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Abstract

We consider networks where energy is a limited resource so that energyconsumption must be minimized while satisfying

given throughput requirements. For such networks, cross-layer design coupled with node cooperation can significantly reduce both

energy consumption and delay. In this paper, we propose a cooperative multiple-input multiple-output (MIMO) technique where

multiple nodes within a cluster cooperate in signal transmission and/or reception. In our scheme, local information exchange within

the cluster is not necessary if Alamouti codes are used with appropriate transmission scheduling. A cross-layer design framework

is then applied that optimizes routing to minimize the energy consumption and delay. For the cooperative MIMO scheme, routing

is optimized based on an equivalent single-input single-out (SISO) system, where each cooperating cluster is treated as a super

node. We derive the best energy-delay tradeoff curve under this optimization model and show that the cooperative MIMO approach

dramatically improves energy and delay performance, especially whenlink layer adaptation is used.
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I. I NTRODUCTION

Energy-constrained networks, such as sensor networks, have nodes typically powered by small batteries, for which re-

placement or recharging is very difficult if not impossible.As a result, minimizing the energy per bit required for reliable

end-to-end transmission becomes an important design consideration. For short range applications, transmission energy may

no longer be dominant. Thus, transmission and circuit processing energy must be jointly minimized [1]. As such, we focus

on minimizing the total energy consumption given certain network throughput requirements and delay constraints. Since all

the layers in the protocol stack affect the total energy consumption, throughput, and delay, cross-layer design is necessary for

energy minimization [2].

Cross-layer design for improving the network performance has been a focus of much recent work. Joint scheduling and power

control to reduce energy consumption and increase single hop throughput is considered in [3]. Cross-layer design basedon

computation of optimal power control, link schedule, and routing flow is described in [4]. The aim of that paper is to minimize

the average transmission power over an infinite horizon. Also, the routing flow is computed in an incremental manner: it uses

the Lagrange multipliers obtained at each step by solving anoptimization problem of possibly exponential complexity in the

number of links. Energy efficient power control and scheduling, with no rate adaptation on links, is considered in [5]. Joint

routing, power control, and scheduling for a TDMA-CDMA network is investigated in [6] and [7]. However, in all of this work,

only transmission energy is considered and hardware processing energy is ignored. This can lead to suboptimal performance

in short range networks.

Energy minimization including hardware constraints is investigated in [8]-[10], where the authors proposes a joint design

between the link layer and the silicon layer. By consideringconstraints such as power consumption imposed by the underlying

circuits, optimal modulation schemes are derived to minimize the total energy consumption. However, these results do not

take into account higher layer protocols such as MAC and routing. In [11], joint routing, MAC, and link layer optimization

techniques to minimize the sum of the transmission energy and the circuit processing energy are proposed, where the flow

control and link scheduling problem is approximated as a convex problem and efficient optimization methods are applied to

find the solution.

In the physical layer, multiple antenna techniques have been shown to be very effective in improving the performance of

wireless systems in the presence of fading [12], where the performance gain is in the form of diversity gain, array gain, and

multiplexing gain. However, it is impossible to mount multiple antennas on a small sensor node. To achieve MIMO gains

in sensor networks, cooperative MIMO techniques have been proposed. These techniques allow multiple nodes to cooperate
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in signal transmission and/or reception. In [13], the authors analyze the diversity performance and propose corresponding

space-time code designs for cooperative schemes involvinga relay node. In [14], the energy efficiency and delay performance

of cooperative MIMO techniques are analyzed for a single-hop system where it is shown that both energy and delay can

be reduced within a certain transmission range. However, due to the energy and delay associated with the local information

exchange within the cluster, the cooperative MIMO approachis less efficient than the traditional non-cooperative approach

when the transmission distance between clusters is below some threshold.

In this paper, we combine the results in [11] and [14] to show how cooperative MIMO techniques can be applied to

improve network performance. By jointly designing routingand link scheduling for networks composed of multiple clusters of

nodes using cooperative MIMO, we show that the end-to-end performance can be dramatically improved. Moreover, our novel

approach of distributed Alamouti coding provides diversity gain with no local information exchange, as is typically required

in node cooperation [14].

The remainder of this paper is organized as follows. SectionII describes the system model for the cooperative MIMO

approach and proposes an equivalent SISO system to solve forthe optimal routing and scheduling in the network. In Section

III we analyze the delay performance and energy consumptionof the proposed schemes with fixed link rates and compute the

optimal energy-delay tradeoff curve. In Section IV we discuss the case where we allow link rate adaptation, which enables the

full cross-layer optimization across routing, MAC, and link layers. Section V summarizes our conclusions.

II. SYSTEM MODEL

We consider a sensor network composed of multiple clusters of nodes, as shown in Fig. 1. This figure shows clusters of

nodes where the nodes within the same cluster are closely spaced and cooperate in signal transmission and/or reception.In

this work we extend the cooperative strategy proposed in [14] to a multihop networking scenario, where we find the routing

and scheduling that optimize energy and/or delay performance based on cooperative MIMO transmissions at each hop.

c

ba

Fig. 1. A clustered network

We restrict our attention to the double-string network topology shown in Fig. 2, which represents regularly spaced sensors

for data collection. In this topology there are clusters of two nodes, where within a cluster the nodes are separated by distance

da while the distance between clusters isdc with dc ≫ da. While Fig. 2 shows clusters of sizeM = 2, our design methodology
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Fig. 2. A double-string network

applies to any cluster size. The highly regular topology of the double string network facilitates analysis, and also demonstrates

potential performance gains for more general topologies. For the network in Fig. 2, there areI − 2 stages of node clusters

between the source and the destination. Thus, if the distance between the source and the destination isd, then the distance

between the neighboring stages isdc = d
I−1

. We also assume that transmissions from stagem to stagen is allowed for any

m andn with 1 ≤ m ≤ n ≤ I, where the source node is at stage1 and the destination node is at stageI.

Source Destination

q I  1Stage: m n kFig. 3. Cooperative transmission

We assume that the source node generates data atL1 packets per collection periodT with a fixed packet sizeυ = 100 bits.

Therefore, the network needs to support a throughput ofS0 = L1

T packets per second (pps) between the source node and the

destination node. We also assume a TDMA-based transmissionscheme where the frame length is equal toT . Therefore, the

network needs to conveyL1 packets from the source to the destination within each frame. We want to find a variable-length

TDMA scheme where each transmission is assigned an optimal transmission time with the total sum bounded byT to minimize

the energy consumed across the network within each frame. Due to the nature of TDMA, there is only one transmission in

the network at any given time.

The nodes cooperate in the following manner. As shown in Fig.3, within the first slot in each frame, the source node

broadcasts a certain number of packets to the two nodes of thecluster at stagem, 2 ≤ m ≤ I. If m < I, then the upper node

at stagem acts as antenna1 and the lower node acts as antenna2. These antennas transmit two streams of codewords that

are encoded according to a2× 1 Alamouti code [12]. Note that for a given time slot, the pair of nodes at stagem is allowed

to transmit to any pair of nodes at stagen, n > m. The two nodes at stagen will decode the information independently and

repeat the cooperative coding and transmission process. Inaddition, a pair of nodes may be assigned more than one time slot

within each frame to transmit packets to different stages. Note that it is possible that the source node transmits all thepackets

directly to the destination node, if that is more efficient. The optimization of which clusters participate in the multihop routing
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and the corresponding transmission scheduling is performed off-line and communicated to all nodes prior to transmission. We

also assume that the network is synchronized, which may be enabled by utilizing beacon signals in a separate control channel.

Although the scheme just proposed is for node clusters of size M = 2, similar ideas can be applied to larger clusters.

For each link, we assume a flat Rayleigh fading channel, i.e.,the channel gain between each transmitter and each receiver

is a scalar. In addition, the mean path loss is modeled by a power falloff proportional to the distance squared, so the received

power associated with transmission from stagem to stagen is given by

P r
mn =

P 0
mn

G0d2
mn

(1)

whereP 0
mn is the transmit power at stagem, dmn is the transmission distance between stagem and stagen, G0 is the power

attenuation factor atdmn = 1 m, andP r
mn is the received power [11]. We can also express the received power in terms of the

received energy per bit as

P r
mn = ĒbbmnB, (2)

wherebmn is the constellation size,B is the symbol rate which is approximately equal to the passband bandwidth, andĒb is

the received energy per bit averaged over fading. Therefore, by combining Eq. (1) and Eq. (2), we can obtain the expression

for the transmit power as

P 0
mn = ĒbbmnG0d

2
mnB. (3)

Note that we havebmn = Wmnν
Btmn

whereWmn is the number of packets transmitted from stagem to stagen and tmn is the

transmission time. This relationship guarantees that all theWmnν bits can be sent from stagem to stagen within tmn seconds.

As long asB and ν are fixed, the value for any particular variable amongbmn, Wmn, and tmn can be determined by the

values of the other two variables.

As shown in [12], the instantaneous received SNR for a2×1 Alamouti system is given byγb =
‖H‖2

F

2

Ēb

N0

whereH = [h1 h2]

with h1 and h2 zero mean circulant symmetric complex Gaussian (ZMCSCG) random variables with unit variance [12] and

N0/2 is the double-sided power spectral density for the AWGN noise. For the2× 1 MISO system with a constellation sizeb

we can apply the Chernoff bound [16] to obtain the average probability of bit error as

P̄b ≤
4

b

(

1 − 1

2
b
2

) (

1.5Ēbb

2N0(2b − 1)

)−2

, b ≥ 2, (4)

from which we can derive an upper bound forĒb as shown below [14]:

Ēb ≤
4

3

(

P̄b

4

)− 1

2 2b − 1

b
1

2
+1

N0.
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By approximating this bound as an equality, we obtain an expression forĒb, from which we can calculateP 0
mn according to

Eq. (3).

The total power consumed in the transmitter power amplifier is given by [1]

Pmn
t = (1 + α)P 0

mn, (5)

whereα is defined by the power amplifier efficiency and other system parameters [1].

Therefore, the total power consumed in the two transmitter power amplifiers during the transmission from stagem to stage

n is given by:

Pmn
t =

4

3
(1 + α)

(

P̄b

4

)− 1

2 2bmn − 1√
bmn

N0G0d
2
mnB. (6)

For QPSK withbmn = 2, we have

Pmn
t = 2

√
2(1 + α)

(

P̄b

4

)− 1

2

N0G0d
2
mnB.

Therefore, the total power consumed during the transmission from stagem to stagen is given by

Pmn = Pm
ct + Pn

cr + Pmn
t , (7)

where Pm
ct is the total transmitter circuit power consumption across stage m and Pn

cr is the total receiver circuit power

consumption across stagen. Note that whenm = 1, i.e., the SISO transmission is from the source node to otherstages,Pmn
t

is given by [15]

Pmn
t = (1 + α)

1

12P̄b
2bmnN0G0d

2
mnB. (8)

However, after we know how to calculatePmn, it is still difficult to incorporate the cooperative MIMO structure into the

routing optimization model, which is addressed in [11] for the non-cooperative systems. Fortunately, we can apply a simple

trick to make the problem manageable. Since all the transmissions occur between different pairs of nodes and the paring

relationship is fixed, we can treat each pair of nodes in the same stage as one super node. Then the double-string network is

simplified to a single-string network as shown in Fig 4, whichcan be treated as a virtual SISO system with the total number

of nodes given byN = I. The total power required for transmission between two super nodes is given by Eq. (7). The

corresponding energy or delay minimization problem can thus be modeled in the same way as in the SISO case, which will be

discussed in the next section. For networks with an arbitrary cluster sizeM , similar equivalent SISO systems can be obtained

with Pmn modified according to anM × 1 MISO system.
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Fig. 4. Equivalent SISO system

A. Optimization of Equivalent SISO Systems with Arbitrary Link Rate

According to [11], for any network with one source node and one destination node, we can model the minimum-energy

routing problem as an optimization problem when SISO transmissions are used for each link. The topologies shown in Fig. 2

(with N = 2I −2) and Fig. 4 (withN = I) are special cases for such solvable networks if SISO transmissions are exclusively

used. As in [11], we assume that the network is static such that the optimization can be done off-line before the network is

deployed.

We now discuss the optimization model for SISO-based systems in detail. For nodei, we useNi to denote the set of nodes

that send data to nodei, and useMi to denote the set of nodes that receive data from nodei. We denote the normalized

time slot length for the transmission over linki → j (from nodei to nodej) as δij =
tij

T , where
∑N−1

i=1

∑

j∈Mi
δij ≤ 1.

As introduced before, we useWij to denote the number of packets transmitted over linki → j during each periodT . As

discussed in [11] we assume three modes of operation for eachnode: active mode, sleep mode, and transient mode. To simplify

the formulation we neglect the effect of the transient mode [1]. Thus, nodesi and j will be in active mode when linki → j

is active, and will otherwise be in sleep mode where all the circuits are turned off to save energy. At nodei, as introduced

in [11], we useP i
ct and P i

cr to denote the circuit power consumption values for the transmitting circuits and the receiving

circuits, respectively. The transmit power needed for satisfying a target probability of bit errorPb from nodei to nodej is

denoted asP ij
t . Therefore, the total average power spent on linki → j is given as

Pij = δij(P
j
cr + P i

ct + P ij
t )

and the total energy consumed over linki → j is given asǫij = TPij .

As discussed in [11], to increase the network lifetime we canchoose to minimize the total energy consumption as follows

min
∑N−1

i=1

∑

j∈Mi
ǫij

s. t.
∑N−1

i=1

∑

j∈Mi

νWij

Bbij
≤ T

∑

j∈Mi
Wij −

∑

j∈Ni
Wji = Li, i = 1, · · · , N

2 ≤ bij ≤ Cij , i = 1, · · · , N − 1, j = 1, · · · , N

, (9)

where the first constraint is the TDMA constraint, the secondconstraint is the flow conservation constraint, which guarantees

that at each node the difference between the total outgoing traffic and the total incoming traffic is equal to the traffic generated

by the node itself, andCij in the third constraint is the maximum constellation size each link can use without violating
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certain peak power constraint. For the double-string information collection network topology shown in Fig. 4, we haveLi = 0,

i = 2, · · · , N − 1, and LN = −L1 where the negative sign is due to the fact that the destination node has only incoming

traffic.

Since Wij and bij can only take integer values, the problem is an integer programming problem, which is not convex.

Even if we allow these parameters to take on real values, the optimization problem is still not jointly convex overWij and

bij . Fortunately, since we have the relationshipbij =
νWij

Btij
, we can optimize overWij and tij instead. As such, the problem

becomes jointly convex overtij and Wij . The convexity proof can be boiled down to proving the convexity of two special

functions, which is shown in Appendix A and B. Finally, the optimization problem becomes

min
∑N−1

i=1

∑

j∈Mi
ǫij

s. t.
∑N−1

i=1

∑

j∈Mi
tij ≤ T

∑

j∈Mi
Wij −

∑

j∈Ni
Wji = Li, i = 1, · · · , N

νWij

CijB ≤ tij ≤ νWij

2B , j ∈ Mi, i = 1, · · · , N − 1

, (10)

which is convex overtij andWij if we allow them to take real values. To reduce the relative error caused by the relaxation,

we can use integer programming techniques such as the Branchand Bound algorithm [17], which is discussed in [11] in more

detail.

Different scheduling (ordering) of the optimal time slot assignments, thetij ’s, will lead to different delay performance,

although they all have the same energy efficiency. It is shownin [11] that the minimum packet delay among all possible

schedules is equal to the frame lengthT , and a simple algorithm exists to find such a minimum-delay schedule for any loop-

free network with one sink node. Thus, by solving the problemin Eq. (10), we can find the minimum possible energy required

to transfer a given number of packets within a delay deadlineT . Alternatively, instead of minimizing energy under a delay

constraint, we can also consider the dual problem of minimizing delay under an energy constraint. Specifically, given a total

energy budgetEM per period, we can find the minimum possible value forT =
∑N−1

i=1

∑

j∈Mi
tij that is required to finish

the transfer of a given number of packets. The dual problem ischaracterized as

min.
∑N−1

i=1

∑

j∈Mi
tij

s. t.
∑

j∈Mi
Wij −

∑

j∈Ni
Wji = Li, i = 1, · · · , N

∑N−1

i=1

∑

j∈Mi
ǫij ≤ EM

tij ≥ 0, j ∈ Mi, i = 1, · · · , N − 1

. (11)

The optimaltij ’s given by solving Eq. (10) and Eq. (11) can take arbitrary real values. Thus, the resulting variable length

TDMA scheme is impractical, since it will require an infinitenumber of bits to describe the time slot assignment. To alleviate

this problem, we can divide the frame into unit slots with length ∆. After we obtain the optimal values for thet′ijs, the optimal

number of unit slots assigned to each link is given by rounding tij

∆
to the nearest integer. As long as∆ is small enough,
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the performance degradation caused by the rounding is negligible. Thus, in this paper we just focus on finding the optimal

real-valuedtij ’s.

B. Optimization of Equivalent SISO Systems with Fixed Link Rate (QPSK)

For the simple case where we fix the transmission rate, the optimization problem discussed in the last section can be simplified

to a Linear Programming (LP) problem, which can be efficiently solved [18]. Specifically, if we use QPSK transmissions for

all the links, the optimization problems shown in Eq. (10) and Eq. (11) can be rewritten as

min T
∑N−1

i=1

∑

Mi
Pij

s. t.
∑N−1

i=1

∑

j∈Mi
tij ≤ T

∑

j∈Mi
tij −

∑

j∈Ni
tji = Li

Sa
, i = 1, · · · , N

tij ≥ 0, j ∈ Mi, i = 1, · · · , N − 1

, (12)

whereSa = B
50

pps for QPSK and

min.
∑N−1

i=1

∑

j∈Mi
tij

s. t.
∑

j∈Mi
tij −

∑

j∈Ni
tji = Li

Sa
, i = 1, · · · , N

∑N−1

i=1

∑

j∈Mi
Pijtij ≤ EM

tij ≥ 0, j ∈ Mi, i = 1, · · · , N − 1

, (13)

respectively, where we see both the objective function and the constraints are linear over the design variabletij ’s.

III. E NERGY-DELAY TRADEOFF WITH FIXED L INK RATES

In the last section we introduced the optimization models tominimize energy subject to a constraint in delay or to minimize

delay subject to a constraint in energy. In this section, we provide numerical results for these optimizations, along with the

optimal energy-delay tradeoff curves. These results illustrate the performance benefit of cross-layer design.

We start with the case where we assume that all the nodes support a fixed transmission rate. Specifically, we assume QPSK

transmissions with aB = 10 KHz symbol rate. The packet transmission rate (denoted asSa) at each node is given by

Sa = 200 pps. By fixing the link rate, we simplify the cross-layer design model to consider only the routing and MAC layers.

Since the constellation sizeb is fixed, the design variables aretij ’s, over which the optimization problems described in Eq. (12)

and Eq. (13) are all Linear Programming (LP) problems.

For a network where each link has a fixed transmission rate, multihop transmission consumes less total transmission power

than single-hop transmission as long as the path loss is proportional to 1

dκ with κ > 1. This is true for both non-cooperative

and cooperative MIMO systems. However, when the delay constraint is tight, multihop transmissions may not be feasible since

the total delay is monotonically increasing with the numberof hops [11]. In addition, when circuit energy consumption is

considered, as shown in [11], multihop transmissions may not be more energy efficient than single-hop transmissions since the
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relay nodes consume extra circuit processing energy. By solving the optimization problems given in Eq. (12) we can determine

when multihop transmissions should be utilized to minimizeenergy consumption.

For our numerical results we consider a double-string network with ten stages (I = 10), d = 270 m, Sa = 200 pps, and

L1 = 60 packets. As in [14], we takēPb = 10−3, G0 = 30 dB, α ≈ 7.6, andN0 = −134 dBm/Hz. For both the non-cooperative

and cooperative MIMO systems, if the frame lengthT ≤ L1

Sa
= 0.3 s, single-hop transmission is the only option since the frame

lengthT is not large enough for multiple hops to take place. WhenT > 0.3 s, we have the option to use multihop routing to

save transmission energy. The minimum energy transmissionschemes withT = 1.5 s for the non-cooperative and cooperative

MIMO systems are shown in Fig. 5 and Fig. 6, respectively. These figures show the optimal routing when only transmission

energy is considered or when both circuit and transmission energy is included. The number beside each link is the optimaltime

slot length assigned to that link. For both systems, we see that when circuit energy consumption is included, energy efficient

transmissions involve a fewer number of hops than when only transmission energy is considered. Note that in Fig. 6, only the

eight intermediate super nodes are shown, which represent clusters of two nodes. The transmissions in this figure represent

cooperative MIMO transmissions. In addition, as proved in [11], we can always find an optimal transmission order for all the

active links to guarantee that all theL1 packets arrive at the destination node within the current frame. Therefore, we call the

frame lengthT the scheduling delay.
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For a given network topology, the achievable energy-delay region consists of all the achievable energy-delay pairs. The

energy-delay region is a convex set. This is because if energy-delay points(ǫ1, T1) and (ǫ2, T2) are contained in the energy-

delay region, then any convex combination of these points can be achieved by time-sharing between the transmission schemes
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corresponding to the two end points. Hence, any convex combination of these points are contained in the achievable energy-

delay region. Here, we calculate the Pareto-optimal energy-delay tradeoff which characterizes the minimum possible delay for

a given energy consumption (or vice versa), and the optimal tradeoff curve defines the boundary of the achievable energy-delay

region.

The optimal tradeoff curve can be found by varying the value of β in the following optimization problem.

min.
∑N−1

i=1

∑

j∈Mi
tij + β

∑N−1

i=1

∑

j∈Mi
Pijtij

s. t.
∑

j∈Mi
tij −

∑

j∈Ni
tji = Li

Sa
, i = 1, · · · , N

tij ≥ 0, j ∈ Mi, i = 1, · · · , N − 1

, (14)

where the first term in the objective function is the delay andthe second term is the total energy consumption weighted by a

scanning parameterβ. The resulting problem is a LP problem for eachβ when the link rate is fixed, which can be efficiently

solved using existing techniques [18].

To give a numerical example, we consider the same ten-stage double-string network with the same system parameters as

we used for obtaining the results in Fig. 5 and Fig. 6. The optimal energy-delay tradeoff curves for both the non-cooperative

and cooperative MIMO systems are shown in Fig. 7 and Fig. 8 , where we see that the optimal curve for the cooperative

MIMO system (labeled as coop MIMO) is strictly below that of the non-cooperative system (labeled as non-coop), which

means cooperative MIMO schemes can reduce both energy and delay. For both the case where the circuit processing energy

is included and the case where it is not included, we see that the two curves converge to the same point on the far right of

the curves, which corresponds to the scenario where the source node transmits all the packets directly to the destination node.

This is expected since delay is minimized by single-hop transmissions.
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IV. D ELAY-ENERGY TRADEOFF WITH L INK RATE ADAPTATION

In the last section, we have shown that cooperative MIMO can reduce both energy and delay, even though the link rate is

fixed. We now investigate what further performance gains canbe obtained by allowing the link rate to be optimally chosen

according to the transmission distances. By adding link rate adaptation, we extend our cross-layer optimization over the link,

MAC, and network layers.

With the flexibility of rate adaptation, the routing delay can be reduced, since we can always use higher constellation sizes

to reduce the transmission time for links that carry more traffic. Moreover, we can reduce circuit energy consumption in the

relay nodes by assigning higher constellation sizes to the links on the particular multihop route, since a higher constellation

size means a shorter transmission time, which is also the circuit active time in the relay nodes. These benefits give the routing

layer more freedom to choose the optimal route. We now illustrate the performance gain achieved with link layer adaptation

by deriving the optimal energy-delay tradeoff curve.

The optimal energy-delay tradeoff curves with link rate adaptation can be obtained by using the same model as in Eq. (14).

The difference from the fixed-rate case is that the value for the functionPij is now defined by Eq. (6-8). As a result, the design

variables for the optimization problem becomeWij ’s and tij ’s. The problem can still be solved using convex optimization

techniques as we discussed for the model in Eq. (10).

For our numerical results, we use the same network example asin Section III. For the case where we only consider the

transmission energy, the optimal energy-delay tradeoff curve is shown in Fig. 9, where we see that the benefit of rate adaptation

is not obvious except that the delay can be further reduced atthe expense of energy. On the left side of point A, the two

curves for the cooperative MIMO systems have almost merged due to the fact that QPSK is used in both systems to minimize

the transmission energy. The slight difference between thetwo curves on the left side of point A is just due to some numerical
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rounding errors.
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Fig. 9. Transmission Energy only

For the case where we consider both the transmission energy and the circuit processing energy, the optimal energy-delay

tradeoff curve is shown in Fig. 10, where we see dramatic performance improvement achieved by the cooperative MIMO

system with rate adaptation, since rate adaptation can always minimize the sum of the transmission energy and the circuit

processing energy and gives the upper layers more freedom tochoose optimal multihop routes.
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Fig. 10. Circuit energy included

For the double-string topology we consider here, the trafficis evenly distributed across the network. For networks with

unevenly distributed traffic, we can qualitatively describe another potential benefit of adding the link layer adaptation to the

cross-layer design. Consider an arbitrary network with a single destination node, as shown in Fig. 11. For such networks, a

large amount of traffic from the source nodes is typically routed through the nodes surrounding the destination node. Thus, the

neighborhood of the destination is a heavy traffic region. The links in this heavy traffic region need to support high transmission

rates (corresponding to large constellation sizes for MQAMwith a fixed symbol rate), which requires a high transmit power.

Assume a TDMA MAC protocol. If each link can adaptively choose its rate, then the links in the light traffic region can
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transmit with a higher constellation size to reduce the required transmission time. The saved time slots can be reassigned to

the links in the heavy traffic region. Since the links under heavy traffic now have a longer available transmission time, they can

transmit information with lower constellation sizes to save transmission energy without jeopardizing the average throughput.

By this simple interaction, the overall network energy consumption can be reduced.

Light TrafficHeavy Traffic

Fig. 11. A network example

V. CONCLUSIONS

We show that cooperative MIMO coupled with cross-layer optimization can significantly improve the energy-delay tradeoff

in wireless networks. If the cooperation is properly executed and jointly designed with upper layers, no local information

exchange between cooperating nodes is needed, and the optimal routing and transmission schemes can be found using convex

optimization techniques. We provide numerical examples demonstrating the performance improvements of cooperative MIMO

over non-cooperative methods. The performance differenceis especially dramatic when rate adaptation is allowed in the link

layer.

APPENDIX

A. Proof of convexity for ǫij over tij > 0, Wij > 0, and Wijν
Btij

≥ 2 (for Cooperative MIMO links)

Proving the convexity of the function (overWij and tij)

ǫij = xij

(

2
νWij

Btij − 1

)

(

νWij

Btij

)3/2
νWij + yijtij

wherexij andyij are some system constants, is equivalent to proving the convexity of the function

f(W, t) =
2

W
t − 1√
W

t3/2

over W and t, after we remove all the linear terms and redefineW =
Wijν

B and t = tij . For functionf(W, t), the Hessian

matrix is given by

H =

[

a(W, t) b(W, t)
b(W, t) c(W, t)

]

,
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where we have

a(W, t) =
2W/tW4 ln 2(W ln 2 − t) + 3t2(2W/t − 1)

4t1/2W 5/2
;

b(W, t) = −2W/tW4 ln 2(W ln 2 − t) + 3t2(2W/t − 1)

4t3/2W 3/2
;

c(W, t) =
2W/tW4 ln 2(W ln 2 − t) + 3t2(2W/t − 1)

4t5/2W 1/2)
.

We can show thata(W, t) > 0 when W
t = b ≥ 2 due to the fact that its denominator as well as the first term and the second

term in the numerator are all strictly positive. We can further show thatb2(W, t)/a(W, t) − c(W, t) = 0. For a matrix in the

form of

[

a b
b c

]

with a > 0, it is positive semi-definite as long as we haveb2a−1 − c = 0 according to Schur’s complement

condition [18]. Therefore, we can claim thatH is positive semi-definite or equivalently,f(W, t) is convex overW and t.

B. Proof of convexity for ǫij over tij > 0, Wij > 0, and Wijν
Btij

≥ 2 (for SISO links)

Proving the convexity of the function (overWij and tij)

ǫij = xij
2

νWij

Btij

νWij

Btij

νWij + yijtij

wherexij andyij are some system constants, is equivalent to proving the convexity of the function

f(W, t) = 2
W
t t

over W and t, after we remove all the linear terms and redefineW =
Wijν

B and t = tij . For functionf(W, t), the Hessian

matrix is given by

H =

[

a(W, t) b(W, t)
b(W, t) c(W, t)

]

,

where we have

a(W, t) =
2W/t

t
ln2 2;

b(W, t) =
−W2W/t

t2
ln2 2;

c(W, t) =
W 22W/t

t3
ln2 2.

Following the same argument as in Appendix A, we can showf(W, t) is convex.
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