can observe that
this phase takes loggn + O(Inln n) rounds.

3. The quadratic-shrinking phase ends with the round after which execution there are at most
vn(Inn)* uninformed players for the last time. Even if we only take into account pull
transmissions we obtain (by following the arguments explaining the general properties of

pull algorithms) that
£(3)= ()
n n
Applying a Chernoff bound yields

ug < (1 + L) (uea)”

Inn n

w.h.p., provided u; > /n(Inn)*. Now some easy calculations show that we need O(Inlnn)
rounds until the number of uninformed players drops from n/Inn to /n(ln n)*.

4. In the final phase we inform the few remaining uninformed players. Since the number of
uninformed players in this phase is guaranteed to be smaller than \/n(In n)?*, each player has
probability at least (In n)*/\/n to receive a rumor due to a pull transmission in each round
of this phase. Consequently, we need only a constant number of rounds until all players are
informed, w.h.p.

The exponential-growth phase takes logsn £ O(Inn) rounds. During this phase the number of
transmissions grows exponentially from round to round. Therefore, we send only O(n) messages
during this phase. All other phases have length only O(Inlnn). Thus, even if we assume 2n
transmissions in each of these rounds, the total number of transmissions is only O(nlnlnn). This
completes the proof of Theorem 2.1.

a



2.2 The median-counter algorithm

The push&pull-algorithm heavily relies on a very exact estimation of the expansion of the set
of informed players. The algorithm has to be executed exactly logsn + ©(Inlnn) rounds. For
example, a constant fraction of players remains uninformed if the algorithm terminates after
(1 — ¢)logsn rounds, and the algorithm uses ©(nlnn) transmissions when terminating after
(1 + €)loggn rounds, for any constant € > 0. A robust algorithm requires a more flexible, dis-
tributed termination mechanism that recognizes when all players are informed. This termination
mechanism is described in the following.

Median-Counter Algorithm

Let r denote the considered rumor. During the course of the algorithm each player v
can be in one out of four states A, B, C, or D (with respect to the considered rumor
7). State A means the player has not yet received the rumor. In all other states, the
player knows the rumor. When a player is in one of the states B or (' it pushes and
pulls the rumor r along every established connection. In state D the player does not
propagate the rumor anymore. Each player in state B holds a counter ctr(v,r). We
say a player v is in state B-m if ctr(v,r) = m. These counters are irrelevant in other
states. The transitions between different states are defined as follows.

e State A: The player v does not know r. (For the purpose of analysis, we assume
that ctr(v,r) = 0 in this state.) If a player v in state A receives r from a player
in state B then it switches to state B-1. If a player in state A receives r from a
player in state C then it switches to state C.

e State B-m: The player v knows r and ctr(v,r) = m. (The player injecting the
rumor starts in state B-1.)
Median rule: If during a round a player v in state B-m receives r from more
players in state B-m’ with m’ > m than from players in state A and B-m” with
m” < m then it switches to state B-(m + 1), i.e., increases its counter.
There is one exception to this rule. If ctr(v,r) is increased to ctryay (where
Ctrmax = O(Inln n)is a suitable integer) then v switches to state C. Furthermore,
if a player in state B receives the rumor from a player in state C then it switches
to state C, too.

e State C: Every player stays in this phase for at most O(InInn) rounds, and then
switches to state D, i.e., it terminates the rumor spreading.

Roughly speaking, the counters in state B are used in order to determine the point of time when
the algorithm switches from the exponential-growth phase into the quadratic-shrinking phase. A
counter value of ctry,,y indicates that n/polylog(n) players are informed so that it is sufficient to
continue the propagation for only O(Inlnn) rounds (which is done in state C). In order to make
sure that the median-counter algorithm terminates even in case of the very unlikely event that
the counter mechanism fails, we determine that every player stops propagating the rumor after
some fixed number of O(Inn) rounds, regardless of its current state.

We investigate the robustness of the median-counter algorithm against different sources of
errors and inaccuracies.

o Iirst, we assume the random connections in each round are established using an arbitrary
(possibly non-uniform) probability distribution D : V — [0, 1].



e Second, we assume that an oblivious adversary can specify up to F' node failures occurring
during the execution of the algorithm. The adversary specifies a set F of players (not
containing the player starting the rumor) that fail to exchange information in some of the
rounds (as specified by the adversary). We assume |F| < F and 7} ,crD(v) < F.

Clearly, we cannot hope to inform all players when allowing adversarial node failures. Therefore,
we are satisfied if the algorithm informs all but O(F') players. (Alternatively, one may assume
stochastic rather than adversarial failures, e.g., each random phone call fails with probability F'/n.
In this case, staying for 7 = O(Inlnn + In,/p F') rounds in stage C' ensures that all players are
informed within O(In n 4 7) rounds using O(7n) transmissions, w.h.p.)

Theorem 2.2 Assuming an arbitrary distribution D and up to F node failures as described above,
the median-counter algorithms informs all but O(F) players in O(Inn) rounds using O(nlnlnn)
transmissions, w.h.p.

Due to space limitations we defer the proof of this theorem to the appendix.

3 Lower Bounds

3.1 Lower bound for address-independent algorithms

Our first lower bound shows that the push&pull scheme achieves optimal results for the class of
address-independent algorithms. In particular, we show that any address-independent algorithm
requires Q(nInlnn) transmissions in order to inform all players. Observe that this lower bound
holds regardless of the number of rounds taken to inform all players. We assume the random
phone call model using the uniform distribution.

Theorem 3.1 Any address-independent rumor spreading algorithm guaranteeing that “all but a
fraction f of the players receive the rumor with constant probability” needs to perform Q(nlnln f)
transmaissions on expectation.

Proof. Fix an address-independent algorithm 4. Depending on the execution of A, we partition
the rounds into contiguous phases such that the total number of transmissions in the phases
1,...,¢10s (i — 1)n/4 = Q(in). Let U; denote the number of uninformed players at the end of
phase i, and define u(i) = nexp(—2' 4+ 2). We will show by induction that U; > u(i), w.h.p.
Consequently, A needs Q(Inln f) phases and, hence, Q(nInln f) transmissions in order to inform
all but a fraction f of the players, which yields the Theorem.

Phases are defined as follows. Phase 1 starts with the round in which the rumor is generated.
If phase ¢ ends in round ¢ then phase ¢ + 1 starts in round ¢ + 1. We distinguish sparse and
dense phases. A sparse phase contains at most n/2 transmissions. The length of these phases
is maximized, that is, a sparse phase ends in round ¢ if adding round ¢ 4+ 1 to the phase would
result in more than n/2 transmissions. A dense phase consists of only one round containing more
than n/2 transmissions. Observe that the number of transmissions during the phases 0 to 7 is
at least (¢ — 1)n/4 because any pair of consecutive phases contains at least n/2 transmissions by
construction.

Now assume by induction that the number of uninformed players at the beginning of phase ¢
is at least u(i — 1). We have to show that the number of uninformed players at the end of phase
i is at most u(i), w.h.p.



For 1 <k <wu(i—1),let z; denote a 0-1 random variable indicating whether the kth of those
players that are uninformed at the beginning of round ¢ receives a message containing the rumor
during the round. We claim

Prlz, =0] > ui=1) .
en
The arguments leading to this inequality are different for sparse and dense rounds.

e Suppose phase 7 is sparse. Then A sends at most § messages. Each of these messages is
initiated without knowing the receiver because decisions are placed address-independently.
As connections are chosen uniformly at random, the probability that a particular message
reaches a particular player is % Consequently, Pr [z = 1] < %% < % so that Pr[z; = 0] >

l>ui—1‘
2 = en

e Now suppose phase 7 is dense. Then the phase consists of only one round. In this case,
the probability that a player does not call an informed player is lower bounded by @
Furthermore, the probability that a player is not called by any other player is at least %

(i—=1)

Thus, the probability that a player is not connected to an informed player is at least =,
Clearly, this implies Pr[z; = 0] > u(i=1)

en

Since u(7) = ZZS;I)(l — xy), we obtain

(i-1) <82 nexp(—2i—1 4 33)2 '
Blu(] = 3 Prlay=0)> W5 (o2 o2y = eu(i) -
k=1

en en

Observe, that the random variables z are slightly dependent since the random interconnections
used for transmissions in phase ¢ form partial permutations on the caller site. This dependence,
however, is negative [3] so that we can apply a Chernoff bound. Assuming u(z) > (Inn)?, we
obtain

Pr(U; > u(i)] < exp (“%”()) = 0(n™) .

for any positive constant a. This completes the proof of Theorem 3.1. O

3.2 Lower bound for general algorithms

The above lower bound for address-independent algorithms does not hold for those distributed
algorithms that place their decisions based on the addresses of their communication partners. In
the introduction, we give an example showing how all players can be informed in ©(nIn n) rounds
using only O(n) of transmissions. Now we investigate whether there is an algorithm that is both
time-optimal (i.e., using only O(logn) rounds) and communication-optimal (i.e., using only O(n)
transmissions) The following lower bound answers this question negatively. Again, we assume the
random phone call model using the uniform distribution.

Theorem 3.2 Any distributed rumor spreading algorithm guaranteeing that “all but a fraction
o(1) of the players receive the rumor within O(Inn) rounds with constant probability” needs to
perform w(n) transmissions on expectation.

Proof. The difficulty in analyzing arbitrary distributed rumor spreading algorithms is that the
distribution of the rumor can be a highly dependent process although the underlying random



calling mechanism is generated by n independent experiments in each round. For example, if
player 1 is the only player with an odd address sending the rumor to players with even addresses
then the success of the algorithm is highly dependent on the event that player 1 receives the
rumor. This small example (not even involving any additional communication) shows that the
analysis needs more than simply applying martingales or Chernoff bounds.

Our basic trick in the following analysis is that we choose a random sample of the players
that can be guaranteed to act independently during the execution. This independence, can be
guaranteed only for T = L% log n] rounds. Of course, this number of rounds is not enough to
inform all players about a rumor initiated by a single player. Therefore, we assume that the
rumor is spread already to at least half of the player and we consider the next T rounds.

Let Uy < n/2 denote the number of initially uninformed players. (In order to be able to
extend our result to more than L% log n] rounds, we assume that the initially uninformed players
are known by all players in the system. For example, assume the players 1,...,Uy are these
players.) Let Xy denote a random variable describing the number of messages sent during the
T rounds. Furthermore, let U, denote a random variable describing the number of uninformed
players after round 7'. (These random variables are with respect to the random phone calls.)

Let A denote a set of m = Lnl/SJ players chosen randomly from V. The set A will be our
random sample. Let U4 denote the random variable describing the number of initially uninformed
players in A (with respect to the random choice of A.) Let X 4 denote a random variable describing
the number of messages received by the players in A, and let U/, denote the random variable
describing the number of uninformed players in the set A after the last round. (These random
variables are with respect to the random choice of A and the random phone calls.)

The communication graph G} in round ¢ is obtained by a distributed random process, i.e.,
each player v chooses a player  from V' at random and » calls . This random process generates a
probability distribution D on the set G of possible communication graphs. Repeating this random
process for T rounds extends the probability distribution P to G7.

For the analysis, we assume a slightly different probability distribution D’ on G. Instead of
letting each player call a random other player, we establish the connections as follows. In each
round ¢,

e we choose uniformly at random a collection of m disjoint subsets By(v) (v € A), each
containing m players from V '\ A; (once these sets are chosen, the players in A can act fully
independently)

e cach player v € A, chooses at random an integer §(v) > 0 with Pr[é(v) = i] = —;
if 6(v) > m, we set 6(v) = m — 1; '

o cach player v € A, chooses i.u.r. a set of 6(v) + 1 different players ug(v), ..., usu)(v) from
Bt(?]).

We determine that every player v € A calls player ug(v), and the players uy(v), ..., us)(v) call
v. Every player for which we have not yet specified whom to call simply chooses a communication
partner from V' \ A i.u.r. Clearly, D and D’ are different distributions. The following lemma,
however, shows that these distributions are closely related.

Lemma 3.3 The total variation distance between D and D' on GT is O(n="/*).

Based on this bound, we are able to give the following lemma comparing the behavior of the
complete system V|D with that of the small system A|D’.



Lemma 3.4 For 3>0,u>n"11% 0<p<1,
@) E[Xy[D] < fn = Pr[X4 > Z2D'] = p+ O(n1/4),
b) Uy > un = Pr[Us <] =0(n1'), and
c) Pr[U} > um|D'] < p=Pr[Uj < 2D =p+ O(n=1/%),

Informally, this lemma states that it is sufficient to analyze A|D’ in order to estimate V|D.
In fact, restricting to the smaller system A|D’ enables us to deal with the dependencies. The
following lemma summarizes our analysis for A|D’.

Lemma 3.5 Suppose Uy < m/a and X4 < pm with a > 4 and 3 > 1. Let ¢ denote a suitable
constant. Then
max{U’y, mn~ 1%} > ma~ Pcad)

with probability 1 — O(n=1/4).

(Lemma 3.3 and 3.4 require only applying standard methods from probability theory like the
comparison of distributions and applying Chernoff bounds, the Markov inequality, etc. We omit
these proofs due to space limitations. The proof of Lemma 3.5 is moved to the appendix. It
shows how the highly dependent probabilistic rumor spreading process can finally be reduced to
a simple, deterministic token game.)

Combining Lemma 3.4 and 3.5, we obtain the following result for V|D. Suppose Uy < n/a
and E[Xy < fn] with 2 < a < 2'/1% and # > 0. Applying Lemma 3.4 a) and b) yields

m

X4 <kp and Uy > — .
2a

with probability at least 1 — % — O(n~'/*). Now applying Lemma 3.5 yields

U1/4 > ma” exp(ca(rB+1))

b

with probability 1 — % — O(n~'/*%). Finally, we can conclude from Lemma 3.4 ¢) that

v, > ga—exp(ca(ﬁﬁﬂ)) : (1)
with probability 1 — % — O(n_1/4). Observe that this probability is lowerbounded by 1 — %,
provided that n is sufficiently large.

In other words, for any constants a > 2 and 3 > 0, starting with n/a uninformed players
(possibly known by all players), performing X, < fn transmissions reduces the number of unin-
formed players only by some constant factor over % loglog n rounds, with probability at least 1— %
Now suppose we execute a constant number of ¢ phases of length %log log n. Then spending O(n)
transmissions in ¢ phases reduces the number of uninformed players by only a constant factor, too.
This result holds with probability 1— % (Recall that x can be chosen to be an arbitrary constant.)
Consequently, performing O(n) transmissions over O(Inn) rounds leaves a constant fraction of
the players uninformed. (A rigorous analysis based on inequality 1 shows that informing all but
a fraction f(n) of the players with constant probability requires E[Xy] = Q(lnpk] f(n)), where
Inl) denotes the natural logarithm iterated for z times.) Hence, Theorem 3.2 is shown. 0
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A Proof of Theorem 2.2

First we investigate the errorless case. The median-counter-algorithm spreads the rumor in similar
phases as the push&pull-algorithm. Let w; be the probability that a player calls player i, let
St, 8¢, Ut, and uy be defined as above and let g; be the weight of all informed players: g; 1= ) s, w;.

1. Startup-phase. We want to ensure at least s; € Q(logn) informed players with weight

gt > lo—sﬂ are established. First, we concentrate on some O(loglogn) rounds of push commu-
logn
n

nication. If only players with weight smaller than are informed, then after O(loglogn)
rounds clogn nodes are informed which will push their rumors to players with a total weight

of at least 1%%—” after some constant rounds.

Consider now the case that the weight after these rounds exceeds g; > k’—g—”, but the number
of informed players is small s; < c¢logn. The probability that an uninformed player calls
an informed one is ¢g;. The expected number of informed players is therefore: F(s;41) >
s+ (n—s0)ge > s4(2 — 1Ogn) Applying Chernoff bounds it follows w.h.p. s;41 > 5,(2 — €)
for some arbitrary small € > 0.

So, the startup phase lasts at most O(loglogn) rounds.
. . 1

2. Fzponential growth: This phase ends, when ¢; > Togr-
For this phase the weight h; of all uninformed players H; with larger weight than S— is
of special interest: hy := 3 ;i >1/5, Wi- Note that |[Hy| < s; and that the probability
of a member of H; being called by an informed player in 5; is larger than the constant
1 — 1/e. Therefore, push-operations cause an increase of the weight of informed players
git1 > g1+ (1 — €)(1 — 1/e)hy for some constant € > 0 w.h.p.

In U;\ H; there is a constant fraction of at least 1/e — e of players which only get one call in a
round for an arbitrary small constant ¢ > 0 w.h.p. The probability that one of these players
gets the rumor pushed from 5; is 2t. The expected number of informed players in the next
round is therefore E(s;41) > s;+ 2:(1/e — €)(n — sy — | Hy|) > si(1 + (1/e — €)(1 — 2¢)).

n

If s < L for hy < % this implies si41 > s¢(1 + % — €') and in the other case g;41 >
gt(— — L — ¢') for some arbitrary small € > 0.
So after some O(log n) rounds it holds either g; > Togn OF St > Qg In the second case every

player with weight larger than % is informed in the next round w.h.p. Furthermore,
the expected weight of all informed players is E(g;11) > >.7q w?s;. It turns out that this
sum is minimal for the uniform probability distribution. Hence, E(g:41) >> *t. Because

the weights are upperbounded we can apply Chernoff bounds and get g;41 > 3& > loén

Note for the number of messages that in all but one rounds s; < log”n. Therefore, the number
of messages is bounded by O(n).

Now we discuss how often a counter of a player will be increased during this phase. We
consider a player ¢ with weight w; who is informed during this phase.

(a) w; > 31_:?5&

In every round at least 2logn uninformed call 7, while ¢ receives a call only from at
most log n informed players (s; < %) v’s push call can be neglected. So, this player
will communicate with more uninformed than informed players in each round and the

median rule prevents an incrementation of i’s counter.
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(b) w; < g
We allow that during the time interval ¢ € {a,...,b} for which it holds log%n < w;se <
clogn the counter of P; is increased in every round.
In every round g; or s; grows by a factor @ > 1, but possibly not both of them.
Nevertheless they interact pairwise, since the expected number of uninformed nodes
informed by a pull is u;g¢. Therefore it holds s;41 > (1 —€)ug; > ngi(1—¢€') fore, e >0
with high probability. On the other hand, every informed nodes pushes in every round

it holds g;41 > znfﬁ w.h.p. So, this time interval is bounded by O(loglogn).

For any time step after b the number of uninformed players calling P; is higher than
those of the informed players for the same reasons as in (a).

For every round t before a we concentrate on weights w; with w; <

. The
St log2 n
probability that a player with such a weight is called by an informed player is smaller
than 1 — (1 — o 101g2 n)sf < 10g12 ~. Let ¢; be the number of players which at least ¢-times
increase their counter before point ¢ and let go = s;. In the worst case all players

stay in this situation for the whole phase. Only ¢; players can cause an increase for

a counter larger than ¢:. The probability that such a player calls another is - 13;271'

2 ) 2 . .

Therefore, it holds E(q41) < " IZ’an. It follows q’s% < €2 lilg2n if ¢; € Q(logn); and if
¢ < O(logn), then ¢; 4. = 0 for some constants ¢, ¢’ w.h.p. This proves go(ioglogn) = 0-
So, there are no players whose counters will be increased more than some c¢loglogn

time during this phase.

3. Quadratic-shrinking: This phase ends, when all players have left states A or B.

The probability for each uninformed player to remain uninformed is at most 1 — ¢, if we
consider only pull-communication. Therefore it holds F(u;+1) < ui(1 — ¢¢), which implies
w1 < (1 — g1+ k\’/gﬁn) w.h.p. The expected weight of the uninformed player of the

next round is F(1 — g;41) = (1 — g;)?. Note that max;ep, w; < %. Therefore, applying

Chernoff bounds it follows that 1 — gs41 < (1 — g4)%(1 + %) w.h.p. It is clear that after

some O(loglogn) rounds it holds 1 — g1 < @. Then, some constant rounds of pull
will sufficiently decrease the probability of an uninformed player remaining in state A.

Since in every round each counter may be incremented only once, it suffices to choose
ctrmax > cloglogn for some constant ¢ independent from D.

It remains to show that after some additional O(loglog n) rounds all counters reach ctrpyax.
Consider the time point at which all players are informed. Clearly, all counters are at least 1.
Then, in every step ¢ each counter is at least ¢ + 1. Therefore the distributional algorithm
ends after O(loglogn) rounds.

Since every player produces only one random call in each round the overall number of
messages in this phase is bound by O(nloglogn).

Now we focus on the case of F' < %n node failures with weight F'/n. We assume, that if a
node failure occurs on » that v terminates, i.e. switches to D without learning the rumor. The
analysis of the startup phase and exponential can be easily adapted to this case, since the growth
of informed nodes proceeds slower but even though exponential. We now investigate the situation
in the double exponential shrinkage phase.

Let F be the set of nodes, which may be disconnected in some rounds. Then S5; and U; are

defined as the set of informed and uninformed nodes, being disjunct with F; wus, s¢;, and g; are
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defined as before. The probability that a node remains uninformed is at most 1 — ¢; per round.
Therefore we can conclude w.h.p. w41 < (1 — g¢)ue. Similary as in the error-free case we can
conclude that 1 — g;41 < £+ (14 @)(1 — ¢¢)* w.h.p. This recursion converges in O(loglogn)
rounds to 1 — g» € O(£). This implies a maximum number of O(F') uninformed nodes within the
next round.

The main problem for the error case is to verify that the number of messages does not exceed
O(nloglogn). We prove this by showing that at least O(n/logn) players reach state C or D, when
the first error-free players reach state D. The remaining error-free players can only cause O(logn)
messages each, where faulty F' players do not add further messages. We start our analysis at the
moment when only I/ € O(F) nodes with weight F”/n remained uninformed. Let us assume that
all informed players are in the state B-1.

Let Z.,, be the set and y,, the weight of error-free nodes in round ¢ with ctr(v) = m.
The probability that a node in Z;,, is increased is at least S $ZT@**y, .. We want to prove
that in the triangular section where ¢ < Em for some constant k, y;,, decreases exponentially
in t. For the analysis we allow that some of the counter may be decreased. The aim of this
modification is that the series ¢ 1,. .., Y m, is exponentially increasing, the series ¥, 1, Ym,+1,5 - - -
is exponentially decreasing, and the weight y; 41 > % contains the rest of the weight. More
formally, Vi <my @ ye; < aypipr and yem,41 = 1 — F'/n— 37" y; i for some a > 1.

By decreasing some of the counters it can be ensured that in the next round it holds Vi < my; :
Yei < a ypipr and g < H—Ta Y¢s. This follows by the fact that Z?;tj Yej > % and by reducing
the number of players increasing their counter to a fraction of % each. After some constant rounds
c it holds Yiycm,+1 > Q¥Yite,m,. Then, we increase myy. := m; + 1 and get the claimed triangular
section.

Therefore, after some O(loglogn) rounds only a fraction of O(n/logn) has a smaller counter
than cloglogn.

B Proof of Lemma 3.5

We consider the execution of T = L% log n] rounds of a distributed algorithm assuming that the
communication partners in each round are selected according to distribution D’. Let ug < %
denote the fraction of initially uninformed players in A. Let u;, for 1 <t < 7T, denote a random
variable describing the fraction of uninformed players after the execution of round t. We assume
that X4, the number of messages received by the players in A, is upperbounded by gm with

B > 1. We have to show that
max{uT,n_l/w} > quXp(cuOﬁ) , (2)

with probability 1 — O(n='/4), for some suitable constant ¢ > 0.

We want to make use of the fact that the distributed algorithm has only local knowledge about
the random communication graph. The following lemma shows that this knowledge is actually
very limited. For a set Y C V', set I'o(Y) = Y, and define I'/(Y) to be the set of all players
connected to I'y—1(Y") in round ¢ plus the players in I',_1(Y") itself. Observe that, in round ¢, only
the players in I';,(Y') can receive information from the players in I',_1(Y). In other words, none
of the players in V' \ I'((Y") received any information sent by the players in Y during the rounds
1tot—1.
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Lemma B.1

Pr|3ve A, 1<t<T:Byv)NnTliy (AU U U BT(w)) £0| =0(n™Yy .

1<r<tweA

Proof. Bi(v) is a random set of size m chosen from V' \ A. The probability that one of the
elements in this set is contained also in I';_1(-) is bounded above by

m - |1 (4] < mTm247 < m>n'*log n

< =0(n~ ')
n—m n n—m

applying |T;_1()] < Tm24T, T < %log n, and m < n'/8. The bound on |T'y—1(-)| can be obtained
as follows. The size of T'g(+) is (t—1)m?+m < T'm? taking into account the set A and (t—1)m sets
B;(w) each of which having size m. In expectation, the I' set grows by a factor of at most 3 in each
round, that is, E[|I';(+)|] < 3|I';—1(-)|. Applying Chernoff bounds, we obtain |I';(-)| < 4|I';_1(-)|,
with probability 1 — O(1/n). Thus, [;_1(+) < Tm?4'=1 < Tm?247, with probability 1 — O(T /n).
a

In the following we will assume that the unlikely event described in Lemma B.1 actually does
not occur, that is, the players in Bi(v) do not have any information about the outcome of the
random edges connecting w € A with B(w), for 1 < 7 < t. Let us describe this in more detail.
When the distributed algorithm decides to send a message to a player v € A in round ¢, then
this decision is actually placed by a player w in By(v). This player u might have gathered some
knowledge about which players are in the sets B,(w), for w € A and 1 < 7 < t. (For example,
u knows that it is not in one of these sets itself.) Under the assumption above, however, the
player u has no knowledge about the outcome of the random edges between w and B, (w) with
(w,7) e AxA{L,...T} \ {v,t}.

For v € A and 1 <t < T, assume the set By(v) are fixed. Furthermore, assume that the
informed players in By(v) are known. In order to get an unambiguous model, we replace the
distributed algorithm by a specification & describing for which outcome of the random edges
between v and B(v) in round ¢ the rumor should be sent to v, for every v € A and 1 <t <T.
The specification § is assumed to be oblivious with respect to the random interconnections, i.e.,
it must be given without knowing the outcome of the random edges between v € A and B(v),
foranyv € Aand 1 <t <T.

Suppose we fix the B;(v) sets and those players in these sets that hold the rumor at the begin-
ning of round ¢. Then we can transform the oblivious specification § into a table of independent
probabilities b;(v) (v € A, 1 <t <T') so that by(v) is the probability that v receives a message in
round ¢. Observe that b;(v) cannot be larger than b{"*¥(v), i.e., the probability that v is connected
to a player holding the rumor in round ¢. The following lemma upperbounds b{***(v) based on the
fact that the fraction of informed players in B(v) does not deviate too much from 1 — u;_q (i.e.,
the fraction of uninformed players in A). The given probability is with respect to the random
choice of the By(v) sets.

Lemma B.2 Pr[dv e A, 1 <t < T : 0™ (v) > 1 - “;;1] = O(n_1/4).

Proof. We make regress to the distribution D. Observe that all results we show for D hold for
D’ with probability 1 — O(n~'/*) because of Lemma 3.3.

We need the following technical lemma which is a straightforward consequence of Chernoff
bounds.
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Lemma B.3 Suppose V contains un > n= /16 yninformed players Let Y C V denote a randomly

chosen subset of size m = Ln_l/SJ. Then the expected number of uninformed players in Y is
wm > n_1/16/2. Furthermore, for any constant 6 > 1, the probability that Y contains less than
um/8 or more than dum uninformed players is O(n™").

Applying this lemma we can upper- and lowerbound the number of uninformed persons in any
randomly selected set of players.

Assuming D, A is a set of size m selected at random from V. Let u denote the fraction of
uninformed players in V' at the beginning of round ¢. Recall u;_q specifies the same fraction for
the set A. Applying B.3 yields u;_; < v/2u, with probability 1 — O(n™!).

The set By(v) is chosen at random from V' \ A. Alternatively, we can view By(v) as chosen at
random from V since A only “eliminates” some random players in V. Let u* denote the fraction
of uninformed players in B¢(v) at the beginning of round ¢. Then applying B.3 yields u > %,
with probability 1 — O(n™1).

Combining, the bounds for A and By(v), we obtain Pr [u* > “=1|D] = O(n~"), which implies
Pr[u* > “=1|D'] = O(n~1/*).

Now let us assume u™ > %+ and calculate bj**(v) under this assumption. The probability that
v has only one neighbor in round ¢ is Pr[§(v) = 0] = % The probability that this neighbor is
uninformed is at least u* > . If both of these independent events occur then we cannot send

the rumor. Therefore, bj"**(v) < 1 — =%, O
€

Ut—1
2

The relationship between the variables and parameters u;, b;(v), and § can be described by a
set of four equations E1 to E4. From Lemma B.2, we can conclude that
Ut—1
2e

El: 0 < b(v) < 1-

with probability 1 — O(n=1/%). We introduce some auxiliary variables. Let p;(v) denote the
probability that player v € A does not know the rumor at the end of round ¢. Set po(v) = 1 if
v € A is initially uninformed, 0 otherwise. For every v € A and 1 <t < T,

E2: pi(v) = (1=0bi(v))pe-1(v)

because » is uninformed in round ¢ if and only if it is uninformed in round ¢ — 1 and does not
receive a message in round {. Observe that these two events are independent.

Furthermore, the expected number of uninformed players in any round can be calculated easily
by E[usm] = 3°,c4 pi(v). The probabilities p,(v) are independent as they are composed out of
the independent probabilities by(v). Thus, we can bound ugm using Chernoff bounds. Recall
that we aim to give a lower bound on max{uT,n_1/16}. Hence, we may assume w.l.0.g. that

we > n~1/16 5o that ugm > mn~1/16 > %nl/w. Hence, applying a Chernoff bound yields

1
E3: wym > 51%;4]%(@) ,
with probability 1 — O(n™1).

Finally, the expected number of messages received by the players in A during all rounds is
E[X4] = YL, > vea be(v). By our initial assumptions X4 < Bm for § > 1. Thus, apply-
ing a Chernoff bound yields E[X4] < max{2X4,n~'/16} < 2@m, with probability 1 — O(n~1).
Consequently,

E4: ZT:ZIH(U) < 28m ,

t=1veA
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with probability 1 — O(n™1).

Lemma B.4 Let u} be an optimal solution to the optimization problem “minimize ur under the
constraints F1, F2, E3, F47 with parameters ug < %, B8 > 1 and variables by(v), p(v), and u,
(1<v<m, 1 <t<T) Then u} satisfies inequality 2.

Proof. First, we change some of the constraints. We redefine

Us—
El: bi(v) € {0,1— ;el}

Clearly, this restricts the set of allowed solutions, but some calculations show that this is com-
pensated by relaxing E4 as follows.

T

E4: Zth(v) < 3pm .

t=1veEA

Next we rewrite the optimization problem by substituting

2e

s = w)- 1=y

Observe that 8;(v) < 3b(v). Therefore, we obtain the following relaxation of our optimization
problem.

E1: pi(v)€e{0,1}

B2: pi(o) = (1= 50) (1= 52) ) peca(o)

1 m
E3: um > §;pt(v)

T
E4: Z Z Be(v) < 4pm

t=1veA

Interpreting these constraints, we obtain the following token game. Let A, denote the set of
initially uninformed players in A.

e There are at most 408m tokens which can be spent in 7" rounds.
(Setting B¢(v) = 1 means spending a token for player v in round ¢.)

e In each round, each player v € A, can receive at most one token.
o If player v € A, receives a token in round t then py(v) = “=2p,_1(v),
otherwise p;_1(v) = p—1(v).

The goal of this game is to minimize ug = Y ;-4 pr(v)/(2m). Unfortunately, the optimal strategy
for this game is not obvious. For example, the greedy strategy starting with giving a token to
every player in the first round, then giving a token to every player in the second round, and so on
... does not lead to an optimal solution. In fact, the benefit of a token is maximized if the player
receiving the token has been spared from previous tokens.
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We can enforce an almost even distribution of the tokens, however, by spending some extra
tokens. Suppose at least half of the nodes in A, receive at least I tokens. Then

hm - gg (3)

I
uom/2

Let t; denote that round until whose completion at least half of the players in A, received their ¢th
token, for 1 < ¢ < I. Now we add the additional constraint that every player in A, has to receive
at least ¢ tokens until the end of round ¢;. Observe that we can easily satisfy this constraint by
spending up to |A,|/2 = ugm/2 free tokens in round ¢;, for 1 < < I.

Next we analyze the number of uninformed nodes in A taking advantage of the additional
constraint. Let u(7) denote the fraction of uninformed players in A at the beginning of round ¢;,
ie., u(i) = uy;—1, for 1 < ¢ < [. Furthermore, set u(l 4+ 1) = up. Let p(i,v) describe the effect
of the ith token assigned to player v € A,, that is, if v receives its ¢th token in round ¢ then
pi(v) = p(v,t) - pr—1(v), for 1 <@ < I. As the ith token of every player v € A, is spent before or
in round t;, we obtain by constraint E2 that

v,1) > —= 4
ploi) = 5=, (4)
for 1 <@ < [I. Let A,(¢) denote the set of those players receiving their ith token in round ¢;, for
1 << 1. Let A({ + 1) denote the set of players receiving at most I tokens. Our construction
ensures

| Ayl um

5 2 5 (5)
because less than half of the players in A, receive their ¢th token before round ¢;, for 1 < <1,
and less than half of the players in A, receive more than I tokens. Besides, as the players in A,(7)
receive at most ¢ — 1 tokens during the rounds 1 to ¢; — 1, we have

[Au(D)] >

—

71—

pti—l(v) > H,O(?J,j), (6)

j:

for v € Ayu(i),1 <7< T+ 1. Combining these inequalities yields

—

w(i) = Uy
(£3) 1
> o Pei—1(v)
mUEA
©® 1 =l
> % Z Hp(vvj)
vEAy (1) 7=1
W 1 )
2m s %€
1—1 -
Qi)
4 - e
71=1

for 1 <i < I+ 1. Furthermore, we have u(1) > & because less than half of the um players in A,
received a token before round #;. Consequently, solving the recurrence on (i) for U141y = UT
yields

2]
u (3)
_ exp(wl) 2 exp(6x3)
ur > 22]+1+21—1_1e21_1 u u

b
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for some suitable constant x > 0. O

Summarizing, we have shown that the four equations E1 to E4 hold with probability 1 —
O(n_1/4). Assuming these equations we have deduced inequality 2. Thus, this inequality holds
with probability 1 — O(n_1/4), which completes the proof of Lemma 3.5.
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