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1 IntroductionWe investigate the problem of spreading rumors in a distributed environment using randomizedcommunication. Suppose n players exchange information in parallel communication rounds overan inde�nite time. In each round t, the players are connected by a communication graph Gt. Thisgraph is generated at random in distributed fashion, that is, in each round, each player u selectsa communication partner v at random and u calls v. Rumors can be started in any round by anyplayer and can be transmitted along the edges in the graph Gt in round t. The goal is to spreadthe rumor among all participating players using a small number of rounds and a small number oftransmissions.The motivation for using randomized communication is that it naturally provides robustness,simplicity, and scalability. For example, consider the following so-called push algorithm. Startingwith the round in which a rumor is generated, each player that holds the rumor forwards it to acommunication partner selected independently and uniformly at random (i.u.r.). The algorithmis terminated after some �xed number of O(lnn) rounds. At this time all players are informed,with high probability (w.h.p.)1.Clearly, one can also inform all players in O(lnn) using a deterministic interconnection ofconstant degree, e.g., a shu�e network. (For an overview of deterministic information dissemina-tion we refer to [5],[6].) The advantage of the push algorithm, however, is its implicit robustnessagainst several kinds of failures compared to the deterministic case where either additional timeis needed [4] or the error fraction is polynomial [11]. For example, consider node failures, i.e., aplayer (di�erent from the player starting the rumor) fails to communicate or simply crashes andforgets its rumors. Obviously, when using a sparse deterministic network, even a single node fail-ure can result in a large fraction of players not receiving the rumor. When using the randomizedpush algorithm, however, the e�ects of node failures are very limited. In fact, it is not di�cult toprove that F node failures (speci�ed by an oblivious adversary) result in only O(F ) uninformedplayers, w.h.p.Unfortunately, the push algorithm produces a large communication overhead. In fact, itforwards each individual rumor for �(n ln n) times until all players are informed, in comparisonto a deterministic scheme which requires only n�1 transmissions. It seems that the large numberof transmissions is the price for the robustness. This gives rise to the question whether thisadditional communication e�ort is a special property of the above push algorithm or is inherentto rumor spreading using randomly generated communication graphs in general.1.1 BackgroundDemers et al. [2] introduced the idea of using so-called epidemic algorithms for the lazy updateof data objects in a data base replicated at many sites, e.g., yellow pages, name servers, or serverdirectories. In particular, they propose the following two concepts:� Anti-entropy: Every site regularly chooses another site at random and by exchangingdatabase contents with it resolves any di�erences between the two.� Rumor mongering: When a site receives a new update it becomes a \hot rumor". While asite holds a \hot rumor", it periodically chooses another site at random and ensures thatthe other site has seen the rumor.1The term with high probability (w.h.p.) means with probability at least 1�O(n��) for some positive constant�. 1



It turns out that anti-entropy is extremely reliable but produces an enormous amount of commu-nication such that it cannot be used too frequently. The idea of rumor mongering is to exchangeonly recent updates and thereby reducing the communication overhead signi�cantly. In this paper,we investigate algorithms implementing the rumor mongering concept.The original idea for rumor spreading was to send rumors only from the caller to the calledplayer (push transmission) [2]. Several termination mechanisms deciding when a rumor becomes\cold" so that it transmission is stopped were investigated. All these algorithms share the samephenomenon: the fraction u of players that do not know a particular rumor decreases exponentiallywith the number of transmissions t (i.e., messages that contain this rumor). Mean �eld equationslead to the conjecture that u � exp(�t=n) for all investigated variants of the push algorithm.Thus, a push algorithm needs about n lnn transmissions for sending a rumor to all players.A further idea introduced in [2] is to send rumors from the called to the calling player (pulltransmission). It was observed that the number of uninformed players decreases much faster usinga pull scheme instead of a push scheme if updates occur frequently so that (almost) every playerplaces a random call in each round. Experiments and mean �eld equation lead to the conjectureu � exp(�(t=n)3) (for some speci�c pull algorithms) so that n 3plnn transmissions are su�cientto inform all players.The work of Demers et al. initiated an enormous amount of experimental and conceptualstudies of epidemic algorithms. For example, there is a variety of research issues for distributedepidemic algorithms like consistency, correctness, data structures, and e�ciency [1, 7, 8, 9, 10].In this extended abstract, we concentrate only on the e�ciency of these randomized algorithms.In particular, we study their time and communication complexity using a simple model for theunderlying randomized communication.1.2 The random phone call modelLet V denote the set of players. The communication graph Gt = (V;Et � V � V ) of roundt is obtained by a distributed, randomized process. In each round, each player u chooses acommunication partner v from V at random and u calls v. Unless otherwise stated, we assumethat all players choose their communication partners i.u.r. from V .Even though we envisage an application (such as the lazy transmission of updates to dis-tributed copies of a database) in which rumors are constantly generated by di�erent players, ouranalysis is concerned with the distribution of a single rumor only. We focus on the lifetime ofthe rumor and the number of transmissions rather than the number of connections establishedbecause the latter cost is amortized over all the rumors using that connection.In round t, the rumor and other information can be exchanged only along the edges of Gt.Whenever a connection is established between two players, each one of them (if holding the rumor)has to decide whether to transmit the rumor to the other player, typically without knowingwhether this player has received the rumor already. Communication in each round is assumed toproceed in parallel, that is, any information received in a round cannot be forwarded to anotherplayer in the same round. We do not limit the size of the information exchanged. Each informationexchange between neighboring players in a round is counted as a single transmission. (We pointout that our algorithms only add small counter values to rumors, whereas our lower bounds holdeven for algorithms in which players exchange their complete history whenever the rumor is sentin either direction.)An algorithm is called distributed if all decisions (whether to sent a rumor) are based on localknowledge only. In particular, the decision whether player sends a message to a communicationpartner in round t depends only on the player's state in that round. The initial state of a player2



is de�ned by the player's address, the number of players, and possibly a random bit string. Ingeneral the state of a player in round t is a function of its initial state, the addresses of theneighbors in the communication graphs G1; : : : ; Gt, and the information received in the rounds 1to t � 1. (For our lower bounds one may also assume that the state depends also on a globallyknown round number as well as the birth date of the considered rumor.)Finally, an algorithm is called address-independent if a player's state in round t does notdepend on the addresses of the neighbors in Gt but only on the number of neighbors in Gt. (Forexample, all rumor spreading algorithms proposed by Demers et al. [2] are address-independent.)1.3 New resultsWe prove that the number of transmissions can be reduced signi�cantly when the rumor is sentin either direction, that is, when using push and pull rather than only push operations. Weintroduce a simple push&pull algorithm spreading the rumor to all players in O(lnn) rounds usingonly O(n ln lnn) transmissions rather than O(n lnn) as the push algorithmThe drawback of the push&pull-algorithm is that its success heavily relies on a very exact,global estimation of the right termination time. This mechanism is very sensitive to any kind oferrors that inuence the expansion of the set of informed players. We devise a distributed termi-nation scheme, called the median-counter algorithm, that is provably robust against adversarialnode failures and stochastic inaccuracies in establishing the random connections.In particular, we show that the e�ciency of the algorithm does not rely on the fact thatplayers choose their communication partners uniformly from the set of all players. Suppose allplayers use the same arbitrary probability distribution D : V ! [0; 1] rather than the uniformdistribution. We show that the median-counter algorithm takes O(lnn) rounds and needs onlyO(n ln lnn) transmissions regardless of the probability distribution used for establishing the ran-dom connections. For example, this feature allows sampling from an arbitrary address directory(possibly with redundant addresses and some non-listed players as in a telephone book) ratherthan sampling uniformly from the set of players itself. Thus, the algorithm can be executed evenwithout global knowledge about the set of players.In addition, we provide lower bounds on the number of required transmissions assuming thatthe communication graphs are obtained using the uniform probability distribution. The algo-rithms above are address-independent and perform O(n ln ln n) transmissions. We prove a cor-responding lower bound showing that any address-independent algorithm needs 
(n log logn)transmissions in order to inform all players. We point out that this bound holds independentlyof the number of rounds executed.The situation changes substantially when considering address-dependent algorithms. Allow-ing �(n log n) rounds, an address-dependent algorithm can spread the rumor using only n � 1transmissions. For example, the player initiating the rumor can simply wait until each of theother players appears as communication partner for the �rst time and then forward the rumor tothis player. Clearly, this is not a practical algorithm as it takes too many rounds. Nevertheless,it illustrates the additional possibilities of address-dependent algorithms.The above example leads to the question of whether address-independent algorithms canspread a rumor in a small number of rounds while using only a linear number of transmissions. Wegive a lower bound answering this question negatively. In particular, we show that any randomizedrumor spreading algorithm running O(logn) rounds requires !(n) transmissions, regardless ofthe amount of information that can be attached to the rumors. Thus, there is a fundamentalgap between rumor spreading algorithms based on random interconnections and deterministicbroadcasting schemes. 3



2 Upper Bounds2.1 The advantage of push&pullFirst, let us explain the di�erences in the propagation of the rumor obtained by push transmissionson the one hand and pull transmissions on the other hand.� Consider a push scheme in which every informed player, in every round, forwards the rumorto the player it calls until all players are informed. In this case the set of informed playergrows exponentially until about n=2 players are informed. At about this time the exponentialgrowth of the set of informed players stops. Starting from this point of time, let us considerthe set of uninformed players. Once half of the players are informed, this set shrinks bya constant factor in each round. At the end of the rumor spreading process this factor isabout 1� 1=e since the fraction of players that do not receive a call in a round is about 1=e.Thus, the shrinking phase takes �(ln n) rounds until every player has received the rumor,and the push algorithm sends �(n) messages in each of these rounds.� Now consider a pull scheme in which only called players send the rumor towards the callingplayers. In this case, the player starting the rumor may have to wait some rounds until it iscalled for the �rst time so that the propagation in the �rst rounds becomes unpredictable.But eventually (after O(lnn) rounds, w.h.p.) about n=2 of the players will be informed.From this time on, the pull algorithm has an advantage against the push algorithm as thefraction of uninformed players roughly squares from round to round. This is because ina round starting with �n uninformed players, each individual player has probability 1 � �to receive the rumor, so that the probability of staying uninformed is �, resulting in anexpected number of �2n uninformed players at the end of the round. Thus, we can expectthat the shrinking phase only takes �(ln lnn) rounds so that only �(n ln lnn) messages aresent during this phase.In order to combine the predictability of the push scheme with the quadratic-shrinking propertyof the pull scheme, we simply sent the rumor in both directions whenever possible. In detail,our push&pull scheme works as follows. The creator of the rumor initiates a time-counter with 0representing the age of the rumor. The age is incremented in every round and distributed withthe rumor. In every round every informed player pushes and pulls unless the age of the rumoris higher than tmax = log3 n + O(log log n). In the following theorem, we assume the uniformdistribution and a perfect interconnection without failures.Theorem 2.1 The push&pull-scheme informs all players in time log3 n+ O(log log n) usingO(n log logn) messages w.h.p.Proof. Let St be the set of informed players and Ut the set of uninformed players at the end ofround t. De�ne st = jStj and ut = jUtj. We distinguish four consecutive phases.1. The startup phase starts in the round in which the rumor is created and ends with the �rstround after which execution there are at least (lnn)4 informed players for the �rst time. Atthe beginning of the �rst round only one player holds the rumor. If we execute c roundsthen the probability that this player has called at least once an uninformed player (i.e., didnot call itself) is 1 � n�c. Thus, we double the number of players in c rounds, w.h.p. Ingeneral, starting with at most (lnn)4 informed players, we need at most c rounds to doublethe number of informed players, w.h.p. Thus O(ln ln n) rounds are su�cient to achieve(lnn)4 informed players. 4



2. The exponential-growth phase ends with the round after which execution there are at leastn= lnn informed players for the �rst time. The expected number of messages (containingthe rumor) sent during round t in this phase is 2st�1 because each player holding the rumorcalls one player and is called by one player on expectation. Applying a Cherno� boundyields that the number of actually sent messages is m = (2�o(1= lnn))st�1, w.h.p, applyingst�1 � (ln n)4. (Due to space limitations, we dot not explain the mathematical detailsbehind the application of Cherno� bounds in this extended abstract.) Unfortunately, someof these messages are wasted as they are directed to the same player or an informed player.As interconnections are chosen at random, the probability that a particular message iswasted is at most st�1=n+m=n. This expression is bounded above by (3+ o(1= lnn))= lnnbecause st�1 � n= lnn. As a consequence,E [st] = st�1 +m�1� 3 + o(1= lnn)ln n � = st�1 (3�O(1= lnn)) :Applying a Cherno� bound yieldsst = (1� o(1= lnn))E [st] = st�1 (3�O(1= lnn)) ;since E [st] � (lnn)4. Assuming this expansion factor in each round, we can observe thatthis phase takes log3 n �O(ln ln n) rounds.3. The quadratic-shrinking phase ends with the round after which execution there are at mostpn(lnn)4 uninformed players for the last time. Even if we only take into account pulltransmissions we obtain (by following the arguments explaining the general properties ofpull algorithms) that E �utn � � �ut�1n �2 :Applying a Cherno� bound yieldsut � �1 + 1ln n� (ut�1)2n ;w.h.p., provided ut � pn(lnn)4. Now some easy calculations show that we need O(ln lnn)rounds until the number of uninformed players drops from n= lnn to pn(lnn)4.4. In the �nal phase we inform the few remaining uninformed players. Since the number ofuninformed players in this phase is guaranteed to be smaller than pn(lnn)4, each player hasprobability at least (lnn)4=pn to receive a rumor due to a pull transmission in each roundof this phase. Consequently, we need only a constant number of rounds until all players areinformed, w.h.p.The exponential-growth phase takes log3 n � O(lnn) rounds. During this phase the number oftransmissions grows exponentially from round to round. Therefore, we send only O(n) messagesduring this phase. All other phases have length only O(ln ln n). Thus, even if we assume 2ntransmissions in each of these rounds, the total number of transmissions is only O(n ln lnn). Thiscompletes the proof of Theorem 2.1. ut5



2.2 The median-counter algorithmThe push&pull-algorithm heavily relies on a very exact estimation of the expansion of the setof informed players. The algorithm has to be executed exactly log3 n + �(ln lnn) rounds. Forexample, a constant fraction of players remains uninformed if the algorithm terminates after(1 � �) log3 n rounds, and the algorithm uses �(n lnn) transmissions when terminating after(1 + �) log3 n rounds, for any constant � > 0. A robust algorithm requires a more exible, dis-tributed termination mechanism that recognizes when all players are informed. This terminationmechanism is described in the following.Median-Counter AlgorithmLet r denote the considered rumor. During the course of the algorithm each player vcan be in one out of four states A, B, C, or D (with respect to the considered rumorr). State A means the player has not yet received the rumor. In all other states, theplayer knows the rumor. When a player is in one of the states B or C it pushes andpulls the rumor r along every established connection. In state D the player does notpropagate the rumor anymore. Each player in state B holds a counter ctr(v; r). Wesay a player v is in state B-m if ctr(v; r) = m. These counters are irrelevant in otherstates. The transitions between di�erent states are de�ned as follows.� State A: The player v does not know r. (For the purpose of analysis, we assumethat ctr(v; r) = 0 in this state.) If a player v in state A receives r from a playerin state B then it switches to state B-1. If a player in state A receives r from aplayer in state C then it switches to state C.� State B-m: The player v knows r and ctr(v; r) = m. (The player injecting therumor starts in state B-1.)Median rule: If during a round a player v in state B-m receives r from moreplayers in state B-m0 with m0 � m than from players in state A and B-m00 withm00 < m then it switches to state B-(m+ 1), i.e., increases its counter.There is one exception to this rule. If ctr(v; r) is increased to ctrmax (wherectrmax = O(ln lnn) is a suitable integer) then v switches to state C. Furthermore,if a player in state B receives the rumor from a player in state C then it switchesto state C, too.� State C: Every player stays in this phase for at most O(ln lnn) rounds, and thenswitches to state D, i.e., it terminates the rumor spreading.Roughly speaking, the counters in stateB are used in order to determine the point of time whenthe algorithm switches from the exponential-growth phase into the quadratic-shrinking phase. Acounter value of ctrmax indicates that n=polylog(n) players are informed so that it is su�cient tocontinue the propagation for only O(ln lnn) rounds (which is done in state C). In order to makesure that the median-counter algorithm terminates even in case of the very unlikely event thatthe counter mechanism fails, we determine that every player stops propagating the rumor aftersome �xed number of O(lnn) rounds, regardless of its current state.We investigate the robustness of the median-counter algorithm against di�erent sources oferrors and inaccuracies.� First, we assume the random connections in each round are established using an arbitrary(possibly non-uniform) probability distribution D : V ! [0; 1].6



� Second, we assume that an oblivious adversary can specify up to F node failures occurringduring the execution of the algorithm. The adversary speci�es a set F of players (notcontaining the player starting the rumor) that fail to exchange information in some of therounds (as speci�ed by the adversary). We assume jFj � F and nPv2F D(v) � F .Clearly, we cannot hope to inform all players when allowing adversarial node failures. Therefore,we are satis�ed if the algorithm informs all but O(F ) players. (Alternatively, one may assumestochastic rather than adversarial failures, e.g., each random phone call fails with probability F=n.In this case, staying for � = �(ln lnn + lnn=F F ) rounds in stage C ensures that all players areinformed within O(lnn + �) rounds using O(�n) transmissions, w.h.p.)Theorem 2.2 Assuming an arbitrary distribution D and up to F node failures as described above,the median-counter algorithms informs all but O(F ) players in O(lnn) rounds using O(n ln lnn)transmissions, w.h.p.Due to space limitations we defer the proof of this theorem to the appendix.3 Lower Bounds3.1 Lower bound for address-independent algorithmsOur �rst lower bound shows that the push&pull scheme achieves optimal results for the class ofaddress-independent algorithms. In particular, we show that any address-independent algorithmrequires 
(n ln lnn) transmissions in order to inform all players. Observe that this lower boundholds regardless of the number of rounds taken to inform all players. We assume the randomphone call model using the uniform distribution.Theorem 3.1 Any address-independent rumor spreading algorithm guaranteeing that \all but afraction f of the players receive the rumor with constant probability" needs to perform 
(n ln ln f)transmissions on expectation.Proof. Fix an address-independent algorithm A. Depending on the execution of A, we partitionthe rounds into contiguous phases such that the total number of transmissions in the phases1; : : : ; i is (i � 1)n=4 = 
(in). Let Ui denote the number of uninformed players at the end ofphase i, and de�ne u(i) = n exp(�2i + 32). We will show by induction that Ui � u(i), w.h.p.Consequently, A needs 
(ln ln f) phases and, hence, 
(n ln ln f) transmissions in order to informall but a fraction f of the players, which yields the Theorem.Phases are de�ned as follows. Phase 1 starts with the round in which the rumor is generated.If phase i ends in round t then phase i + 1 starts in round t + 1. We distinguish sparse anddense phases. A sparse phase contains at most n=2 transmissions. The length of these phasesis maximized, that is, a sparse phase ends in round t if adding round t + 1 to the phase wouldresult in more than n=2 transmissions. A dense phase consists of only one round containing morethan n=2 transmissions. Observe that the number of transmissions during the phases 0 to i isat least (i� 1)n=4 because any pair of consecutive phases contains at least n=2 transmissions byconstruction.Now assume by induction that the number of uninformed players at the beginning of phase iis at least u(i� 1). We have to show that the number of uninformed players at the end of phasei is at most u(i), w.h.p. 7



For 1 � k � u(i� 1), let xk denote a 0-1 random variable indicating whether the kth of thoseplayers that are uninformed at the beginning of round i receives a message containing the rumorduring the round. We claim Pr [xk = 0] � u(i� 1)en :The arguments leading to this inequality are di�erent for sparse and dense rounds.� Suppose phase i is sparse. Then A sends at most n2 messages. Each of these messages isinitiated without knowing the receiver because decisions are placed address-independently.As connections are chosen uniformly at random, the probability that a particular messagereaches a particular player is 1n . Consequently, Pr [xk = 1] � n2 � 1n � 12 so that Pr [xk = 0] �12 � u(i�1)en .� Now suppose phase i is dense. Then the phase consists of only one round. In this case,the probability that a player does not call an informed player is lower bounded by u(i�1)n .Furthermore, the probability that a player is not called by any other player is at least 1e .Thus, the probability that a player is not connected to an informed player is at least u(i�1)en .Clearly, this implies Pr [xk = 0] � u(i�1)en .Since u(i) =Pu(i�1)k=1 (1� xk), we obtainE [u(i)] = u(i�1)Xk=1 Pr [xk = 0] � u(i� 1)2en � (n exp(�2i�1 + 32))2en = n exp(�2i + 2) = peu(i) :Observe, that the random variables xk are slightly dependent since the random interconnectionsused for transmissions in phase i form partial permutations on the caller site. This dependence,however, is negative [3] so that we can apply a Cherno� bound. Assuming u(i) � (lnn)2, weobtain Pr [Ui � u(i)] � exp (pe � 1)22 u(i)! = O(n��) ;for any positive constant �. This completes the proof of Theorem 3.1. ut3.2 Lower bound for general algorithmsThe above lower bound for address-independent algorithms does not hold for those distributedalgorithms that place their decisions based on the addresses of their communication partners. Inthe introduction, we give an example showing how all players can be informed in �(n lnn) roundsusing only O(n) of transmissions. Now we investigate whether there is an algorithm that is bothtime-optimal (i.e., using only O(logn) rounds) and communication-optimal (i.e., using only O(n)transmissions) The following lower bound answers this question negatively. Again, we assume therandom phone call model using the uniform distribution.Theorem 3.2 Any distributed rumor spreading algorithm guaranteeing that \all but a fractiono(1) of the players receive the rumor within O(lnn) rounds with constant probability" needs toperform !(n) transmissions on expectation.Proof. The di�culty in analyzing arbitrary distributed rumor spreading algorithms is that thedistribution of the rumor can be a highly dependent process although the underlying random8



calling mechanism is generated by n independent experiments in each round. For example, ifplayer 1 is the only player with an odd address sending the rumor to players with even addressesthen the success of the algorithm is highly dependent on the event that player 1 receives therumor. This small example (not even involving any additional communication) shows that theanalysis needs more than simply applying martingales or Cherno� bounds.Our basic trick in the following analysis is that we choose a random sample of the playersthat can be guaranteed to act independently during the execution. This independence, can beguaranteed only for T = b18 lognc rounds. Of course, this number of rounds is not enough toinform all players about a rumor initiated by a single player. Therefore, we assume that therumor is spread already to at least half of the player and we consider the next T rounds.Let UV � n=2 denote the number of initially uninformed players. (In order to be able toextend our result to more than b18 lognc rounds, we assume that the initially uninformed playersare known by all players in the system. For example, assume the players 1; : : : ; UV are theseplayers.) Let XV denote a random variable describing the number of messages sent during theT rounds. Furthermore, let U 0V denote a random variable describing the number of uninformedplayers after round T . (These random variables are with respect to the random phone calls.)Let A denote a set of m = bn1=8c players chosen randomly from V . The set A will be ourrandom sample. Let UA denote the random variable describing the number of initially uninformedplayers in A (with respect to the random choice of A.) LetXA denote a random variable describingthe number of messages received by the players in A, and let U 0A denote the random variabledescribing the number of uninformed players in the set A after the last round. (These randomvariables are with respect to the random choice of A and the random phone calls.)The communication graph Gt in round t is obtained by a distributed random process, i.e.,each player v chooses a player u from V at random and v calls u. This random process generates aprobability distribution D on the set G of possible communication graphs. Repeating this randomprocess for T rounds extends the probability distribution D to GT .For the analysis, we assume a slightly di�erent probability distribution D0 on G. Instead ofletting each player call a random other player, we establish the connections as follows. In eachround t,� we choose uniformly at random a collection of m disjoint subsets Bt(v) (v 2 A), eachcontaining m players from V nA; (once these sets are chosen, the players in A can act fullyindependently)� each player v 2 A, chooses at random an integer �(v) � 0 with Pr [�(v) = i] = 1ei! ;if �(v) � m, we set �(v) = m� 1;� each player v 2 A, chooses i.u.r. a set of �(v) + 1 di�erent players u0(v); : : : ; u�(v)(v) fromBt(v).We determine that every player v 2 A calls player u0(v), and the players u1(v); : : : ; u�(v)(v) callv. Every player for which we have not yet speci�ed whom to call simply chooses a communicationpartner from V n A i.u.r. Clearly, D and D0 are di�erent distributions. The following lemma,however, shows that these distributions are closely related.Lemma 3.3 The total variation distance between D and D0 on GT is O(n�1=4).Based on this bound, we are able to give the following lemma comparing the behavior of thecomplete system V jD with that of the small system AjD0.9



Lemma 3.4 For � � 0, u � n�1=16, 0 � p � 1,a) E [XV jD] � �n ) Pr hXA > �mp jD0i = p+ O(n�1=4),b) UV � un) Pr �UA < um2 � = O(n�1), andc) Pr [U 0A � umjD0] < p) Pr �U 0V < un2 jD� = p+ O(n�1=4).Informally, this lemma states that it is su�cient to analyze AjD0 in order to estimate V jD.In fact, restricting to the smaller system AjD0 enables us to deal with the dependencies. Thefollowing lemma summarizes our analysis for AjD0.Lemma 3.5 Suppose UA � m=� and XA � �m with � � 4 and � � 1. Let c denote a suitableconstant. Then maxfU 0A; mn�1=16g � m�� exp(c��) ;with probability 1�O(n�1=4).(Lemma 3.3 and 3.4 require only applying standard methods from probability theory like thecomparison of distributions and applying Cherno� bounds, the Markov inequality, etc. We omitthese proofs due to space limitations. The proof of Lemma 3.5 is moved to the appendix. Itshows how the highly dependent probabilistic rumor spreading process can �nally be reduced toa simple, deterministic token game.)Combining Lemma 3.4 and 3.5, we obtain the following result for V jD. Suppose UV � n=�and E [XV � �n] with 2 � � � n1=16 and � � 0. Applying Lemma 3.4 a) and b) yieldsXA � �� and UA � m2� :with probability at least 1� 1� �O(n�1=4). Now applying Lemma 3.5 yieldsU 0A � m�� exp(c�(��+1)) ;with probability 1� 1� �O(n�1=4). Finally, we can conclude from Lemma 3.4 c) thatU 0V � n2�� exp(c�(��+1)) ; (1)with probability 1 � 1� � O(n�1=4). Observe that this probability is lowerbounded by 1 � 2� ,provided that n is su�ciently large.In other words, for any constants � � 2 and � � 0, starting with n=� uninformed players(possibly known by all players), performing Xv � �n transmissions reduces the number of unin-formed players only by some constant factor over 18 log logn rounds, with probability at least 1� 2� .Now suppose we execute a constant number of c phases of length 18 log logn. Then spending O(n)transmissions in c phases reduces the number of uninformed players by only a constant factor, too.This result holds with probability 1� 2c� . (Recall that � can be chosen to be an arbitrary constant.)Consequently, performing O(n) transmissions over O(lnn) rounds leaves a constant fraction ofthe players uninformed. (A rigorous analysis based on inequality 1 shows that informing all buta fraction f(n) of the players with constant probability requires E [XV ] = 
(ln[2k] f(n)), whereln[x] denotes the natural logarithm iterated for x times.) Hence, Theorem 3.2 is shown. ut10
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A Proof of Theorem 2.2First we investigate the errorless case. The median-counter-algorithm spreads the rumor in similarphases as the push&pull-algorithm. Let wi be the probability that a player calls player i, letSt; st; Ut; and ut be de�ned as above and let gt be the weight of all informed players: gt :=Pi2St wi.1. Startup-phase. We want to ensure at least st 2 
(logn) informed players with weightgt � lognn are established. First, we concentrate on some �(log logn) rounds of push commu-nication. If only players with weight smaller than lognn are informed, then after O(log logn)rounds c logn nodes are informed which will push their rumors to players with a total weightof at least lognn after some constant rounds.Consider now the case that the weight after these rounds exceeds gt � lognn , but the numberof informed players is small st < c logn. The probability that an uninformed player callsan informed one is gt. The expected number of informed players is therefore: E(st+1) �st + (n� st)gt � st(2� 1logn). Applying Cherno� bounds it follows w.h.p. st+1 � st(2� �)for some arbitrary small � > 0.So, the startup phase lasts at most O(log logn) rounds.2. Exponential growth: This phase ends, when gt � 1logn .For this phase the weight ht of all uninformed players Ht with larger weight than 1st isof special interest: ht := Pi2Ut:wi�1=st wi. Note that jHtj � st and that the probabilityof a member of Ht being called by an informed player in St is larger than the constant1 � 1=e. Therefore, push-operations cause an increase of the weight of informed playersgt+1 � gt + (1� �)(1� 1=e)ht for some constant � > 0 w.h.p.In UtnHt there is a constant fraction of at least 1=e�� of players which only get one call in around for an arbitrary small constant � > 0 w.h.p. The probability that one of these playersgets the rumor pushed from St is stn . The expected number of informed players in the nextround is therefore E(st+1) � st + stn (1=e� �)(n� st � jHtj) � st(1 + (1=e� �)(1� 2stn )).If st � nlogn for ht � 12 this implies st+1 � st(1 + 1e � �0) and in the other case gt+1 �gt(32 � 12e � �0) for some arbitrary small �0 > 0.So after some O(logn) rounds it holds either gt � nlogn or st � 2nlogn . In the second case everyplayer with weight larger than c log2 nn is informed in the next round w.h.p. Furthermore,the expected weight of all informed players is E(gt+1) � Pni=1 w2i st. It turns out that thissum is minimal for the uniform probability distribution. Hence, E(gt+1) �� stn . Becausethe weights are upperbounded we can apply Cherno� bounds and get gt+1 � st2n � 1logn .Note for the number of messages that in all but one rounds st � 2nlogn . Therefore, the numberof messages is bounded by O(n).Now we discuss how often a counter of a player will be increased during this phase. Weconsider a player i with weight wi who is informed during this phase.(a) wi � 3 lognnIn every round at least 2 logn uninformed call i, while i receives a call only from atmost log n informed players (st � 2nlogn ). i's push call can be neglected. So, this playerwill communicate with more uninformed than informed players in each round and themedian rule prevents an incrementation of i's counter.12



(b) wi � 3 lognnWe allow that during the time interval t 2 fa; : : :; bg for which it holds 1log2 n � wist �c logn the counter of Pi is increased in every round.In every round gt or st grows by a factor � > 1, but possibly not both of them.Nevertheless they interact pairwise, since the expected number of uninformed nodesinformed by a pull is utgt. Therefore it holds st+1 � (1��)utgt � ngt(1��0) for �; �0 > 0with high probability. On the other hand, every informed nodes pushes in every roundit holds gt+1 � st2n logn w.h.p. So, this time interval is bounded by O(log logn).For any time step after b the number of uninformed players calling Pi is higher thanthose of the informed players for the same reasons as in (a).For every round t before a we concentrate on weights wi with wi � 1st log2 n . Theprobability that a player with such a weight is called by an informed player is smallerthan 1� (1� 1st log2 n )st � 1log2 n . Let qi be the number of players which at least i-timesincrease their counter before point a and let q0 = st. In the worst case all playersstay in this situation for the whole phase. Only qi players can cause an increase fora counter larger than i. The probability that such a player calls another is qist log2 n .Therefore, it holds E(qi+1) � q2ist log2 n . It follows qi+1st � c q2is2t log2 n if qi 2 
(logn); and ifqi � O(logn), then qi+c0 = 0 for some constants c; c0 w.h.p. This proves qO(log logn) = 0.So, there are no players whose counters will be increased more than some c log log ntime during this phase.3. Quadratic-shrinking: This phase ends, when all players have left states A or B.The probability for each uninformed player to remain uninformed is at most 1 � gt, if weconsider only pull-communication. Therefore it holds E(ut+1) � ut(1 � gt), which impliesut+1 � ut(1 � gt)(1 + lognpn ) w.h.p. The expected weight of the uninformed player of thenext round is E(1� gt+1) = (1� gt)2. Note that maxi2Ut wi � c log2 nn . Therefore, applyingCherno� bounds it follows that 1� gt+1 � (1� gt)2(1 + log2 npn ) w.h.p. It is clear that aftersome O(log log n) rounds it holds 1 � gt+1 � 2 log2 npn . Then, some constant rounds of pullwill su�ciently decrease the probability of an uninformed player remaining in state A.Since in every round each counter may be incremented only once, it su�ces to choosectrmax � c log logn for some constant c independent from D.It remains to show that after some additional O(log log n) rounds all counters reach ctrmax.Consider the time point at which all players are informed. Clearly, all counters are at least 1.Then, in every step i each counter is at least i+ 1. Therefore the distributional algorithmends after O(log logn) rounds.Since every player produces only one random call in each round the overall number ofmessages in this phase is bound by O(n log log n).Now we focus on the case of F � 14n node failures with weight F=n. We assume, that if anode failure occurs on v that v terminates, i.e. switches to D without learning the rumor. Theanalysis of the startup phase and exponential can be easily adapted to this case, since the growthof informed nodes proceeds slower but even though exponential. We now investigate the situationin the double exponential shrinkage phase.Let F be the set of nodes, which may be disconnected in some rounds. Then St and Ut arede�ned as the set of informed and uninformed nodes, being disjunct with F ; ut, st, and gt are13



de�ned as before. The probability that a node remains uninformed is at most 1� gt per round.Therefore we can conclude w.h.p. ut+1 � (1 � gt)ut. Similary as in the error-free case we canconclude that 1� gt+1 � Fn + (1 + log2 nn )(1� gt)2 w.h.p. This recursion converges in O(log logn)rounds to 1� gt0 2 O(Fn ). This implies a maximum number of O(F ) uninformed nodes within thenext round.The main problem for the error case is to verify that the number of messages does not exceedO(n log logn). We prove this by showing that at least O(n= logn) players reach state C or D, whenthe �rst error-free players reach state D. The remaining error-free players can only cause O(logn)messages each, where faulty F players do not add further messages. We start our analysis at themoment when only F 0 2 O(F ) nodes with weight F 0=n remained uninformed. Let us assume thatall informed players are in the state B-1.Let Zz;m be the set and yt;m the weight of error-free nodes in round t with ctr(v) = m.The probability that a node in Zt;m is increased is at least Pctrmaxi=m yt;i. We want to provethat in the triangular section where t � km for some constant k, yt;m decreases exponentiallyin t. For the analysis we allow that some of the counter may be decreased. The aim of thismodi�cation is that the series yt;1; : : : ; yt;mt is exponentially increasing, the series ymt;t; ymt+1;t; : : :is exponentially decreasing, and the weight yt;mt+1 � 12 contains the rest of the weight. Moreformally, 8i � mt : yt;i � �yt;i+1 and yt;mt+1 = 1� F 0=n�Pmti=0 yt;i for some � > 1.By decreasing some of the counters it can be ensured that in the next round it holds 8i � mt :yt;i � � yt;i+1 and yt+1;i � 1+�2 yt;i. This follows by the fact that Pmti=j yt;j � 12 and by reducingthe number of players increasing their counter to a fraction of 12 each. After some constant roundsc it holds yt+c;mt+1 � �yt+c;mt . Then, we increase mt+c := mt+ 1 and get the claimed triangularsection.Therefore, after some O(log log n) rounds only a fraction of O(n= logn) has a smaller counterthan c log logn.B Proof of Lemma 3.5We consider the execution of T = b18 lognc rounds of a distributed algorithm assuming that thecommunication partners in each round are selected according to distribution D0. Let u0 � 14denote the fraction of initially uninformed players in A. Let ut, for 1 � t � T , denote a randomvariable describing the fraction of uninformed players after the execution of round t. We assumethat XA, the number of messages received by the players in A, is upperbounded by �m with� � 1. We have to show that maxfuT ; n�1=16g � u exp(cu0�)0 ; (2)with probability 1�O(n�1=4), for some suitable constant c > 0.We want to make use of the fact that the distributed algorithm has only local knowledge aboutthe random communication graph. The following lemma shows that this knowledge is actuallyvery limited. For a set Y � V , set �0(Y ) = Y , and de�ne �t(Y ) to be the set of all playersconnected to �t�1(Y ) in round t plus the players in �t�1(Y ) itself. Observe that, in round t, onlythe players in �t(Y ) can receive information from the players in �t�1(Y ). In other words, noneof the players in V n �t(Y ) received any information sent by the players in Y during the rounds1 to t � 1. 14



Lemma B.1Pr249v 2 A; 1 � t � T : Bt(v)\ �t�10@A [ [1��<t [w2AB� (w)1A 6= ;35 = O(n�1=4) :Proof. Bt(v) is a random set of size m chosen from V n A. The probability that one of theelements in this set is contained also in �t�1(�) is bounded above bym � j�t�1(�)jn �m � mTm24Tn � m3n1=4 lognn�m = O(n�1=4)applying j�t�1(�)j � Tm24T , T � 18 log n, and m � n1=8. The bound on j�t�1(�)j can be obtainedas follows. The size of �0(�) is (t�1)m2+m � Tm2 taking into account the set A and (t�1)m setsB� (w) each of which having sizem. In expectation, the � set grows by a factor of at most 3 in eachround, that is, E [j��(�)j] � 3j���1(�)j. Applying Cherno� bounds, we obtain j��(�)j � 4j���1(�)j,with probability 1� O(1=n). Thus, �t�1(�) � Tm24t�1 � Tm24T , with probability 1� O(T=n).utIn the following we will assume that the unlikely event described in Lemma B.1 actually doesnot occur, that is, the players in Bt(v) do not have any information about the outcome of therandom edges connecting w 2 A with B� (w), for 1 � � < t. Let us describe this in more detail.When the distributed algorithm decides to send a message to a player v 2 A in round t, thenthis decision is actually placed by a player u in Bt(v). This player u might have gathered someknowledge about which players are in the sets B� (w), for w 2 A and 1 � � < t. (For example,u knows that it is not in one of these sets itself.) Under the assumption above, however, theplayer u has no knowledge about the outcome of the random edges between w and B� (w) with(w; �) 2 A� f1; : : :Tg n fv; tg.For v 2 A and 1 � t � T , assume the set Bt(v) are �xed. Furthermore, assume that theinformed players in Bt(v) are known. In order to get an unambiguous model, we replace thedistributed algorithm by a speci�cation S describing for which outcome of the random edgesbetween v and Bt(v) in round t the rumor should be sent to v, for every v 2 A and 1 � t � T .The speci�cation S is assumed to be oblivious with respect to the random interconnections, i.e.,it must be given without knowing the outcome of the random edges between v 2 A and Bt(v),for any v 2 A and 1 � t � T .Suppose we �x the Bt(v) sets and those players in these sets that hold the rumor at the begin-ning of round t. Then we can transform the oblivious speci�cation S into a table of independentprobabilities bt(v) (v 2 A, 1 � t � T ) so that bt(v) is the probability that v receives a message inround t. Observe that bt(v) cannot be larger than bmaxt (v), i.e., the probability that v is connectedto a player holding the rumor in round t. The following lemma upperbounds bmaxt (v) based on thefact that the fraction of informed players in Bt(v) does not deviate too much from 1� ut�1 (i.e.,the fraction of uninformed players in A). The given probability is with respect to the randomchoice of the Bt(v) sets.Lemma B.2 Pr �9v 2 A; 1 � t � T : bmaxt (v) > 1� ut�12e � = O(n�1=4):Proof. We make regress to the distribution D. Observe that all results we show for D hold forD0 with probability 1�O(n�1=4) because of Lemma 3.3.We need the following technical lemma which is a straightforward consequence of Cherno�bounds. 15



Lemma B.3 Suppose V contains un � n�15=16 uninformed players Let Y � V denote a randomlychosen subset of size m = bn�1=8c. Then the expected number of uninformed players in Y isum � n�1=16=2. Furthermore, for any constant � > 1, the probability that Y contains less thanum=� or more than �um uninformed players is O(n�1).Applying this lemma we can upper- and lowerbound the number of uninformed persons in anyrandomly selected set of players.Assuming D, A is a set of size m selected at random from V . Let u denote the fraction ofuninformed players in V at the beginning of round t. Recall ut�1 speci�es the same fraction forthe set A. Applying B.3 yields ut�1 � p2u, with probability 1� O(n�1).The set Bt(v) is chosen at random from V nA. Alternatively, we can view Bt(v) as chosen atrandom from V since A only \eliminates" some random players in V . Let u� denote the fractionof uninformed players in Bt(v) at the beginning of round t. Then applying B.3 yields u� � up2 ,with probability 1�O(n�1).Combining, the bounds for A and Bt(v), we obtain Pr �u� > ut�12 jD� = O(n�1), which impliesPr �u� > ut�12 jD0� = O(n�1=4).Now let us assume u� � ut2 and calculate bmaxt (v) under this assumption. The probability thatv has only one neighbor in round t is Pr [�(v) = 0] = 1e . The probability that this neighbor isuninformed is at least u� � ut�12 . If both of these independent events occur then we cannot sendthe rumor. Therefore, bmaxt (v) � 1� ut�12e . utThe relationship between the variables and parameters ut, bt(v), and � can be described by aset of four equations E1 to E4. From Lemma B.2, we can conclude thatE1: 0 � bt(v) � 1� ut�12e ;with probability 1 � O(n�1=4). We introduce some auxiliary variables. Let pt(v) denote theprobability that player v 2 A does not know the rumor at the end of round t. Set p0(v) = 1 ifv 2 A is initially uninformed, 0 otherwise. For every v 2 A and 1 � t � T ,E2: pt(v) = (1� bt(v))pt�1(v)because v is uninformed in round t if and only if it is uninformed in round t � 1 and does notreceive a message in round t. Observe that these two events are independent.Furthermore, the expected number of uninformed players in any round can be calculated easilyby E [utm] = Pv2A pt(v). The probabilities pt(v) are independent as they are composed out ofthe independent probabilities bt(v). Thus, we can bound uTm using Cherno� bounds. Recallthat we aim to give a lower bound on maxfuT ; n�1=16g. Hence, we may assume w.l.o.g. thatut � n�1=16 so that utm � mn�1=16 � 12n1=16. Hence, applying a Cherno� bound yieldsE3: utm � 12 Xv2A pt(v) ;with probability 1�O(n�1).Finally, the expected number of messages received by the players in A during all rounds isE [XA] = PTt=1Pv2A bt(v). By our initial assumptions XA � �m for � > 1. Thus, apply-ing a Cherno� bound yields E [XA] � maxf2XA; n�1=16g � 2�m, with probability 1 � O(n�1).Consequently, E4: TXt=1 Xv2A bt(v) � 2�m ;16



with probability 1�O(n�1).Lemma B.4 Let u�T be an optimal solution to the optimization problem \minimize uT under theconstraints E1, E2, E3, E4" with parameters u0 � 14 , � � 1 and variables bt(v), pt(v), and ut(1 � v � m, 1 � t � T ). Then u�T satis�es inequality 2.Proof. First, we change some of the constraints. We rede�neE1: bt(v) 2 �0; 1� ut�12e � :Clearly, this restricts the set of allowed solutions, but some calculations show that this is com-pensated by relaxing E4 as follows.E4: TXt=1 Xv2A bt(v) � 3�m :Next we rewrite the optimization problem by substituting�t(v) = bt(v) � �1� ut�12e ��1 :Observe that �t(v) � 43bt(v). Therefore, we obtain the following relaxation of our optimizationproblem. E1 : �t(v) 2 f0; 1gE2 : pt(v) = �1� �t(v)�1� ut�12e �� pt�1(v)E3 : utm � 12 mXv=1 pt(v)E4 : TXt=1Xv2A �t(v) � 4�mInterpreting these constraints, we obtain the following token game. Let Au denote the set ofinitially uninformed players in A.� There are at most 4�m tokens which can be spent in T rounds.(Setting �t(v) = 1 means spending a token for player v in round t.)� In each round, each player v 2 Au can receive at most one token.� If player v 2 Au receives a token in round t then pt(v) = ut�12e pt�1(v),otherwise pt�1(v) = pt�1(v).The goal of this game is to minimize uT =Pmv=1 pT (v)=(2m). Unfortunately, the optimal strategyfor this game is not obvious. For example, the greedy strategy starting with giving a token toevery player in the �rst round, then giving a token to every player in the second round, and so on... does not lead to an optimal solution. In fact, the bene�t of a token is maximized if the playerreceiving the token has been spared from previous tokens.17



We can enforce an almost even distribution of the tokens, however, by spending some extratokens. Suppose at least half of the nodes in Au receive at least I tokens. ThenI � 4�mu0m=2 = 8� : (3)Let ti denote that round until whose completion at least half of the players in Au received their ithtoken, for 1 � i � I . Now we add the additional constraint that every player in Au has to receiveat least i tokens until the end of round ti. Observe that we can easily satisfy this constraint byspending up to jAuj=2 = u0m=2 free tokens in round ti, for 1 � i � I .Next we analyze the number of uninformed nodes in A taking advantage of the additionalconstraint. Let u(i) denote the fraction of uninformed players in A at the beginning of round ti,i.e., u(i) = uti�1, for 1 � i � I . Furthermore, set u(I + 1) = uT . Let �(i; v) describe the e�ectof the ith token assigned to player v 2 Au, that is, if v receives its ith token in round t thenpt(v) = �(v; t) � pt�1(v), for 1 � i � I . As the ith token of every player v 2 Au is spent before orin round ti, we obtain by constraint E2 that�(v; i) � u(i)2e ; (4)for 1 � i � I . Let Au(i) denote the set of those players receiving their ith token in round ti, for1 � i � I . Let A(I + 1) denote the set of players receiving at most I tokens. Our constructionensures jAu(i)j > jAuj2 � um2 (5)because less than half of the players in Au receive their ith token before round ti, for 1 � i � I ,and less than half of the players in Au receive more than I tokens. Besides, as the players in Au(i)receive at most i� 1 tokens during the rounds 1 to ti � 1, we havepti�1(v) � i�1Yj=1�(v; j) ; (6)for v 2 Au(i); 1 � i � I + 1. Combining these inequalities yieldsu(i) = uti�1(E3)� 12m Xv2A pti�1(v)(6)� 12m Xv2Au(i) i�1Yj=1 �(v; j)(4)� 12m Xv2Au(i) i�1Yj=1 u(j)2e(5)> u4 i�1Yj=1 u(j)2e ;for 1 � i � I + 1. Furthermore, we have u(1) > u2 because less than half of the um players in Aureceived a token before round t1. Consequently, solving the recurrence on u(i) for u(I+1) = uTyields uT > u2I22I+1+2I�1�1e2I�1 = uexp(�I) (3)= uexp(6��) ;18



for some suitable constant � > 0. utSummarizing, we have shown that the four equations E1 to E4 hold with probability 1 �O(n�1=4). Assuming these equations we have deduced inequality 2. Thus, this inequality holdswith probability 1�O(n�1=4), which completes the proof of Lemma 3.5.
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