Chemistry of Precious Metals

Dr S.A. COTTON Uppingham School Rutland UK

BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall

London · Weinheim · New York · Tokyo · Melbourne · Madras

Published by Blackie Academic and Professional, an imprint of Chapman & Hall, 2–6 Boundary Row, London SE1 8HN, UK

Chapman & Hall, 2-6 Boundary Row, London SE1 8HN, UK

Chapman & Hall GmbH, Pappelallee 3, 69469 Weinheim, Germany

Chapman & Hall USA, 115 Fifth Avenue, New York, NY 10003, USA

Chapman & Hall Japan, ITP-Japan, Kyowa Building, 3F, 2-2-1 Hirakawacho, Chiyoda-ku, Tokyo 102, Japan

DA Book (Aust.) Pty Ltd, 648 Whitehorse Road, Mitcham 3132, Victoria, Australia

Chapman & Hall India, R. Seshadri, 32 Second Main Road, CIT East, Madras 600 035, India

First edition 1997 © 1997 Chapman & Hall

Typeset in 10/12pt Times by Academic & Technical Typesetting, Bristol

Printed in Great Britain by T. J. International Ltd.

ISBN 0 7514 0413 6

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Library of Congress Catalog Card Number: 97-70446

Preface

Some 20 years ago, I was privileged to share in writing a book on the descriptive chemistry of the 4d, 5d, 4f and 5f metals that included these eight elements within its compass (S.A. Cotton and F.A. Hart, *The Heavy Transition Elements*, Macmillan, 1975). This volume shares the same aim of covering the descriptive chemistry of silver, gold and the six platinum metals in some detail at a level suitable for advanced undergraduate and postgraduate study.

It does not attempt to be a comprehensive treatise on the chemistry of these metals. It attempts to fill a slot between the general text and the in-depth review or monograph. The organometallic chemistry is confined to σ -bonded compounds in normal oxidation states; compounds with π -bonding ligands are generally excluded. Their inclusion would have increased the length of the book considerably and, moreover, their recent chemistry has been extensively and expertly reviewed in the new *Comprehensive Organometallic Chemistry*, *II*, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1995.

I have concentrated upon providing information on 'essential' binary compounds and complexes of these elements – oxides, halides, aqua complexes, ammines and tertiary phosphine complexes, for example – and highlighting key areas of study rather than giving comprehensive coverage (impossible outside a monograph). It is easy to be seduced by the 'latest thing' in research to the detriment of more fundamental, if prosaic, topics (in any case, there are other texts that provide up to the moment coverage of all research developments). There is still a lot of basic research waiting to be done out there and we have all heard the horror stories of students who can produce *ab initio* MO calculations at the drop of a hat yet think that sodium chloride is a green gas. The data are intended to illustrate trends in the chemistry and not to replace it; theories explain facts and not vice versa. I make no apology for this approach; a sound factual understanding is fundamental to any scientific discipline.

My first priority has, therefore, been to try to provide 'the facts' (and I hope that I have got (most of) them right) but I have tried to write the book with the needs of the teacher in mind, by providing plenty of bond lengths and also spectroscopic data (mainly vibrational, with a little NMR and ESR) that can be used as a teaching tool by hard-pressed lecturers or tutors who have not time to look up the information themselves.

The bibliography is intended to give key references (particularly to structures), not just to the recent literature (which can be hard to find because they are not yet in compilations) but in some cases to relevant older work (which can also be hard to find because everyone assumes that you know them); it begins for each chapter with a listing of the relevant sections of Gmelin and of the various 'Comprehensive Chemistries' and monographs. I have attempted to follow the literature received up to March 1996.

Some readers may feel that I have been unduly optimistic (or just plain presumptuous) in writing this book, when I am not actually carrying out research on any of these metals. They may well be right, though I would point out that the spectator does get a different view of events on the sports fields to that obtained by the player.

Producing a book like this is impossible without access to the primary literature, for which I am mainly indebted to the Chemistry Department of the University of Cambridge, and to Mrs Cheryl Cook in particular.

Much of the background reading, especially for osmium and gold, as well as work on the bibliography was done in the course of visits to l'Abbaye N-D du Bec-Hellouin; it is again a pleasure to give thanks to Dom Philibert Zobel O.S.B., Abbot of Bec, and to the monastic community for the shelter of their roof and a calm and sympathetic environment.

I should like to take the opportunity to thank all those who have supplied information, answered questions or discussed points with me, including the late Sir Geoffrey Wilkinson; Professors S. Ahrland, K.G. Caulton, F.A. Cotton, W.P. Griffith, D.M.P. Mingos, J.D. Woollins and R.K. Pomeroy; and Drs A.J. Blake, P.R. Raithby, S.D. Robinson and P. Thornton. They are not, of course, responsible for the use I have made of the information.

I am particularly grateful to Dr John Burgess for reading the whole manuscript in (a very rough) draft and making many helpful suggestions for improvement, some of which I have been wise enough to adopt. John has also been an invaluable sounding board for ideas. I must also thank three (anonymous) reviewers for drawing my attention to a number of omissions, mistakes and ambiguities, which I hope have now been resolved.

I should finally like to thank Patricia Morrison for her encouragement in the earlier part of the project and Louise Crawford for patient, sympathetic and accurate typing.

> Simon Cotton Uppingham December 1996

Abbreviations

acac	acetylacetonate, CH ₃ COCHCOCH ₃
Ar	aryl
bipy	bipyridyl (usually 2,2'-bipyridyl)
Bu or Bu ⁿ	<i>n</i> -butyl, $CH_3CH_2CH_2CH_2$
Bu ^t	t-butyl, $(CH_3)_3C$
bz	benzyl
cod	cycloocta-1,5-diene
су	cyclohexyl, cyclo- C_6H_{11}
cyclam	1,4,8,11-tetraazaacyclotetracane
depe	bis(diethylphosphino)ethane
diars	o -phenylenebis(dimethylarsine), $C_6H_4(AsMe_2)_2$
dien	diethylenetriamine, $HN[(CH_2)_2NH_2)]_2$
dimphen	2,9-dimethylphenanthroline
dme	1,2-dimethoxyethane, glyme
DMF	N,N-dimethylformamide
dmg	dimethylglyoximate
dmpe	bis(dimethylphosphino)ethane
DMSO	dimethylsulphoxide, Me ₂ SO
dppe	1,2-bis(diphenylphosphino)ethane, Ph ₂ (CH ₂) ₂ Ph ₂
dppm	1,2-bis(diphenylphophino)methane, Ph ₂ (CH ₂)Ph ₂
dppp	1,2-bis(diphenylphosphino)propane, Ph ₂ (CH ₂) ₃ Ph ₂
dppz	bis(diphenylphospino)benzene
EDTA	ethylenediamine tetracetate (4-)
en	1,2-diaminoethane, ethylenediamine
equ	2-ethyl-8-quinolinate
Et	ethyl
Et ₄ dien	N, N, N', N' -tetraethyldiethylenetriamine, $HN[(CH_2)_2NEt_2]_2$
im	imidazole
M-CPBA	m-chloroperoxybenzoic acid
Me	methyl
mes	mesityl, 2,4,6-trimethylphenyl
MNTS	N-methyl-N-nitrosotoluene sulphonamide
ncs	N-chlorosuccinamide
np	naphthyl
OEP	octaethylporphyrin
Ph	phenyl
phen	1,10-phenanthroline

xii	ABBREVIATIONS
PP	2,11-bis(diphenylphosphinomethyl)benzo[c]phenanthrene
Pr	propyl, CH ₃ CH ₂ CH ₂
Pr ⁱ	isopropyl, (CH ₃) ₂ CH
ру	pyridine, C5H5N
py_2CH_2	dipyridiniomethane, $(C_5H_5N)_2CH_2$
pz	pyrazole
tacn	1,4,7-triazacyclononane, [9]aneN ₃
terpy	2,2':6,2"-terpyridyl
thf	tetrahydrofuran
tht	tetrahydrothiophene
TMP	tetramesitylporphyrin
tmpp	tris(2,4,6-trimethoxyphenyl)phosphine
tmu	tetramethylthiourea
TPP	tetraphenylporphyrin
trien	triethylenetetramine, $N[(CH_2)_2NH_2)]_3$
ttcn	1,4,7-trithiacyclononane, 9S ₃
tu	thiourea, $(H_2N)_2CS$
9S ₃	1,4,7-trithiacyclononane
10S ₃	1,4,7-trithiacyclodecane
14[ane]N ₄	1,4,8,11-tetraazaacyclotetracane, cyclam
14S ₄	1,4,8,11-tetrathiacyclotetradecane
18 S ₆	1,4,8,11,14,17-hexathiacyclooctadecane

All bond lengths given in ångström units (1 Å = 0.1nm)

Contents

Pr	eface	i	X	
Lis	st of A	bbreviations	xi	
1.	Ruth	enium and Osmium	1	
	1.1	Introduction	1	
	1.2	The Elements and Uses	1	
		1.2.1 Extraction	2	
	1.3	Halides	2	
		1.3.1 Ruthenium Halides	2	
		1.3.2 Osmium Halides	4	
		1.3.3 Oxyhalides	6	
		1.3.4 Halide Complexes	9	
		1.3.5 'Ruthenium Blues' 1	6	
		1.3.6 Oxyhalide Complexes 1	7	
	1.4 Oxides and Related Anions			
		1.4.1 Anions 2	0	
	1.5	Other Binary Compounds 2	:1	
	1.6	Aqua lons 2	:1	
	1.7	Compounds of Ruthenium(0) 2	2	
	1.8	Compounds of Ruthenium(II) And (III) 2	2	
		1.8.1 Ammine Complexes 2	2	
		1.8.2 Tertiary Phosphine Complexes 2	9	
		1.8.3 Carboxylate Complexes 3	6	

This page has been reformatted by Knovel to provide easier navigation.

vi Contents

		1.8.4	Sulphide and Sulphoxide Complexes	39		
		1.8.5	Nitrosyl Complexes	43		
		1.8.6	Porphyrin Complexes	48		
		1.8.7	EDTA Complexes	50		
		1.8.8	Other Complexes of Ruthenium	52		
	1.9	Comple	exes of Ruthenium(IV)	53		
	1.10	Comple	exes of Osmium(0)	54		
	1.11	Osmiur	n Complexes in Oxidation States (II-IV)	54		
		1.11.1	Ammine Complexes	54		
		1.11.2	Tertiary Phosphine Complexes	57		
		1.11.3	Carboxylate Complexes	66		
		1.11.4	Nitrosyl Complexes	66		
		1.11.5	Other Osmium Complexes	68		
	1.12	Compo	unds in High Oxidation States	68		
		1.12.1	Compounds of the MO_2^{2+} Groups	69		
		1.12.2	Nitride Complexes	72		
		1.12.3	Imides	74		
	1.13	Simple	Alkyls and Aryls	75		
2.	Rhoo	dium ar	nd Iridium	78		
	2.1	Introdu	ction	78		
	2.2	The Ele	ements and Uses	78		
		2.2.1	Extraction	79		
	2.3	Halides	and Halide Complexes	79		
		2.3.1	Rhodium Halides	79		
		2.3.2	Iridium Halides	80		
		2.3.3	Halometallates	81		
	2.4	Oxides	, Hydrides and Other Binary Compounds	85		
	2.5	Aqua lons and Simple Salts				

Contents vii

2.6	Compounds of Rhodium(0) 8					
2.7	Compo	unds of Rhodium(I)	88			
	2.7.1	Tertiary Phosphine Complexes	89			
	2.7.2	Carbonyl Complexes	98			
	2.7.3	Alkene Complexes	104			
	2.7.4	Isocyanide Complexes	105			
2.8	Rhodiu	m(II) Complexes	106			
	2.8.1	Phosphine Complexes	106			
	2.8.2	Dimers	107			
	2.8.3	Other Complexes	114			
2.9	Rhodiu	m(III) Complexes	115			
	2.9.1	Complexes of O-Donors	115			
	2.9.2	Complexes of Ammines	116			
	2.9.3	Complexes of Other N-Donors	121			
	2.9.4	Complexes of S-Donors	123			
	2.9.5	Tertiary Phosphine Complexes	125			
2.10	Iridium	(I) Complexes	132			
	2.10.1	Tertiary Phosphine Complexes	132			
	2.10.2	Vaska's Compound	135			
2.11	Dioxyge	en Complexes	142			
2.12	Iridium(II) Complexes	145			
2.13	Iridium(III) Complexes	145			
	2.13.1	Complexes of Ammines	146			
	2.13.2	Complexes of S-Donors	147			
	2.13.3	Tertiary Phosphine and Arsine				
		Complexes	148			
	2.13.4	Hydride Complexes	149			
	2.13.5	Case Study of Dimethylphenylphosphine				
		Complexes	152			

This page has been reformatted by Knovel to provide easier navigation.

viii Contents

	2.14	lridium(l	V) Complexes	158	
	2.15	Iridium(V) Complexes	161	
	2.16	Nitrosyls	s of Iridium and Rhodium	163	
	2.17	Simple /	Alkyls and Aryls of Iridium and Rhodium	170	
3.	Palla	dium ar	nd Platinum	173	
	3.1	Introduc	tion	173	
	3.2	The Ele	ments and Uses	173	
		3.2.1	Extraction	174	
	3.3	Halides		175	
		3.3.1	Palladium Halides	175	
		3.3.2	Platinum Halides	177	
		3.3.3	Halide Complexes	180	
	3.4	Other B	inary Complexes	185	
	3.5	Aqua lons			
	3.6	Palladium(0) and Platinum(0) Compounds		188	
		3.6.1	Tertiary Phosphine Complexes	188	
		3.6.2	Reactions of $Pt(PPh_3)_n$ and Related		
			Species	192	
		3.6.3	Carbonyl Complexes	195	
		3.6.4	Carbonyl Clusters	196	
		3.6.5	Isocyanide Complexes	197	
	3.7	Palladiu	m(I) and Platinum(I) Compounds	197	
		3.7.1	Phosphine Complexes	197	
		3.7.2	Isocyanide Complexes	198	
	3.8	Comple	xes of Palladium(II) and Platinum(II)	199	
		3.8.1	Complexes of O-Donors	199	
		3.8.2	Complexes of N-Donors	201	
		3.8.3	Tertiary Phosphine Complexes	209	

Contents ix

		3.8.4	Complexes of C-Donors	219
		3.8.5	Complexes of S-Donors	225
		3.8.6	Complexes of Ambidentate Ligands	228
		3.8.7	Stability of <i>cis</i> - and <i>trans</i> -Isomers	233
		3.8.8	Five-Coordinate Compounds	235
		3.8.9	The trans-Effect	236
		3.8.10	Structural Evidence for <i>trans</i> -Influence	242
		3.8.11	Spectroscopic Evidence for <i>trans</i> -Influence	245
	3.9	Palladiu	m(III) and Platinum(III)	248
	3.10	Comple	xes of Platinum(IV)	250
		3.10.1	Complexes of N-Donors	250
		3.10.2	Tertiary Phosphine Complexes	254
		3.10.3	Complexes of S-Donors	256
		3.10.4	Application of the trans-Effect to	
			Synthesis of Platinum(IV) Complexes	256
		3.10.5	The <i>trans</i> -Influence in Some Platinum(IV)	
			Compounds	258
	3.11	Comple	xes of Palladium(IV)	260
	3.12	The <i>o</i> -B	Bonded Organometallics of Palladium(IV)	004
			Deductive Elimination Departies	261
	0.40	3.12.1	Reductive Elimination Reactions	266
	3.13	Anti-Tur	mour Activity of Platinum Complexes	267
	3.14		engths in Palladium and Platinum	272
		Analogu		212
4.	Silve	r and G	old	273
	4.1	Introduc	ction	273
	4.2	The Ele	ments and Uses	274
		4.2.1	Extraction	275

This page has been reformatted by Knovel to provide easier navigation.

	4.2.2	Gold Plating and Other Methods of Gold	
		Deposition	276
4.3	Halides		276
	4.3.1	Silver Halides	276
	4.3.2	Gold Halides	279
4.4	Oxides	and Other Binary Compounds	282
4.5	Aqua lo	ons	283
4.6	Silver(I)) Complexes	285
	4.6.1	Complexes of O-Donors	285
	4.6.2	Complexes of N-Donors	285
	4.6.3	Tertiary Phosphine and Arsine	
		Complexes	286
	4.6.4	Complexes of Halogen-Donors	287
	4.6.5	Complexes of C-Donors	288
	4.6.6	Complexes of S-Donors	288
4.7	Silver(I	I) Complexes	290
4.8	Silver(I	II) Complexes	291
4.9	Gold(-I)) Complexes	291
4.10	Gold(I)	Complexes	292
	4.10.1	Complexes of O-Donors	292
	4.10.2	Complexes of N-Donors	292
	4.10.3	Tertiary Phosphine and Arsine	
		Complexes	292
	4.10.4	Complexes of Halogen-Donors	295
	4.10.5	Complexes of C-Donors	296
	4.10.6	Complexes of S-Donors	296
	4.10.7	MO Schemes for 2-Coordinate Gold(I)	
		Complexes	298
4.11	Gold(II)	Complexes	298

This page has been reformatted by Knovel to provide easier navigation.

4.12	.12 Gold(III) Complexes				
	4.12.1	Complexes of Halogens	301		
	4.12.2	Complexes of N-Donors	302		
	4.12.3	Tertiary Phosphine and Arsine			
		Complexes	303		
	4.12.4	Other Complexes	304		
	4.12.5	Coordination Numbers and Gold(III)	305		
	4.12.6	The <i>trans</i> -Effect and <i>trans</i> -Influence	306		
4.13	Gold(IV) Complexes	307		
4.14	Gold(V)	Complexes	307		
4.15	Organo	metallic Compounds of Silver	307		
	4.15.1	Complexes of Unsaturated			
		Hydrocarbons	308		
4.16	Organo	metallic Compounds of Gold	310		
	4.16.1	Gold(I) Complexes	310		
	4.16.2	Gold(III) Complexes	313		
4.17	Gold Cl	uster Complexes	319		
4.18	Relativis	stic Effects in Gold Chemistry	322		
4.19	Aurophi	ilicity	323		
4.20	Silver a	nd Gold Compounds in Medicine	325		
4.21	Mössba	auer Spectroscopy of Gold Compounds	327		
Referen	ces		328		
Chapt	er 1		328		
Chapt	er 2		336		
Chapt	er 3		344		
Chapt	er 4		354		
Index			363		

1 Ruthenium and osmium

1.1 Introduction

Ruthenium and osmium are the first pair of 'platinum metals' [1-13]. They exhibit oxidation states up to +8, the highest observed for any element, as in MO_4 (M = Ru, Os) though this requires the use of the most electronegative elements, fluorine and oxygen, for stability. Generally, the +2 and +3 states are the most important, along with +4 for osmium; however, there is a considerable chemistry of the MO_2^{2+} ('osmyl' and 'ruthenyl') and $M \equiv N^{3+}$ groups, as well as the 'classical' hydride complexes $OsH_6(PR_3)_2$, which also involve osmium(VI).

1.2 The elements and uses

Along with iridium, osmium was discovered in 1803 by Smithson Tennant. He took the insoluble residue from the digestion of platinum ores with aqua regia and heated it with sodium carbonate to give soluble yellow $OsO_4(OH)_2^{2-}$. On acidification, distillable OsO_4 formed. Noting the smell of the (very toxic) tetroxide, Tennant gave the element its name from the Greek *osme* ($o\sigma\mu\eta$ = smell); he also noted that it stained the skin, prefiguring a future use.

The last of the metals described in this book to be discovered was ruthenium. As with osmium, it was extracted from the aqua regia-insoluble residue from concentrated platinum ores and was first claimed in 1826 by G.W. Osann but definitely characterized by K.K. Klaus (1844), who oxidized the residue with KOH/KNO₃, acidified and distilled off the OsO₄ then reacted the residue with NH₄Cl. (Aqua regia is a 3:1 mixture of concentrated HCl/HNO₃ (containing some chlorine).) Thermal decomposition of the resulting (NH₄)₂RuCl₆ in an inert atmosphere gave ruthenium, taking its name from *ruthenia*, the Latin name for Russia.

Both of these elements are silver–white lustrous metals with high melting (ruthenium 2310°C, osmium 3900°C) and boiling (3900 and 5510°C, respectively) points. As usual, the 5d metal is much more dense (ruthenium 12.45, osmium 22.59 g cm⁻³); both adopt hcp structures; osmium is the densest metal known. The metals are unreactive, insoluble in all acids, even aqua regia. Ruthenium tends to form a protective coating of the dioxide and is not attacked by oxygen below 600°C nor by chlorine or fluorine below

 300° C. Powdered osmium is slowly attacked by oxygen at room temperature, yielding OsO₄ (though not below 400°C if in bulk). Osmium reacts with fluorine and chlorine at about 100°C. Both metals are attacked by molten alkalis and oxidizing fluxes.

Ruthenium nowadays finds many uses in the electronics industry, particularly for making resistor tracks. It is used as an ingredient in various catalysts and, importantly, in electrode materials, e.g. RuO_2 -coated titanium elements in the chloralkali industry. Osmium tetroxide is a very useful organic oxidant and, classically, is used as a tissue stain. Both elements are employed in making certain platinum alloys.

1.2.1 Extraction

Extraction of ruthenium and osmium is done by solvent extraction [1, 2, 5, 14]. Following the traditional route, however, aqua regia-insoluble residues or anode slimes from nickel refining undergo bisulphate oxidation to remove rhodium, then on alkaline fusion ruthenium and osmium are stabilized as Na₂RuO₄ and Na₂OsO₂(OH)₄. The ruthenium(VI) can be reduced (alcohol) to RuO₂, which is then converted into (NH₄)₃RuCl₆, giving ruthenium metal in a flow of hydrogen at 100°C. Osmium can be precipitated and stored as $K_2OsO_2(OH)_4$ or first converted into OsO_4 (by distillation of the osmate with HNO₃) which is then reduced with hydrogen or turned into (NH₄)₂OsCl₆, reduced in the same manner as the ruthenium analogue.

In the solvent-extraction process, the platinum metal concentrate is solubilized in acid using chlorine oxidant. Ruthenium and osmium are separated by turning them into the volatile tetroxides.

1.3 Halides

1.3.1 Ruthenium halides

Ruthenium forms the whole range of trihalides but only fluorides in higher states.

RuF₃ can be made by iodine reduction of RuF₅. It is obtained as a dark brown powder that contains corner-shared RuF₆ octahedra [15]. RuCl₃ exists in α - and β -phases:

$$\operatorname{Ru}_{3}(\operatorname{CO})_{12} \xrightarrow[360^{\circ}\mathrm{C}]{} \beta \operatorname{-RuCl}_{3} (\operatorname{brown \ solid})$$

$$\beta \operatorname{-RuCl}_{3} \xrightarrow[360^{\circ}\mathrm{C}]{} \alpha \operatorname{-RuCl}_{3} (\operatorname{black \ crystals})$$

The α -form has the α -TiCl₃ structure with 6-coordinate ruthenium and a rather long Ru-Ru distance (3.46 Å) compared with the β -form where

there are one-dimensional chains, again with octahedrally coordinated ruthenium (Ru-Ru 2.83 Å). The β -form transforms irreversibly to the α -form above 450°C. Both these forms are insoluble in water though β -RuCl₃ dissolves in ethanol [16].

Commercial 'ruthenium trichloride' purporting to be $RuCl_3.xH_2O$ is an ill-defined mixture of oxochloro and hydroxychloro species of more than one oxidation state. Obtained by dissolving RuO_4 in hydrochloric acid, it can be purified by repeatedly evaporating to dryness with concentrated HCl. RuBr₃ is usually made by brominating the metal while several routes to RuI₃ are open

$$Ru \xrightarrow{Br_{2}} RuBr_{3}$$

$$RuO_{4} \xrightarrow{HI (aq.)} RuI_{3}$$

$$Ru(NH_{3})_{5}I_{3} \xrightarrow{heat} RuI_{3}$$

Black-brown RuBr₃ has roughly octahedral coordination of ruthenium (Ru-Br 2.46-2.54 Å) with short Ru-Ru contacts (2.73 Å) [17]. Black RuI₃ has a similar structure. Neither is particularly soluble in water.

RuF₄ can be made as a deep pink solid:

$$K_2 RuF_6 \xrightarrow{AsF_5/HF} RuF_4$$

It has a VF₄ type puckered sheet structure with 6-coordinated ruthenium; four fluorines bridge, two non-bridging ones are *trans* with the terminal distances shorter as expected (Table 1.1). It is paramagnetic ($\mu_{eff} = 3.04 \,\mu_B$ at room temperature).

Green RuF₅, sublimeable *in vacuo* (65°C, 10^{-8} torr (1.33 × 10^{-6} Pa)) can be made by fluorination

$$\begin{aligned} & \text{Ru} \xrightarrow{F_2} \text{RuF}_5 \\ & \text{Ru} \xrightarrow{\text{BrF}_3} \text{BrF}_2^+ \text{RuF}_6^- \xrightarrow{120^\circ\text{C}} \text{BrF}_3 + \text{RuF}_5 \end{aligned}$$

It melts at 86.5° C and boils at 227°C. The tetrameric structure (Figure 1.1) is one adopted by a number of pentafluorides with *cis*-bridges completing the 6-coordination.

	Ru-F (terminal)	Ru-F (bridge)	
RuF ₃		1.982	
RuF ₄	1.82	2.00	
RuF ₅	1.795-1.824	1.995-2.007	
RuF ₆	1.824	-	

Table 1.1 Bond lengths (Å) in ruthenium fluorides

Figure 1.1 The tetrameric structure of RuF₅.

A second, red form has recently been reported; from mass spectral evidence, it may be a trimer. In the gas phase at 120°C, it consists mainly of a trimer (with octahedrally coordinated Ru) [18].

RuF₆ is made by fluorination of RuF₅ under forcing conditions:

$$\operatorname{RuF}_5 \xrightarrow{F_5} \operatorname{RuF}_6$$

It is an extremely moisture-sensitive dark brown solid (m.p. 54°C); bond lengths have been obtained from an EXAFS study [19].

There is some evidence that $RuCl_3$ reacts with chlorine in the gas phase above 400°C to form $RuCl_4$ but $RuCl_4$ has not been authenticated as a solid, neither has RuF_8 , which is claimed to exist at low temperatures.

1.3.2 Osmium halides

Unlike ruthenium (and other platinum metals) osmium forms chlorides and bromides in a range of oxidation states [11, 12].

There are no convincing reports of halides in oxidation states below III: early reports of OsI and OsI₂ seem to result from oxide contaminations. Neither is there OsF_3 , evidence of the greater stability of the +4 state compared with that of ruthenium.

Dark grey OsCl₃ has the 6-coordinate α -RuCl₃ structure

$$OsCl_4 \xrightarrow[Cl_2, 100-500 \text{ torr}]{470°C} OsCl_3$$

Black OsBr₃ and OsI₃ ($\mu = 1.8 \mu_B$) are also prepared by thermal methods

$$OsBr_4 \xrightarrow[N_2/sealed tube]{300-400°C} OsBr_3$$
$$(H_3O)_2OsI_6 \xrightarrow[N_2/sealed tube]{250°C} OsI_3$$

There is evidence for $OsX_{3.5}$ (X = Cl, Br).

Figure 1.2 The structure adopted by OsCl₄.

 OsF_4 , a yellow-brown solid that distills as a viscous liquid, is made by reduction of solutions of OsF_5

$$OsF_5 \xrightarrow{H_2/Pt \text{ gauze}} OsF_4$$

It is isomorphous with MF_4 (M = Pd, Pt, Ir, Rh).

Black OsCl₄ exists in two forms. A high-temperature form is made by reaction of the elements

Os
$$\xrightarrow{Cl_2}$$
 OsCl₄

It has 6-coordinate osmium in a structure (Figure 1.2) regarded as being made from a hexagonally packed array of chlorides with osmiums occupying half the holes in alternate layers; Os-Cl bond lengths are 2.261 Å (terminal) and 2.378 Å (bridge) [20].

The low-temperature form is made using thionyl chloride as the chlorinating agent.

$$OsO_4 \xrightarrow[reflux]{sOCl_2} OsCl_4$$

Black OsBr₄ (PtX₄ structure) has 6-coordinate osmium [21]

$$OsCl_4 \xrightarrow[330^{\circ}C/120 \text{ atm}]{} OsBr_4$$
$$Os \xrightarrow[10 \text{ atm}, 470^{\circ}C]{} OsBr_4$$

A second form can be made by refluxing OsO_4 with ethanolic HBr, then drying the product.

The green-blue pentafluoride (m.p. 70°C, b.p. 226°C) is thermochromic, becoming bright blue at its boiling point (the vapour is colourless). It is synthesized by reducing OsF_6 : it has the tetrameric structure adopted by RuF_5 (Os-F = 1.84 Å (terminal) 2.03 Å (bridge)) in the solid state [18c].

$$OsF_6 \xrightarrow{I_2/IF_5} OsF_5$$

Like RuF_5 , it is mainly a trimer $(OsF_5)_3$ in the gas phase.

In contrast to this, very moisture-sensitive black $OsCl_5$, prepared by chlorinating OsF_6 using BCl_3 as the chlorinating agent, has the dimeric

ReCl₅ structure (Os–Cl = 2.24 Å (terminal) 2.42 Å (bridge)). Its magnetic moment is 2.54 μ_B

$$OsF_6 \xrightarrow{BCl_3} OsCl_5$$

Like several other heavy metals, osmium forms a volatile (bright yellow) hexafluoride (m.p. 33.2° C, b.p. 47° C)

$$Os + 3F_2 \xrightarrow{250-300^{\circ}C} OsF_6$$

The solid is polymorphic, with a cubic structure above 1.4° C. A bond length of 1.816 Å has been obtained from EXAFS measurements at 10 K, while vapour phase measurements give Os-F of 1.831 Å [22].

There is uncertainty about the heptafluoride, claimed to be formed as a yellow solid from fluorination under very high pressure

Os
$$\xrightarrow{F_2}$$
 Os F_7

Material with the same IR spectrum has been obtained by fluorination of OsO_3F_2 at 180°C (50 atm). OsF_7 is said to decompose at -100°C (1 atm fluorine pressure) [23].

As osmium forms a tetroxide, OsF_8 might possibly exist, especially in view of the existence of the osmium(VIII) oxyfluorides, but MO calculations indicate the Os-F bond would be weaker in the binary fluoride. It is also likely that non-bonding repulsions between eight fluorines would make an octafluoride unstable [23b].

1.3.3 Oxyhalides

Much less is known about ruthenium oxyhalides than about the osmium compounds. The only compound definitely characterized [24] is $RuOF_4$, synthesized by fluorination of RuO_2 , condensing the product at $-196^{\circ}C$. It loses oxygen slowly at room temperature, rapidly at 70°C.

$$RuO_2 + 2F_2 \xrightarrow{300-400^\circ C} RuOF_4 + \frac{1}{2}O_2$$

It has also been made by passing RuF5 vapour down a hot glass tube:

$$RuF_5 + SiO_2 \longrightarrow RuOF_4 + SiF_4$$

It gives the parent ion in the mass spectrum and has a simple IR spectrum $(\nu(\text{Ru}=\text{O}) \ 1040 \text{ cm}^{-1} \text{ and } (\nu(\text{Ru}-\text{F}) \ 720 \text{ cm}^{-1}) \text{ similar to that of the vapour (1060, 710, 675 \text{ cm}^{-1}), implying a monomeric structure. Chlorides RuOCl₂ and Ru₂OCl_x (x = 5, 6) have been claimed; various oxo complexes Ru₂OX⁴⁰₁₀ are well defined.$

Although no OsF_8 has been described, there are oxofluorides in the +8 state.

	State ^b Vibrational frequencies (cm ⁻¹			1 ⁻¹)
		Os=O	Os-F (term)	Os-F (bridge)
<i>cis</i> -OsO₂F₄				
Raman		942, 932	672, 579, 571	
IR		940, 930	675, 588, 570	
OsO ₃ F ₂		954 (947, 942)		
	Matrix	931	646	
OsOF ₅		960	710, 700, 640	
5	Matrix	966.5	713, 638.5	
	Vapour	964	717, 700, 645	
OsO_2F_3	-	995, 955	720	480-580 (broad)
	Matrix	907	655	
OsOF₄		1018	735, 705, 657, 648	529, 423
	Matrix	1079.5	685	
OsOCl ₄		1028	392 (Os-Cl)	
	Matrix	1032	395	
	Gas	1028	397	

Table 1.2 Vibrational frequencies^a for osmium oxyhalides

^a Only IR except for OsO₂F₄; ^b solid unless otherwise stated.

Deep red OsO_2F_4 (m.p. 89°C) has recently been made [25]

$$OsO_4 \xrightarrow[-196^{\circ}C]{HF/KrF_2} cis-OsO_2F_4$$

It is thermally stable but instantly hydrolysed in air (like osmium oxyhalides in general); it has a simple vibrational spectrum (ν (Os=O) 940 cm⁻¹; ν (Os-F) 680, 590, 570 cm⁻¹) (Table 1.2) and a *cis*-octahedral structure has been confirmed by an electron diffraction study (Os=O 1.674 Å, Os-F 1.843-1.883 Å).

Several syntheses have been reported for orange-yellow diamagnetic OsO_3F_2 (m.p. 172-173°C) [26]:

$$OsO_4 \xrightarrow[300^{\circ}C]{F_2} OsO_3F_2$$
$$OsO_4 \xrightarrow[CIF_3]{CIF_3} OsO_3F_2$$

 OsO_3F_2 is a monomer in the gas phase, to which a monomeric D_{3h} structure has been assigned. EXAFS and X-ray diffraction measurements show a 6-coordinate solid-state structure with *cis*-fluorine bridges (Figure 1.3) (Os=O 1.678-1.727 Å, Os-F 1.879 Å (terminal), 2.108-2.126 Å (bridge)).

The other possible osmium(VIII) oxyfluoride $OsOF_6$ has so far eluded synthesis and recent *ab initio* MO calculations indicate it is unlikely to exist.

Emerald green OsOF₅ (m.p. 59.5°C; b.p. 100.6°C) has an octahedral structure like OsF₆ but is rather less volatile (Os=O 1.74 Å, Os-F 1.72 Å (*trans*) 1.76-1.80 Å (*cis*)) [27]. It is paramagnetic ($\mu_{eff} = 1.47 \mu_B$ at 298 K) and ESR

Figure 1.3 The structure of OsO_3F_2 in (a) the gas phase and (b) the solid state.

studies in low-temperature matrices indicate delocalization of the unpaired electron 11.5% from the osmium $5d_{xy}$ orbital to each equational fluorine. Syntheses include

$$OsO_3F_2 \xrightarrow[180^{\circ}C]{exc. F_2} OsOF_5$$

On heating a $3:1 \text{ OsF}_6/\text{OsO}_4$ mixture at $150-200^\circ\text{C}$, a mixture of OsOF_5 and OsO_4 is obtained that can be separated by using the greater volatility of OsOF_5 .

 OsO_2F_3 is a yellow-green solid, disproportionating at $60^{\circ}C$ to OsO_3F_2 and $OsOF_4$, from which it may be made:

$$OsOF_4 + OsO_3F_2 \xrightarrow[12h]{12h} 2OsO_2F_3$$
$$OsO_4 + OsF_6 \xrightarrow[17h]{12h} 2OsO_2F_3$$

Matrix isolation studies suggest isolated D_{3h} molecules, but the pure solid has a more complicated IR spectrum indicating both bridging and terminal fluorines [28].

Blue-green $OsOF_4$ (m.p. 80°C) is a byproduct in the synthesis of $OsOF_5$ and can also be made in small quantities by reduction of $OsOF_5$ on a hot tungsten wire. In the gas phase it has a C_{4v} pyramidal structure (Os=O 1.624 Å, Os-F 1.835 Å); crystallography suggests a solid-state structure similar to tetrameric OsF₅; the more complex IR spectrum of the solid is in keeping with this [29].

Oxychlorides are less prolific, apart from the red-brown $OsOCl_4$ (m.p. $32^{\circ}C$). This probably has a molecular structure in the solid state as the IR spectra of the solid, matrix-isolated and gas-phase molecules are very similar, and the volatility is consonant with this [30]. Syntheses include heating osmium in a stream of oxygen/chlorine ('oxychlorination') and by:

$$OsO_4 \xrightarrow{BCl_3} OsOCl_4$$

n	RuF ₆	RuCl ₆	RuBr ₆	OsF ₆	OsCl ₆	OsBr ₆
0	1.824 (EX)			1.816 (EX)		
	• • •			1.831 (ED)		
1	1.845 (EX)			1.882 (EX)	2.284 (X)	
	1.85 (X)				2.303 (X)	
2	1.916 (ÉX)	2.29 (X)		1.927 (EX)	2.332 (X)	$\sim 2.5 (X)$
	· · · ·	2.318 (X)		× ,	2.336 (X)	· · ·
3		2.375 (X)	2.514 (X)		- (/	

Table 1.3 Bond lengths in MX_6^{n-} (Å)

ED, electron diffraction; X, X-ray; EX = EXAFS.

Electron diffraction measurements on the vapour indicate a C_{4v} square pyramidal structure (Os=O 1.663 Å, Os-Cl 2.258 Å; O-Os-Cl 108.3° Cl-Os-Cl 84.4°) with osmium 0.709 Å above the basal plane.

 $OsOCl_2$ can be made as dark olive green needles from heating $OsCl_4$ in oxygen [31]. There are also reports of $OsO_{0.5}Cl_3$ (probably Os_2OCl_6) and a corresponding bromide [32].

1.3.4 Halide complexes

The complexes of ruthenium and osmium in the same oxidation state are generally similar and are, therefore, treated together; the structural (Table 1.3) and vibrational data (Table 1.4) have been set out in some detail to demonstrate halogen-dependent trends.

No complexes have at present been authenticated in oxidation states greater than +6, whereas oxyhalide complexes exist where the +8 state is known; this parallels trends in the halides and oxyhalides.

Oxidation state +6 Reaction of NOF with OsF_6 produces $NO^+OsF_7^-$, along with some $NO^+OsF_6^-$.

n	RuF ₆	RuCl ₆	RuBr ₆	RuI ₆	OsF ₆	OsCl ₆	OsBr ₆	OsI ₆
0	675, 735				731, 720			
1	660, 630				688, 616 (XeF ₅)	375, 325 (Et ₄ N)		
2	609, 581	328, 327 (Cs)	209, 248 (K)		608, 547 (Cs)	344, 313 (Cs)	211, 227 (K)	152, 170 (Bu₄N)
3		–, 310 (K)	184, 236 (PhNH ₃ ⁺)		. /	313, 294 (Co(en) ₃)	201, 200 (Co(en) ₃)	144, 140 (Co(en) ₃)

Table 1.4 Vibrational frequencies in MX_6^{n-} species (cm⁻¹) (M = Ru, Os; X = halogen)

The first figure given for each species is ν_1 (A_{1g}), the second is ν_3 (T_{1 μ}). Data are for ions in solution except where a counter-ion is indicated.

Oxidation state +5

Fluorination of a mixture of alkali metal halide and an appropriate ruthenium or osmium halide affords cream MRuF₆ (M = alkali metal, Ag; $\mu_{eff} = 3.5-3.8 \,\mu_B$) or white MOsF₆:

RuCl₃ or OsF₄
$$\xrightarrow{\text{MCl}}$$
 $\xrightarrow{\text{MCl}}$ MRuF₆ or MOsF₆

They contain octahedral MF_6^- (Table 1.3) [33]; in XeF⁺RuF₆⁻ the attraction of XeF⁺ distorts the octahedron by pulling one fluorine towards it, so that there is one long Ru–F distance of 1.919Å compared with the others of 1.778–1.835Å (EXAFS measurements indicate KRuF₆ has regular octahedral coordination (Ru–F 1.845Å)) [19].

Magnetic moments are as expected for d^3 ions. Disproportionation occurs on hydrolysis:

$$MF_6^- \xrightarrow{H_2O} MO_4 + MF_6^{2-}$$

Octahedral OsCl₆⁻ has been isolated as Ph₄As, Ph₄P and Ph₄N salts (μ_{eff} values of 3.21 and 3.03 μ_B have been reported) [34]:

$$OsCl_{5} + Ph_{4}AsCl \xrightarrow{CCl_{3}CF_{3}} Ph_{4}AsOsCl_{6}$$
$$Os(CO)_{2}X_{4}^{-} \xrightarrow{Cl_{2}} Et_{4}NOsCl_{6} \qquad (X = Br, I)$$

 $OsCl_6^-$ is reduced to $OsCl_6^{2-}$ in contact with most solvents (e.g. CH_2Cl_2); the redox potential for $OsCl_6^-/OsCl_6^{2-}$ is 0.8 V and for $OsBr_6^-/OsBr_6^{2-}$ it is 1.20 V. PbO₂ can be used to form a transient $OsBr_6^-$ ion by oxidizing $OsBr_6^{2-}$; it will also oxidize $OsCl_6^{2-}$ to $OsCl_6^-$.

Cation size can affect bond lengths in $OsCl_6^-$; Os-Cl is 2.284 Å and 2.303 Å in the Ph₄P and Bu₄N salts, respectively. Oxidation, however, has a more significant effect, so that Os-Cl in $(Ph_4P)_2OsCl_6$ is 2.332 Å.

Oxidation state +4

All MX_6^{2-} have been isolated except RuI_6^{2-} . MF_6^{2-} can be made by hydrolysis of MF_6^{-} , as already mentioned, but other methods are available:

$$RuCl_3 + BaCl_2 \xrightarrow{F_2} BaRuF_6$$

Yellow Na₂RuF₆ has the Na₂SiF₆ structure while M₂RuF₆ adopts the K₂GeF₆ structure (M = K to Cs). EXAFS indicates Ru-F is 1.934 Å in K₂RuF₆ while in K₂OsF₆ Os-F is 1.927 Å [35]. Magnetic moments are as expected for a low spin d⁴ ion (K₂RuF₆ 2.86 μ_B , Cs₂RuF₆ 2.98 μ_B , K₂OsF₆ 1.30 μ_B , Cs₂OsF₆ 1.50 μ_B); the lower values for the osmium compounds are a consequence of the stronger spin-orbit coupling for the 5d metal.

Various routes are available for the chlorides [36]:

$$Ru \text{ or } Os \xrightarrow[MCl]{Cl_2} M_2 RuCl_6 \text{ or } M_2 OsCl_6$$
$$M_2 RuCl_5 (OH_2) \xrightarrow[HCl(aq.)]{Cl_2} M_2 RuCl_6$$
$$OsO_4 \xrightarrow[Conc. HCl/MCl]{EtOH} M_2 OsCl_6$$

The last synthesis uses ethanol as the reducing agent. Soluble Na_2OsCl_6 has been used to make the less soluble salts of other alkali metals by metathesis.

Typical colours are red-brown to black (Ru) and orange to dark red (Os). K_2RuCl_6 has the K_2PtCl_6 structure. Magnetic moments for the ruthenium compounds are 2.7-3.0 μ_B ; the osmium compounds have substantially lower moments (1.51 μ_B for K_2OsCl_6) but on doping into K_2PtCl_6 the moment of $OsCl_6^{2-}$ rises to 2.1 μ_B , 'superexchange' causing a lowered value in the undiluted salts.

Bromides and iodides can be made (except X = I for Ru).

$$\begin{aligned} \operatorname{RuBr}_{5}(\operatorname{H}_{2}\operatorname{O})^{2-} & \xrightarrow{\operatorname{HBr}(\operatorname{aq.})} \operatorname{RuBr}_{6}^{2-} \\ \operatorname{K}_{2}\operatorname{RuCl}_{6} & \xrightarrow{\operatorname{Br}_{2}} \operatorname{K}_{2}\operatorname{RuBr}_{6} \\ \operatorname{OsO}_{4} & \xrightarrow{\operatorname{HBr}(\operatorname{aq.})} \operatorname{M}_{2}\operatorname{OsBr}_{6} \\ \operatorname{OsO}_{4} & \xrightarrow{\operatorname{HIar}(\operatorname{aq.})} \operatorname{M}_{2}\operatorname{OsBr}_{6} \end{aligned} \qquad (M = \operatorname{alkali metal}) \\ \operatorname{OsO}_{4} & \xrightarrow{\operatorname{HI}(\operatorname{aq.})} \operatorname{M}_{2}\operatorname{OsI}_{6} \end{aligned}$$

These compounds tend to be black in colour. Magnetic moments of 2.84 and 1.65 $\mu_{\rm B}$ have been reported for K₂RuBr₆ and K₂OsI₆, respectively.

 $OsCl_6^{2-}$ is a useful starting material for the synthesis of a range of osmium complexes (Figure 1.4).

The mixed halide species $OsX_{6-n}Y_n^{2-}$ or $OsX_aY_bZ_c^{2-}$ (a+b+c=6) have been studied in considerable detail [37].

Reaction of OsCl²⁻ with BrF₃ affords stepwise substitution

$$\begin{split} & \text{OsCl}_6^{2-} \rightarrow \text{OsCl}_5\text{F}^{2-} \rightarrow \textit{cis-OsCl}_4\text{F}_2^{2-} \rightarrow \textit{fac-OsCl}_3\text{F}_3^{2-} \rightarrow \\ & \textit{cis-OsCl}_2\text{F}_4^{2-} \rightarrow \text{OsCl}\text{F}_5^{2-} \rightarrow \text{OsCl}_5\text{F}_6^{2-} \end{split}$$

with the stronger *trans*-effect of chloride directing the position of substitution. This can likewise be utilized to synthesize the *trans*- and *mer*-isomers, for example

$$cis$$
-OsCl₂F₄²⁻ $\xrightarrow{\text{Cl}^-}$ mer -OsCl₃F₃²⁻

The isomer(s) obtained depend on the reaction time; thus reaction of K_2OsCl_6 with BrF₃ at 20°C affords 90% *cis*-OsF₄Cl₂²⁻ after 20 min whereas

Figure 1.4 Reactions of $OsCl_6^{2-}$.

after 10 h the mixture contains 30% cis-OsF₄Cl₂²⁻, 40% OsF₅Cl²⁻ and 30% OsF₆²⁻. Mixtures can be separated by chromatography or ionophoresis; within this series, the *cis*-isomers are eluted before the *trans* (on diethyl-aminoethyl cellulose) whereas in ionophoresis, the *trans*-isomers move 3-5% faster.

Such octahedral anions are, of course, amenable to study by vibrational spectroscopy; as the anion symmetry descends from $O_h(MX_6^{2-})$, the number of bands increases as the degeneracy of vibrations is removed. Pairs of isomers can be distinguished; thus for $OsF_2Cl_4^{2-}$, the more symmetric *trans*-isomer (D_{4h}) gives rise to fewer stretching vibrations (5) than the *cis*-isomer (C_{2v}), which has 6. Moreover the centre of symmetry in the *trans*-isomer means there are no IR/Raman coincidences. The Os-F vibrations can be associated with bands in the 490-560 cm⁻¹ region and Os-Cl stretching vibrations in the 300-360 cm⁻¹ region (Figure 1.5).

Other series of mixed hexahalide complexes have been made. Thus from K_2OsI_6 and concentrated HBr:

$$OsI_{6}^{2-} \rightarrow OsBrI_{5}^{2-} \rightarrow cis-OsBr_{2}I_{4}^{2-} \rightarrow fac-OsBr_{3}I_{3}^{2-} \rightarrow cis-OsBr_{4}I_{2}^{2-} \rightarrow OsBr_{5}I^{2-} \rightarrow OsBr_{6}^{2-}$$

As before the *trans*-isomers can be obtained using $OsBr_6^{2-}$ and concentrated HI; similarly, starting from $OsCl_6^{2-}$ and concentrated HI, the sequence $OsCl_5I^{2-}$, *trans*- $OsCl_4I_2^{2-}$, *mer*- $OsCl_3I_3^{2-}$, *trans*- $OsCl_2I_4^{2-}$, $OsCl_5^{2-}$ and OsI_6^{2-} is obtained. A more drastic synthesis of this type has been achieved by taking mixed crystals K_2OsBr_6/K_2SnCl_6 and using the nuclear process ¹⁹⁰ $Os(n, \gamma)^{191}Os$, when all the mixed species ¹⁹¹ $OsCl_nBr_{6-n}^{2-}$ were obtained.

Mixed species with three different halogens have been made

$$OsF_5Cl^{2-} \xrightarrow{conc. HBr} trans-OsF_4ClBr^{2-}$$

Figure 1.5 The vibrational spectra of the *cis* (a) and *trans* (b) isomers of $[OsCl_2F_4]^{2-}$ in their caesium salts. (Reproduced with permission from *Z. Naturforsch.*, Teil B, 1984, 39, 1100.)

	OsF5Cl ²⁻	fac-OsF ₃ Cl ₃ ²⁻	mer-OsF ₃ Cl ₃ ²⁻	cis-OsF ₂ Cl ₄ ²⁻	trans-OsF ₂ Cl ₄ ²⁻
Os-F					
trans to F	1.918		1.944		1.926
trans to Cl	1.959	1.948	1.976	1.948	
Os-Cl					
trans to F	2.329	2.320	2.278	2.316	2 227
trans to CI			2.307	2.338	2.337

Table 1.5 Bond lengths (Å) in dipyridinio methane salts

The crystal structure of the caesium salt shows Os-F, Os-Cl and Os-Br bonds of 1.94, 2.43 and 2.49 Å, respectively. The complex exhibits strong IR bands at 552, 320 and 222 cm⁻¹, assigned to Os-F, Os-Cl and Os-Br stretching, respectively (compare ν_3 of OsX₆²⁻ at 547 cm⁻¹ (F), 313 cm⁻¹ (Cl) and 227 cm⁻¹ (Br)) [38].

Bond lengths in the dipyridinio methane salts $[(C_5H_5N)_2CH_2][OsF_5Cl]$, facand mer- $[(C_5H_5N)_2CH_2][OsF_3Cl_3]$ and cis- and trans- $[(C_5H_5)_2CH_2][OsF_2Cl_4]$ show the mutual trans-influence of chlorine and fluorine; thus Os-Cl bonds trans to fluorine are shorter than those trans to chlorine, while Os-F bonds trans to chlorine are longer than those trans to fluorine (Table 1.5) [38c].

Oxidation state +3

Halide complex ions of ruthenium and osmium in the +3 state are known for all except OsF₆³⁻ [39]. Syntheses include:

$$RuCl_{3} \xrightarrow{KHF_{2}} K_{3}RuF_{6} \qquad (\mu = 1.25\,\mu_{B})$$

$$K_{2}RuCl_{5}(H_{2}O) \xrightarrow{HCl(g)} K_{3}RuCl_{6}$$

$$RuX_{3} \xrightarrow{[C_{6}H_{5}NH_{3}]^{+}X^{-}}_{\text{conc.}HX/N_{2}} (C_{6}H_{5}NH_{3})_{3}RuX_{6} \qquad (\mu = 2.09\,\mu_{B}, X = Br)$$

A general synthesis for the osmium compounds is

$$OsX_6^{2-} \xrightarrow{conc. HX/N_2} (Coen_3)^{3+}OsX_6 \qquad (X = Cl, Br, I)$$

Magnetic moments reported for the OsX_6^{3-} salts are 1.70, 1.67 and 1.61 μ_B for X = Cl, Br and I, respectively, consonant with the low-spin d⁵ configuration.

A number of dinuclear complexes have been synthesized [40]

$$Os_{2}(OCOMe)_{4}Cl_{2} \xrightarrow[EtOH]{HCl(g)} Os_{2}Cl_{8}^{2}$$
$$Os_{2}Cl_{8}^{2-} \xrightarrow[Me_{2}CO]{NaI} Os_{2}I_{8}^{2-}$$

Figure 1.6 The structures of the diosmate ions $Os_2X_8^{2-}(a)$ and $Os_2X_{10}^{2-}(b)$.

Oxidation with halogens gives the decahalogenodiosmate (IV) (2-) ions (Figure 1.6):

$$\operatorname{Os}_{2}X_{8}^{2-} \xrightarrow[\operatorname{CH}_{2}\operatorname{Cl}_{2}]{2} \operatorname{Os}_{2}X_{10}^{2-} \qquad (X = \operatorname{Cl}, \operatorname{Br})$$

The short Os–Os bonds in $Os_2X_8^{2-}$ correspond to triple bonds and give rise to stretching vibrations associated with bands around 280 cm^{-1} in the Raman spectrum (Table 1.6).

The $Os_2X_8^{2-}$ ions participate in various redox processes: at 235 K $Os_2Cl_8^{2-}$ undergoes reversible oxidation to $Os_2Cl_8^{n-}$ (n = 1, 0), the bromide behaves similarly. At high temperatures, the Os-Os bond is broken and $OsCl_6^{-}$ is formed. $Os_2Cl_8^{2-}$ can also be cleaved with Bu^tNC to form *trans*- $OsCl_4(CNBu^t)_2^{-}$ [41].

In addition to the doubly bridged $Os_2X_{10}^{2-}$, triply bridged $Os_2Br_9^-$ can be made (Figure 1.7):

$$OsBr_6^{2-} \xrightarrow{CF_3CO_2H} Os_2Br_{10}^{2-} \xrightarrow{CF_3CO_2H} Os_2Br_9^{-}$$

It can be reduced electrochemically to $Os_2Br_9^{n-}$ (n = 2, 3), with $Os_2Br_{10}^{n-}$ (n = 3, 4) similarly accessible. $Rb_3Os_2Br_9$ has $Os-Os\ 2.799$ Å [42].

	Counter-ion	Os–Os (Å)	$\nu_{\rm sym}$ (Os–Os) (cm ⁻¹)	
Os ₂ Cl ²⁻	Bu ₄ N	2.182	285	
$Os_2Br_8^{2-}$	Bu ₄ N	2.196	287	
$Os_2 I_8^{2-}$	$(\mathbf{Ph}_{3}\mathbf{P})_{2}\mathbf{N}$	2.212	270	

Table 1.6 Characteristics of $Os_2X_8^{2-}$

Figure 1.7 The structures of the diosmate ions $Os_2X_9^{3-}$.

In the case of ruthenium, the Ru_2X_9 system with confacial octahedra is important

$$M_2 RuCl_5(H_2O) \xrightarrow[in vacuo]{250^{\circ}C} M_3 Ru_2Cl_9 \qquad (M = alkali metal)$$
$$RuCl_6^{3-} \xrightarrow{HBr} Ru_2 Br_9^{3-}$$

These evidently have some Ru-Ru bonding with Ru-Ru distances of 2.73 and 2.87 Å in Cs₃Ru₂Cl₉ and (1-methyl-3-ethylimidazolinium)₃Ru₂Br₉, respectively; the magnetic moments of $(Bu_4N)_3Ru_2X_9$ of $0.86 \mu_B$ (Cl) and 1.18 μ_B (Br) are lower than expected for low spin d⁵ and indicate some metal-metal interaction. Ru₂X₉³⁻ again forms part of a redox-related series Ru₂X₉ⁿ⁻ (n = 1-4) obtainable in solution by low-temperature electrochemistry [42].

1.3.5 'Ruthenium blues' [43]

It has long been known (Claus, 1846) that reduction (e.g. Zn, H₂ with Pt catalyst) of some ruthenium salts gives a blue solution, which on treatment with HCl or oxidation turns green. Various claims have been made for the species present: RuCl_{4}^{2-} , $\text{Ru}_2\text{Cl}_{3}^{2+}$, $\text{Ru}_2\text{Cl}_{4}^{+}$ and $\text{Ru}_5\text{Cl}_{12}^{2-}$. A cluster (Cl₃Ru(μ -Cl)₃Ru(μ -Cl)₃RuCl₃)⁴⁻ has been isolated and characterized from such a solution [44]. At present it seems likely that the compound in solution is a cluster, that the ruthenium valency is between 2 and 2.5 and that more than one species is present.

The blue solutions have been found to catalyse alkene isomerization and hydrogenation and have very considerable synthetic utility (Figure 1.8).

Figure 1.8 Syntheses using 'Ruthenium blue'.

1.3.6 Oxyhalide complexes

Various anionic complexes have been made [26a]:

$$OsO_{3}F_{2} + KF \xrightarrow{heat} K[OsO_{3}F_{3}]$$
$$OsO_{4} \xrightarrow{CsF(aq.)} Cs_{2}[OsO_{4}F_{2}]$$

EXAFS measurements on KOsO₃F₃ indicate the presence of *fac*-OsO₃F₃⁻ with Os=O 1.70 Å, Os-F 1.92 Å; in Cs₂OsO₄F₂, *cis*-OsO₄F₂²⁻ has Os=O 1.70 Å and Os-F 2.05 Å.

Reaction of Ph_4PCl with OsO_4 gives $Ph_4P^+OsO_4Cl^-$, the anion having a tbp structure with a very long equatorial Os-Cl bond (2.76 Å) [45].

Both ruthenium and osmium form *trans*- $MO_2X_4^{2-}$ species (X = Cl, Br), for example

$$\begin{aligned} & RuO_4 \xrightarrow[HCl]{HCl} M_2 RuO_2 Cl_4 \qquad (M = Rb, Cs) \\ & K_2 [OsO_2(OH)_4] \xrightarrow[HCl]{HCl} K_2 OsO_2 Cl_4 \end{aligned}$$

Typical bond lengths are M=O 1.709 Å (Ru) 1.750 Å (Os) and M-Cl 2.388– 2.394 Å (Ru) 2.379 Å (Os) in $[(Ph_3P)_2N]RuO_2Cl_4$ and $K_2OsO_2Cl_4$, respectively. Characteristic $\nu(M=O)$ bands can be seen in the vibrational spectra owing to both the symmetric and asymmetric stretches: for $OsO_2X_4^{2-}$ the symmetric stretch is at 904 (X = Cl) and 900 (X = Br) cm⁻¹, with corresponding values for the asymmetric stretch of 837 and 842 cm⁻¹ (in the potassium salts).

In solution $[(Ph_3P)_2N]_2$ RuO₂Cl₄ loses chloride to form $[(Ph_3P)_2N]$ RuO₂Cl₃, which has a tbp structure with two axial chlorines (Ru-Cl 2.37–2.39 Å); the equatorial bond lengths are 1.66–1.69 Å (Ru-O) and 2.13 Å (Ru-Cl) [46].

The dimeric $M_2OCl_{10}^{4-}$ ions contain linear M-O-M units (Figure 1.9); in $Cs_4Os_2OCl_{10}$ the Os-O-Os stretching vibration is at 852 cm⁻¹ in the IR spectrum [47] while its crystal structure reveals Os=O 1.778 Å, Os-Cl 2.367-2.377 Å (*cis* to O) and 2.433 Å (*trans* to O). In K₄Ru₂OCl₁₀, Ru=O is 1.801 Å, Ru-Cl is 2.363 (*cis*) and 2.317 Å (*trans*). The shortness of the M-O bridge bonds is explained by the formation of two M-O-M three-centre MOs. Figure 1.10 shows the formation of one of these by overlap of

Figure 1.9 The dimeric $[M_2OCl_{10}]^{4-}$ ions (M = Ru, Os).

Figure 1.10 The three-centre molecular orbitals in $[Os_2OCl_{10}]^{4-}$.

osmium 5d and oxygen 2p orbitals; each MO contains two osmium electrons and two from the oxygen occupying the bonding and non-bonding MOs. These two MOs account for two of the four electrons belonging to each Os^{4+} ion (d⁴); the remaining two occupy the d_{xy} orbital (unused in the MO scheme) explaining the diamagnetism of these M^{IV} compounds.

1.4 Oxides and related anions

The oxides are dominated by the very volatile and toxic tetroxides. Yellow RuO_4 (m.p. 25.4°C, b.p. 40°C) is isomorphous with OsO_4 ; electron diffraction measurements indicate that it is tetrahedral in the gas phase (Ru-O 1.706 Å) [48a]. It is light sensitive and thermodynamically unstable with respect to RuO_2 (from which, however, it can be made) and can be explosive. Because of the lesser stability of ruthenium(VIII) compared with osmium (VIII), RuO_4 is a stronger oxidizing agent than OsO_4 (and therefore less selective); solutions in CCl₄ are stable [48b]. A convenient synthesis involves periodate oxidation of $RuCl_3$ or RuO_2 :

RuCl₃ or RuO₂ $\xrightarrow{\text{NaIO}_4}$ RuO₄

 RuO_4 reacts with pyridine to form $RuO_3(py)$, probably a dimer $Py_2(O)_2Ru(\mu-O)_2Ru(O)_2Py_2$, an aerobically assisted oxidant [48c].

 RuO_2 can be made by high-temperature oxidation of ruthenium. It has the rutile structure (Ru-O 1.942 Å and 1.984 Å) and forms blue-black crystals [49b].

Recently RuO₃ has been made as a brown solid by photolysis:

$$\operatorname{RuO}_4 \xrightarrow{h\nu} \operatorname{RuO}_3$$

In matrices, RuO₂ is bent (149°) while RuO₃ is trigonal planar.

Copper-coloured OsO_2 also has the rutile structure: it can be made from the metal and NO at 650°C.

 OsO_4 is obtained on oxidation of any osmium compound or by direct synthesis at 300-800°C from the elements [50]. Its solubility in CCl₄ and volatility make it easy to purify; it forms pale yellow crystals (m.p. 40.46°C, b.p. 131°C). Like RuO₄ it forms tetrahedral molecules with Os-O 1.684-1.710 Å, O-Os-O 106.7-110.7° in the solid state; Os-O 1.711 Å in the gas phase [51]. It is soluble in water as well as in CCl₄ and is very toxic (TLV 2.5 ppm), affecting the eyes. (Its use as a biological stain involves its reaction with tissue.)

Gas-phase vibrational data for OsO₄ are $\nu_1 = 965.2$, $\nu_2 = 333.1$, $\nu_3 = 960.1$ and $\nu_4 = 322.7$ cm⁻¹.

Photoelectron spectra have been interpreted with a MO scheme, shown in Figure 1.11 [52].

 OsO_4 will add to C=C bonds but will only attack the most reactive aromatic bonds; thus benzene is inert, but it will attack the 9,10 bond in phenanthrene and will convert anthracene to 1,2,3,4-tetrahydroxytetrahydroanthracene. It can be used catalytically in the presence of oxidizing agents such as NaClO₃ or H₂O₂ [53].

Figure 1.11 A molecular orbital diagram for OsO₄. (Reprinted with permission from *Inorg. Chem.*, 1992, 31, 1588. Copyright American Chemical Society.)

1.4.1 Anions

Alkalis reduce RuO_4 to RuO_4^- ; various salts have been prepared

$$RuCl_{3}.xH_{2}O \xrightarrow{NaIO_{4}} RuO_{4} \xrightarrow{Pr_{4}NOH} Pr_{4}NRuO_{4}$$

On heating it decomposes in a similar manner to KMnO₄:

$$2KRuO_4 \rightarrow K_2RuO_4 + RuO_2 + O_2$$

The anion in KRuO₄ has a slightly flattened tetrahedral structure (Ru–O 1.73 Å). Organic-soluble salts like Pr_4NRuO_4 are selective mild oxidants that will oxidize alcohols to carbonyl compounds but will not affect double bonds [54a]. ESR indicates that RuO_4^- ($g_x = 1.93$; $g_y = 1.98$; $g_z = 2.06$) has a compressed tetrahedral geometry with the electron in d_{z^2} [54b].

 RuO_4^{2-} , which is believed to be tetrahedral in solution, is formed from RuO_4 and excess concentrated aqueous KOH, isolable as black crystals of $K_2RuO_4.H_2O$, which is actually $K_2[RuO_3(OH)_2]$. The anion has a tbp structure with axial OH groups (Ru=O 1.741-1.763 Å, Ru-OH 2.028-2.040 Å) [55].

In contrast to ruthenium, osmium exists in alkaline solution as $OsO_4(OH)_2^{2-}$, believed to be *cis* and isolable as crystalline salts:

$$OsO_4 + 2KOH \rightarrow K_2OsO_4(OH)_2$$

Similarly, instead of forming OsO_4^{2-} , reduction of OsO_4 with ethanolic KOH yields $K_2[OsO_2(OH)_4]$.

The osmiamate ion, OsO_3N^- , is isoelectronic with OsO_4 . The yellow potassium salt is the most convenient one to prepare; other, less soluble, salts, can be made by metathesis:

$$OsO_4 + NH_3 \xrightarrow{KOH} KOsO_3N$$

The crystallographic study of the potassium salt is complicated by disorder but in CsOsO₃N Os=N is 1.676 Å and Os=O 1.739–1.741 Å. Assignments of the vibrational spectrum of OsO₃N⁻ is assisted by isotopic substitution: the higher frequency absorption is shifted significantly on ¹⁵N substitution whereas the band just below 900 cm⁻¹ is scarcely affected (Table 1.7); conversely the latter band is shifted by some 50 cm⁻¹ on replacing ¹⁶O by ¹⁸O [56].

Nitrido salts are discussed later (section 1.12.2).

	$\nu_1 \text{ (Os=N)}$	ν_2 (Os=O)
OsO₃N [−]	1029	898
$OsO_3^{15}N^-$	998	896
$K [Os^{18}O_3N]^-$	1024	844

Table 1.7 Vibrational data for osmiamate ions (in cm⁻¹)

1.5 Other binary compounds

Ruthenium and osmium form no stable binary hydrides, but very recently heating mixtures of the metals with alkaline earth metal hydrides under pressure in a hydrogen atmosphere have been shown to give oxygen- and moisture-sensitive hydrides M_2RuH_6 (M = Mg, Ba), M_2OsH_6 (M = Mg to Ba) and Li₄OsH₆. These contain MH_6^{4-} (K₂PtCl₆ structure) with Ru-D 1.673 and Os-D 1.682 Å in the corresponding deuterides [57]. LiMg₂RuH₇ has RuH₆²⁻ with Ru-D 1.704 Å in the deuteride.

The mineral laurite is the mixed sulphide $(Ru,Os)S_2$; this and RuS_2 and OsS_2 have the pyrite structure as does RuQ_2 (Q = Se, Te). These can be made from the reaction of the chalcogen with the metals, while $RuCl_3$ will also react with Se and Te.

 MP_2 , MAs_2 and MSb_2 all have a compressed form of the marcasite structure, while the carbides MC have trigonal prismatic coordination in the WC structure. Several borides are known: MB_2 has nets of boron atoms. $Ru_{11}B_8$ has branched chains while Ru_7B_3 has isolated borons.

1.6 Aqua ions [58]

Diamagnetic, low-spin d⁶ Ru(H₂O)₆²⁺ has been made by reduction of RuO₄ with activated Pb (or Sn) followed by ion-exchange purification. The pink tosylate salt contains octahedral Ru(H₂O)₆²⁺ (Ru-O 2.122 Å); though the solid is air stable, it is readily oxidized in solution by oxygen and ClO₄⁻. The hexaqua ions also occur in the red diamagnetic Tutton salts M_2 Ru(H₂O)₆(SO₄)₂ (M = NH₄, Rb)

$$RuO_{4} \xrightarrow{Pb/Hg} Ru(H_{2}O)_{6}^{2+} \xrightarrow{(NH_{4})_{2}SO_{4}} (NH_{4})_{2}Ru(H_{2}O)_{6}(SO_{4})_{2}$$

Ru $(H_2O)_6(BF_4)_2$ has been isolated but decomposes on standing.

Aerial oxidation of $Ru(H_2O)_6^{2+}$ produces lemon-yellow $Ru(H_2O)_6^{3+}$ (Ru-O 2.029 Å in the tosylate salt)

$$Ru(H_2O)_6^{2+} \rightarrow Ru(H_2O)_6^{3+} + e^- \qquad E^{\ominus} = -0.205 V$$

The yellow alum CsRu(H₂O)₆(SO₄)₂.6H₂O has also been synthesized with $\mu_{\text{eff}} = 2.20 \,\mu_{\text{B}}$ at 300 K; the Ru–O distance is 2.010 Å.

Vibrational spectra of octahedral $\operatorname{Ru}(\operatorname{H}_2O)_6^{n+}$ $(n = 2, \nu_1 = 424 \,\mathrm{cm}^{-1}, \nu_3 = 426 \,\mathrm{cm}^{-1}; n = 3, \nu_1 = 532 \,\mathrm{cm}^{-1}, \nu_3 = 529 \,\mathrm{cm}^{-1})$ have been interpreted in terms of the force constants 1.91 mdyn Å⁻¹ (n = 2) and 2.98 mdyn Å⁻¹ (n = 3), showing a stronger bond for the ruthenium(III) species.

The ruthenium(II) aqua ion reacts with nitrogen at room temperature under high pressure (200 bar) forming yellow-brown $[Ru(H_2O)_5N_2]^{2+}$, isolated as a tosylate salt, showing $\nu(N\equiv N)$ at 2141 cm⁻¹ in its IR spectrum [59].

The ruthenium(IV) aqua ion, best made by electrochemical oxidation of $Ru(H_2O)_6^{2+}$, but also made by the reaction of RuO_4 with $H_2O_2/HClO_4$, is tetranuclear, formulated as $[Ru_4O_6(H_2O)_{12}]^{4+}$, though this may be protonated [60]. FAB mass spectra of a pyrazolylborate complex show Ru_4O_6 -containing fragments.

No simple osmium aqua ion has been definitely isolated and characterized, though in alkaline solution (and the solid state) the osmium(VIII) species $OsO_4(OH)_2^{2-}$ is well characterized (sections 1.4.1 and 1.12.1).

Osmium(II) is probably too reducing to exist as $Os(H_2O)_6^{2+}$, but $Os(H_2O)_6^{3+}$ and a polynuclear $Os_4^+(aq.)$ species are likely.

1.7 Compounds of ruthenium(0)

Apart from $Ru(CO)_5$ and other carbonyls, there are mixed carbonylphosphine species and a few simple phosphine complexes like $Ru(PF_3)_5$ and $Ru[P(OMe)_3]_5$ [61a].

Photochemistry of $Ru(CO)_3(PMe_3)_2$ and the ruthenium(II) compound $Ru(CO)_2(PMe_3)_2H_2$ in low-temperature matrices affords $[Ru(CO)_2(PMe_3)_2...S]$ (S = Ar, Xe, CH₄) [61b]. These monomers all have 18-electron tbp structures.

The phosphine complex $Ru(dmpe)_2$ has been studied in matrices [62]. $Ru(diphos)_2$ (diphos = depe, dppe, $(C_2F_5)_2P(CH_2)_2P(C_2F_5)_2$) has similarly been formed by photolysis of $Ru(diphos)_2H_2$ in low-temperature matrices. They probably have square planar structures and undergo oxidative addition with cobalt, C_2H_4 and hydrogen [63].

Additionally a number of nitrosyls such as $Ru(NO)_2(PPh_3)_2$ (section 1.8.5) exist.

1.8 Complexes of ruthenium(II and III)

Because of the relationship between compounds in the adjacent oxidation states +2 and +3, they are grouped together here; the section is subdivided by ligand, concentrating on some classes of complex important in their diversity and in current research interest.

1.8.1 Ammine complexes

Orange $\text{Ru}(\text{NH}_3)_6^{2+}$ can be obtained by various routes (see Figure 1.12). As expected for the +2 state of a heavy metal, it is reducing:

$$Ru(NH_3)_6^{2+} \rightarrow Ru(NH_3)_6^{3+} + e^- \qquad E^{\ominus} = +0.214 V$$

Historically, the most important ruthenium(II) ammine species is $[Ru(NH_3)_5N_2]^{2+}$, the first stable dinitrogen complex to be isolated (1965). It was initially obtained by refluxing RuCl₃ in hydrazine solution (but many

Next Page

2 Rhodium and iridium

2.1 Introduction

Rhodium and iridium were discovered independently in the same year and also share many resemblances in their chemistry [1–10]. They form a wide range of conventional complexes as well as those of π -bonding ligands. Both metals exhibit an extensive chemistry, principally in the +3 oxidation state, with +1 also being important, and a significant chemistry of iridium +4 existing. Few compounds are known in the +2 state, in contrast to the situation for cobalt, their lighter homologue (factors responsible include the increased stability of the +3 state consequent upon the greater stabilization of the low spin d⁶ configuration as 10 Dq increases).

Rhodium was discovered in 1803 by the eminent Norfolk scientist W.H. Wollaston; he dissolved platinum metal concentrates in aqua regia and found that on removing platinum and palladium he was left with a red solution. From this he obtained the salt Na_3RhCl_6 , which yielded the metal on reduction with hydrogen. The rose-red colour (Greek rhodon) of many rhodium salts gave the element its name.

In the same year, Smithson Tennant was studying the black aqua regiainsoluble portion of platinum ores and found that, after fusion with soda and extraction with water, the black residue gave a blue solution in hydrochloric acid that went red when heated. The red crystals thus obtained yielded the metal on heating. Tennant gave iridium its name from the Greek iris (rainbow) 'from the striking variety of colours which it gives'.

2.2 The elements and uses

Both rhodium (m.p. 1976°C, b.p. 3730°C) and iridium (m.p. 2410°C, b.p. 4130°C) are unreactive silvery metals, iridium being considerably more dense (22.65 g cm⁻³) than rhodium (12.41 g cm⁻³), the densest element known apart from osmium. Both form fcc (ccp) lattices and, like the other platinum metals, are ductile and malleable. Neither is affected by aqua regia and they only react with oxygen and the halogens at red heat.

The main use of rhodium is with platinum in catalysts for oxidation of automobile exhaust emissions. In the chemical industry, it is used in catalysts for the manufacture of ethanoic acid, in hydroformylation of alkenes and the synthesis of nitric acid from ammonia. Many applications of iridium rely on
its inertness (e.g. high temperature crucibles, electrode coatings, thermocouples); it is speculated that applications include defence, nuclear and aerospace industries. The inert alloy with osmium is traditionally used in pen nibs.

2.2.1 Extraction

Rhodium and iridium are obtained from the aqua regia-insoluble residues by first smelting with PbO or PbCO₃ then treating the product with nitric acid to remove silver along with the lead [11]. The residue is smelted with NaHSO₄ which converts the rhodium into soluble Rh₂(SO₄)₃, while peroxide fusion of the residues leaves an insoluble residue of IrO₂. Traditionally these products were purified in several stages involving repeated precipitation and solution, ultimately affording the pure salts (NH₄)₃MCl₆ (M = Rh, Ir), which then yielded the metal on hydrogen reduction at 1000°C. A more up to date process uses solvent extraction to give a more efficient and rapid separation.

2.3 Halides and halide complexes [3b, 4]

2.3.1 Rhodium halides

Rhodium halides occur mainly in the +3 state. In some cases where a 'soluble' and 'insoluble' form have been reported, the former may be a hydrate.

RhF₃ [12] can be conveniently made by fluorination

$$RhCl_3 \xrightarrow{F_2} RhF_3$$

It has the VF₃ structure (Rh-F 1.961 Å) having a hcp array of fluorines with rhodium occupying 1/3 of the octahedral holes. Various hydrates have been reported

$$\operatorname{Rh}(\operatorname{NO}_2)_6^{3-} \xrightarrow{\operatorname{conc.}\mathrm{HF}} \operatorname{Rh}F_3.9\mathrm{H}_2\mathrm{O}$$

Insoluble red RhCl₃ is made by direct combination, with similar routes for the other trihalides

$$Rh \xrightarrow[800^{\circ}C]{Cl_{2}} RhCl_{3}$$

$$Rh \xrightarrow[45\% HBr/Br_{2}, heat]{} heat \xrightarrow[hen Br_{2} 400^{\circ}C]{} RhBr_{3} (red)$$

$$Rh \xrightarrow[400^{\circ}C]{} RhI_{3} (black)$$

All of these probably have the AlCl₃ structure (unconfirmed for RhI₃) with bond lengths (EXAFS) of 2.337 Å (Rh–Cl) [13] and 2.48 Å (Rh–Br) [14]. 'Soluble' chlorides and bromides are made by dissolving the oxide in the appropriate acid.

Rhodium trihalides (and complexes like $K_3 RhBr_6$) are frequently added to photographic emulsions in trace quantities to improve the gradation of the emulsion (the 'rhodium effect') [15].

Only fluorides are known in higher oxidation states with tetra-, penta- and hexafluorides isolated.

$$\begin{array}{cccc} RhBr_{3} & \xrightarrow{BrF_{3}} & RhF_{4}.2BrF_{3} & \xrightarrow{heat} & RhF_{4} \\ Rh & \xrightarrow{F_{2}} & RhF_{5} \\ RhF_{3} & \xrightarrow{F_{2}} & RhF_{5} \\ RhF_{5} & \xrightarrow{F_{2}} & RhF_{5} \\ RhF_{5} & \xrightarrow{F_{2}} & RhF_{6} \end{array}$$

Little is known about the structure of purple paramagnetic RhF₄ ($\mu_{eff} = 1.1 \,\mu_B$) but it may be similar to PdF₄ [16]. RhF₅ has a tetrameric structure [17] similar to RuF₅ and OsF₅ (section 1.3.4); the terminal Rh-F bonds are 1.808 Å and the bridges 2.01 Å. The ruby red solid (m.p. 95.5°C) has $\mu_{eff} = 2.39 \,\mu_B$. Rhodium hexafluoride is a very reactive black solid (attacking glass at room temperature) vaporizing to a deep brown gas (triple point *c*. 70°C). EXAFS measurements indicate a Rh-F bond length of 1.838 Å [18].

Various ill-defined binary halides have been reported but not characterized, such as RhI_2 .

2.3.2 Iridium halides

The pattern of iridium halides resembles rhodium, with the higher oxidation states only represented by fluorides. The instability of iridium(IV) halides, compared with stable complexes $IrCl_4L_2$ and the ions IrX_6^{2-} (X = Cl, Br, I), though unexpected, finds parallels with other metals, such as plutonium.

Preparations of the halides include [19]

$$IrF_{4} \xrightarrow{400^{\circ}C} IrF_{3} \text{ (black)}$$

$$IrF_{5} + SF_{4} \xrightarrow{400^{\circ}C} IrF_{3} + SF_{6}$$

$$Ir \xrightarrow{Cl_{2}}{600^{\circ}C} \alpha \text{-IrCl}_{3} \text{ (brown)} \xrightarrow{750^{\circ}C}{\text{vacuum}} \beta \text{-IrCl}_{3} \text{ (deep red)}$$

$$Ir \xrightarrow{Br_{2} \text{ (sealed tube)}}{540^{\circ}\text{C}, 8-9 \text{ atm}} IrBr_{3} \text{ (yellow)}$$

$$Ir(OH)_{3} \xrightarrow{1. \text{ HI 20^{\circ}C}}{2. \text{ heat, 400^{\circ}C}} IrI_{3} \text{ (black)}$$

$$Ir + 2IrF_{6} \xrightarrow{1 \text{ to 15 torr}} 3IrF_{4} \text{ (red-brown) [20]}$$

$$2Ir + 5F_{2} \xrightarrow{350-380^{\circ}\text{C}} 2IrF_{5} \text{ (yellow-green)}$$

$$Ir + 3F_{2} \xrightarrow{240^{\circ}\text{C}} IrF_{6} \text{ (yellow)}$$

All the trihalides are known to have 6-coordinate iridium (except the unknown structure of IrI_3). IrF_3 has the PdF₃ structure; α -IrCl₃ and IrBr₃ have structures of the AlCl₃ type (Ir-Cl 2.30-2.39 Å in the former).

IrF₅ (until 1965 thought to be IrF₄) is paramagnetic ($\mu = 1.32 \,\mu_B$) and has the same tetrameric structure as RhF₅; it has a slightly higher m.p. (104°C) than IrF₆, in keeping with the larger molecular units [21]. Like RhF₆, IrF₆ is very reactive, attacking most glass and undergoing slow photolysis to IrF₅. IrF₆ has a regular octahedral structure in the vapour (Ir-F 1.83 Å) and in the solid state (Ir-F 1.822 Å, EXAFS). It is paramagnetic with $\mu \sim 3 \,\mu_B$; vibrational frequencies of the octahedral molecule have been assigned to bands at 719 cm⁻¹ (T_{1u}), 701.7 cm⁻¹ (A_{1g}) and 645 cm⁻¹ (E_g) [18, 22].

2.3.3 Halometallates

A wide range of MX_6^{n-} species exist, typical preparations appear below.

$$\begin{split} & RhF_{3} \xrightarrow{KF, CsF} Cs_{2}KRhF_{6} \text{ (pink)} \\ & RhCl_{3}.3H_{2}O \xrightarrow{ACl} A_{3}RhCl_{6}.H_{2}O \xrightarrow{heat} A_{3}RhCl_{6} \text{ (red)} (A = K, Rb, Cs) \\ & Rh(OH)_{3} \xrightarrow{HBr} K_{3}RhBr_{6} \\ & RhF_{3} \xrightarrow{BrF_{3}} Na_{2}RhF_{6} \text{ (yellow)} \\ & RhF_{6} \xrightarrow{NOF} (NO)_{2}RhF_{6} \text{ (yellow)} \\ & Cs_{3}RhCl_{6} \xrightarrow{Cl_{2} \text{ or } Ce^{4+}} Cs_{2}RhCl_{6} \text{ (dark green)} \\ & RhF_{5} \xrightarrow{MF} HF_{5,20^{\circ}C} MRhF_{6} \text{ (yellow-ochre)} (M = K, Cs) \\ & M_{2}IrF_{6} \xrightarrow{N_{2}H_{4}} M_{3}IrF_{6} (M = K, Rb, Cs) \end{split}$$

$$Ir \xrightarrow{Cl_2}_{KCl} K_2 IrCl_6 \xrightarrow{C_2O_4^{2-}}_{80^{\circ}C} K_3 IrCl_6.H_2O \text{ (yellow)}$$

$$M_3 IrCl_6 \xrightarrow{HBr}_{H_2O} M_3 IrBr_6.H_2O \text{ (green)}$$

$$Cs_3 IrBr_6 \xrightarrow{NaI}_{160^{\circ}C} Cs_3 IrI_6 \text{ (brown)}$$

$$MIrF_6 \xrightarrow{H_2O} M_2 IrF_6 + IrO_2 + O_2 \text{ (M = alkali metal)}$$

$$IrO_2.nH_2O \xrightarrow{MBr}_{HBr} M_2 IrBr_6 \text{ (purple)}$$

$$IrBr_3 \xrightarrow{KBr}_{BrF_3} KIrF_6 \text{ (white)}$$

$$IrF_6 \xrightarrow{NOF/F_2} NO^+ IrF_6^-$$

 IrI_6^{2-} does not exist: Ir^{4+} is too strongly oxidizing to coexist with the reducing I^- .

Points to note in these syntheses include the use of BrF_3 as an oxidizing agent, and the stability of IrX_6^{2-} , also used as a source of IrX_6^{3-} .

Structural data [23] (Table 2.1) confirm the presence of the hexahaloanions in these states; M_2RhF_7 (M = Sr, Pb) contain RhX_6^{3-} octahedra too, as do salts like (MeNH₃)₄RhX₇ (X = Cl, Br) and (enH₂)₂RhX₇.

Many of the compounds in higher oxidation states are reactive, and for moisture-sensitive solids that cannot be crystallized, some of the bond lengths quoted in Table 2.1 are from EXAFS measurements [24]. Raman spectroscopy is likewise well suited to studying such reactive compounds, and vibrational data for halometallates are given in Table 2.2; trends illustrated include the decrease in frequency as the oxidation state of the metal decreases, and similarly a decrease in vibrational frequency, for a given oxidation state, with increasing mass of the halogen.

Rhodium	Rh–X (Å)	Iridium	Ir-X (Å)
RhF ₆	1.838	IrF ₆	1.822
RhF_6^-	1.855	IrF ₆	1.910
RhF_6^{2-}	1.934	IrF_6^{2-}	1.928
RhF ₆ ^{3–}	1.969		
RhCl ₆ ²⁻	2.313	IrCl ₆ ²⁻	2.332
RhCl ₆ ³⁻	2.330-2.354	IrCl ₆ ³⁻	2.327-2.387
		IrBr ₆ ²⁻	2.515-2.549
RhBr ₆ ³⁻	2.465-2.485	$IrBr_6^{3-}$	2.486-2.512

Table 2.1 Bond lengths in hexahalometallate ions and related species

	$\nu_1(\mathbf{A}_{1g})$	$ u_3(\mathrm{T_{1u}})$		$\nu_1(\mathbf{A_{lg}})$	$ u_3(\mathbf{T_{1u}})$
RhF ₆			IrF ₆	702	719
RhF_6^-	632	655	IrF ₆	671	
RhF_6^{2-}	592		IrF_6^{2-}	603-610	554
RhF_6^{3-}			IrF ₆ ³⁻		
RhCl ₆ ²⁻	320	335	IrCl ₆ ²⁻	345-346	313-321
RhCl ₆ ³⁻	302-308	312	IrCl ₆ ³⁻	330	296
			IrBr ₆ ²⁻	215	221
RhBr ₆ ³⁻	187-190	244-260	IrBr ₆ ³⁻	198	209
-			IrI ₆ ³	149	175

Table 2.2 Vibrational fundamentals in MX_6^{n-} species (cm⁻¹) (M = Rh, Ir; X = F, Cl, Br, I; n = 0-3)

The hexahalometallate(III) ions are reasonably stable, except for IrI_6^{3-} ; water-sensitive Cs₃IrI₆ was made by tempering pellets of Cs₃IrBr₆ and NaI at 160°C for some days [25]. As expected for low-spin d⁶ systems, these are diamagnetic, but the MX_6^{2-} species are paramagnetic with one unpaired electron [26]. Thus Cs₂RhCl₆ has $\mu_{eff} = 1.7 \mu_B$ and various RhF₆²⁻ salts have moments of c. 2.0 μ_B ; moments in this range have been reported for IrX₆²⁻ (X = F, Cl, Br).

Salts of $IrCl_6^{2-}$ were used in the classic first ESR experiments to demonstrate delocalization of unpaired electrons onto the chloride ligand (Figure 2.1); the unpaired electron spends 30% or more of its time in ligand orbitals in this case [27].

 Na_2IrCl_6 is a convenient starting material in the synthesis of iridium compounds.

NaRhF₆ is reported to have $\mu = 2.8 \,\mu_{\rm B}$.

Figure 2.1 Ligand hyperfine structure in the ESR spectrum of Na₂[(Ir, Pt)Cl₆].6H₂O. (Reproduced with permission from *Proc. R. Soc., London, Ser. A*, 1953, 219, 526.)

Mixed halometallates [28] can be synthesized: $RhCl_6Br_{6-x}^{3-}$ from the reaction of $RhCl_6^{3-}$ with HBr, or $RhBr_6^{3-}$ with HCl. Individual isomers have been identified in solution by ¹⁰³Rh NMR, which can even distinguish between stereoisomers (Figure 2.2) and shows isotopic splitting (Figure 2.3).

Figure 2.2 ¹⁰³Rh NMR spectrum of mixtures of $[RhCl_n Br_{6-n}]^{3-}$ species (n = 0-6); a denotes cis, fac-isomer, b denotes trans,mer-isomer). (a-d) are varying Cl:Br ratios in the starting material. (Reproduced with permission from Z. Naturforsch., Teil B, 1989, 44, 1402.)

Figure 2.3 ¹⁰³Rh NMR spectrum of mixtures of $[Rh^{35}Cl_n^{37}Cl_{6-n}]^{3-}$ species (n = 2-6). (Reproduced with permission from Z. Naturforsch., Teil B, 1989, 44, 1402.)

The series $[IrX_{6-x}Cl_x]^{2-}$ have likewise been made, as have the free acids $(H_3O)_2IrX_6$ (X = Cl, Br).

Various dinuclear complexes exist

$$A_3RhCl_6 \xrightarrow{H_2O} A_2RhCl_5(H_2O) \xrightarrow{heat} A_3Rh_2Cl_9$$

(A = alkali metal)

$$2RhX_6^{3-} + 6Bu_4N^+ \xrightarrow[(X=Cl,Br)]{CH_2Cl_2} (Bu_4N)_3Rh_2X_9 + 3Bu_4NX$$

In the latter example, the ligand abstraction is favoured by the non-polar solvent CH_2Cl_2 . IR spectra distinguish between the bridging and terminal groups; thus in $Cs_3Rh_2X_9$, terminal Rh–X stretching vibrations occur in the regions $342-361 \text{ cm}^{-1}$ (X = Cl) and $252-272 \text{ cm}^{-1}$ (X = Br) with bridging Rh–X vibrations in the regions $267-302 \text{ cm}^{-1}$ (X = Cl) and $171-195 \text{ cm}^{-1}$ (X = Br) [29].

2.4 Oxides, hydrides and other binary compounds

Both rhodium and iridium form the oxides M_2O_3 and MO_2 [30]. Heating

rhodium in air or oxygen (300–1000°C) yields brown Rh_2O_3 , also obtained by heating rhodium nitrate at 730°C.

 $4Rh(NO_3)_3.6H_2O \rightarrow 2Rh_2O_3 + 12NO_2 + 3O_2 + 24H_2O$

It exists in two stable forms, of which the α -form has the corundum (α -Al₂O₃) structure with octahedrally coordinated rhodium (Rh–O 2.03–2.07 Å); the β -form and a high-temperature form also have octahedral coordination. Black RhO₂ has the rutile structure (Rh–O 1.95–1.97 Å) and is best made by heating rhodium or Rh₂O₃ at 400–900°C under oxygen pressures up to 3500 atm.

 Ir_2O_3 can be made by heating K_2IrCl_6 with Na_2CO_3 ; it is a (impure) brown solid about which little is known. Like RhO₂, IrO_2 also has the rutile structure. It is obtained by heating the metal in oxygen or by dehydrating the hydrated oxide precipitated on hydrolysis of $Ir^{4+}(aq.)$

The oxides decompose on heating:

$$2Ir_{2}O_{3} \xrightarrow{500^{\circ}C} Ir + 3IrO_{2}$$
$$IrO_{2} \xrightarrow{1100^{\circ}C} Ir + O_{2}$$
$$4RhO_{2} \xrightarrow{680^{\circ}C} 2Rh_{2}O_{3} + O_{2}.2Rh_{2}O_{3} \xrightarrow{1050^{\circ}C} 4Rh + 3O_{2}$$

Rhodium(III) hydroxide is an ill-defined compound Rh(OH)₃.*n*H₂O ($n \sim 3$) obtained as a yellow precipitate by careful addition of alkali to Na₃RhCl₆. Addition of imidazole solution to suitable aqua ions leads to the precipitation of 'active' rhodium(III) hydroxides formulated as Rh(OH)₃(H₂O)₃, Rh₂(μ -OH)₂(OH)₄(H₂O)₄ and Rh₃(μ -OH)₄(OH)₅(H₂O)₅ [31]. Hydrated iridium(III) hydroxide is obtained as a yellow precipitate from Ir³⁺ (aq.) at pH 8.

The metals form the usual wide range of binary compounds. Therefore, a range of sulphides and selenides are known, including MX_2 (M = Rh, Ir; X = S, Se, Te), M_3X_8 (X = S, Se), M_2S_3 and IrS₃. Of these, M_2S_3 is isostructural, containing pairs of face-sharing octahedra linked into a three-dimensional array by further sharing of sulphur. RhSe₂ and IrX₂ (X = S, Se) contain a special variety of the pyrite structure and are probably both represented as $M^{3+}X^{-1.5}(X_2^{3-})_{1/2}$ [32].

Other binary compounds include MAs_3 (M = Rh, Ir), which has the skutterudite (CoAs₃) structure [33] containing As₄ rectangular units and octahedrally coordinated M. The corresponding antimonides are similar. M_2P (M = Rh, Ir) has the anti-fluorite structure while MP₃ has the CoAs₃ structure. In another compound of this stoichiometry, IrSi₃, 9-coordination exists for iridium.

No binary hydrides have been characterized, but reactions of the metal powders with alkali metal hydrides in a hydrogen atmosphere lead to Li_3RhH_4 (planar RhH_4^{3-}) and M_3MH_6 (M = Li, Na; M = Rh, Ir) with octahedral MH_6^{3-} [34].

2.5 Aqua ions and simple salts

Aqua ions and simple salts have been thoroughly investigated recently [35]. Rhodium perchlorate, Rh(ClO₄)₃.6H₂O, can be made as yellow crystals by dissolving rhodium hydroxide in perchloric acid or alternatively by repeatedly heating hydrated rhodium chloride with perchloric acid. (Equilibrium is only slowly established and oligomers persist in quite acid solutions.) It contains slightly distorted Rh(H₂O)₆³⁺ octahedra (Rh–O 2.128–2.136 Å); the Rh–O bonds may be lengthened slightly compared with the alum by hydrogen bonding to perchlorate ions. Solutions of iridium(III) perchlorate have been made by hydrolysis of (NH₄)₂IrCl₆, reacting the hydrolysis product with HClO₄ and then removing polymeric species by ion exchange. The alums also contain the hexaqua ion:

$$M(OH)_3 \xrightarrow{H_2SO_4} M_2(SO_4)_3(aq.) \xrightarrow{Cs_2SO_4} CsM(SO_4)_2.12H_2O$$

M–O bond lengths are 2.016Å (Rh) and 2.041Å (Ir), the former corresponds well to the value of 2.04Å deduced from X-ray studies on aqueous solutions of $Rh(H_2O)_6^{3+}$ [36].

Rh(H₂O)³⁺₆ is quite acidic (pK_a = 3.4 at 25°C). Spectroscopic study of crystals of the alums at 80 K leads to the assignment of ν_1 (A_{1g}) in M(OH₂)³⁺₆ to bands at 548 cm⁻¹ (Rh) and 553 cm⁻¹ (Ir); in solution at room temperature they are found at 529 and 536 cm⁻¹, respectively.

Brown rhodium nitrate is reportedly formed from the reaction of RhI_3 with boiling nitric acid; it forms a hexahydrate.

The rhodium(II) aqua ion is not yet completely characterized. Cr^{2+} reduction of $Rh(H_2O)_5Cl^{2+}$ gives a diamagnetic species believed to be Rh_2^{4+} (aq.) [37], which may have the structure $(H_2O)_4Rh(\mu-OH_2)_2Rh(H_2O)_4^{4+}$.

In addition to the aqua ion, a range of mixed aquo-halo complexes are known [38], including all 10 isomers of $Rh(H_2O)_{6-x}Cl_x^{(3-x)+}$. Synthetic entry into the series is possible from either end, the determining factor being the labilizing effect of chloride:

$$Rh(H_{2}O)_{6}^{3+} \xrightarrow{Cl^{-}} RhCl(H_{2}O)_{5}^{2+} \xrightarrow{Cl^{-}} trans-RhCl_{2}(H_{2}O)_{4}^{+}$$

$$\xrightarrow{Cl^{-}} mer-RhCl_{3}(H_{2}O)_{3}$$

$$RhCl_{6}^{3-} \xrightarrow{H_{2}O} RhCl_{5}(H_{2}O)^{2-} \xrightarrow{H_{2}O} cis-RhCl_{4}(H_{2}O)^{-}$$

$$\xrightarrow{H_{2}O} fac-RhCl_{3}(H_{2}O)_{3}$$

This affects both the position of substitution and the rate; thus $RhCl(H_2O)_5^{2+}$ substitutes more than an order of magnitude faster than $Rh(H_2O)_6^{3+}$. These substitutions are all believed to follow a dissociative (S_N1) reaction. Particular compounds can sometimes be obtained under specific conditions;

thus recrystallizing a $RhCl_6^{3-}$ salt generally affords the corresponding $RhCl_5(H_2O)^{2-}$ species. Usually a mixture is formed, needing to be separated by ion-exchange: on refluxing $Rh(H_2O)_6(ClO_4)_3$ in 0.5 M HCl for 6–8 h, mer-RhCl_3(H_2O)_3 is the dominant product, while 15 min reflux of K₃RhCl₆ in dilute HClO₄ gives principally fac-RhCl_3(H_2O)_3. Individual species afford separate peaks in their electronic and vibrational spectra but in a mixture these will tend to overlap. However, separate signals can be seen in the ¹⁰³Rh NMR spectrum of such a mixture, it is even possible to discern isotopic splitting (see also Figure 2.3) [39].

Similar studies have been carried out on the corresponding bromides. Some structures have been determined; in Me_4N^+ [trans-RhCl₄(H₂O)₂]⁻, Rh–O is 2.032 Å while Rh–Cl distances average 2.33 Å. (NH₄)₂RhCl₅(H₂O) has Rh–O of 2.090 Å, *cis*-Rh–Cl distances average 2.347 Å while Rh–Cl trans to O is 2.304 Å (trans-influence of Cl); in the corresponding Cs salt, these distances are 2.096, 2.337 and 2.300 Å, respectively [40]. In trans-[Ir(H₂O)₄Cl₂]⁺, Ir–Cl is 2.350 Å and Ir–O 2.039–2.048 Å.

2.6 Compounds of rhodium(0)

The best defined rhodium(0) compound [41] is diamagnetic $Rh_2(PF_3)_8$

$$\operatorname{RhCl}_3 \xrightarrow{\operatorname{PF}_3/\operatorname{Cu}} \operatorname{Rh}_2(\operatorname{PF}_3)_8$$

It is believed to be metal-metal bonded $(PF_3)_4Rh-Rh(PF_3)_4$ and readily reacts with hydrogen

$$Rh_2(PF_3)_8 + H_2 \rightarrow 2RhH(PF_3)_4$$

Electrochemical reduction in MeCN of various $RhCl(R_3P)_3$ complexes give the diamagnetic $Rh(R_3P)_4$ ($R_3P = Ph_3P$, Me_2PhP), which are probably analogous to the PF₃ complex.

2.7 Compounds of rhodium(I)

Many important compounds are found in the +1 oxidation state [42], though unlike rhodium(III) it has no aqueous chemistry. Rhodium(I) generally forms 4-coordinate square planar and 5-coordinate species, the latter being the highest CN expected for the d⁸ configuration under the 18-electron rule. (An octahedral rhodium(I) complex would involve putting two electrons in an anti-bonding orbital, as well as more steric crowding.)

2.7.1 Tertiary phosphine complexes

Tertiary phosphine complexes [42] are the most important rhodium(I) compounds. RhCl(PPh₃)₃ ('Wilkinson's compound'), a hydrogenation catalyst, is the most important, but they exist in a range of stoichiometries. Synthesis follows several routes:

1. Substitution in rhodium(I) alkene complexes

$$\begin{array}{l} RhCl_{3}.3H_{2}O \xrightarrow{C_{2}H_{4}} [RhCl(C_{2}H_{4})_{2}]_{2} \xrightarrow{PR_{3}} RhCl(PR_{3})_{3} \qquad (R = alkyl) \\ RhF(C_{8}H_{12})_{2} \xrightarrow{Pcy_{3}} RhF(Pcy_{3})_{2} \xrightarrow{NaX} RhX(Pcy_{3})_{2} \\ [RhCl(C_{8}H_{12})_{2}]_{2} \xrightarrow{P(OMe)_{3}} [RhCl\{P(OMe)_{3}\}_{2}]_{2} \end{array}$$

2. Displacement of CO, only possible with strong π -acids

$$[\mathbf{RhCl}(\mathbf{CO})_2]_2 \xrightarrow{\mathbf{PF}_3} [\mathbf{RhCl}(\mathbf{PF}_3)_2]_2$$

3. Substitution of other phosphines

$$RhCl(PPh_3)_3 \xrightarrow{exc.}{PMe_3} [Rh(PMe_3)_4]^+ Cl^-$$

4. Reduction using certain arylphosphines as reducing agents

$$RhCl_{3}.3H_{2}O \xrightarrow[EtOH/boil]{exc. PPh_{3}} RhCl(PPh_{3})_{3}$$

2:1 complexes

The intensely reactive $RhX(Pcy_3)_2$ complexes are probably monomers; they bind both N₂ and SO₂ [43a], but most $RhX(PR_3)_2$ systems are dimers (R = Ph, X = Cl, OH; X-ray [43b]) (Figure 2.4)

$$[RhCl(PPr_3^{l})_2]_2 + 2L \rightarrow 2RhClL(PPr_3^{l})_2 \qquad (L = H_2, CO, Bu^{t}NC)$$

where the bridge can be cleaved

$$[RhCl(PPh_3)_2]_2 + 2PPh_3 \rightarrow 2RhCl(PPh_3)_3$$

	R ₃ P R ₃ P	X PR	3
x	Rh-X	Rh–P	Rh-Rh
Cl OH	2.40 2.06	2.200-2.213 2.185-2.207	3.662 3.278

Figure 2.4 Bond lengths in $[Rh(PPh_3)_2X]_2$ dimers.

Figure 2.5 Bond lengths in $Rh(X)Cl(PPh_3)_2$ (X = CO, PPh₃).

3:1 complexes

A wide range of $RhX(QR_3)_3$ complexes exist (QR₃, e.g. PMe₃, PMe₂Ph, PPh₃, AsPh₃, etc.), generally made by replacing alkenes. Red RhCl(PPh₃)₃ [44] is made by an unusual route

$$RhCl_3 + 4PPh_3 \xrightarrow{reflux}{EtOH} RhCl(PPh_3)_3 + Ph_3PO$$

The ability of triphenylphosphine to act as a reducing agent probably involves initial formation of Ph_3PCl_2 , which then undergoes solvolysis. If the synthesis is carried out using a small volume of ethanol, an orange polymorph is formed [45].

The crystal structures of both forms of RhCl(PPh₃)₃ show square planar coordination geometry (with a slight tetrahedral distortion). The mutually *trans* Rh-P bonds are similar to those in the less congested RhCl(CO)(PPh₃)₂, suggesting that steric crowding is not responsible for this distortion, which is also found in RhCl(PMe₃)₃ (Figure 2.5).

There are, however, short Rh-H contacts (2.77-2.84 Å) to *ortho*hydrogens in phenyl groups. The Rh-P bond *trans* to Cl is some 0.1 Å shorter than the others, evidence of the weak *trans*-influence of chloride [46].

The 31 P NMR spectrum in solution [47] is in accordance with a square planar structure (Figure 2.6).

It shows a doublet of doublets owing to the pair of equivalent phosphorus nuclei, the signal being split by coupling to 103 Rh $(I = \frac{1}{2})$ and to the unique phosphorus; similarly the resonance owing to the third phosphorus shows coupling to two equivalent phosphorus nuclei, the resulting triplet being

Figure 2.6 The ³¹P NMR spectrum of RhCl(PPh₃)₃ at 30°C in C₆H₆ solution. (Reprinted with permission from *J. Am. Chem. Soc.*, 1972, 94, 340. Copyright (1972) American Chemical Society.)

Figure 2.7 The solid-state ³¹P NMR spectrum of RhCl(PPh₃)₃. (Reprinted with permission from Organometallics, 1992, 11, 3240. Copyright (1992) American Chemical Society.)

split by coupling to rhodium. The solid-state ${}^{31}P$ NMR spectrum (Figure 2.7) is composed of a low-field cluster owing to the unique phosphorus split by coupling with rhodium (*cis*-P-P coupling is too small to be resolved); the multiplet has been analysed as the AB part of an ABX system, showing the two *trans*-phosphines are non-equivalent in the solid state.

RhCl(PPh₃)₃ is an air-stable solid (m.p. 157°C) soluble in a wide range of organic solvents with little dissociation of ligands. It does react readily with dioxygen in solution [48] forming a number of O_2 adducts (Figure 2.8); the consequent dissociation of PPh₃ is probably the reason why molecular weight measurements in incompletely deoxygenated solvents have implied

Figure 2.8 Rhodium dioxygen complexes.

dissociation for $RhCl(PPh_3)_3$. (It is notable that the isoelectronic 16-electron $Pt(PPh_3)_3$ shows no significant dissociation in solution.)

 $RhCl(PPh_3)_3$ is a very active homogenous hydrogenation catalyst, because of its readiness to engage in oxidative addition reactions with molecules like H_2 , forming Rh-H bonds of moderate strength that can subsequently be broken to allow hydride transfer to the alkene substrate. A further factor is the lability of the bulky triphenylphosphines that creates coordinative unsaturation necessary to bind the substrate molecules [44].

Reactions of RhCl(PPh₃)₃ can be divided into three classes (Figure 2.9)

- 1. oxidative addition (usually involving partial loss of PPh₃)
- 2. halide substitution
- 3. substitution of PPh₃ ligands (whole or partial).

In class (1), a range of small molecules adds to rhodium, usually with the loss of one PPh₃, thus maintaining the 16-electron configuration, rather than an 18-electron species unable to bind a substrate.

The reversible addition of hydrogen is the most significant of these reactions. In the presence of excess PPh₃, $RhH_2Cl(PPh_3)_3$ is formed, but generally the 5-coordinate $RhHCl_2(PPh_3)_2$ is obtained. Chlorine and HCl likewise add with fission of the X-Cl bond and loss of one PPh₃; $RhHCl_2(PPh_3)_2$ will insert ethene to form an ethyl complex.

 $Rh(NR_2)(PPh_3)_2$ (R = Me₃Si)

Figure 2.9 Synthesis and reactions of RhCl(PPh₃)₃.

The reaction with MeI proceeds in two stages. Initial reaction is oxidative addition to give a rhodium(III) species, isolated as a MeI adduct

$$RhCl(PPh_3)_3 + 2MeI \rightarrow RhClIMe(PPh_3)_2MeI + PPh_3$$

This then eliminates MeCl on recrystallization from benzene

 $RhClIMe(PPh_3)_2(MeI) \rightarrow MeCl + RhI_2(Me)(PPh_3)_2$

Replacement reactions frequently involve a simple substitution of halide by an anionic ligand (e.g. N₃, NCO, S₂CNR₂). While chloride can be replaced by bis(trimethylsilyl)amide, N(SiMe₃)₂, most alkylamides are unstable to α hydride elimination, forming the hydride RhH(PPh₃)₃ [49] (which is also obtained in the attempted preparation of Rh(CH₂CH₂Me)((PPh₃)₃). The hydride ligand can be identified in the ¹H NMR spectrum of RhH(PPh₃)₃ by its high-field line (doublet, $\delta = -8.3$ ppm, J(Rh-H) = 12.4 Hz). The ³¹P NMR spectrum at room temperature is a doublet (J(Rh-P) 164 Hz) but on cooling a fluxional process slows down and the spectrum converts into a double doublet and a double triplet (Figure 2.10) that overlap slightly.

The double triplet results from the unique phosphorus, split into a triplet by interaction with two equivalent phosphorus atoms (J(P-P) 25 Hz) then split into a doublet by rhodium (J(Rh-P) 145 Hz).

The double doublet corresponds to P_B , with splitting owing to phosphorus A (*cis*) (J(P-P) 25 Hz) and rhodium (J(Rh-P) 172 Hz). The fluxional behaviour is consistent with a rapidly rearranging (at room temperature) square planar structure rather than a tetrahedral one (Figure 2.11).

Determination of this crystal structure of the complex did not locate the hydride ligand but its position can be deduced from the distortion from

Figure 2.10 ³¹P NMR spectrum of RhH(PPh₃)₃. (Reprinted with permission *Inorg. Chem.*, 1978, 17, 3066. Copyright (1978) American Chemical Society.)

Figure 2.11 Bond lengths in RhH(PPh₃)₃ (hydride not shown).

regular trigonal geometry and the lengthened Rh-P bond *trans* to hydride. (RhH(PPh₃)₄, however, has a regular RhP_4 core so that here hydride has no stereochemical influence.)

Alkylation of RhCl(PPh₃)₃ yields unstable alkyls that undergo CO_2 insertion; Rh(OCOPh)(PPh₃)₃ has monodentate benzoate (X-ray).

Halide abstraction in donor solvents (with e.g. TlClO₄) affords [50] pseudo-tetrahedral [Rh(solvent)(PPh₃)₃]⁺ ions (solvent, e.g. MeCN, Me₂CO, ROH) (Figure 2.12), which on recrystallization from CH₂Cl₂ gives Rh(PPh₃)₃⁺ClO₄⁻ (Figure 2.13) [51].

This has a distorted trigonal planar (nearly T-shaped) geometry with weak Rh–C and Rh–H interactions owing to the close approach of a phenyl group (Rh–H 2.56 Å, Rh–C 2.48 Å) supplementing the three Rh–P bonds in what is formally a 14-electron species. This ion is also formed by protonation of RhH(PPh₃)₄ (note the hydride ligand behaving as H⁻).

$$RhH(PPh_{3})_{4} \xrightarrow{H_{2}C(SO_{2}CF_{3})_{2}} [Rh(PPh_{3})_{3}]^{+}HC(SO_{2}CF_{3})_{2}^{-} + H_{2} + PPh_{3}$$

Figure 2.12 Bond lengths in $[Rh(MeCN)(PPh_3)_3]^+$.

Figure 2.13 Bond lengths in $[Rh(PPh_3)_3]^+ClO_4^-$ showing short Rh-H and R-C contacts. a = 2.56 Å; b = 2.48 Å.

³¹P NMR spectra indicate the T-shape geometry is retained in solution at -30° C but that the molecule is fluxional at room temperature. Rh(PPh₃)⁺₃ undergoes a range of addition reactions with Lewis bases (CO, PF₃, NH₃) to afford various 16- and 18-electron species (Figure 2.14).

Substitution reactions of RhCl(PPh₃)₃ where PPh₃ is completely displaced are relatively rare, though this is achieved with PMe₃, affording Rh(PMe₃)₃Cl and Rh(PMe₃)₄⁺Cl⁻. More usually, as with CO, DMSO and C₂H₄, one phosphine is displaced; indeed the stability of *trans*-RhCl(CO)(PPh₃)₂ is such that aldehydes are decarbonylated by RhCl(PPh₃)₃. The reaction with CS₂ to give the analogous RhCl(CS)(PPh₃)₂ is more complicated than was first believed. If the reaction is carried out in neat CS₂, an intermediate species RhCl(η^1 -SCS)(η^2 -CS₂)(PPh₃)₂ is isolated, which readily decomposes in more polar solvents (CHCl₃, MeOH) forming RhCl(CS)(PPh₃)₂ (for its structure, see section 2.7.2).

 $RhCl(PPh_3)_3$ as a homogenous hydrogenation catalyst [44, 45, 52]. The mechanism of this reaction has been the source of controversy for many years. One interpretation of the catalytic cycle is shown in Figure 2.15; this concentrates on a route where hydride coordination occurs first, rather than alkene coordination, and in which dimeric species are unimportant. (Recent NMR study indicates the presence of binuclear dihydrides in low amount in the catalyst system [47].)

The initial catalytic step involves reversible binding of H₂ to afford a rather crowded 18-electron species RhH₂Cl(PPh₃)₃. The ³¹P NMR spectrum at -25° C it consists of a doublet of doublets owing to the *trans* phosphorus atoms (P_A) and a doublet of triplets owing to the unique phosphorus (P_B) (Figure 2.15) [47]. On warming to room temperature, broadening occurs as a result of phosphine ligand exchange; the loss of the couplings involving P_B shows that this is the phosphine dissociating, forming a 16-electron species RhH₂Cl(PPh₃)₂ that can bind an alkene (again affording an 18-electron species). This dihydride can now transfer the hydrogens to the unsaturated linkage (any alkyl intermediate is presumably shortlived as spectroscopic measurements have failed to detect them); addition is stereospecifically *cis*. Once the alkane is eliminated, the resulting coordinatively unsaturated 14electron RhCl(PPh₃)₂ can rapidly undergo oxidative addition with H₂ to regenerate the dihydride intermediate.

Figure 2.15 Cycle for the hydrogenation of alkenes catalysed by RhCl(PPh₃)₃.

Because the unsaturated hydrocarbon has to bind to rhodium in the presence of bulky PPh₃ groups, the catalyst favours unsubstituted double bonds (RCH=CH₂ rather than RR^IC=CR^{II}R^{III}). Since the alkyl intermediate is shortlived, there is little tendency to β -elimination with concomitant alkene isomerization. Although both alkene and alkyne functions are reduced, in general carbonyl or carboxylic groups and benzene rings are not, though aldehydes are frequently decarbonylated. Peroxides tend to oxidize and thus destroy the catalyst, so that substrates need to be purified carefully before use.

An example of a rhodium(I) complex with a tridentate phosphine is shown in Figure 2.16; it is formed by the usual route, reaction of the phosphine with $[RhCl(cycloocta-1.5-diene)]_2$.

Figure 2.16 Bond lengths in a rhodium(I) complex of a tridentate phosphine compared with those in RhCl(PPh₃)₃.

It has an approximately square planar geometry, with bond lengths very similar to $RhCl(PPh_3)_3$ (Figure 2.5); like the latter, it undergoes a range of addition reactions, some involving no formal change in oxidation state, others a change to rhodium(III) species (Figure 2.17).

These are generally analogous to those of Wilkinson's compound, with the important difference that ligand dissociation cannot occur, so that the product of oxidative addition with H_2 cannot have a vacant site to bind an alkene and will thus not act as a hydrogenation catalyst [53].

4:1 complexes

The 4:1 complexes tend to be formed only by less bulky phosphines and even then tend to be coordinatively saturated.

$$\operatorname{RhCl}(\operatorname{PPh}_3)_3 \xrightarrow[X^-]{\operatorname{PR}_3} \operatorname{Rh}(\operatorname{PR}_3)_4^+ X^- \quad (X, e.g. \operatorname{PF}_6, \operatorname{BF}_4; \operatorname{PR}_3 = \operatorname{PMe}_3, \operatorname{PHPh}_2)$$

Related compounds occur with bidentate phosphines

$$[\operatorname{RhCl}(\operatorname{cod})]_2 \xrightarrow[X^-]{\operatorname{diphos}} \operatorname{Rh}(\operatorname{diphos})_2^+ X^-$$

 $(cod = cycloocta-1.5-diene; diphos = Ph_2P(CH_2)_2PPh_2, Me_2P(CH_2)_2PMe_2).$

 $Rh(Ph_2P(CH_2)_2PPh_2)_2^+ClO_4^-$ has essentially square planar coordination of rhodium (Rh-P 2.289-2.313 Å) [54].

Figure 2.17 Reactions of the rhodium(I) complex of a tridentate phosphine.

5:1 complexes

Few of the 5:1 complexes [55] have been prepared, all with trialkylphosphites

$$[RhCl(cod)]_2 \xrightarrow{P(OR)_3} {\{Rh[P(OR)_3]_5\}}^+ X^-$$

 $(X = BPh_4, PF_6; R = Me, Et, Bu).$

2.7.2 Carbonyl complexes

Three of the rhodium(I) carbonyl complexes are particularly important and are selected for special study.

$[RhCl(CO)_2]_2$

Reduction of hydrated $RhCl_3$ with CO at 100°C (best results are with CO saturated with methanol or ethanol) yields volatile red crystals of the dimer

$$RhCl_3.3H_2O \xrightarrow[100^{\circ}C]{CO} [RhCl(CO)_2]_2$$

This has been shown to have an unusual dimeric structure (Figure 2.18) in which the two planar units are at an angle of 124° [56a].

The Rh-Rh distance is 3.12 Å, long compared with Rh-Rh single bonds (2.624 Å in Rh₂(MeCN)⁴⁺₁₀, 2.73 Å in Rh₄(CO)₁₂); there is a weaker (3.31 Å) intermolecular attraction. Dipole moment and IR studies indicate that the structure is retained in solution and is, therefore, a consequence of electronic rather than solid-state packing effects. Furthermore, it is found for some other (but not all) [RhCl(alkene)₂]₂ and [RhCl(CO)(PR₃)]₂ systems. SCF MO calculations indicate that bending favours a Rh-Cl bonding interaction which also includes a contribution from Rh-Rh bonding [56b].

 $[RhCl(CO)_2]_2$ undergoes a range of reactions (Figure 2.19) generally involving bridge cleavage and is, therefore, a useful starting material.

 $RhH(CO)(PPh_3)_3$ RhH(CO)(PPh_3)_3 [57] is most conveniently prepared by

$$RhCl(CO)(PPh_3)_2 \xrightarrow[EtOH]{N_2H_4} RhH(CO)(PPh_3)_3$$

Figure 2.18 The structure of [RhCl(CO)₂]₂.

Figure 2.19 Reactions of [RhCl(CO)₂]₂.

It shows $\nu(Rh-H)$ and $\nu(C-O)$ at 2041 and 1918 cm⁻¹, respectively, in the IR spectrum (Nujol) and the low-frequency hydride resonance at $\delta = -9.30$ ppm in the ¹H NMR spectrum. It has a tbp structure (Figure 2.20) with the rhodium displaced out of the P₃ plane by 0.36 Å towards the CO.

It is an 18-electron species but in solution it tends to lose one PPh₃ to give RhH(CO)(PPh₃)₂, an active catalyst for hydroformylation and, to a lesser extent, hydrogenation of alkenes. (Evidence for the dissociation includes the fact that in the presence of other phosphines, mixed species RhH(CO)(PPh₃)₂(PR₃) are formed by scrambling.) Initial coordination of the alkene is, in the absence of added CO, followed by hydrogenation (presumably via coordination of H₂ and an alkyl (intermediate)). Under a pressure of CO, hydroformylation occurs, with a high stereoselectivity in favour of straight-chain aldehydes, especially in the presence of added PPh₃. This supports the involvement of a crowded species (Figure 2.21) as the intermediate [58].

This process has been used commercially at the 100 kilotonne per year level running at around $100^{\circ}C/20$ atm.

Figure 2.20 The structure of RhH(CO)(PPh₃)₃.

Figure 2.21 Probable structure of the intermediate in alkene hydroformylation catalysed by $RhH(CO)(PPh_3)_3$.

trans- $RhCl(CO)(PPh_3)_2$ and related compounds

trans-RhCl(CO)(PPh₃)₂ [59] is the rhodium analogue of 'Vaska's compound' (section 2.10.2) and undergoes analogous oxidative addition reactions. It is a yellow solid (IR ν (C-O) 1980 cm⁻¹ (CHCl₃)) conveniently obtained by the following route using methanal as the source of the carbonyl group.

$$RhCl_3 \xrightarrow{PPh_3/HCHO} RhCl(CO)(PPh_3)_2$$

The *trans*-geometry (confirmed by X-ray) keeps the bulky PPh₃ groups as far apart as possible (Figure 2.22).

Other $RhX(CO)(PPh_3)_2$ compounds can be made as shown in Figure 2.23; metathesis with an alkali metal halide or pseudohalide is often convenient, but the most versatile route, as with the iridium analogues, is a two-stage process in which the fluoro complex is first prepared, the fluorine then being readily displaced.

Attempted synthesis of RhY(CO)(PPh₃)₂ in undried solvents (Y = a weakly coordinating anion, e.g. BF₄, ClO₄, SO₃CF₃) leads to $[Rh(H_2O)(CO)(PPh_3)_2]^+Y^-$. The water molecule is bound sufficiently strongly not to be displaced by alkenes (ethene, phenylethanol) but is removed by pyridine or CO (at 1 atm) yielding Rh(CO)₃(PPh₃)₂⁺.

Figure 2.22 Bond lengths in RhCl(CO)(PPh₃)₂, RhX(CQ)(PPh₃)₂] and [Rh(OH₂)(CO)(PPh₃)₂]⁺ as well as in the SO₂ adduct.

Figure 2.23 Reactions of RhCl(CO)(PPh₃)₂.

The mercapto complex $Rh(SH)(CO)(PPh_3)_2$ can be made by an unusual route [60] involving COS, where an intermediate with CS bound COS has been suggested.

$$RhH(PPh_{3})_{4} + COS \xrightarrow{\text{toluene}} Rh(\eta^{2}\text{-}COS)H(PPh_{3})_{3}$$
$$\rightarrow Rh(SH)(CO)(PPh_{3})_{2} + 2PPh_{3}$$

The ¹H NMR spectrum of Rh(SH)(CO)(PPh₃)₂ in the mercaptide region (Figure 2.24) shows a 1:2:1 triplet owing to coupling to two equivalent (mutually *trans*) phosphines (J(P–H) 18.1 Hz), each line split into a doublet by a weaker coupling to ¹⁰³Rh (J(Rh–H) 1.6 Hz).

Structures have been determined for a number of these compounds, showing that the Rh-P bonds are little affected by the *cis*-ligands (Figure 2.22). The shorter Rh-C distance in the thiocarbonyl is probably a result of greater Rh=C back-bonding. Addition of SO₂ results in the formation of a 5-coordinate (sp) adduct with the expected lengthening in all bonds.

Other RhCl(CO)(PR₃)₂ compounds (PR₃ = PEt₃, PBu₃, Palkyl₂Ph, PalkylPh₂, P(OR)₃, PBu^t₂ alkyl) have been synthesized by the general route

$$[Rh(CO)_2Cl]_2 + 4PR_3 \xrightarrow{MeOH} 2RhCl(CO)(PR_3)_2 + 2CO$$

Structures have been determined for $PR_3 = PMe_2Ph$ and PBu_3^t [61]. In the former, the square planar geometry is retained (with slightly shorter Rh-P bonds (2.316 Å) than for $PR_3 = PPh_3$), but in the latter, there is pronounced lengthening of the Rh-P bonds (Rh-Cl 2.395 Å, Rh-P 2.425-2.430 Å, Rh-C 1.784 Å) and a distortion towards a tetrahedral structure (P-Rh-P

Figure 2.24 NMR spectrum of Rh(SH)(CO)(PPh₃)₂ in the mercaptide region. (Reprinted with permission from *Inorg. Chem.*, 1982, 21, 2858. Copyright (1982) American Chemical Society.)

162.5°, C-Rh-Cl 150.7°) and some bending of the Rh-C-O bond (162.3°). Some short O-H and Cl-H intramolecular contacts may be responsible for the distortion though it has been suggested that in a distorted tetrahedral environment there may be an interaction between Rh d_{xz} electrons and the CO π^* -orbital causing bending.

Further evidence of steric crowding owing to bulky phosphines is found in RhCl(CO)(PBu₂^t alkyl)₂. Study of the ³¹P NMR spectra at low temperature, 'freezing in' the rotational conformers shows separate signals for each (Figure 2.25) [62].

RhCl(CO)(PR₃)₂ (R = Et, Me, Ph) and the corresponding iridium systems undergo UV photolysis with the loss of CO, generating short-lived RhCl(PR₃)₂ species that act as catalysts for alkane carbonylation. Thus photolysis for 16.5 h under 1 atm CO using RhCl(CO)(PMe₃)₂ in pentane gives 2725% hexanal with high regioselectivity (45:1 hexanal to 2-methylpentanal) [63].

The complexes $[RhCl(CO)(PR_3)]_2$ can exist as *cis*- and *trans*-isomers (Figure 2.26).

The *cis*-structure (like $[Rh(CO)_2Cl]_2$ folded, with an angle of 123°) has been confirmed for PMe₂Ph (X-ray) whereas the P(NMe₂)₃ analogue is *trans* (IR). Comparison of solid-state and solution IR spectra indicates that both isomers are present in solution (PR₃ = PMe₃, PMe₂Ph, P(NMe₂)₃) [64].

Anionic carbonyl complexes of both rhodium(I) and (III) are synthesized by decarbonylation of formic acid, with reduction to rhodium(I) occurring

Figure 2.25 ³¹P NMR spectrum of *trans*-RhCl(CO)(PBu₂^LEt)₂ at -60° C. The patterns ×, \bigcirc , \triangle correspond to the three conformers. (Reproduced with permission from *Chem. Comm.*, 1971, 1103.)

on extended reflux

$$RhX_{3} \xrightarrow{HCOOH} Rh(CO)X_{5}^{2-} \xrightarrow{HCOOH} Rh(CO)_{2}X_{2}^{-}$$

Such a complex, cis-Rh(CO)₂ I_2^- , is the active species in the Monsanto process for low-pressure carbonylation of methanol to ethanoic acid. The reaction is first order in iodomethane and in the rhodium catalyst; the rate-determining step is oxidative addition between these followed by

$$Rh(CO)_2I_2^- + MeI \Leftrightarrow Rh(CO)_2(Me)I_3^-$$

methyl migration generating (MeCO)Rh(CO)I₃⁻. This can then add CO, eliminate MeCOI (subsequently hydrolysed to the acid) and regenerate Rh(CO)₂I₂⁻.

Figure 2.26 Isomers of [RhCl(CO)(PR₃)]₂.

Figure 2.27 The structure of $[RhCl(C_2H_4)_2]_2$.

2.7.3 Alkene complexes

If ethene is bubbled through a methanolic solution of $RhCl_{3.3}H_2O$, redorange crystals of $[RhCl(C_2H_4)_2]_2$ precipitate in a redox reaction.

 $2RhCl_3 + 6C_2H_4 + 2H_2O \rightarrow [RhCl(C_2H_4)_2]_2 + 2MeCHO + 4HCl$

This has a 'folded' structure (Figure 2.27) similar to that of rhodium carbonyl chloride (Figure 2.18) with ethene acting as a two-electron donor, but ethene is more weakly held and readily displaced by CO and certain alkenes (e.g. cycloocta-1,5-diene).

Reaction under controlled conditions with tertiary phosphines leads to partial displacement of alkene retaining the dimeric structure [65].

Reaction of the dimer with Na(acac) leads to cleavage of the bridge giving yellow crystals of Rh(alkene)₂(acac):

$$[RhCl(C_2H_4)_2]_2 + 2Na(acac) \rightarrow 2NaCl + 2(C_2H_5)Rh(acac)$$

 C_2F_4 displaces one ethene to give $Rh(C_2H_4)(C_2F_4)(acac)$, as does hexafluorodewarbenzene, whereas other alkenes (e.g. propene, styrene, vinyl chloride) displace both ethenes. Comparison of the structures of two complexes (Figure 2.28) shows that the Rh-C bonds are shorter to tetrafluoroethene, because C_2F_4 is a better π -acceptor, with concomitant strengthening of the Rh-C bond.

NMR spectra show the ethene molecules to undergo a 'propeller' type rotation about the metal-alkene axis: the fluxionality is removed on cooling; such rotation is not observed with coordinated C_2F_4 , indicating a higher barrier to rotation, in keeping with the stronger Rh-C bonds [66].

Figure 2.28 The structures of $Rh(acac)(C_2H_4)_2$ and $Rh(acac)(C_2H_4)(C_2F_4)$.

Figure 2.29 The structure of RhBr((o-vinylphenyl)₃P). (Reproduced with permission from J. Chem. Soc., Dalton Trans., 1973, 2202.)

A number of tertiary phosphine ligands have been synthesized that also contain an alkene linkage capable of coordinating to a metal. A good example of this kind of coordination is formed in the complex of (tri-o-vinyl-phenyl)phosphine (Figure 2.29); with each alkene acting as a two-electron donor, a noble gas configuration is achieved [67].

2.7.4 Isocyanide complexes

Isocyanide complexes [68] can readily be prepared using excess isocyanide as the reducing agent:

$$[RhCl(CO)_2]_2 \xrightarrow[RNC]{exc.} Rh(RNC)_4^+ \xleftarrow[RNC]{exc.} RhCl_3.3H_2O$$

(R, e.g. alkyl, Ph)

In solution the compounds exhibit solvent-dependent colours; in dilute solution in non-polar solvents, planar monomers are present but in more concentrated solutions oligomerization occurs. In the solid state a dimeric structure has been identified (X-ray, Figure 2.30); with R = Ph there is a staggered configuration (Rh-Rh 3.193 Å) but with other isocyanides (R = 4-FC₆H₄) the configuration is eclipsed.

The weak Rh-Rh bond is taken to occur by d_{z^2} - d_{z^2} overlap.

Like other planar rhodium(I) complexes, $Rh(RNC)_4^+$ undergoes oxidative addition with halogens to form 18-electron rhodium(III) species and also add other small molecules (SO₂, NO⁺) (Figure 2.31).

Figure 2.30 The dimeric structure of $[Rh_2(PhNC)_8]^{2+}$ in the solid state.

$$Rh(RNC)_{4}(PPh_{3})^{+} \xrightarrow{PPh_{3}} Rh(RNC)_{4}^{+} \xrightarrow{NOBF_{4}} Rh(RNC)_{4}(NO)^{2+}$$
$$X_{2} \downarrow (X = Cl, Br, I)$$

<u>trans-Rh(RNC)₄X₂⁺</u>

Figure 2.31 Reactions of [Rh(RNC)₄]⁺.

2.8 Rhodium(II) complexes

Until recently, well-authenticated cases of the rhodium(II) oxidation state were rare, with the exception of the dinuclear carboxylates. They fall into two main classes, although there are other rhodium(II) complexes:

- 1. paramagnetic complexes $(4d^7)$ with bulky phosphines, usually of the type $Rh(PR_3)_2X_2$
- 2. diamagnetic dinuclear carboxylates, and related dimers.

2.8.1 Phosphine complexes

Reaction of $RhCl_3.3H_2O$ with bulky tertiary phosphines at room temperature or below generally leads to reduction to rhodium(II).

RhCl₃.3H₂O
$$\xrightarrow{PR_3}$$
 trans-RhCl₂(PR₃)₂

 $(\mathbf{PR}_3 = \mathbf{P}(o\text{-tolyl})_3, \mathbf{Pcy}_3, \mathbf{PBu}_2^t \mathbf{R}' \ (\mathbf{R}' = \mathbf{Me}, \mathbf{Et}, \mathbf{Pr}^n \text{ etc.}).$

Oxidative cleavage may be used

$$[\mathbf{RhX}(\mathbf{Pcy}_3)_2]_2 \xrightarrow{X_2} trans-\mathbf{RhX}_2(\mathbf{Pcy}_3)_2 \qquad (\mathbf{X} = \mathbf{Cl}, \mathbf{Br})$$

(Other syntheses are mentioned in section 2.9.5.)

These compounds are paramagnetic $(PR_3 = P(o-tolyl)_3, \mu_{eff} = 2.3 \mu_B;$ $PR_3 = Pcy_3, \mu = 2.24 \mu_B)$, deeply coloured (usually blue-green) and have IR spectra resembling those of *trans*-PdCl₂(PR₃)₂ systems. The structure has been determined for PR₃ = PPrⁱ₃ (Rh-P 2.366 Å, Rh-Cl 2.298 Å) [69]. A more unusual complex is formed by the very bulky tris(2,4,6-trimethoxy-phenyl)phosphine (tmpp) [70].

$$[Rh_2(MeCN)_{10}](BF_4)_4 \xrightarrow{tmpp} 2[Rh(tmmp)_2]^{2+} + 4BF_4^{-1}$$

The complex ion (Figure 2.32) contains Rh_2^+ bound *cis* to two phosphorus atoms (2.216 Å) and more distantly to four oxygens (2.201–2.398 Å), exhibiting a distortion ascribed to the Jahn–Teller effect; it is paramagnetic ($\mu = 1.80 \,\mu_B$) and exhibits an ESR spectrum (Figure 2.33) showing rhodium hyperfine coupling as the doublet for g_{ll}.

The complex reacts with CO reversibly via a series of redox reactions. Rh(TMPP)₂²⁺ forms adducts with bulky isocyanides RNC ($R = Bu^t$, Pr^i), retaining the +2 state but changing to a *trans*-geometry (Figure 2.34) with monodentate phosphines (and uncoordinated ethers) ($R = Bu^t$, $\mu_{eff} = 2.04 \,\mu_B$; $g_{\perp} = 2.45$, $g_{\parallel} = 1.96$).

2.8.2 Dimers

The second class of rhodium(II) complexes is the dimers [71]. The dimeric

Figure 2.32 The structure of $[Rh(tmpp)_2]^{2+}$. (Reprinted with permission from J. Am. Chem. Soc., 1991, 111, 5504. Copyright (1991) American Chemical Society.)

Figure 2.33 The ESR spectrum of $[Rh(tmpp)_2]^{2+}$ in $CH_2Cl_2/toluene$ at 8 K. (Reprinted with permission from *J. Am. Chem. Soc.*, 1991, 111, 5504. Copyright (1991) American Chemical Society.)

acetate can conveniently be prepared as a green methanol solvate:

$$RhCl_3.xH_2O \xrightarrow{MeCOOH/MeCOONa}{MeCH reflux} Rh_2(OCOMe)_4.2MeOH$$

The methanol can be removed by heating gently *in vacuo*. Similar compounds can be made with other carboxylate groups, either by using this method or by heating the acetate with excess carboxylic acid. Treatment of the anhydrous carboxylate with various neutral ligands (L) or anionic donors (X⁻) forms $Rh_2(OCOR)_4L_2$ and $[Rh_2(OCOR)_4X_2]^{2-}$, respectively. The colour of the adduct depends on the donor atom in L (or X):

blue to green: oxygen pink to red: nitrogen orange to brown-red: phosphorus or sulphur.

These compounds all have the 'lantern' structure shown in Figure 2.35.

$$B_{u}^{t}NC - Rh - CNBu^{t} \qquad R = 2,4,6-(MeO)_{3}C_{6}H_{2}$$

Figure 2.34 Isocyanide adducts of $[Rh(tmpp)_2]^{2+}$.

Figure 2.35 The 'lantern' structure adopted by dimeric rhodium(II) carboxylates.

Structural data for many carboxylates (Table 2.3) consistently show the presence of a metal-metal bond around 2.4 Å, shorter than that in rhodium metal (2.7 Å).

There is a slight dependence on the nature of the carboxylate group and upon the axial ligand, but they are not imposed by the steric requirements of the carboxylates. Some points are germane to this:

1. Adducts are formed with hard and soft donors, including π -acids such as CO, PF₃ and PPh₃. DMSO bonds through S for R = Me and Et, but through O when R = CF₃.

(a) $Rh_2(OCOMe$	$()_4 L_2$	
L	Rh-Rh	Rh-L
MeOH	2.377	2.286
MeCN	2.384	2.254
H ₂ O	2.3855	2.310
py	2.399	2.227
Me ₂ SO	2.406	2.451
$P(OMe)_3$	2.4556	2.437
$P(OPh)_3$	2.445	2.418
PPh ₃	2.4505	2.477
PF ₃	2.4215	2.340
CO	2.4193	2.091
Cl-	2.3959	2.585
PhSH	2.4024	2.548
AsPh ₃	2.427	2.576
(b) $Rh_2(OCOR)$	4(H ₂ O) ₂	
R	Rh-Rh	Rh-OH ₂
Me	2.3855	2.310
CMe ₂	2.371	2.295
CF ₃	2.394	2.243

Table 2.3 Bond lengths in rhodium(II) carboxylates (Å)

- 2. The long Rh-P bonds in the tertiary phosphine adducts show little dependence upon the tertiary phosphine and are interpreted in terms of a largely σ -component in the Rh-P bond; they are also affected by the strong *trans*-influence of the Rh-Rh bond.
- ESCA data support a rhodium(II) oxidation state in these compounds. Therefore, the Rh 3d_{5/2} binding energy is c. 309.2 eV in simple carboxylates, midway between those in typical rhodium(I) complexes (c. 308.5 eV) and rhodium(III) complexes (c. 310.7 eV) [72].
- 4. The diamagnetism of all these rhodium(II) compounds indicates spin pairing via a metal-metal bond.
- 5. The lantern structure is quite stable, unlike certain other Rh_2 dimers. Protonation was formerly claimed to give ' Rh_2^{4+} ' aqua ions, but they are believed now to be $[Rh_2(OCOMe)_3]^+$ (aq.) and $[Rh_2(OCOMe)_2]^{2+}$ (aq.) [73].
- 6. One-electron oxidation to $[Rh_2(OCOMe)_4(H_2O)_2]^+$ leads to an ion (violet to orange, depending on solvent) with a shorter Rh-Rh bond (2.317 Å) than that in the neutral molecule (2.385 Å), suggesting the electron has been removed from an orbital with anti-bonding character.

Unsolvated $[Rh_2(OCOR)_4]_2$ can be obtained by sublimation. The 'lantern' structure is retained with the axial position occupied by oxygens from neighbouring dimer units. The presence of axial ligands has little effect on the Rh-Rh bond; therefore, in $[Rh_2(OCOCF_3)_4]$ Rh-Rh is 2.382 Å compared with 2.394 Å in $[Rh_2(OCOCF_3)_4(H_2O_2)]$ and 2.418 Å in $Rh_2(OCOCF_3)_4$ (MeCN)₂ [74].

The assignment of the Rh–Rh stretching frequency in the vibrational spectra of these compounds has been controversial for some 20 years, with ν (Rh–Rh) assigned variously to bands in the 150–170 and 280–350 cm⁻¹ regions. Recent resonance Raman studies (Figure 2.36) exciting the metal-based $\sigma \rightarrow \sigma^*$ transition in Rh₂(OCOMe)₄(PPh₃)₂ showed enhancement of the symmetric stretching mode, at 289 cm⁻¹.

Isotopic (²H, ¹⁸O) labelling of the carboxylate groups has virtually no effect, as expected, on this band but produces shifts of $6-14 \text{ cm}^{-1}$ in bands at 321 and 338 cm⁻¹, showing them to arise from Rh–O stretching [75].

Complexes of thiocarboxylic acids, $Rh_2(SCOR)_4L_2$, similarly adopt the 'lantern' structure. Rh-Rh distances are significantly greater than in the analogous carboxylates (R = Me₃C, L = py, Rh-Rh 2.514Å; R = Ph, L = py, Rh-Rh 2.521Å; R = Me₃C, L = PPh₃, Rh-Rh 2.584Å). Raman studies on Rh₂(SCOMe)₄L₂ (L = PPh₃, AsPh₃, SbPh₃, MeCOSH) assign ν (Rh-Rh) to bands in the region of 226-251 cm⁻¹, significantly lower than in the carboxylates, consistent with the longer and weaker Rh-Rh bond [76].

Part of the upsurge in interest in rhodium(II) carboxylates since the early 1970s results from the discovery that they have potential as anti-tumour

Figure 2.36 Resonance Raman spectra of (a) $Rh_2({}^{16}O_2)CMe_4(PPh_3)_2$; (b) $Rh_2({}^{18}O_2)CMe_4(PPh_3)_2$; (c) $Rh_2({}^{16}O_2)C(CD_3)_4(PPh_3)_2$. Recorded as KCl discs at 80 K, L = 363.8 nm. (Reprinted with permission from *J. Am. Chem. Soc.*, 1986, **108**, 518. Copyright (1986) American Chemical Society.)

agents. The dimers form adducts with many biologically important N-donors but react irreversibly with some compounds containing SH groups. It seems that they may inhibit DNA synthesis by deactivating sulphydryl-containing enzymes [77].

Bonding in the dimers

Several MO schemes are suggested, most with a single bond but differing to some extent on the ordering of the energy levels [78] (Figures 2.37 and 2.38). The most recent results indicate the highest occupied MO (HOMO) is of σ -symmetry, consistent with ESR results on $[Rh_2(OCOR)_4(PR_3)_2]^+$.

Figure 2.37 Models for the metal-metal bonding in Rh₂(O₂CR)₄. (a) corresponds to a singlebond; (b) corresponds to a triple-bond model in which there is a greater interaction between the rhodium 4d orbitals than between the 4d and 5s, 5p manifolds. (Reprinted with permission from J. Am. Chem. Soc., 1981, 103, 364. Copyright (1981) American Chemical Society.)

Figure 2.38 The effect of varying the relative energies of the metal and ligand orbitals upon the final molecular orbital scheme for a dimeric rhodium carboxylate. (Reprinted from *Coord. Chem. Rev.*, 50, 109, 1983, with kind permission from Elsevier Science S.A., P.O. Box 564, 1001 Lausanne, Switzerland.)

In the MO scheme the rhodium atoms use their $d_{x^2-y^2}$ orbitals to form the Rh-O bonds, the remaining 4d orbitals are used to form four pairs of bonding and anti-bonding MOs (σ , δ and π) (Figure 2.37a).

The ligands interact with the two orbitals of σ -symmetry modifying the ordering somewhat (Figure 2.37b). As has been pointed out, altering the relative positions of the metal orbitals relative to those of the carboxylates affects the final scheme considerably (Figure 2.38).

Other compounds with the lantern structure include the acetamidates $Rh_2(MeCONH)_4L_2$ and the mixed-valence anilinopyridinate $Rh_2(ap)_4Cl$ (Figure 2.39), which has an unusual ESR spectrum in that the electron is localized on one rhodium [79].

Bridging ligands are not essential for the stability of dimers. Reduction of $[Rh(H_2O)_5Cl]^{2+}$ is believed to give a dimer $[Rh_2(H_2O)_{10}]^{2+}$.

Extended reflux of a MeCN solution of $Rh_2(OCOMe)_4$ with excess $Et_3O^+BF_4^-$ leads to successive replacement of the acetates [80]:

 $Rh_2(OCOMe)_4 \rightarrow [Rh_2(OCOMe)_2(MeCN)_6]^{2+} \rightarrow [Rh_2(MeCN)_{10}]^{4+}$

 $[Rh_2(MeCN)_{10}]^{4+}$ has a staggered structure (minimizing inter-ligand repulsions) with a Rh-Rh distance of 2.624 Å (presumably corresponding to a Rh-Rh single bond uninfluenced by bridging ligands (Figure 2.40).

Figure 2.39 The 'lantern' structure of the dimeric rhodium antipyrine complex Rh₂(ap)₄Cl. (Reprinted with permission from *Inorg. Chem.*, 1988, 27, 3783. Copyright (1988) American Chemical Society.)

Figure 2.40 The staggered structure of the dimeric ion $[Rh_2(MeCN)_{10}]^{2+}$.

Reaction of $Rh_2(OCOR)_4$ with dimethylglyoxime leads to a non-bridged dimer [81].

$$Rh_2(OCOMe)_4 \xrightarrow{DMGH} Rh_2(DMG)_4$$

The bis(PPh₃) adduct has a long Rh-Rh bond of 2.936 Å, whereas in the 'mixed' dimer $Rh_2(OCOMe)_2(DMG)_2(PPh_3)_2$ where only two acetates bridge, Rh-Rh is 2.618 Å (Figure 2.41).

2.8.3 Other complexes

Photolysis of the rhodium(III) complex of octaethylporphyrin gives a rhodium(II) dimer that readily undergoes addition reactions to afford rhodium(III) species (Figure 2.42).

With more bulky porphyrins like TMP, a stable low-spin monomer Rh(TMP) can be isolated ($g_{\perp} = 2.65$, $g_{\parallel} = 1.915$), which forms a paramagnetic CO adduct.

Figure 2.41 A dimeric non-bridged rhodium dimethylglyoxime complex (for clarity the hydrogen atoms in the hydrogen bonds are not shown).

Figure 2.42 Synthesis of a dimeric rhodium(II) octaethylporphyrin complex.
A number of rhodium(III) complexes of thiacrown ligands can be reduced to give rhodium(II) species identifiable in solution. Thus controlled potential electrolysis of $Rh(9S_3)_2^{3+}$ ($9S_3 = 1,4,7$ -trithiacyclononane) gives $Rh(9S_3)_2^{2+}$ ($g_1 = 2.085, g_2 = 2.042, g_3 = 2.009$) [82].

2.9 Rhodium(III) complexes

A considerable number of rhodium(III) complexes exist. Their stability and inertness are as expected for a low-spin d^6 ion; any substitution leads to a considerable loss of ligand-field stabilization.

2.9.1 Complexes of O-donors

The yellow acetylacetonate contains octahedrally coordinated rhodium (Rh-O 1.992 Å; O-Rh-O 95.3°) [83].

$$Rh(NO_3)_3 \xrightarrow[pH7]{acac} Rh(acac)_3$$

The corresponding tri- and hexa-fluoroacetylacetonates may be similarly prepared. The stability of the acetylacetonate is such that not only can it be resolved on passage through a column of D-lactose, but the enantiomers retain their integrity on nitration or bromination.

Extended refluxing of hydrated $RhCl_3$ with excess oxalate leads to the tris complex, the potassium salt crystallizing as orange-red crystals with Rh-O 2.000-2.046 Å.

$$RhCl_{3}.3H_{2}O \xrightarrow[reflux, 6h]{aq. K_{2}C_{2}O_{4} (6 mol)} K_{3}Rh(C_{2}O_{4})_{3}.4\frac{1}{2}H_{2}O$$

 $Rh(C_2O_4)_3^{3-}$ was resolved by Werner as the strychnine salt but other ions, such as $Coen_3^{3+}$ and $Niphen_3^{3+}$, have been used more regularly for this [84].

The dinuclear rhodium(II) acetate is described in section 2.8.2; the dinuclear structure is retained on one-electron oxidation, but when ozone is used as the oxidant, a compound with a trinuclear Rh_3O core is formed, analogous to those formed by Fe, Cr, Mn and Ru. (It can also be made directly from $RhCl_3$.)

$$RhCl_{3}.3H_{2}O \xrightarrow{1.MeCOOAg} [Rh_{3}O(O_{2}CMe)_{6}(H_{2}O)_{3}]^{+}ClO_{4}^{-}$$

$$Rh_{2}(O_{2}CMe)_{4} \xrightarrow{1.O_{3}/boiling MeCOOH} [Rh_{3}O(O_{2}CMe)_{6}(H_{2}O)_{3}]^{+}ClO_{4}^{-}$$

Rhodium forms an EDTA complex isomorphous with the corresponding ones of Ru, Fe, Ga and Cr. In Rh(EDTAH)(H₂O) one carboxylate is protonated and thus the acid is pentadentate, the water molecule completing the octahedron (Figure 2.43).

Next Page

3 Palladium and platinum

3.1 Introduction

Palladium and platinum are the longest known and most studied of the six platinum metals [1-11], a reflection of their abundance and consequent availability. Platinum occurs naturally as the element, generally with small amounts of the other platinum metals. It was used as a silver substitute by Colombian Indians and first observed there by Ulloa (1736), who called it platina del Pinto ('little silver of the Pinto river') but the first sample was actually brought to Europe in 1741 by Charles Wood, Assay Master of Jamaica. Palladium was isolated in 1803 by W.H. Wollaston, who was studying the aqua regia-soluble portion of platinum ores (he announced his discovery by an anonymous leaflet advertising its sale through a shop in Soho) and named it after the newly discovered asteroid Pallas [12].

These two metals resemble each other more closely than any of the other 'pairs' in this book. Their chemistry is largely that of the +2 and +4 oxidation states, though there are a few, formally, +1 and +3 compounds and there is an important group of zero valent tertiary phosphine complexes though no stable carbonyl comparable to Ni(CO)₄. Unlike nickel(II), where there are large numbers of tetrahedral complexes, these metals adopt almost exclusively square planar geometries in this oxidation state. As expected, they form more compounds in high oxidation states than nickel, partly a consequence of the lower ionization energies (Table 3.1).

Significant differences include:

- 1. The +4 oxidation state is more stable for platinum.
- 2. Platinum complexes are usually less labile.
- 3. There are many more examples of *cis* and *trans*-isomers for platinum (a consequence of (2)).

Platinum in particular forms numbers of stable σ -bonded alkyls and aryls in both the +2 and +4 states.

3.2 The elements and uses

Both palladium and platinum are shiny, silvery metals (with ccp structures), easily drawn and worked when pure. Palladium has the lower melting and boiling points (1552 and 3141°C, respectively); the corresponding figures

	Ni	Pd	Pt
$\overline{I_1}$	736.7	805	870
$\dot{I_2}$	1753	1875	1791
Ĩ.	3393	3174	(2800)
I_4	5300	(4100)	(3900)

Table 3.1 Ionization energies $(kJ mol^{-1})$

Values in parentheses are estimated.

for platinum are 1772 and 3825°C. Palladium is the more reactive, attacked by air at 700°C and by moist halogens at 20°C; it dissolves in hot oxidizing mineral acids whereas platinum is only dissolved by aqua regia. Both are attacked by molten caustic alkali.

Uses

The main uses of palladium [13] are in the electronics and electrical industries, in circuitry and in dental alloys. It finds many catalytic applications in industry, as well as in diffusion cells for the synthesis of hydrogen, and in automobile catalysts. Jewellery and 'three way' auto-catalysts are the principal uses of platinum, which fulfils a wide range of roles in the chemical industry.

The 'three way' catalysts are a major present day use for platinum and rhodium, and a lesser one for palladium; their role in minimizing exhaust emissions (while maximizing energy release) from petrol engines entails complete combustion of hydrocarbons, conversion of CO into CO_2 and also removal of nitrogen oxides as N₂ (reduction of NO_x). Platinum metal catalysts are thermally stable and operate at relatively low temperatures. They are prepared by dispersing a mixture of these three metals and alumina, together with certain additives like ceria, over a ceramic or metal matrix to obtain a large surface area. Platinum is the best alkane (and CO) oxidation catalyst while palladium is superior for alkenes. The role of the CeO₂ lies partly in the ability of cerium to switch oxidation states and thus act as a local oxygen store.

Fuel cells essentially reverse the electrolytic process. Two separated platinum electrodes immersed in an electrolyte generate a voltage when hydrogen is passed over one and oxygen over the other (forming H_3O^+ and OH^- , respectively). Ruthenium complexes are used as catalysts for the electrolytic breakdown of water using solar energy (section 1.8.1).

3.2.1 Extraction

The principal countries where platinum and palladium are extracted (along with nickel) are South Africa, Canada and the former USSR, though significant amounts come from Colombia, China and Western Australia [14]. The

ores include all six platinum metals, with palladium and platinum most abundant; relative amounts vary, with the Merensky reef (South Africa) richer in platinum, roughly equal amounts in Sudbury (Ontario), and the Noril'sk deposits (Siberia) richer in palladium. They tend to occur along with nickel and copper ores, e.g. cooperite (PtS), braggite (MS) and sperrylite (PtAs₂).

The metals are obtained from the metallic phase of the sulphide matte or the anode slime from electrolytic refining of nickel. In the traditional process for the platinum metals, their separation was facilitated by their solubility in aqua regia and convertibility into $PdCl_4^{2-}$ or $PtCl_6^{2-}$ salts. Nowadays, substantial amounts are obtained using solvent extraction.

3.3 Halides

As expected, the heavier metal favours higher oxidation states (Table 3.2): the MX_3 compounds are not genuine M^{3+} species but are diamagnetic, with equal amounts of M^{2+} and M^{4+} . PtF₅, however, is a platinum(V) compound.

3.3.1 Palladium halides

Syntheses of palladium halides often involve direct reaction with a halogen:

$$Pd \xrightarrow{F_2} PdF_3 \xrightarrow{SeF_4 \text{ or } SF_4} PdF_2$$

$$Pd \xrightarrow{Cl_2} PdCl_2$$

$$Pd \xrightarrow{HBr/Br_2} PdBr_2$$

$$PdCl_2 \xrightarrow{5\% HI} PdBr_2$$

$$PdCl_2 \xrightarrow{5\% HI} PdF_4$$

$$Pd \xrightarrow{atomic F} PdF_6$$

PdF₂ is that rare substance, a paramagnetic palladium compound, explicable in terms of (distorted) octahedral coordination of palladium with octahedra sharing corners [15]. It exists in two forms, both having $\mu_{eff} \sim 2.0 \,\mu_B$, rather below the spin only value for two unpaired electrons. Bond lengths are Pd-F 2.172 Å (two) and 2.143 Å (four) in the tetragonal form (rutile structure).

The other palladium(II) halides are all diamagnetic. $PdCl_2$ exists in well defined α - and β -forms [16] (as well as a γ -form); the former has a $PdCl_{4/2}$

	Palladium			Platinum				
	F	Cl	Br	I	F	Cl	Br	Ι
MX ₂	Pale violet solid	Red solid, dec. >600°C	Brown solid	Black (α), deep red (β), black (γ), dec. >350°C		Black-brown solid	Brown solid	Black solid, dec. >500°C
MX ₃	Black solid					Green–black solid	Black-green crystal	Black solid
MX4	Brick red solid, rapid dec. >350°C				Yellow-brown solid	Red-brown crystal, dec. >350°C	Dark red solid, dec. >180°C	Black crystal, slow dec. RT
MX5					Red solid, m.p. 80°C			
MX ₆	Dark red solid, dec. ~0°C				Dark red solid, m.p. 61.3°C			

Table 3.2 Characteristics of palladium and platinum halides

M, palladium or platinum; X, halide.

Figure 3.1 The chain structure of α -PdCl₂.

chain structure (Figure 3.1) while the β -form, synthesized by subliming the α form at 430–460°C) is Pd₆Cl₁₂, similar to the platinum analogue.

PdBr₂ also has a chain structure, but puckered, unlike α -PdCl₂, with planar coordination (somewhat irregular: Pd-Br 2.34, 2.57 Å). PdI₂ has three modifications, all made starting from the black γ -form precipitated from aqueous PdCl₂ reacting with HI at 140°C; it is traditionally used, because of its insolubility, in the gravimetric determination of palladium. The α -form of PdI₂ has a structure with tetragonal PdI₄ units forming side-by-side chains (Pd-I 2.60 Å) while in the β -form there are planar Pd₂I₆ units (Pd-I 2.61-2.62 Å) cross-linked with two distant iodines (3.29, 3.49 Å) to give distorted 6-coordination.

PdF₃ is really Pd²⁺PdF₆²⁻; both palladiums have an octahedral environment (Pd²⁺-F 2.17 Å; Pd⁴⁺-F 1.90 Å); like PdF₂, it is paramagnetic with a magnetic moment of 1.75 μ_B per palladium. It is possible that application of pressure causes the Pd-F bonds to even out, so that at high pressures the compound could become PdF₃ (genuine alkali metal salts of PdF₆³⁻ do exist) [17].

 PdF_4 is the only stable palladium(IV) halide [18] (testimony to the oxidizing nature of palladium(IV)) and is a very moisture-sensitive diamagnetic red solid; the structure is based on Pd_6F_{24} hexameric units linked threedimensionally. It has octahedrally coordinated palladium with two terminal (*cis*) fluorines and four bridging ones. Despite the absence of other tetrahalides, the complete series of PdX_6^{2-} exist (cf. Ir).

PdF₆ has been reported [19] (but not confirmed) to result from the reaction of powdered palladium with atomic fluorine under pressure (900–1700 Pa) as a dark red solid, unstable at 0°C that oxidizes both oxygen and water. An IR band at 711 cm⁻¹ has been assigned as ν (Pd–F). There are unsubstantiated claims for PdF₅.

3.3.2 Platinum halides

Syntheses of platinum halides [20] include

$$Pt \xrightarrow{Cl_2} PtCl_2$$

$$Pt \xrightarrow{Br_2} PtBr_3 + PtBr_4 \xrightarrow{250^{\circ}C} PtBr_2$$

$$H_2PtBr_6.xH_2O \xrightarrow{heat} PtBr_2$$

Pt
$$\xrightarrow{I_2}{525^\circ C, in vacuo} \alpha$$
-PtI₂
K₂PtI₆ $\xrightarrow{240^\circ C}$ sealed ampoule β -PtI₂
Pt $\xrightarrow{Cl_2/sealed tube}$ β -PtCl₃
Pt $\xrightarrow{Cl_2/sealed tube}$ PtCl₃
PtBr₂ $\xrightarrow{Br_2,<3 \text{ atm}}$ PtBr₃
Pt $\xrightarrow{KI/I_2/H_2O}$ PtBr₃
Pt $\xrightarrow{KI/I_2/H_2O}$ PtI₃
Pt $\xrightarrow{exc. KI/I_2/H_2O}$ α -PtI₄
Pt $\xrightarrow{SO_2Cl_2}$ PtCl₄
PtCl₂ $\xrightarrow{F_2}$ γ tPtF₄
Pt $\xrightarrow{Br_2}$ PtBr₄
PtCl₂ $\xrightarrow{F_2}$ γ tBr₄
PtCl₂ $\xrightarrow{F_2}$ γ tF₅
Pt (hot wire) $\xrightarrow{1.F_2}$ PtF₆

 PtF_2 is unknown, presumably unstable with respect to the disproportionation

$$2PtF_2 \rightarrow Pt + PtF_4$$

This would occur as a consequence of the stability of the low spin d⁶ platinum(IV) state and of the oxidizing power of fluorine. PtCl₂, like the other platinum dihalides, is insoluble in water. It has two crystalline forms: the β -form is similar to β -PdCl₂ (Figure 3.2; Pt-Cl 2.34-2.39 Å, Pt-Pt 3.32-3.40 Å). This transforms to the α -form at 500°C; this form has square planar coordination of platinum (Pt-Cl 2.299-2.310 Å) in a chain structure [21]. PtBr₂ is isomorphous with β -PtCl₂, and thus believed to be Pt₆Br₁₂, while β -PtI₂ is isomorphous with β -PdI₂ [20].

All the trihalides are mixed valence compounds. PtF_3 is isostructural with $PdF_3 \cdot PtX_3$ (X = Cl, Br, I) cannot be made by straightforward thermal decomposition of PtX_4 [22] under open conditions but by routes involving continuous decomposition and formation under closed, equilibrium conditions.

Figure 3.2 The structure of β-PtCl₂(Pt₆Cl₁₂). (Reproduced with permission from S.A. Cotton and F.A. Hart, *The Heavy Transition Elements*, Macmillan Press Ltd, 1975, p. 109.)

 $PtCl_3$ and $PtBr_3$ (Figure 3.3) are isomorphous and contain both Pt_6X_{12} clusters and $[PtX_2X_{4/2}]_{\infty}$ chains, thus representing a 'half way' stage in decomposing PtX_4 [20].

PtF₄ prepared by various routes, including fluorination (BrF₃) of PtCl₄ or heating PtF₆, is isostructural with PdF₄ (Pt-F (terminal) 1.818 Å, Pt-F (bridge) 2.048 Å) [23]. The other tetrahalides similarly have chain structures (Figure 3.4) with two *cis*-terminal halides.

Figure 3.3 The structure of PtBr₃, showing the Pt₆Br₁₂ and $\frac{1}{\infty}$ [PtBr₂Br_{4/2}] structural units. (Reproduced with permission from *Transit. Met. Chem.*, 1975/6, 1, 45.)

Figure 3.4 The chain structure adopted by PtX_4 in the solid state.

The iodide is polymorphic, with the α - and γ -forms known to have this structure (bond lengths are 2.65–2.72 Å (γ -PtI₄), 2.62–2.78 Å (α -PtI₄) 2.41–2.54 Å (PtBr₄).

On heating, $PtCl_4$ and $PtBr_4$ give PtX_2 but PtI_4 first yields PtI_3 or Pt_3I_8 , depending on conditions [24].

Evaporation of solutions of platinum in aqua regia gives yellow crystals of the hydrates *trans*-[PtCl₄(H₂O)₂].3H₂O and *fac*-[PtCl₃(H₂O)₃]Cl. $\frac{1}{2}$ H₂O [25].

 PtF_5 , made by fluorination of $PtCl_2$ at 350°C disproportionates above its m.p.

$$2PtF_5 \rightarrow PtF_4 + PtF_6$$

Its structure is not known but it may be a tetramer, like RhF₅.

The original synthesis of PtF_6 [26] involves electrical ignition of a platinum wire in a fluorine atmosphere then rapidly cooling the vapour (liquid nitrogen); it is also reported to result from the reaction of the elements under pressure at 200°C. It has a molecular structure (Pt-F 1.839 Å) and is intensely reactive, forming PtF₅ and PtF₄ on heating, vigorously decomposing water to O₂, and even attacking dry glass. It also is readily reduced:

 $O_2 + PtF_6 \rightarrow O_2^+PtF_6^-$

3.3.3 Halide complexes

An extensive range of mono- and binuclear halide complexes of platinum and palladium exist. Of the tetrahalometallate(II) ions, some like PtF_4^{2-} and PdI_4^{2-} are elusive, the latter only having been characterized in solution.

$$\begin{split} & PdCl_2 \xrightarrow{MCl} M_2PdCl_4 \ (red-brown) \ (M, \ e.g. \ K, \ NH_4) \ (Pt \ similarly) \\ & K_2PdCl_4 \xrightarrow{Br^-} K_2PdBr_4 \ (dark \ red) \\ & K_2PtCl_4 \xrightarrow{NaBr/HBr} K_2PtBr_4 \ (brown) \\ & K_2PtCl_4 \xrightarrow{exc.} K_2PtI_4 \ (black) \end{split}$$

Ion	Cation	M–X (Å)	Ion	$\nu_{\mathfrak{l}}(\mathbf{A}_{\mathfrak{lg}})$	$ u_2(\mathbf{B_{lg}})$	$\nu_6(\mathbf{E}_u)$
PdCl ₄ ²⁻	NH_4^+	2.299	ĸ	310	275	336
PtCl ₄ ²⁻	K ⁺	2.308	Bu₄N	330	312	317
PdBr ₄ ²⁻	K ⁺	2.438	(aq.)	188	172	225
PtBr ₄ ²⁻	K ⁺	2.445	_	208	194	243
PtI_4^{2-}	(in (MeNH ₃) ₄ Pt ₃ I ₁₁)	2.625	(aq.)	155	142	_

Table 3.3 Bond lengths in MX_4^{2-} together with M-X stretching frequencies (cm⁻¹)

They have square planar structures; corresponding bond lengths and vibrational frequencies are given in Table 3.3.

 PtI_4^{2-} has been identified in the unusual (MeNH₃)₄Pt₃I₁₁, a mixed-valence compound with PtI_4^{2-} , PtI_6^{2-} and $Pt_2I_6^{2-}$ ions all present (K₂PtI₄ has not definitely been confirmed) [27].

Genuine palladium(III) fluoroferrates have been made [28]

$$PdF_3 + 2AF + BF \xrightarrow[3 \text{ kbar}]{400^{\circ}\text{C}} A_2BPdF_6$$

(A = K, Rb, Cs; B = Li, Na, K).

The beige to green solids have the elpasolite structure. Magnetic measurements confirm the $t_{2g}^6 e_g^1$ configuration; they give strong ESR signals (Na₃PdF₆ g_⊥ = 2.312, g_{||} = 2.025) and exhibit a peak in the photoelectron spectra intermediate between those for palladium(II) and palladium(IV). K₂NaPdF₆ has been shown (X-ray) to have Jahn–Teller-distorted PdF₆³⁻ octahedra with Pd–F = 1.95 Å (four) and 2.14 Å (two).

'Chloroplatinic acid', $(H_3O)_2$ PtCl₆.xH₂O ($x \sim 2$), is obtained as brownred crystals by dissolving platinum in aqua regia, followed by one or two evaporations with hydrochloric acid; it is a very useful starting material. Thermogravimetric data show that, after initial dehydration (up to 125°C), PtCl₄ is formed at 220°C and β -PtCl₂ at 350°C, before final decomposition to platinum around 500°C [29]. The Pt-Cl bond length is 2.323 Å in (H₃O)₂PtCl₆ [30].

All eight possible octahedral MX_6^{2-} (X = F, Cl, Br, I) have been made [31]:

$$\begin{array}{ll} A_2 PdCl_6 & \xrightarrow{F_2} & A_2 PdF_6 & (A = K \text{ to } Cs) \\ & M \xrightarrow{1. \text{ aqua regia}} & A_2 MCl_6 & (M = Pd, Pt) \\ & K_2 PtCl_6 & \xrightarrow{KHF_2 \text{ melt}} & K_2 PtF_6 \\ & A_2 PdBr_4 & \xrightarrow{Br_2} & M_2 PdBr_6 \\ & PdCl_6^{2-} & \xrightarrow{exc.} & Cs_2 PdI_6 \end{array}$$

Pd complexes	Counter-ion	M-X	Pt complexes	Counter-ion	M–X
PdF_6^{2-}	XeF ⁺ ₅	1.893	PtF ₆ ²⁻	NH ⁺	1.942
	K ⁺	1.896		K ⁺	1.922
PdCl ₆ ²⁻	NH_4^+	2.300	PtCl ₆ ²⁻	K ⁺	2.315-2.316
	K ⁺	2.309			
	Me_4N^+	2.312			
PdBr ₆ ²⁻	$(en)H_2^{2+}$	2.466-2.470	PtBr ₆ ²⁻	\mathbf{K}^+	2.481
			PtI ₆ ²⁻	pyH ⁺	2.661-2.670
				Cs ⁺	2.673

Table 3.4 Bond lengths in MX_6^{2-} (Å)

 $PtCl_{4} \xrightarrow{HCl} H_{2}PtCl_{6} \xrightarrow{ACl} M_{2}PtCl_{6} \qquad (A = K \text{ to } Cs)$ $Pt \xrightarrow{1.HBr/Br_{2}} A_{2}PtBr_{6}$ $H_{2}PtCl_{6} \xrightarrow{exc. AI} A_{2}PtI_{6}$

The palladium compounds are generally, as expected, less stable. Therefore, PdF_6^{2-} is decomposed by water while PtF_6^{2-} can be synthesized in aqueous solution. The M₂PdCl₆ salts decompose on heating to 200°C. Bond lengths for a selection of the MX_6^{2-} ions are given in Table 3.4 and the structure of K₂PtCl₆ is shown in Figure 3.5 (based on the fluorite structure with K⁺ in the fluoride positions and $PtCl_6^{2-}$ taking the place of the potassium) [32].

Figure 3.5 The crystal structure of K₂PtCl₆. (Reproduced from A.F. Wells, *Structural Inorganic Chemistry*, 4th edn, 1975, p. 387, by permission of Oxford University Press.)

	M-F
PtF ₆	1.839
KPtF ₆	1.886
K ₂ PtF ₆	1.926
K ₂ PdF ₆	1.896
$\tilde{K_2}NaPdF_6$	$1.95-2.14^{a}$

Table 3.5 Comparing bond lengths in MF_6^{n-} (Å)

^a Jahn-Teller distorted.

Synthesis for the octahedral MF_6^- ions include [33]

$$\begin{split} PdF_4 & \xrightarrow{KrF_2/O_2 \text{ or } NaF} HF X^+PdF_6^- \qquad (X = O_2, Na) \\ Pd & \xrightarrow{F_2/O_2} O_2^+PdF_6^- \\ \hline PtF_6 & \xrightarrow{O_2} O_2^+PtF_6^- \frac{MF}{1F_5} M^+PtF_5^- \qquad (M = K \text{ to } Cs) \end{split}$$

The magnetic moment for PtF_6^- (K⁺ salt) is 0.87 μ_B (t_{2g}^5). The bond lengths for this ion are, as expected, intermediate between PtF_6 and PtF_6^{2-} (Table 3.5). Both these ions are strong oxidizing agents; PtF_6^- will, unlike PtF_6^{2-} ,

Both these ions are strong oxidizing agents; PtF_6^- will, unlike PtF_6^{2-} , oxidize water to O₂ and O₃. Vibrational data for a number of MX_6^{n-} species are listed in Tables 3.6 and 3.7.

As expected, there is a shift to lower frequency as the oxidation state of the metal decreases and as the mass of the halogen increases.

Mixed haloplatinate(IV) ions have been synthesized [34] by use of substitution reactions on $PtCl_6^{2-}$ and $PtBr_6^{2-}$; using the stronger *trans*-influence of Br, the *cis*-isomers can be made by treating $PtBr_6^{2-}$ with Cl^- (in the presence of Br_2):

$$PtBr_6^{2-} \xrightarrow{Cl^-} PtBr_5Cl^{2-} \rightarrow cis-PtBr_4Cl_2^{2-} \rightarrow fac-PtBr_3Cl_3^{2-}$$
$$\rightarrow cis-PtBr_2Cl_4^{2-} \rightarrow PtBrCl_5^{2-} \rightarrow PtCl_6^{2-}$$

	PdF ₆ ²⁻	PdCl ₆ ²⁻	PdBr ₆ ²⁻	PtF ₆ ²⁻	PtCl ₆ ²⁻	PtBr ₆ ²⁻	PtI ₆ ²⁻
Counter-ion	NO ⁺	K ⁺	K+	Cs ⁺	K ⁺	K ⁺	(aq.)
ν_1	573	317	198	591	351	218.5	150
ν_{2}	554	292	176	566	321	195.5	131
ν_3	602	357	253	571	345	244.5	186
ν_4	_	175	130	281	184		
ν_5	246	164	100	221	174	114.5	69.5

Table 3.6 Vibrational frequencies in MX_6^{2-} (M = Pd, Pt; X = F, Cl, Br, I)

Data from: Y.M. Bosworth and R.J.H. Clark (1974) J. Chem. Soc., Dalton Trans., 1749; M.P. Laurent et al. (1981) Inorg. Chem. 20, 372; D.M. Adams et al. (1981) J. Chem. Phys. 74, 2800; W. Preetz and G. Rimkus (1982) Z. Naturforsch., Teil B, 37, 579.

	PdF ₆	PdF ₆	PdF_6^{2-}	PtF ₆	PtF_6^-	PtF ₆ ²⁻
$\overline{\nu_1}$	0 8	643	573	656	647	591
ν_{2}		570	554	601	590/572	566
ν_{2}	711		602	705	630	571
ν_{Λ}				273		281
ν_{s}			246	242	249/236	221
ν_6				211	,	

Table 3.7 Comparative vibrational data for MF_6^{n-1} (cm⁻¹)

The trans-isomers can be made by substitution of Br⁻

 $PtBrCl_5^{2-} \xrightarrow{Br^-} \textit{trans-}PtBr_2Cl_4^{2-} \rightarrow \textit{mer-}PtBr_3Cl_3^{2-} \quad etc.$

Reaction mixtures can be separated by chromatography. Individual isomers can be identified by their vibrational spectra.

In the case of $PtF_nCl_{6-n}^{2-}$, it has even been possible to synthesize isotopically labelled species using isotopically labelled HCl (Figure 3.6).

Spectra of *trans*-Pt³⁵Cl₂ F_4^{2-} and the *cis*-isomer show the simpler spectra expected from the *trans*-isomer (three Pt-F and two Pt-Cl stretches) compared with the *cis*-isomer (four Pt-F and two Pt-Cl stretches). The complexity of the spectrum of the *cis*-isomer is also the result of the lack of a centre of symmetry in the *cis*-form; the selection rules allow all bands to be seen in both the IR and the Raman spectra (in theory, at least).

Figure 3.6 IR (upper) and Raman (lower) spectra of $Cs_2[Pt^{35}Cl_2F_4]$: *cis*-isomer on the left; *trans*-isomer on the right. (Reproduced with permission from Z. Naturforsch., Teil B, 1989, 44, 619.)

Figure 3.7 The dimeric structure of $[Pt_2Cl_6]^{2-}$.

The structures of fac-(py₂CH₂)[PtF₃Cl₃] and mer-(py₂CH₂)[PtF₃Cl₃] show the greater *trans*-influence of chloride. The Pt-F bonds are 1.950–1.995 Å in the *fac*-isomer and 1.936–1.937 (*trans* to F) and 1.972 Å (*trans* to Cl) in the *mer*-isomer; similarly Pt-Cl is 2.265–2.285 Å in the *fac*-isomer and 2.271 (*trans* to F) and 2.292–2.303 Å (*trans* to Cl) in the *mer*-isomer [35].

The $M_2 X_6^{2-}$ salts are the simplest binuclear complexes [36]

$$\begin{split} MCl_4^{2-} &\xrightarrow{Ph_3MeAsCl}_{H_2O} (Ph_3MeAs)_2M_2Cl_6 \qquad (M = Pd, Pt) \\ MCl_4^{2-} &\xrightarrow{cyclo-C_3H_7C_3^+Cl^-}_{H_2O} (cyclo-C_3H_7C_3)_2M_2Cl_6 \\ MBr_2 &\xrightarrow{Et_4NBr}_{H_2O} (Et_4N)_2M_2Br_6 \\ MI_2 &\xrightarrow{Et_4NI}_{e.e.EIOH} (Et_4N)_2M_2I_6 \end{split}$$

They have di- μ -halogen bridged structures and are planar (Figure 3.7).

Typical bond lengths in $Pd_2Cl_6^{2-}$ are Pd-Cl 2.27 Å (terminal) and 2.32 Å (bridge) with Pd-Pd 3.41 Å and in $Pd_2Br_6^{2-}Pd-Br 2.398-2.405$ Å (terminal) and 2.445-2.452 Å (bridge).

Dinuclear platinum(IV) complexes have recently been reported:

$$PtX_{6}^{2-} \xrightarrow[heat]{CF_{3}CO_{2}H} Pt_{2}X_{10}^{2-} \qquad (X = Cl, Br)$$

They have edge-sharing bioctahedral structures [37].

3.4 Other binary complexes

Palladium is notable for its ability to absorb (and desorb) hydrogen; diffusion through thin palladium films can be used to separate hydrogen from other gases. At 300 K, the Pd/H phase diagram shows an α -phase up to PdH_{0.03}, a two-phase region up to PdH_{0.56} after which the β -phase becomes the sole species. The greatest H:Pd ratio obtainable is ~0.83:1 (at 195 K). The hydride reportedly has a defect NaCl structure.

The ability of palladium and platinum to catalyse hydrogenation reactions is of considerable industrial importance.

Tertiary hydrides can be made [38, 39]

$$AH + Pd \text{ sponge } \xrightarrow{H_2} A_2PdH_4 \qquad (A = Rb, Cs)$$
$$AH + Pd \text{ sponge } \xrightarrow{H_2} A_3PdH_5 \qquad (A = K, Rb, Cs)$$

 Na_2PdH_4 , A_2PtH_4 (M = Na, K) and K_2PtH_6 are similarly made, only K_2PtH_6 requiring any high hydrogen pressure.

All A_2MH_4 contain square planar MH_4^{2-} units, but at high temperatures the A_2MH_4 salts adopt the K_2PtCl_6 structure with hydrogens able to move between different square planar orientations. M_2PdH_2 (M = Li, Na) compounds have metallic lustre and display metallic conductivity [40].

Palladium and platinum combine on heating with the group V (15) and VI (16) elements [41].

The important oxides are black PdO and brown PtO_2 . The former can be made by heating palladium in oxygen; other methods include heating $PdCl_2$ in an NaNO₃ melt at 520°C. A hydrated form precipitates from aqueous solution, e.g. when $Pd(NO_3)_2$ solution is boiled. It has 4-coordinate square planar palladium (Figure 3.8).

Black PdO₂ (rutile structure) is claimed to result from heating PdO with KClO₃ under pressure at 950°C, then rapidly cooling to room temperature. PtO₂, however, is well authenticated; it is made in hydrated form by hydrolysis (with Na₂CO₃) of boiling PtCl₆²⁻ solution. It dehydrates on heating.

PtS (PdO structure) and PdS (similar) are prepared from $M^{2+}(aq.)$ and H_2S or Li_2S . They have square planar coordination of M^{2+} (Figure 3.9).

On heating with sulphur, MS_2 result. PtS_2 has the 6-coordinate CdI_2 structure whereas PtS_2 is $Pd^{2+}(S_2^{2-})$ in a distorted pyrite structure (4-coordinate $PdPd-S_2.30$ Å) confirming the preference for the divalent state for

Figure 3.8 The structure of PdO and PtO. (Reproduced from A.F. Wells, *Structural Inorganic Chemistry*, 4th edn, 1975, p. 446, by permission of Oxford University Press.)

Figure 3.9 The structure of PtS. (Reproduced from A.F. Wells, *Structural Inorganic Chemistry*, 4th edn, 1975, p. 661, by permission of Oxford University Press.)

palladium. Other phases like $Pd_{2,2}S$, Pd_3S and Pd_4S (the last two both alloy like) exist. The former is a superconductor below 1.63 K.

The tellurides MTe reportedly have the NiAs structure.

The pyrites structure is exhibited by several pnictides: MAs_2 and MSb_2 (M = Pd, Pt) and PtP₂ (Figure 3.10).

 PdP_2 , however, contains continuous chains of phosphorus atoms (with, as expected, planar 4-coordinate Pd) while PdP_3 has the CoAs₃ structure (P_4 rings).

3.5 Aqua ions

Syntheses of palladium and platinum aqua ions [42] include

$$\begin{array}{c} PdO \xrightarrow{HCIO_4} Pd(H_2O)_4^{2+} \\ PtCl_4^{2-} \xrightarrow{AgCIO_4} Pt(H_2O)_4^{2+} \\ \hline \\ & \bigcirc \\ & \bigcirc \\ & \bigcirc \\ & \bigcirc \\ & = \\ P_2 \end{array}$$

Figure 3.10 The structure of PtP₂. (Reproduced with permission from S.A. Cotton and F.A. Hart, *The Heavy Transition Elements*, Macmillan Press Ltd, 1975, p. 111.)

Hydrated palladium perchlorate has been isolated as brown needles of $Pd(H_2O)_4(ClO_4)_2$ by first dissolving palladium sponge in concentrated HNO₃, adding 72% HClO₄, evaporating until it fumes strongly and then crystallizing. $Pd(NO_3)_2(H_2O)_2$ is made by the reaction of palladium with nitric acid; it is also brown.

3.6 Palladium(0) and platinum(0) compounds

3.6.1 Tertiary phosphine complexes

The tertiary phosphine complexes are the most important zerovalent compounds. They are frequently prepared by reductive methods, often using the phosphine as the reducing agent [43], e.g.

$$\mathrm{Pd}(\eta^{5}\mathrm{-}\mathrm{C}_{5}\mathrm{H}_{5})(\eta^{3}\mathrm{-}\mathrm{C}_{3}\mathrm{H}_{5}) \xrightarrow{\mathrm{PR}_{3}} \mathrm{Pd}(\mathrm{PR}_{3})_{2}$$

 $(\mathbf{R} = \mathbf{B}\mathbf{u}^{t}, \mathbf{c}\mathbf{y}; \mathbf{P}\mathbf{R}_{3} = \mathbf{P}\mathbf{P}\mathbf{h}\mathbf{B}\mathbf{u}_{2}^{t})$

$$trans-\operatorname{PtCl}_2(\operatorname{Pcy}_3)_2 \xrightarrow{\operatorname{Na}/\operatorname{Hg}} \operatorname{Pt}(\operatorname{Pcy}_3)_2$$

$$[2-\operatorname{methylallyl}\operatorname{PdCl}]_2 \xrightarrow{\operatorname{exc.}\operatorname{PR}_3} \operatorname{Pd}(\operatorname{PR}_3)_n$$

 $(PR_3 = PMe_3, PMe_2Ph, PBu_3^n (n = 4); PR_3 = Pcy_3, PPr_3^i, Pbz_3 (n = 3); PR_3 = PBu_2^tPh (n = 2))$

$$cis$$
-PtCl₂(PPh₂CF₃)₂ $\frac{PPh_2CF_3}{NaBH_4}$ Pt(PPh₂CF₃)₃

Compounds with high coordination numbers sometimes eliminate a molecule of phosphine on heating:

$$\begin{split} M(PR_3)_4 &\xrightarrow[in vacuo]{} M(PR_3)_3 \qquad (M = Pd, Pt; \ R = Bu, Et) \\ M(PPr_3^i)_3 &\xrightarrow[in vacuo]{} M(PPr_3^i)_2 \qquad (M = Pd, Pt) \end{split}$$

Tetrahedral structures have been established for $Pd(PPh_3)_4$ (rather long Pd-P bonds at 2.443 Å), $Pd[P(CH_2OH)_3]_4$ (Pd-P 2.321 to 2.326 Å), $Pt(PF_3)_4$ (electron diffraction: Pt-P 2.229 Å), $Pd[P(C\equiv CPh)_3]_4$, $Pt(PEt_3)_4$ and $Pt(PMe_2Ph)_4$ [44]. Trigonal planar structures are found for $Pt(Pcy_3)_3$, $Pd(PPh_3)_3$ (Pd-P 2.307–2.322 Å) and $Pt(PPh_3)_3$ (Pt-P 2.262–2.271 Å) [45] and essentially linear 2-coordination for $M(PBu_2^tPh)_2$ (M = Pd, Pt; M-P 2.285 and 2.252 Å, respectively), $M(Pcy_3)_2$ (Pd-P 2.266 Å, Pt-P 2.231 Å) and $Pd(PBu_3^t)_2$ (Pd-P 2.285 Å). The last named has a P-Pd-P angle of 180° while the PBu_2^tPh complexes are virtually linear but with some short metal *ortho*-hydrogen contacts. Curiously, the Pcy_3 complexes have

Figure 3.11 The structure of Pd(Pcy₃)₂. (Reproduced with permission from J. Chem. Soc., Chem. Commun., 1974, 400.)

significantly 'bent' P-M-P bonds (158.4° M = Pd; 160.5° M = Pt) (Figure 3.11). Pd(P(o-tolyl)₃)₂ has linear P-Pd-P coordination [46].

As expected, the Pt-P bond increases from 2.231 Å in the 2-coordinate Pt(Pcy₃)₂ to 2.303 Å in 3-coordinate Pt(Pcy₃)₃. (Similarly in Pd(PPh₃)_n (n = 3, 4), from 2.31 Å (n = 3) to 2.443 Å (n = 4).)

Most of these compounds are solids (though a few such as $Pt(PEt_3)_3$, $Pt(PBu_3^n)_3$ and $Pt(PF_3)_4$ are oils at room temperature). Their stoichiometry in solution has been studied, most particularly by ³¹P NMR at low temperatures, to determine which species are present [47]. Table 3.8 shows that the coordination number is principally determined by the bulk of the ligand

PR ₃	Cone angle (°)	PtL ₄	PtL ₃	PtL ₂	PdL₄	PdL ₃	PdL ₂
PF ₃	104	S					
$P(OEt)_3$	109	S√	Х				
PMe ₃	118	S√	Х		S√	Х	
PMe ₂ Ph	122	S√			S√	Х	
PEt ₃	132	S√	S√	Х	S√	\checkmark	
PBu ⁿ ₃	132	S√	S√		S√	./	
PMePh ₂	136	S√			S√		
PPh ₃	145	S	S√		S√	S√	S
P(o-tolyl) ₃	145	Х	S√				S√
PPr ₃	160		S√	S√		\checkmark	\checkmark
$P(O-o-tolyl)_3$	141		S√	Х			
Pbz ₃	165		S√	Х		\checkmark	
$PBu_2^t Ph$	170		Х	S√		Х	S√
Pcy ₃	170		S√	S√		\checkmark	S√
PBu ₃ ^t	182			S√			S√

Table 3.8 $M(PR_3)_n$ complexes isolated in the solid state (S) and detected in solution (\checkmark)

(conveniently measured in terms of its cone angle), i.e. the bulkier the ligand, the lower the coordination number of the complex isolated.

Steric requirements also affect the stability of compounds; therefore, for the complexes $Pt(PR_3)_4$, the PEt₃ complex (cone angle 132°) loses 1 mol phosphine *in vacuo* at 50°C, but the PMe₃ complex (cone angle 118°) is unaffected.

Steric factors are not the only ones to affect stability; Ni(Pcy₃)₃ does not dissociate, while $M(Pcy_3)_2$ (M = Pd, Pt) is stable, the reverse of what would be expected on steric grounds. Similarly with P(o-tolyl)₃, nickel forms NiL₄ while platinum forms PtL_3 . Such discrepancies may be accounted for by taking into account the electron-donating power (basicity) of the phosphine and the electronic properties of the metal; thus electrondonating phosphines like PPr¹₃ can satisfy the electron demand of the metal better than arvl phosphines such as P(O-o-tolyl)₃ [48]. Compression of the cone angle or meshing of the ligands may also be important [45c]. Tricyclohexylphosphine has a cone angle of 170° yet meshing of the ligands leads to the isolability of $Pt(Pcy_3)_3$ from solution at $-15^{\circ}C$ (only $Pt(Pcy_3)_2$ is detected in solution above 0°C). Corresponding palladium and platinum complexes generally resemble each other closely, but there are differences; Pd(PPh₂Me)₄ does not dissociate while the platinum analogue does. $Pd(PBu_2^{t}Ph)_2$ binds oxygen reversibly, the platinum analogue binds irreversibly; PtL_2 (L = PPr₃ⁱ, Pcy₃, PBu₂^tPh) adds hydrogen reversibly whereas the palladium analogues do not.

In these compounds, compared with the palladium and platinum complexes, nickel generally exhibits higher coordination numbers, an effect similar to that seen with copper and silver compared with gold (section 4.1). Consideration of the d-s and s-p separations (Table 3.9) suggests that 2-coordination may be favoured for large s-p or small d-s separations (while relativistic effects may be significant for platinum, the general similarity between platinum and palladium suggests that it is not an important factor).

In addition to the tertiary phosphine complexes, a few others such as $Pt(QBu_3)_4$ (Q = As, Sb) and $Pt(QPh_3)_4$ have been made, but they have been the subjects of few studies.

Compounds $M(PPh_3)_2$ (M = Pd, Pt) have been postulated as kinetic intermediates but controversy has surrounded their isolation. It seems some 'M(PPh_3)_2' species reported could have been M(PPh_3)_2L (L, e.g. H₂,

	d ¹⁰ -d ⁹ s	d ⁹ s-d ⁹ p	$d^{10}-d^9p^1$
Ni	-1.8	3.52	1.72
Pd	0.81	3.42	4.23
Pt	0.76	4.04	3.28

 Table 3.9 Values for d-s and s-p separations (eV)

Figure 3.12 Complexes produced by refluxing solutions of Pt(PPh₃)₄.

 N_2 , C_2H_4) or internally metallated species. Reactions such as extended refluxing of Pt(PPh₃)₄ in benzene yields clusters [49] (Figure 3.12).

Recently, however, $Pd(PPh_3)_2$ has been reported to result from reduction of palladium(II) complexes as a very reactive yellow solid [50]:

$$Pd(C_3H_5)(PPh_3)_2^+ \xrightarrow{Ph_2MeSiLi} Pd(PPh_3)_2$$

Electrochemical reduction of cis-PtCl₂(PR₃)₂ (R = Ph, Et) generates very reactive Pt(PR₃)₂ species [51] (though it has been suggested that corresponding palladium compounds may be anionic, e.g. Pd(PR₃)₂Cl₂²⁻)

$$Pt(PR_3)_2Cl_2 \xrightarrow{2e^-} Pt(PPR_3)_2 + 2Cl^-$$

They can be trapped by reactive molecules

$$Pt(PEt_3)_2 \xrightarrow[X=Cl,CN]{PhX} trans-Pt(Ph)X(PEt_3)_2$$

UV irradiation of $Pt(PEt_3)_2(C_2O_4)$ under a dihydrogen atmosphere yields a hydride by trapping [52]:

$$Pt(PEt_3)_2C_2O_4 \xrightarrow{h\nu} Pt(PEt_3)_2 + 2CO_2 \xrightarrow{H_2} trans-PtH_2(PEt_3)_2$$

Thermolysis of *cis*-PtH(CH₂CMe₃)($cy_2PC_2H_2Pcy_2$) at 45-80°C yields a bent platinum(0) complex (Figure 3.13) that is intensely reactive to a whole range of unactivated C-H bonds in saturated and unsaturated hydrocarbons.

Figure 3.13 Addition reactions of Pt(cy₂PCH₂CH₂Pcy₂).

Figure 3.14 Zerovalent complexes of polydentate phosphines.

Zerovalent complexes are also obtained with polydentate phosphines [53]:

$$\begin{array}{l} Pd_{2}Cl_{2}(dppm)_{2} \xrightarrow{\text{NaBH}_{4}} Pd_{2}(dppm)_{3} \\ \\ PtCl_{2}(cod) \xrightarrow{dppp} PtCl_{2}(dppp) \xrightarrow{dppp} Pd(dppp)_{2} \end{array}$$

Their structures are shown in Figure 3.14.

3.6.2 Reactions of $Pt(PPh_3)_n$ and related species

 $Pt(PPh_3)_n$ (n = 3, 4) species [54] have been studied with profit for many years; they undergo a wide range of addition reactions with attendant loss of phosphine, the kinetically active species probably being $Pt(PPh_3)_2$. (The palladium analogues generally behave similarly but are much less studied.)

Though many of the products shown in Figure 3.15 are clearly platinum(II) species, some are formally platinum(0).

However, it seems that these are best viewed as platinum(II) species too, so that two-electron metal-to-ligand transfer has been effected. The structures of Pt(PPh₃)₂Z (Z = η^2 -O₂, η^2 -C₃H₄, η^2 -CS₂) (Figure 3.16) all involve 'square planar' coordination as expected for platinum(II) rather than the tetrahedral 4-coordination anticipated for platinum(0).

Similarly, ESCA data show the platinum $4f_{7/2}$ binding energy in Pt(PPh_3)₂O₂ (73.2 eV) to be nearer to that in Pt(PPh_3)₂Cl₂ (73.4 eV) rather than Pt(PPh_3)₄ (71.7 eV) or platinum metal (71.2 eV) [55]. Like many of the rhodium and iridium dioxygen adducts (section 2.11) adduct formation with O₂ is irreversible (though that with SO₂ is reversed on heating). With unsaturated compounds (alkenes, alkynes, benzene) η^2 -coordination is the rule. Reactions with alkyl and some aryl halides affords a route to mono alkyls and aryls. The reactions with halogens gives a route to *cis*-Pt(PPh_3)₂X₂ (X = Br, I); if an excess of halogen is used and the reaction stopped after a few minutes (to prevent oxidation to platinum(IV)) the initial *trans*-product is isolated (the halogen oxidizes liberated PPh₃ and prevents it catalysing, as occurs so often with platinum(II), the *trans*-*cis* isomerization). Other reactions can involve coupling (NO) and decoupling (C₂N₂).

Figure 3.15 Reactions of [Pt(PPh₃)_n].

The O_2 adduct has a rich chemistry of its own (Figure 3.15) reacting with small electrophiles in processes involving oxidation of the substrate. Thus NO couples to give nitrite and N_2O_4 nitrate; SO_2 is turned into sulphate and CO_2 into carbonate. In several cases, as with aldehydes and ketones, a peroxychelate ring results.

Other zerovalent phosphine complexes sometimes exhibit different reactions. Pt(PPh₃)₃ does not react with dihydrogen but Pt(PEt₃)₃ forms Pt(PEt₃)₃H₂. Pt(PR₃)₃ (R = Et, Prⁱ) adds H₂O to form hydroxybases [Pt(PEt₃)₃H⁺OH]⁻ and [Pt(PPrⁱ₃)₂H(solvent)]⁺OH⁻. Pd(Pcy₃)₂ reacts with the strong acid HBF₄ to give *trans*-[Pd(Pcy₃)₂H(H₂O)]⁺BF⁻₄ and with carboxylic acids to form [Pd(Pcy₃)₂H(OCOR)]; with phenols it gives [Pd(Pcy₃)₂H(OC₆X₅)]

Figure 3.16 Structures of $Pt(PPh_3)_2Z$ ($Z = O_2$, CS_2 , C_3H_4).

Figure 3.17 A comparison between the geometeries of $[Pt(PBu_2^tPh)_2]$ and $[Pt(PBu_2^tPh)_2(O_2)]$.

(X = H, F). The platinum analogue behaves similarly, and it also reacts with H₂ to form *trans*-Pt(Pcy₃)₂H₂.

Both $M(PPhBu_2^t)_2$ compounds (M = Pd, Pt) add O_2 , the former reversibly. They are nearly isostructural, with a slightly longer O–O bond in the platinum compound (1.43 Å) than in the palladium analogue (1.37 Å). Compared with the parent platinum compound (Figure 3.17) the Pt–P bonds are some 0.04 Å longer in the dioxygen compound, but though the P–Pt–P angle has closed from 180° to 113.1°, this is a good deal larger than the value in the PPh₃ analogue (101°) and suggests steric crowding.

The adoption of a planar structure in these adducts, rather than the sterically more favourable tetrahedral one, is in keeping with a platinum(II) oxidation state. The side-on bonding of the O_2 molecule is believed to involve two components, as in Zeise's salt (Figure 3.18).

There is (a) σ -donation from a filled oxygen orbital to an empty platinum orbital and (b) π back-bonding from a filled metal d orbital into an empty oxygen π^* -anti-bonding orbital.

There has been considerable study of reactivity patterns and reaction mechanisms for oxidative additions of $Pt(PR_3)_n$ species. Reactivity is determined by (a) steric factors, thus complexes like $Pt(Pcy_3)_2$ are very reactive and (b) the basicity of the phosphine. The more basic the phosphine, the more facile is oxidative addition; therefore $Pt(PEt_3)_3$ will add PhCl and PhCN while the less nucleophilic $Pt(PPh_3)_3$ will not. It is thought that many of these reactions involve initial dissociation of a phosphine, as in the addition of benzyl halides to $Pd(PPh_3)_4$, proceeding generally by inversion through a $S_N 2$ mechanism. Either ionic or radical mechanisms are possible. Radical pathways can be detected in three ways:

Figure 3.18 Metal-dioxygen bonding in platinum-dioxygen complexes.

- 1. Addition of radical inhibitors (e.g. duroquinone, galvinoxyl), which will slow up any pathway involving radicals.
- 2. Adding a radical trap like Bu^tNO to the reaction mixture; this reacts with radicals (R[•]) forming nitroxide radicals $Bu^t(R^•)NO$ that can be detected by ESR.
- 3. Observation of CIDNP effects in the resonances of either reactant or product species in the NMR spectrum of the reaction mixture.

In the case of the reaction of $PhCH_2Br$ with $Pt(PEt_3)_3$, it is thought that $Pt(PEt_3)_2(PhCH_2)Br$ is formed via a S_N2 route where the platinum forms a cationic complex that undergoes immediate attack by Br^- while some $Pt(PEt_3)_2Br_2$ is formed in a very rapid reaction unaffected by radical scavengers.

$$Pt(PEt_3)_3 + PhCH_2Br \rightarrow Pt^{I}(PEt_3)_nBr + PhCH_2^{\bullet}$$
$$Pt(PEt_3)_nBr + BrCH_2Ph \rightarrow Pt(PEt_3)_2Br_2 + PhCH_2^{\bullet}$$

This is in contrast with the reaction of $Pt(PEt_3)_3$ with Me_3CCH_2Br , which is affected by radical scavengers like galvinoxyl, where the radicals are sufficiently long lived to undergo side reactions with the solvent – in toluene, some $Pt(PEt_3)_2(PhCH_2)Br$ is formed – giving credence to a radical chain mechanism. In the reactions of alkyl halides (EtI, MeI, PhCH_2Br) to $Pt(PPh_3)_3$, believed to proceed by a non-chain radical process, addition of radical traps results in the formation of ESR-active radicals. This reaction is very solvent dependent; in benzene MeI adds to give solely $Pt(PPh_3)_2MeI$ while in THF $Pt(PPh_3)_2I_2$ is the main product [56]. A detailed study of this reaction in benzene shows that the most important steps are

$$Pt(PPh_3)_3 \rightleftharpoons Pt(PPh_3)_2 + PPh_3$$
$$Pt(PPh_3)_2 + MeI \rightarrow Pt(PPh_3)_2(Me)I + PPh_3$$

Undissociated Pt(PPh₃)₃ is much less reactive.

Addition of RX to a $Pt(PR_3)_n$ species may occur by two main pathways:

- 1. S_N^2 attack of the electron-rich platinum(0) on the alkyl halide to give the $Pt^{II}(R)X$ species directly, possibly via an ionic intermediate.
- 2. Platinum removes a halogen atom from the halide, causing homolytic fission of the C-halogen bond. The resulting $Pt^{I}-XR$ radical pair can either react to form $Pt^{II}(R)X$ or separate, with subsequent reaction with RX leading to either PtX_{2} or PtRX species or reaction with solvent molecules.

3.6.3 Carbonyl complexes

 $Ni(CO)_4$ is a most important nickel carbonyl compound and can even be prepared directly from its constituents yet the corresponding palladium

and platinum compounds do not exist (at least, at room temperature). If platinum (or palladium) is vaporized from a hot rod (around 1800°C) to produce gaseous platinum atoms, and co-condensed with CO in an argon matrix, IR spectra indicate the presence of metal carbonyl species $M(CO)_x$ (x = 1-4). On controlled warming, diffusion takes place with successive CO addition taking place to yield $M(CO)_4$ as the stablest product ($\nu(C-O)$ 2052, 2070, 2053 cm⁻¹ for nickel, palladium and platinum tetracarbonyls, respectively). Analysis of spectra leads to metal–carbon force constants of 1.80, 0.82 and 1.28 mdyn Å⁻¹ for nickel, palladium and platinum tetracarbonyls, respectively. This indicates the weakness of the Pd–C and Pt–C bonds; they decompose if the matrices are warmed above c. 80 K [57, 58].

The M-CO bond is stabilized by the presence of tertiary phosphines

$$\begin{array}{l} Pt(PPh_3)_3 + CO \xrightarrow{Me_2CO} Pt(PPh_3)_3CO \\ PtCl_2 + 2PPh_3 + 2CO + Zn \xrightarrow{} ZnCl_2 + Pt(PPh_3)_2(CO)_2 \end{array}$$

Both $Pt(PPh_3)_3CO$ and $Pt(PPh_2Et)_2(CO)_2$ have essentially tetrahedral coordination of platinum.

The reason for the greater stability of $M(PR_3)_n$ over $M(CO)_4$ must lie in the difference in donor characteristics of the two kinds of ligand. CO is a poor σ -donor but a strong π -acceptor, while tertiary phosphines are much better σ -donors.

In a binary carbonyl both σ - and π -components are important in the metal-carbon bond: a σ -bond owing to M \leftarrow : C donation and a π -bond owing to back-bonding from filled metal d orbitals to empty CO π^* -orbitals. The relative energies of the metal d orbitals are in the order of 4d (Pd) > 5d (Pt) > 3d (Ni) so that the strength of the σ -component would be in the order of Pd < Pt < Ni (this also correlates with the electronegativities of the metals). The ability of the metal to donate electrons may correlate with the ionization energies; I_1 values are 737 (Ni), 805 (Pd) and 870 (Pt) kJ mol⁻¹, giving a π -bonding order Pt < Pd \ll Ni. Therefore, on both grounds the Ni–C bond is predicted to be the strongest.

3.6.4 Carbonyl clusters

Apart from the mixed phosphine/carbonyl species $Pt(PPh_3)_{4-n}(CO)_n$ (n = 1, 2), there are polynuclear species $Pt_3L_n(CO)_3$ (n = 3, 4; $L = PR_3$), and additionally some remarkable anionic binary carbonyl clusters, formed by reductive carbonylation of Na₂PtCl₆.6H₂O with general formulae $[Pt_3(CO)_6]_n^{2-}$. These contain $Pt_3(CO)_3(\mu^2-CO)_3$ clusters stacked along a three-fold axis but with a twist or sliding minimizing repulsions in adjacent layers [59].

3.6.5 Isocyanide complexes

A few isocyanides of palladium and platinum are known in the zerovalent oxidation state. The best characterized compounds involve triangular M_3 clusters with M-M bonds.

$$\begin{array}{l} \mathbf{Pt}(\mathbf{PBu}_{3}^{t})_{2} \xrightarrow{\mathbf{Bu}^{t}\mathbf{NC}} [\mathbf{Pt}(\mathbf{CNBu}^{t})_{2}]_{3} \\ \\ \mathbf{Pt}(\mathbf{cod})_{2} \xrightarrow{\mathbf{Pr}^{i}\mathbf{NC}} [\mathbf{Pt}(\mathbf{CNPr}^{i})_{2}]_{3} \end{array}$$

The palladium compound $[Pd(CNcy)_2]_3$ has been made by metal vapour synthesis, from Pd atoms and a solution of cyNC at 160 K. It has an analogous structure $[Pd_3(CNcy)_3(\mu^2-CNcy)_3]$ [60].

3.7 Palladium(I) and platinum(I) compounds

A limited chemistry of the +1 oxidation state of palladium and platinum has developed since the 1970s, mainly involving metal-metal bonded dinuclear complexes [61].

3.7.1 Phosphine complexes

Phosphine complexes can be synthesized by reduction or reproportionation. Complexes of dppm are the most important and can undergo both substitution reactions and insertions (Figure 3.19).

Using a 2-diphenylphosphinopyridine as the bridging ligand (with a similar 'bite' to dppm) leads to a similar dimer (Figure 3.20).

Figure 3.19 Synthesis and reactions of palladium(I) bis(diphenylphosphino)methane complexes.

Figure 3.20 A palladium(I) 2-diphenylphosphinopyridine complex.

Hydrogen reduction of $(dppp)Pd(CF_3SO_3)_2(dppp)Ph_2P(CH_2)_3PPh_2$ affords $[dpppPd]_2(CF_3SO_3)_2$, which has agonistic Pd-phenyl interactions as well as normal Pd-P coordination and a Pd-Pd bond (2.701 Å) (Figure 3.21).

Several *cis*-platinum(II) dihydrides lose H_2 reversibly in solution, forming dinuclear platinum(I) hydrides [(diphosphine)PtH]₂ [62].

Isocyanide complexes can also be made by reproportionation.

3.7.2 Isocyanide complexes

Isocyanide complexes can be synthesized by:

$$PdX_{2}(Bu^{t}NC)_{2} + Pd(Bu^{t}NC)_{2} \rightarrow [PdX(Bu^{t}NC)_{2}]_{2}$$
$$PdCl_{4}^{2-} \xrightarrow{MeNC} [Pd_{2}(MeNC)_{6}]_{2}(PF_{6})_{2}$$

The methylisocyanide complex has a dimeric structure with a direct metalmetal bond (2.531 Å) and only terminal isocyanides, in a staggered configuration (Figure 3.22).

The platinum analogue is similarly made.

Figure 3.21 Structure of the dimeric palladium(I) complex [(dppp)Pd]₂(CF₃SO₃)₂. (Reprinted with permission from *Organometallics*, 1992, 11, 23. Copyright (1992) American Chemical Society.)

Figure 3.22 The staggered structure of $[Pd_2(MeNC)_6]^{2+}$.

3.8 Complexes of palladium(II) and platinum(II)

A wide variety of complexes are formed by both metals in the +2 oxidation state; indeed, it is the most important one for palladium. The complexes can be cationic, neutral or anionic. Both Pd^{2+} and Pt^{2+} are 'soft' acids so that many stable complexes are formed with S or P as donor atoms but few with O-donors, though there are important ammines. There are pronounced similarities between corresponding palladium and platinum complexes; the latter are more studied (and less labile).

3.8.1 Complexes of O-donors

Complexes of O-donors are relatively rare, explicable by the 'soft' nature of the divalent ions. A telling indication is that sulphoxide ligands will only bind through O if steric effects make S-bonding impractical. The most important complexes are diketonates and carboxylates (for the aqua ions see section 3.5).

Diketonates

Two kinds of platinum diketonate may be made

$$PtCl_{4}^{2-} + MeCOCH_{2}COMe \xrightarrow{KOH} KPtCl(acac)_{2}$$
$$\xrightarrow{KOH} exc. MeCOCH_{2}COMe \xrightarrow{KOH} Pt(acac)_{2}$$

Pt(acac)₂ has the expected square planar coordination by oxygen (Pt–O 1.979-2.008 Å) with bidentate diketonates; this has also been confirmed for Pd(PhCOCHCOMe)₂, which is obtainable as *cis*- and *trans*-isomers that can be crystallized and separated manually (Figure 3.23).

In $[PtCl(acac)_2]^-$, 4-coordination is possible because one of the diketonates is C-bonded (Figure 3.24).

The diketonates can form Lewis base adducts such as 5-coordinate $Pd[P(o-tolyl)_3](CF_3COCHCOCF_3)_2$ (Figure 3.25), though with acetylacetone square planar adducts of the type $M(acac)_2(PR_3)_2$ are usually obtained, where the diketone is monodentate O-bonded [63].

4 Silver and gold

4.1 Introduction

For many years, the chemistry of silver and gold was believed to be more similar than is now known to be the case [1-10]. In the Cu-Ag-Au triad, the stability of oxidation states does not follow the usual trend of increasingly stable high oxidation state on descending the group; for copper, the +2 state is the most important, for silver it is the +1 state and, though oxidation states between -1 and +7 are claimed, for gold it is the +1 and +3 states that dominate its chemistry. The types of compound are summarized in Table 4.1.

A plausible reason (or one of the reasons) for the relative stabilities of the oxidation states lies in the ionization energies (Table 4.2) [11]. The value of I_1 is lower for silver than for copper, as would be expected, but I_2 is higher for silver (this electron is removed from a 4d orbital, where the electrons are farther apart and repelled less, than in 3d orbitals); I_3 is again lower for silver, correlating with the increased stability of silver(III) and the tendency of silver(II) to disproportionate. The high I_1 value for gold results from the relativistic contraction of the 6s shell (from which this electron is removed) while the low I_3 value is in keeping with the stability of the +3 state, reinforced by the large ligand field splitting for the 5d⁸ ion. The preference of gold for the +3 state has been attributed to relativistic effects, according to Hartree–Fock calculations [12].

All three M^+ ions are known to form compounds with the unusual digonal linear coordination (see also section 4.9.7), though this is most common for gold. As a result, complexes R_3PMX of copper and silver are normally diand tetranuclear species with 3- or 4-coordinate metals, while the gold analogues are 2-coordinate monomers. This is the reverse of what would be expected on steric grounds [13, 14].

Mixing of gold $5d_{z^2}$ and 6s orbitals, facilitated by the small $d^{10}-d^9s$ separation (and also the large d^9s-d^9p separation, Table 4.3) gives rise to two orbitals Ψ_1 and Ψ_2 (Figure 4.1). The electron pair initially in $5d_{z^2}$ occupies Ψ_1 , away from the two ligands (considered to lie along the z axis). The orbital Ψ_2 can mix further with $6p_z$, to afford two orbitals Ψ_3 and Ψ_4 , which have (empty) lobes pointing along the z axis that can accept electron pairs from the two ligands (Figure 4.1). Recent Hartree-Fock calculations do indicate significant 5d involvement.

Oxidation state	Copper	Silver	Gold
-1			With very electropositive metal (e.g. Cs ⁺ Au ⁻)
+1	Stable if insoluble or complexed; usually 4-coordinate	Found with variety of ligands, e.g. NH ₃ , PR ₃ , Cl; usually 4-coordinate	Occurs with wide range of ligands; most often 2-coordinate
+2	Stable in aq. solution; found with wide variety of ligands, 4–6-coordinate	Usually found with N-, O-, F-donors; 4–6-coordinate	Rare, stabilized by 'suspect' ligands
+3	Rare, usually stabilized by F	Most often found bound to N, O, F; 4- and 6-coordinate	Common with wide range of ligands; usually square planar
+4			One example with a 'suspect' ligand
+5			Fluorine as ligand 6-coordinate
+7			Not confirmed, F as ligand

Table 4.1 Compounds of copper, silver and gold

4.2 The elements and uses

Both silver (m.p. 962° C, b.p. 2212° C) and gold (m.p. 1065° C, b.p. 2807° C) have characteristic brilliant white and yellow colours in bulk but when finely divided are black or, in the case of gold, can be purple, ruby red or blue. Thus reduction of gold compounds by SnCl₂ gives the colloid known as 'Purple of Cassius', which is used as a ceramic colorant.

1 4010	,		
	Cu	Ag	Au
$\overline{I_1}$	745	731	890
İ,	1958	2073	1978
$\tilde{I_3}$	3554	3361	(2900)
Ĭ ₄	5326	(5000)	(4200)

Table 4.2 Ionization energies $(kJ mol^{-1})$

Estimated values in parentheses.

Table 4.3	Energy	separations	(eV)
-----------	--------	-------------	------

	Cu ⁺	Ag^+	Au ⁺
d ¹⁰ -d ⁹ s	2.72	4.86	1.86
d ⁹ s-d ⁹ p	5.72	5.07	5.96
$d^{10} - d^9 p$	8.44	9.93	7.82

Neither metal is attacked by oxygen, but silver reacts with H_2S in town air forming a black tarnish of Ag_2S . Both dissolve in cyanide under oxidizing conditions. Non-oxidizing acids have no effect, but silver dissolves in concentrated HNO₃ and gold in aqua regia. Both silver and gold react with the halogens, and gold can, therefore, be dissolved in mixtures of halogens and ionic halides in a polar solvent (e.g. $Cl_2/Et_4NCl/MeCN$ or $I_2/KI/MeOH$) [15].

Like copper, both gold and silver have fcc (ccp) lattices (Au-Au 2.88 Å, Ag-Ag 2.889 Å) in which the metals are 12-coordinate.

4.2.1 Extraction [16]

Although silver does not often occur native, principal ores are AgCl ('horn silver') and Ag₂S (argentite), sometimes associated with copper ores; main ore-containing countries are Mexico, Canada, Peru, Australia, the USA, the former USSR and Poland. Gold is largely formed as the metal (USA, former USSR, South Africa, Canada) deposited in quartz, though erosion can lead to veins in rocks or deposits in rivers; it is sometimes found in sulphide minerals like pyrites and chalcopyrite (CuFeS₂) or arsenopyrite (FeAsS). Bacteria have been implicated in the accumulation of gold while various complexes like AuCl₂⁻ and Au(SH)₂⁻ are thought to also be responsible for gold transport and accumulation.

Figure 4.1 Mixing of atomic orbitals to give hybrid orbitals capable of generating digonal 2-coordination. (From J.E. Huheey, *Inorganic Chemistry*, Harper and Row, London, 1975. Reprinted by permission of Addison-Wesley Educational Publishers Inc.)

Silver was formerly extracted by cyanide solution of Ag_2S , the resulting $Ag(CN)_2^-$ being treated with zinc to afford the metal; roasted ores could also be extracted with mercury to give silver amalgam. Presently much silver is extracted by workup of the anode slime from the preparation of non-ferrous metals (Pb, Cu); pure silver is obtained by electrolysis of $AgNO_3$.

Gold ores can be concentrated by froth flotation, the resulting concentrate being roasted at 600-800°C to oxidize off sulphur and arsenic as their oxides. The product is extracted with cyanide under oxidizing conditions (using either peroxide or air itself) before displacement with powdered zinc. More reactive metals (silver etc.) can be removed by chlorination of molten gold.

An alternative route increasingly investigated is bio-oxidation using bacteria to oxidize pyrite or arsenopyrites at 45°C.

Final purification can be done by electrolysis using HAuCl₄ electrolyte.

4.2.2 Gold plating and other methods of gold deposition

Electrolysis of solutions containing $Au(CN)_2^-$ is widely used to recover gold from solution (electrowinning) [17]. The process is also used to deposit gold coverings for electrons (e.g. printed circuit boards, electrical connectors) and most recently for hip and shoulder joint replacement surgery.

Where insulated surfaces are to be joined, two other processes are employed: the 'immersion' and 'electroless' methods. Immersion gold plating is based on displacement reactions, where a copper or nickel object is coated with a thin film of gold from a solution of gold complex, usually in slightly acid solution (about 90°C); the process is self-terminating when a film of c. $0.2 \,\mu$ m is attained. Electroless processes use a reducing agent (NaBH₄, dimethylaminoborane, sodium hypophosphite) usually in hot alkaline solution (70–90°C) to reduce a gold complex such as Au(CN)₂⁻.

4.3 Halides

The halides of silver and gold are listed in Table 4.4; as expected gold has more in higher oxidation states [18c].

4.3.1 Silver halides

The subfluoride Ag_2F can be prepared by reaction of silver with aqueous AgF or by electrolysis of AgF in HF:

$$Ag + AgF \rightarrow Ag_2F$$

It has the anti- CdI_2 structure, with alternating double layers of silver and intercalated fluorides. It is a metallic conductor.

	Silver				Gold			
	F	Cl	Br	I	F	Cl	Br	I
M ₂ X	Bronze	<u></u>		<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				<u> </u>
MX	Colourless, m.p. 435°C	Colourless, m.p. 455°C	Cream, m.p. 432°C	Yellow, m.p. 558°C		Yellow-white, dec. 170°C	Light yellow, dec. 115°C	Lemon, dec. 120°C
MX_2	Black					Black ^{<i>a</i>}		
MX ₃	Bright red ^b				Gold-yellow, dec. $500^{\circ}C^{b}$	Red, dec. 254°C	Dark brown, dec. 97°C	
MX_5					Yellow-brown			
MX ₇					Pale yellow			

Table 4.4 Characteristics of silver and gold halides

M, silver or gold; X, halide. ^{*a*} AuCl₂ is, in fact, Au₄Cl₈, containing Au(I) and (III); ^{*b*} Ag₃F₈ and Au₂F₅ are also obtained.

Anhydrous AgF is best made by fluorination of finely divided silver at room temperature; alternatively it can be made by dissolving silver(II) oxide in hydrofluoric acid and crystallizing:

Ag
$$\xrightarrow{F_2/N_2(1:10)}$$
 AgF

As expected from the similarity of ionic radii between Ag^+ (1.15 Å) and Na^+ (1.01 Å), one form has the NaCl structure (it is trimorphic) with other forms having the CsCl and inverse NiAs structures. Unlike the other silver(I) halides, it is very soluble in water (up to 14 M) and forms di- and tetrahydrates; it is decomposed by UV rather than visible light and melts unchanged at 435°C.

The other silver(I) halides are traditionally prepared by ionic precipitation, on account of their insolubility:

$$Ag^+(aq.) + X^-(aq.) \rightarrow AgX(s)$$
 (X = Cl, Br, I)

which increases in the order Cl < Br < I, just as their covalent character increases and their colour deepens (as the energy of the charge transfer process $Ag^+X^- \rightarrow AgX$ decreases) [19]. AgCl and AgBr also have the 6coordinate NaCl structure but the repulsion between I⁻ in a NaCl-type lattice is such that the stable (γ) form at room temperature of AgI has the 4coordinate ZnS structure. Comparison between experimental lattice energies (derived from Born-Haber cycle calculations) and values calculated using the Kaputinskii equation show increasing discrepancy in the order F < Cl < Br < I, demonstrating increasing divergence from an ionic model as the larger halide ion becomes more polarizable by Ag⁺ (this contributes to the lattice energy being greater than predicted on an ionic model, which in turn leads to a more positive enthalpy of solution, sufficient to ensure their insolubility rather than the solubility predicted from the similarity in size between Ag^+ and Na^+). Silver iodide also exists with the hexagonal ZnO structure (136–146°); above 146°C, it passes into the α -form which has a rigid bcc structure in which there is a fixed array of I⁻, but the Ag⁺ can move almost at will through the structure. This causes α -AgI to have the highest conductivity of any ionic solid: interest has centred on creating ionic conductors with high conductivities at room temperature [20].

The silver(I) halides are, of course, important in the photographic process, AgBr being most commonly used; in this process a photon causes an electron to be lost from a halide ion and gained by a silver ion, thus forming silver atoms. Subsequent development with hydroquinone intensifies the image by reducing those AgBr grains containing silver atoms, followed by 'fixing' the image, a process in which thiosulphate removes unreacted AgBr as the complex ion $Ag(S_2O_3)_2^{3-}$. Since the light-sensitive AgBr has been removed, the image is now stable.

Silver(II) fluoride AgF_2 is a genuine silver(II) compound exhibiting Jahn-Teller tetragonal distortion (4F at 2.07 Å; 2F at 2.59 Å); it exhibits a low

magnetic moment $(1.07 \,\mu_B)$ owing to anti-ferromagnetic coupling. In the absence of excess fluorine, it decomposes at 150–200°C but under a fluorine atmosphere melts at ~620°C. It is prepared from the elements at 200°C and is quite a strong fluorinating agent.

AgF₃ has recently been characterized [21] as a red diamagnetic solid, isostructural with AuF₃; it is best made by adding a fluoroacid (BF₃, PF₅) to solutions of AgF₄ salts in anhydrous HF

$$AgF_4^- + BF_3 \rightarrow AgF_3 + BF_4^-$$

The elongated octahedral coordination of silver has Ag-F 1.863 Å (×2) 1.990 Å (×2) and 2.540 Å (×2). When dry, it is stable for some weeks at room temperature, though it loses fluorine on standing in HF to form Ag₃F₈ and is a strong fluorinating agent. Ag₃F₈ is Ag^{II}Ag^{III}F₈ ($\mu_{eff} = 1.92 \,\mu_B$); Ag₂F₅ (Ag^{II}Ag^{III}F₅) has also been made.

4.3.2 Gold halides

Only AuF of the gold(I) halides is unknown in the solid state; its stability can be examined by means of a Born-Haber cycle, assuming that it would have an ionic lattice like AgF. (AuF has been generated in the gas phase from Au^+ and CH₃COF [22].)

			$\Delta H (\mathrm{kJmol^{-1}})$
Au(s)	\rightarrow	Au(g)	343.1
Au(g)	\rightarrow	$Au^+(g) + e^-$	890.1
$\frac{1}{2}F_{2}(g)$	\rightarrow	F(g)	79.0
$\tilde{F}(g) + e^{-}$	\rightarrow	F ⁻ (g)	-322
$\mathrm{Au}^+(\mathrm{g}) + \mathrm{F}^-(\mathrm{g})$	\rightarrow	AuF(s)	-778
$Au(s) + \frac{1}{2}F_2(g)$	\rightarrow	AuF(s)	+212.2

Its instability relative to its constituent elements is the result of the high value of I_1 of gold and to its large enthalpy of atomization, which are not compensated for by the small lattice energy.

AuCl, AuBr and AuI are all prepared by cautious heating of Au_2X_6 (X = Cl, Br) or, in the case of AuI, direct synthesis

$$\begin{array}{c} Au_{2}Cl_{6} \xrightarrow{150^{\circ}C} 2Cl_{2} + 2AuCl \xrightarrow{200^{\circ}C} 2Au + Cl_{2} \\ Au_{2}Br_{6} \xrightarrow{250^{\circ}C} 2Br_{2} + 2AuBr \xrightarrow{250^{\circ}C} 2Au + Br_{2} \\ 2Au + I_{2} \xrightarrow{2} 2AuI \\ AuCl_{4}^{-}(aq.) \xrightarrow{I_{2}} AuI \end{array}$$

		F	Cl	Br	I	Ref. ^b
AuX	ΔH	(+75)	-35	-19	1.7	1
	ΔG	× ,	-16	-15	-3.3	1
	ΔH	$+212^{c}$	-34.7	-13.8	0	2
AuX ₃	ΔH	-360	-121	-67.3		1
5	ΔG		54	-36		1
	ΔH	-363.6	-117.6	(-49.3)		2
				(+62.8)		

Table 4.5 Energy values^a for gold halides

^a All values in kJ mol⁻¹; estimated values in parentheses.

^b Data taken from:

1. R.J. Puddephatt (1978) The Chemistry of Gold, Elsevier, Oxford.

2. M.W.M. Hisham and S.W. Benson (1987) J. Phys. Chem., 91, 3631.

° This book.

Other methods are available, especially for AuCl, such as the decomposition of Au(CO)Cl. AuCl tends to disproportionate slowly at room temperature as predicted from the data in Table 4.5.

$$6AuCl \rightarrow 2AuCl_3 + 4Au$$
 $\Delta G = -12 \text{ kJ mol}^{-1}$

Decomposition is rapid in solution, so that AuCl needs to be stored in an anhydrous state. All three gold(I) halides have a zig-zag chain structure (Figure 4.2) with linear coordination of gold; AuCl has a 'wide' Au-X-Au angle (93°) and AuI a narrower angle (72°), while AuBr exists in both crystalline forms.

Bond lengths are Au–Cl 2.36 Å, Au–Br 2.40–2.44 Å, Au–I 2.62 Å [23]. A compound AuCl₂ is, as might be expected from its black colour, the mixed valence Au₂^IAu₂^{III}Cl₈; it is prepared from the reaction of CO with

excess AuCl₃ in SOCl₂:

$$2AuCl_3 + CO \rightarrow 2AuCl_2 + COCl_2$$

The gold(I) atoms have linear coordination (Figure 4.3) and the gold(III) atoms square planar coordination [24].

There are various routes for the synthesis of the trihalides:

$$Au + BrF_{3} \rightarrow AuF_{3}.BrF_{3} \xrightarrow[in vacuo]{300^{\circ}C} AuF_{3} \xrightarrow[in vacuo]{300^{\circ}C} Au + F_{2}$$

$$Au \xrightarrow{F_{2}} AuF_{3} \quad [26]$$

$$2Au + 3Cl_{2} \xrightarrow{240^{\circ}C} Au_{2}Cl_{6}$$

$$2Au + 3Br_{2} \rightarrow Au_{2}Br_{6}$$

$$X \xrightarrow{Au} \xrightarrow{Au} X$$

Figure 4.3 The structure of AuCl₂.

Two structures are exhibited, both involving 4-coordinate gold, giving rise to the diamagnetism expected for square planar d^8 systems. Like AgF₃, AuF₃ has [26] a fluorine-bridged helical structure (Figure 4.4) and is a strong fluorinating agent too.

The chloride [12] and bromide [27] are dimeric Au_2X_6 (Figure 4.5) with Au-Cl 2.243–2.249 Å (terminal) and 2.334 Å (bridge); some ligands break the bridges to form adducts $AuX_3.L$ while others reduce them to gold(I) species.

Gold(III) iodide has not been definitely characterized in the solid state; substances with this formula in the solid state are probably gold(I) poly-iodides $Au^+I_3^-$; AuI_3 has also been detected in the gas phase (mass spectra).

The higher fluorides of gold, AuF_5 and AuF_7 , have been reported; the former is well characterized [28]:

$$Au \xrightarrow{O_2/F_2(1:4)} O_2^+AuF_6^- \xrightarrow{sublime} AuF_5 + O_2 + \frac{1}{2}F_2$$

$$Au \xrightarrow{KrF_2/HF} KrF^+AuF_6^- \xrightarrow{40-60^\circ C} AuF_5$$

Figure 4.4 The structure of AuF₃.

Figure 4.5 The structure of Au_2Cl_6 .

It is an intensely reactive and hygoscopic yellow-brown substance (m.p. 75– 78° C); its volatility suggests a low molecular mass; Mössbauer spectra indicate 6-coordinate gold while the Raman spectrum is interpreted in terms of *cis*-bridged octahedral units. In the gas phase at 170°C, it comprises dimers and trimers [29] (electron diffraction).

AuF₇ is reported to result from the reaction of fluorine atoms (produced in a high-voltage plasma) with AuF₅ at 120–130°C, being condensed out at -196° C as a very reactive and volatile pale yellow solid (vapour pressure > 30 mmHg at room temperature) with an intense IR band at 734 cm⁻¹ (vapour). It decomposes to AuF₅ above 100°C and affords Au₂O₃ and Au on hydrolysis [18].

4.4 Oxides and other binary compounds

The main silver oxides are Ag_2O and AgO. The former is obtained as a dark brown precipitate when OH^- are added to solutions of Ag^+ salts; it tends to retain traces of water and alkali, even on drying. It is basic, giving slightly alkaline solutions in water (it is a convenient mild alkali in organic chemistry) and reacting with atmospheric CO_2 . On heating to 160°C, it forms silver. Isostructural with Cu_2O , it has tetrahedral coordination of silver. When fused with alkali metal oxides, mixed oxides like KAgO are formed that have $Ag_4O_4^{4-}$ units with 2-coordinate silver. Analogous gold compounds are known (but not Au_2O) [30].

Black AgO is prepared by oxidation of silver salts with O_3 , $S_2O_8^{2-}$ and, most recently, SO_2/air mixtures, as well as by anodic oxidation [31]. Neutron diffraction shows it to be $Ag^IAg^{III}O_2$ with 2-coordinate Ag^I and square planar Ag^{III} sites. It is stable to around 100°C and gives solutions of Ag^{2+} when dissolved in dilute acid. Treatment with alkaline periodate retains the disproportionation

 $4AgO + 6OH^- + 4IO_4^- \rightarrow 2Ag(IO_6)_2^{7-} + Ag_2O + H_2O + 4H^+$

It finds important applications in batteries.

Less important oxides are Ag_2O_3 , obtained impure by extended anodic oxidation of silver, and Ag_3O , obtained hydrothermally from Ag/AgO at $80^{\circ}C$, 4000 bar, which is a metallic conductor with the anti-BiI₃ structure containing an hcp array of silvers with oxide ions occupying 2/3 of the octahedral holes [32].

The only important gold oxide is brown Au_2O_3 , obtained hydrated by alkaline precipitation of $Au^{3+}(aq.)$; single (ruby) crystals have been produced by hydrothermal crystallization at 235–275°C (from HClO₄/KClO₄). It has a polymeric structure [33] with square planar Au^{3+} (Au–O 1.93–2.07Å) though with four more distant oxygens (at 2.81–3.19Å). It decomposes to the elements on gentle heating and dissolves in strong alkali as

Au(OH) $_{4}^{-}$. There have been claims for an AuO₂, which may have been impure Au₂O₃.

The ternary oxides M_3AuO (M = Rb, Cs) contain Au⁻, however [34].

Other binary compounds include the very insoluble black Ag₂S $(k_{sp} \sim 10^{-51})$ and Au₂S. The latter has the cuprite structure while Ag₂S has three polymorphs; 2- and 3-coordination is found in the low-temperature form while at high temperatures Ag₂S is a conductor owing to movement of silver atoms between the framework of sulphurs. AuS and AuSe are, as would be expected, Au^IAu^{III}X₂ with digonal gold(I) and square planar gold(III) [35]; little is known about Au₂X₃ (X = S, Se, Te). AuTe₂ 'calverite' has 4 + 2-coordination of gold by tellurium [36]. Various polyanions such as Au₂S₈²⁻, AuS₉⁻ and Au₁₂S₈⁴⁻ have been made; the first two have rings with linear coordination of gold (as in Au₂Se₅²⁻ and Au₂Se₆²⁻) while the latter has a cube of sulphurs with golds at the middle of each edge [37]. Selenide complexes of silver [38] and gold [39] have been studied lately. Silver selenide complexes show dependence in structure on counter-ion as in [Ph₄PAg(Se₄)]_n, [Me₄NAg(Se₅)]_n, [Et₄NAg(Se₄)]₄ and (Pr₄N)₂[Ag₄(Se₄)₃].

Gold forms no simple phosphide; Au_2P_3 is $Au_4^{I}(P_6^{4-})$ with P-Au-P angles of 171 and 180°.

4.5 Aqua ions

Only Ag^+ and Au^{3+} are stable in aqueous solution, the latter always being complexed. The relevant potentials (in acid solution) are:

$Ag^+(aq.) + e^- \rightarrow Ag(s)$	$E^0 = +0.799 \mathrm{V}$
$Ag^{2+}(aq.) + e^- \rightarrow Ag^+(aq.)$	$E^0 = +1.980 \mathrm{V}$
$Au^+(aq.) + e^- \rightarrow Au(s)$	$E^0 = +1.83 \mathrm{V}$
$\operatorname{Au}^{3+}(\operatorname{aq.}) + 2e^{-} \rightarrow \operatorname{Au}^{+}(\operatorname{aq.})$	$E^0 = -1.36\mathrm{V}$

From the Ag^+/Ag^{2+} potential, it is seen that the silver(II) ion is a strong oxidizing agent and is only fairly stable in strong acid; it may be prepared by ozone oxidation of Ag^+ or by reproportionation of AgO (section 4.4).

Ag⁺ is stable to disproportionation in aqueous solution

$$2Ag^{+}(aq.) \rightarrow Ag^{2+}(aq.) + Ag(s)$$
 $E^{0} = -1.18 V$

though the potential is affected by complexation and certain silver(I) macrocyclic complexes disproportionate in solution (section 4.7).

L	Gold(I) E ⁰ (V)	Gold(III) E ⁰ (V)
H ₂ O	-1.83	-1.52
CĨ−	-1.15	-1.00
Br ⁻	-0.96	-0.85
I ⁻	-0.66	-
SCN ⁻	-0.58	-0.64
NH ₃	-0.56	-0.33
CN [±]	+0.61	+0.20

Table 4.6 Selected electrode potentials for gold(I) and gold(III) complexes $[Au(L^{n-})_2]^{(1-2n)+}$ and $[Au(L^{n-})_4]^{(3-4n)+}$

In the case of gold, study of the above potentials predicts correctly the disproportionation of Au^+ in aqueous solution

$$3Au^+(aq.) \rightarrow Au^{3+}(aq.) + 2Au(s)$$
 $E^0 = 0.47 V$

For example, AuCl immediately decomposes into gold and gold(III) chloride, though some gold(I) halide complexes such as AuI_2^- are quite stable, while $Au(CN)_2^-$ is formed by oxidation of gold in the presence of CN^- :

$$Au + 2CN^{-} \rightarrow Au(CN)_{2}^{-} + e^{-} \qquad E^{0} = +0.61 V$$

Table 4.6 shows the potentials to be ligand dependent.

X-ray scattering data on solutions of Ag^+ indicate the presence of $Ag(H_2O)_4^+$ with Ag-O about 2.4 Å [40]. Soluble silver(I) salts include $AgNO_3$, $AgClO_4$ (the periodate is insoluble), $AgBF_4$, $AgClO_3$ and AgF (all other halides are insoluble). There is no evidence for perchlorate coordination in aqueous solution. Silver nitrate is prepared from the reaction of silver with concentrated nitric acid as colourless crystals m.p. 212°C. It decomposes above 350°C to silver, oxygen, nitrogen and oxides of nitrogen. Insoluble salts of silver include the bright yellow Ag_3PO_4 and (in contrast to the chlorate) the bromate and iodate. Little is known concerning gold(III) salts such as $Au(NO_3)_3$.

The oxidizing power of Ag^{2+} (aqueous) is being utilized in electrochemical cells for disposal of organic wastes; solutions of Ag^{2+} in HNO₃ were originally found to be efficient oxidants for organic nuclear waste (tributyl phosphate kerosene from solvent extraction processes) but the scope has been expanded to include rubber, certain polymers, hydraulic and lubricating oils, aromatic and aliphatic hydrocarbons, organo-phosphorus, sulphur and chloro compounds (including PCBs, notoriously difficult to oxidize) [41].

4.6 Silver(I) complexes

4.6.1 Complexes of O-donors

The aqua ion as a ligand is discussed in section 4.5. Silver forms a range of light-sensitive, insoluble carboxylates that find application in the synthesis of, for example, alkyl halides and esters. The benzoate, trifluoroacetate and perfluorobutyrate have dimeric structures; others are polymers (Figure 4.6).

Commercially, the most important complexes of O-donors are the thiosulphates, implicated in photographic 'fixing'; of several known, in NaAgS₂O₃.H₂O each silver is tetrahedrally bound to three sulphurs and one oxygen while $(NH_4)_7Ag(S_2O_3)_4$ also has silver tetrahedrally bound by sulphur. Unlike other 'soft' metal ions, Ag⁺ binds to Me₂SO via oxygen in Ag(DMSO)₂ClO₄ rather than by sulphur.

4.6.2 Complexes of N-donors

Dissolution of Ag₂O in aqueous ammonia lends to the formation of Ag(NH₃)⁺₂ (Ag–N 2.110 Å in Ag(NH₃)₂SO₄); its reduction by aldehydes and reducing sugars is the basis of its use as Tollens' reagent, the 'silver mirror' test. In liquid ammonia, the tetrahedral Ag(NH₃)⁺₄ is formed (Ag–N 2.31 Å), isolable as a perchlorate (which loses NH₃ on keeping); silver nitrate forms [Ag(NH₃)₃]⁺NO₃⁻ with a trigonally coordinated silver (Ag–N 2.281 Å) [42]. Linear coordination is formed in Ag(pyridine)⁺₂NO₃⁻.H₂O (Ag–N 2.26 Å, bond angle 173°; four distant contacts to oxygens Ag–O c. 2.9 Å); an unstable Ag(py)⁺₄ has similarly been characterized. Ag(im)⁺₂ is linear in the nitrate, but in the perchlorate, Ag(im)⁺₂ is associated in pairs (further grouped into triangular units). Ag(pyrazine)NO₃ has silver similarly bound to two nitrogens but nitrate coordination is stronger than in the pyridine complex as the chains are kinked (N–Ag–N 159°) (Figure 4.7).

An exception to the above types of structure is the cubane cluster in $(AgIpiperidine)_4$ [43].

Less study has been made of complexes with polydentate ligands. Ag–N linkages have been studied in relation to polynucleotide bases and the Ag–DNA interaction could be important in the use of the silver–sulphadiazine complex in burn treatment. Ethylenediamine is a bridging ligand in AgenClO₄ (2-coordinate silver) but essentially planar 5-coordination

Figure 4.6 The dimeric structure adopted by some silver carboxylates such as silver trifluoroacetate.

Figure 4.7 The environment of silver in Ag(pyrazine)NO₃.

occurs in Ag(quinquepyridine) PF_6 ; [Ag(PPh_3)₂(terpy)]ClO₄ has trigonal bipyramidal coordination [44].

 $Ag(4,4'-bipy)NO_3$ has a three-dimensional structure with silver ions diagonally coordinated by two bipy ligands (N-Ag-N 173.7°) in extended infinite chains, the chains being cross-linked by Ag-Ag bonds (2.970 Å) [45].

4.6.3 Tertiary phosphine and arsine complexes

The 1:1 phosphine complexes resemble those of copper rather than gold (Figure 4.8) [46].

More bulky phosphines favour the chair structure; $[(R_3P)AgX]_4$ (R = Et, Ph; X = Cl, Br, I) all adopt the cubane form but a second form of $[(Ph_3P)AgI]_4$ has the chair structure in which some silver atoms are 3coordinate. Some of these clusters may dissociate into dimers in solution. In contrast to the linear gold analogue, $[(Ag(O_2CMe)(PPh_3)]_4$ has a tetrameric structure featuring 3- (1P, 2O) and 4- (1P, 3O) coordinate silver while a second form is dimeric $[(Ph_3P)Ag(\mu-O_2CMe)Ag(PPh_3)]$ with 3-coordinate silver [47]; Ag(SCN)(PPr_3^n) has a chain structure where 4-coordination is attained with cross-linking of Ag-S-Ag-S-units. $(Ph_3P)_2AgX$ (X = Cl, Br, I, SCN) are X-bridged dimers [48] and $(Ph_3P)_3AgCl$ also features tetrahedral coordination; four tertiary phosphites, though not phosphines, can bind to one silver. Four-coordination is found in monomeric and dimeric

Figure 4.8 Cubane and chair structures adopted by complexes $(R_3P)AgX$.

Figure 4.9 The dimeric structure adopted by (Ph₂PCH₂PPh₂)AgNO₃.

 $(Ph_3P)_2AgNO_3$. [$(Ph_3P)_2Ag(O_2CH)$] has 4-coordinate silver with a symmetrically bidentate formate ligand [49]. Two-coordination has been established for bulky phosphines, for [$(mesityl)_3P$]₂ $Ag^+PF_6^-$ and probably for $(Bu_3^tP)_2Ag^+X^-$ (X = PF₆, BF₄, ClO₄). Among complexes of bidentate ligands, $(Ph_2PCH_2PPh_2)AgNO_3$ is a dimer with 3-coordinate silver (Figure 4.9).

The series M(PP)Cl (PP = 2,11-bis(diphenylphosphinomethyl)benzo[c]phenanthrene; M = Cu, Ag, Au) is interesting in showing group trends (Table 4.7) where the silver and copper complexes have trigonal coordination and the gold member is linear [50].

Linear coordination is also found in Ag(tmpp)X (X = Cl, Br). Bond lengths are Ag-P 2.379 and Ag-Cl 2.342Å in the chloride; Ag-P 2.374 and Ag-Br 2.448Å in the bromide [51a]. The 3-coordinate monomers Ag(PR₃)(CF₃COCHCOCF₃) (the diketonate chelates through the two oxygens; R = Me, Et) are volatile and thermally stable to over 100°C; they have been suggested as CVD precursors [51b]. Four-coordination occurs in [Ag(S₂CAr)(PPh₃)₂] [52].

4.6.4 Complexes of halogen-donors

Silver halides dissolve in excess halide (e.g. AgCl is a hundred times more soluble in 1 M HCl than in water) forming complex ions AgX_2^- and $AgX_3^{2^-}$ [53]. These isolated anions are not often found in the solid state; thus M_2AgI_3 (M = K, Rb, NH₄) have corner linked tetrahedra (Figure 4.10), though Au(S₂CNBu₂ⁿ)₂⁺AgBr₂⁻ does have digonally coordinated silver (Ag-Br 2.45 Å).

 MAg_4I_5 (M = Rb, K) compounds are iodide-based solid electrolytes with high conductivities; the structures are based on packing of I⁻, the ion Ag^+

M	M−P average (Å)	M–Cl (Å)	Р-М-Р (°)
Cu	2.237	2.222	131.9
Ag	2.434	2.514	140.7
Au	2.308	2.818	175.5

Table 4.7 Structure of M(PP)Cl

Figure 4.10 The structure of K₂AgI₃. (Reproduced with permission from *Acta Crystallogr. Sect. B*, 1975, 31, 2339.)

(but not M^+) being mobile at room temperature, moving from one position to another with a relatively small energy barrier [54].

Trigonal coordination is also found in M(dibenzo-18-crown-6)AgX₃ (M = K, Rb; X = Cl, Br) with Ag-X bond lengths of 2.447 Å (X = Cl) and 2.550 Å (X = Br) in the rubidium salts. With the larger K(crypt-2,2,2)⁺ counter-ion, it is possible to isolate individual ions as AgCl₂⁻. In (PPh₃Me)⁺AgI₃⁻, Ag-I is 2.742-2.755 Å; (Pr₄N)₄[Ag₄I₈], however, has cubane-type clusters [55].

4.6.5 Complexes of C-donors

The most important complexes with C-donors, other than organometallics, are cyanides. AgCN has a structure with Ag-C-N-Ag bonding in linear polymeric chains; it dissolves in excess KCN forming K⁺Ag(CN)₂⁻ (digonal with Ag-C 2.13 Å, ν (C=N) 2135-2139 cm⁻¹), Ag(CN)₃²⁻ and Ag(CN)₄³⁻ [56].

4.6.6 Complexes of S-donors

Like gold, silver readily forms insoluble (yellow) thiolates $[Ag(SR)]_n$; primary alkylthiolates are thought to have non-molecular structures but with bulky tertiary alkyls (n = -8), probably having a cyclic structure. Addition of excess thiolate leads to the formation of clusters like $Ag_6(SPh)_8^{2-}$, $Ag_5(SPh)_7^{2-}$ and $Ag_5(SBu^t)_6^-$ (phosphine adducts are known, too).

Octahedral silver clusters are also found in dithioacid complexes $[Ag(S_2CNR_2)]_6$ (R = Pr, Et) and $[Ag(S_2C=C(CN)_2)]_6^{6-}$, while $[Ag_8(S_2C=C(CN)_2)_6]^{4-}$ has a cube of silvers (Figure 4.11) [57].

Figure 4.11 The structure of $[Ag_8{S_2C=C(CN)_2}_6]^{4-}$. (Reproduced with permission from *J. Chem. Soc., Chem. Commun.*, 1981, 323.)

A number of thiourea complexes of silver have shown the tendency to bind up to four ligands, in contrast to gold. Thus $Agtu_2X$ (X = Cl, NCS) have essentially 3-coordinate silver (one distant fourth atom); $Agtu_3ClO_4$ is a 4-coordinate dimer (Figure 4.12) [58].

Various thioether complexes have been synthesized: for example, 6-coordination is found in $[Ag(18S_6)]^+$ and $[Ag(9S_3)_2]^+$ but in $[Ag(16S_6)]^+$, tetrahedral coordination occurs, with two unused donor atoms in the ligand [59].

Figure 4.12 The structure of dimeric $[Ag_2(tu)_6]^{2+}$ in $Ag(tu)_3ClO_4$.

4.7 Silver(II) complexes

Stable compounds of silver(II) are found with N, O and F as donor atoms; macrocycles are, as elsewhere, able to support the higher oxidation state. As a d^9 system, Ag^{2+} imitates Cu^{2+} in displaying Jahn–Teller distortion.

Violet fluoro complexes like $BaAgF_4$ and Cs_2AgF_4 can be made by fluorination

$$BaCO_3 + Ag_2SO_4 \xrightarrow{F_2} BaAgF_4 \qquad (\mu = 1.9\,\mu_B)$$

and have square planar silver (Ag-F 2.05 Å). MAgF₃ (M = K, Rb, Cs) and CsAgMF₆ (M = Tl, In, Sc, Fe) have also been made; KAgF₃ has distorted 6-coordination (perovskite structure) and CsAgFeF₆ has a compressed octahedral geometry [60].

Complexes of N-donor ligands have been made by chemical (ozone or persulphate) or electrochemical oxidation, such as $Agpy_4S_2O_8$, $Ag(bipy)_2(S_2O_8)$ and $Ag(bipy)_2(NO_3)_2$. H₂O. Solid $Ag(bipy)_2(S_2O_8)$ has $\mu_{eff} = 1.82 \,\mu_B$; $g_{\perp} = 2.032$, $g_{\parallel} = 2.134$ (in frozen solution, hyperfine structure from both silver and nitrogen are seen). $Ag(bipy)_2(NO_3)_2$. H₂O has distorted octahedral coordination (bidentate bipy, bridging nitrate). The value of E^0 for $Agbipy_2^{+}$ $Agbipy_2^{2+}$ is 1.453 V, compared with 2.0 V for the aqua ion, demonstrating the ability of these ligands to stabilize higher oxidation states [61].

Picolinate and pyridine-2,6-carboxylate give stable complexes, with 4- and 6-coordination. Macrocycles like porphyrins afford silver(II) derivatives; most remarkable is the reaction of the macrocycle meso-Me₆[14]ane (Figure 4.13).

It forms a stable silver(I) complex in acetonitrile, in keeping with the ability of MeCN to solvate Ag^+ ; in the presence of water, disproportionation occurs [62].

$$\operatorname{AgClO}_4 + L \xrightarrow{\operatorname{MeCN}} [\operatorname{AgL}]^+ \operatorname{ClO}_4^- \xrightarrow{\operatorname{H}_2\operatorname{O}} [\operatorname{AgL}]^{2+} (\operatorname{ClO}_4)_2 + \operatorname{Ag} + L$$

Silver has square planar coordination in $Ag[meso-Me_6[14]ane](NO_3)_2$ (Ag-N 2.16 Å) with distant axial oxygens (Ag-O 2.81 Å); the complex has

Figure 4.13 The structure of the silver(II) complex of the macrocycle meso-Me₆[14]ane.

 $\mu_{eff} = 2.2 \,\mu_{B}; \, g_{||} = 2.11, \, g_{\perp} = 2.058$. Similar complexes can be obtained with other ligands [63]; some can be oxidized, chemically or electrochemically, to silver(III) complexes.

4.8 Silver(III) complexes

As mentioned in the previous section, oxidation (with NOClO₄) of a silver(II) complex yields the yellow diamagnetic $Ag[meso-Me_6[14]ane](ClO_4)_3$; other complexes such as $AgOEPClO_4$ can be made; the Ag^{3+}/Ag^{2+} potential is 0.44 V [64].

Fluoride complexes of silver(III) are exemplified by the purple-red Cs_2KAgF_6 (elpasolite structure, octahedral Ag^{3+} ; paramagnetic with $\mu = 2.6 \mu_B$). Yellow $MAgF_4$ (M = Na, Rb, K) and $XeF_5^+AgF_4^-$ are diamagnetic and probably square planar [65].

Yellow $Ag(OH)_4^-$, synthesized by anodic oxidation of silver in strong alkali, is said to be stable for 2 h at 25°C in 1.2 M NaOH but decomposes to AgO and O₂ at pH 11 in 1–2 min [66].

The longest established silver(III) complexes are the red to brown biguanides, like the ethylene bis(biguanide) shown in Figure 4.14; persulphate oxidation of Ag^+ in the presence of this ligand gives a silver(III) complex with essentially square planar coordination.

4.9 Gold(-I) complexes

Gold has a high electron affinity $(223 \text{ kJ mol}^{-1}, \text{ compare with that for I of } 295 \text{ kJ mol}^{-1})$ to fill the 6s subshell, because of relativistic contraction (see section 4.18). It, therefore, forms 1:1 compounds MAu with group I metals; of these Cs⁺Au⁻ and Rb⁺Au⁻ are ionic semi-conductors [67] with the CsCl structure ('normal' alloys of gold like those with the lighter alkali metals are metallic conductors). Au⁻ is also formed when gold dissolves in liquid ammonia in the presence of Cs and other alkali metals. Au⁻ is also found in K₁₈Tl₂₀Au₃, which contains [Tl₉Au₂]⁹⁻, [Tl₁₁]⁷⁻ and Au⁻.

Figure 4.14 The coordination geometry of silver in the silver(III) ethylenebis(biguanide) complex.

4.10 Gold(I) complexes

4.10.1 Complexes of O-donors

Few studies have been made of these ligands; most complexes reported involve other supporting ligands as in Au(OSiMe₃)(PPh₃) and Au(OCOR)(PPh₃), though an important Au–O bond is formed in [(Ph₃P)Au]₃O⁺ (section 4.17) [68]. Some air- and heat-stable alkoxides Au(OR')(PR₃) (R = Ph or cy; R' = CH₂CF₃ or CH(CF₃)₂) have been reported [69].

4.10.2 Complexes of N-donors

The 'soft' Au⁺ forms relatively few complexes compared with those of phosphines. Complexes with ammines, nitriles and diazoles like Au(NH₃)₂⁺ and Au(RCN)₂⁺ are known but little studied. In linear Au(NH₃)₂⁺, Au-N is 2.01-2.03 Å [70a]. [Au(NCPh)₂]⁺ has been used as a labile source of other gold complexes [70b]. AuCl(piperidine) is a monomer with weak tetrameric association; in contrast AuX(py) (X = Cl, Br, I) are [Aupy₂]⁺[AuX₂]⁻ with a chain structure in the solid state (and Au-Au interactions), suggesting a close balance between factors for 'molecular' and ionic structures [70c] (note also the tetrahydrothiophene complexes in section 4.10.6).

4.10.3 Tertiary phosphine and arsine complexes

The phosphine and arsine complexes of gold(I) have been intensively studied since the early 1970s. The possibilities of coordination numbers between 2 and 4 have been explored, though the use of bulky ligands is less essential than with the isoelectronic $M(PR_3)_2$ (M = Pd, Pt) compounds and the coordination numbers depend on both steric and electronic factors [71].

The usual starting material is $AuCl_{4}^{-}$, which can be reduced with the tertiary phosphine

$$AuCl_4^- + 2R_3P \rightarrow R_3P.Au.Cl + R_3PCl_2 + Cl^-$$

or more cheaply, in situ with 2,2'-thiodiethanol, (bis-2-hydroxyethylsulphide)

$$AuCl_4^- + 2(HOCH_2CH_2)_2S$$

$$\rightarrow$$
 AuCl[S(CH₂CH₂OH)₂] + (HOCH₂CH₂)₂SO + Cl⁻ + 2HCl

or via an isolable complex with a weakly bound ligand like tht, the intermediate being reacted with the tertiary phosphine (or arsine)

 $AuCl_4^- + 2R_2S + H_2O \rightarrow AuCl(R_2S) + R_2SO + 2HCl + Cl^-$

1:1 complexes

X-ray diffraction shows linear coordination in $(Ph_3P)AuX$ (X = Cl, Br, I, NO₃, SCN [72], Ph [73], SR [74], CN, Me, CF₃ [75] OCOMe [76],

Donor atom	x	Au-P (Å)
0	NO ₃	2.199
	OCOMe	2.207
	OCOCF ₃	2.208
	OCOCHCl ₂	2.210
	OCOPr ⁱ	2.213
	SO ₄	2.216
	OCOCH(OH)Me	2.219
Ν	NCO	2.222
	NMe ₃	2.231 (ClO ₄ salt)
Cl	Cl	2.235
Br	Br	2.252
I	I	2.249
S	SCN	2.252
	SPh	2.259
	S ₂ COEt	2.260
	S ₂ COMe	2.261
	S ₂ CPh	2.263-2.269
С	CNO	2.274
	C_6F_5	2.27
	$C \equiv CC_6F_5$	2.274
	Me	2.279
	CN	2.278
	$(2,6-MeO)_2Ph$	2.284
	CF ₃	2.285
	Ph	2.296
Р	PPh ₃	2.295 (C(CN) ₃ salt)
	PPh ₃	2.311 (NO ₃ salt)
	PPh ₃	2.312 (PF ₆ salt)
	PPh ₃	2.325 (solution)

Table 4.8 Au-P bond lengths in the 2-coordinate complexes (Ph₃P)AuX

OCOCF₃, S₂CNEt₂, S₂COMe [77], OCOPh, NMe₃ [78], etc.), R₃PAuCl [79] (R₃ = cy₃, Phcy₂, Me₃P, Et₃P, Cl₃P, (PhO)₃P and (tolyl)₃P), Pr₃PAuC₅H₅ and Ph₃AsAuX (X = Cl, Br). In all of these the ligand X is monodentate (note the monodentate nitrate and dithio ligands, as well as the monohapto-cyclopentadienyl). Table 4.8 shows the *trans*-influence of the ligand X on the Au-P bond length in some of these compounds; it depends on the donor atom in X rather than X itself, the bond lengths following a trend in agreement with *trans*-effect orders.

Complexes other than the chloride are prepared by a variety of reactions, including metathesis and re-distribution:

$$Ph_{3}PAuCl \xrightarrow{NaXCN} Ph_{3}PAuXCN \qquad (X = S, Se)$$

$$Ph_{3}PAuCl \xrightarrow{AgOAc} Ph_{3}PAuOAc$$

$$(Ph_{3}P)_{2}Au^{+} + Au(CNO)_{2}^{-} \rightarrow (Ph_{3}P)Au(CNO)$$

x	Au-P (Å)	Au–X (Å)	$\nu(\mathrm{Au}-\mathrm{X})~(\mathrm{cm}^{-1})$
CI	2.253	2.303	313
Br	2.255	2.413	218
I	2.239	2.586	183

Table 4.9 Structure and spectroscopic data for AuX(tmpp)

 PF_3AuCl , prepared from Au_2Cl_6 and PF_3 in SOCl₂ has a vapour pressure of 10^{-4} mbar at room temperature and has been suggested as a laser CVD precursor [80].

The series AuX (tmpp) shows clear patterns [81] in structure and spectroscopic parameters (Table 4.9) (X = Cl, Br, I).

Complexes with more than one phosphine

The 2:1, 3:1 and 4:1 complexes have been prepared by altering the stoichiometry of the reaction mixture; the complex formed in solution depends on the cone angle of the phosphine (as with $M(PR_3)_n$ (M = Pd, Pt)) [71]. Thus PBu₃ and Pcy₃ form only 2:1 complexes (three Pcy₃ can bind to the larger Pt) whereas PBu₃ⁿ forms 3:1 complexes and with PEt₃, up to 4:1 complexes can be obtained. The stoichemetry of the complex isolated in the solid state depends on factors such as the coordinating power of the anion present and upon the balance between cation and anion size. Thus (PPh₃)₂AuSCN is 3-coordinate, but because of the bulk of tricyclohexylphosphine, (cy₃P)₂Au⁺SCN⁻ is 2-coordinate [82].

Many structures have been determined including $(PPh_3)_2Au^{2+}X^-(X^-, e.g. NO_3, PF_6, C(CN)_3)$ [83], $(Pcy_3)_2Au^+X^-$ (X = NCS, PF_6, Cl) [79], $(PPh_2Me)_2Au^+PF_6^-$, $(Bu_3P)_2Au^+BPh_4$ [84] (all are linear, 2-coordinate); $(PPh_3)_2AuX$ (X = Cl, Br, I, NCS) and $(PPh_3)_3Au^+X^-$ (X = BPh_4) are 3-coordinate and $(PPh_3)_3AuX$ (X = Cl, SCN), $(PPh_2Me)_4Au^+PF_6^-$, $(PPh_3)_4Au^+BPh_4^-$ and $(SbPh_3)_4Au^+ClO_4^-$ [85] are 4-coordinate. The 3-coordinate complexes are essentially trigonal when all the ligands are the same, or slightly distorted in $(PPh_3)_2AuX$, where steric effects force the P-Au-P angle to exceed 120° [86]. The 4:1 complexes are distorted tetrahedra [85]. 'Mixed' 3-coordinate complexes like [(PPh_3)Au(bipy)]⁺ have been made [87], with very asymmetric bidentate coordination (Figure 4.15).

Figure 4.15 The asymmetric coordination geometry in [(Ph₃P)Au(bipy)]⁺.

	(PPh ₃) _n AuCl			(PPh ₃) _n AuSCN			(PPh ₃) ₂ AuX	
n	Au-P	Au-Cl	n	Au-P	Au-S	x	Au-P	Au-X
1	2.235	2.279	1	2.252	2.304	Cl	2.27	2.533
2	2.27	2.533	2	2.348	2.469	Br	2.323	2.625
3	2.41	2.71	3	2.396	2.86	I	2.333	2.754

Table 4.10 Bond lengths (Å) in the complexes $(PPh_3)_nAuX$ and $(PPh_3)_2AuX$

Trends in Au-X and Au-P bond lengths in complexes $(PPh_3)_nAuX$ should be noted (Table 4.10); the Au-Cl bond length varies more with changes in coordination number than does the Au-P bond and is, therefore, more sensitive to the decrease in s character as the hybrid orbitals used by gold change from sp to sp³.

Luminescence has been noted [88] in numerous gold phosphine complexes.

Rather fewer complexes with polydentate ligands have been studied [89]. Interest in possible use of Au(dppe)⁺₂ in cancer therapy has led to the determination of the structures of $(AuCl)_2$ dppe and $Au(dppe)^+_2 X^-$ (X = Cl, SbF₆). The former has the diphosphine acting as a bridging ligand while the latter has a tetrahedral cation as in $[Au(1,2-(Me_2As)_2C_6H_4)_2]^+$. The compound [Au(PP)]Cl has already been referred to in section 4.4 as an example of the preference of gold for 2-coordination [50].

The tridentate MeC(CH₂PPh₂)₃ gives MeC(CH₂PPh₂AuCl)₃.

4.10.4 Complexes of halogen-donors

The ions AuX₂⁻ (X = Cl, Br, I) are well known; the chloride and bromide are particularly unstable in water unless excess halide ion is present. Although AuF does not exist as a solid (section 4.3.2), it has been suggested that the unknown AuF₂⁻ could be stabilized by ions such as Ph₄As⁺ to prevent the disproportionation:

$$3AuF_2^- \rightarrow AuF_4^- + 2Au + 2F_2^-$$

The series Bu₄NAuX₂ have been prepared by reactions like

 $2R_4NAuCl_4 + PhNHNH_2HCl \rightarrow R_4NAuCl_2 + R_4NPhAuCl_3 + N_2 + 4HCl$

$$AuBr_4^- + MeCOMe \rightarrow AuBr_2^- + CH_2BrCOMe + HBr$$

$$\operatorname{AuBr}_{2}^{-} \xrightarrow{\operatorname{exc.}} \operatorname{AuI}_{2}^{-}$$

Au–X bond lengths in the series are 2.257 Å (Cl), 2.376 Å (Br) and 2.529 Å (I); they are affected by counter ions, Au–Cl being 2.281 Å in Cs₂AuCl₂AuCl₄. AuX₂⁻ exhibits Au–X stretching vibrations in the IR at 350, 254 and 210 cm^{-1} (X = Cl, Br, I, respectively, in the Bu₄N salts) and in Raman spectra at 329, 209 and 158 cm⁻¹, respectively [90]. Ions of the type AuX_2^- are found as counter ions in other complexes like $Aupy_2^+AuCl_2^-$, $Au(Bu_2NCS_2)_2^+AuBr_2^-$ and $Au(tht)_2^+AuI_2^-$.

4.10.5 Complexes of C-donors

AuCN has a similar structure to AgCN and likewise dissolves in excess cyanide to form $Au(CN)_2^-$; this is important in the extraction of gold. It has been characterized as various salts (Tl, K, Bu₄N, Cs) with Au-C 1.964Å (Bu₄N salt [91]). The thallium salt has short Au-Au (3.10Å) and Au-Tl (3.50Å) interactions; extended-Hückel calculations indicate the importance of relativistic effects in these covalent interactions. Isocyanides form stable complexes:

$$\begin{array}{l} AuCl(SMe_2) + MeNC \rightarrow AuCl(MeNC) + Me_2S\\ \\ AuCl_4^- \xrightarrow[EtOH]{exc. Bu^tNC} AuCl(Bu^tNC) \end{array}$$

The latter is linear with a short Au–C bond (1.92 Å); excess isocyanide lends to Au(RNC)₂⁺ and possibly Au(RNC)₄⁺. An unusual synthesis is

$$Ph_4AsAu(CN)_2^- \xrightarrow{Mel} MeNCAuCN$$

The linear Au(CO)Cl (ν (C-O) 2153 cm⁻¹), useful as a synthetic intermediate, is prepared by [92]

$$HAuCl_4 \xrightarrow[SOCl_2]{exc. CO} Au(CO)Cl + COCl_2$$

Au(CO)Br has been obtained in solution (only)

$$2Au_2Br_6 + 4CO \rightarrow 4Au(CO)Br + 4Br_2$$

while $Au(CO)_2^+$ has been isolated in various salts (section 4.16.1).

4.10.6 Complexes of S-donors

The most important complexes of S-donors are thiolates, simply regarded as $[Au(SR)]_n$, long used for treatment of rheumatoid arthritis (section 4.20). Little is known about their structures: it has been remarked that their clinical use would be unlikely to be sanctioned were they currently undergoing trial. EXAFS and Mössbauer measurements indicate that they have digonal coordination of gold (Au-S ~ 2.30 Å) and are, therefore, thiolate-bridged polymers [93a]. Hexameric structures have been suggested for some complexes with long alkyl groups that are soluble in organic solvents and have been established crystallographically for R = 2,4,6-Pr₃ⁱC₆H₂, which has a 12-membered Au₆S₆ ring in a chair configuration [93b]. Linear Au(SH)₂ is obtained from Au(acac)₂ and H₂S (Au-S 2.277-2.297 Å) [94]. Reaction with phosphines affords monomeric R₃PAuSR (e.g. auranofin);

the anion in $Ph_4As^+Au(SPh)_2^-$ [95] contains digonally coordinated gold (Au-S 2.262-2.271 Å) while in $Au(SR)_2^-$ (R = 2,4,6- $Pr_3^iC_6H_2$) Au-S is 2.288 Å [93].

Linear S-Au-S (but non-linear Au-S-C) is found in PhAs⁺Au(SCN)₂⁻ [96]; related phosphine complexes $(R_3P)_nAuSCN$ have been made (section 4.10.3). Sulphate and thiosulphate bind through sulphur; Na₃Au(S₂O₃)₂.2H₂O has linear 2-coordinate gold in contrast to tetrahedral coordination of silver by sulphur and oxygen.

Among neutral ligands, thioethers form important complexes $AuCl(SR_2)$ (SR₂, e.g. Me₂S, Et₂S, S(CH₂CH₂OH)₂) that are synthetically useful since the sulphide is readily replaced by strong donors (e.g. tertiary phosphines) (sections 4.10.3 and 4.10.5). AuX(tht) (X = Cl, I) have been made. The iodide is $Au(tht)_2^+AuI_2^-$, but the chloride and bromide are neutral AuX(tht). The iodide remarkably can be synthesized at room temperature [97]:

$$2Au + I_2 \xrightarrow{\text{tht}} 2AuI(tht)$$

Essentially linear coordination is found in thiourea complexes $AuBr(S=C(NR_2)_2)$ (R = H, Me) and

$$[Au(S=C-NH-CH_2-CH_2-NH)_2]^+Cl^-$$

Bidentate dithiolate ligands afford complexes like $Au(S_2CNR_2)$ (R = Et, Pr, Bu) and $Au(S_2PR_2)$ (R = Pr), which have dimeric structures based on 8-membered rings with linear S-Au-S coordination and short Au-Au distances. These in turn are associated into chains (Figure 4.16) (Au-Au c. 3.0-3.4 Å) [99].

The dithioacetate is a tetramer, still with digonally coordinated gold [100]. Though long known, the gold complexes of terpenethiolates ('liquid gold')

Figure 4.16 The structure of $Au(S_2CNPr_2^1)$ showing the association of dimeric units into chains.

Figure 4.17 A qualitative molecular orbital scheme for a σ -bonded complex ion $[AuL_2]^+$. (Reprinted with permission from *Inorg. Chem.*, 1982, **21**, 2946. Copyright (1982) American Chemical Society.)

have, as yet, unknown structures; when painted on to pottery, then fired, they decompose to give a gold film.

4.10.7 MO schemes for 2-coordinate gold(I) complexes

A typical scheme [101] for a complex AuL_2^+ is shown in Figure 4.17.

A simple crystal field treatment predicts

$$5d_{z^2}(\sigma) > 5d_{xz,yz}(\pi) > 5d_{xy}, d_{x^2-y^2}(\delta),$$

the latter expected to be essentially non-bonding, but the relative energies will be ligand dependent, with electronegative ligands increasing d orbital participation and more electropositive ligands increasing s/p participation. There will also be gold 6s and 6p mixing into the highest ligand-field orbitals. Analysis of the spectra of Au(CN)²₂ gave the ordering $d_{z^2}(\sigma) > d_{xy}$, $d_{x^2-y^2}(\delta) > d_{xz}$, $d_{yz}(\pi)$ whereas the PE spectrum of (Me₃P)AuMe was interpreted in terms of $d_{\pi} \sim d_{\delta} > d_{\sigma}$. MO calculations for AuX²₂ (X = F to I) have recently indicated $d_{\delta} > d_{\pi} > d_{\sigma}$ [96].

4.11 Gold(II) complexes

Unstable dithiocarbamates Au(S_2CNR_2)₂ have been detected in solution by ESR but the square planar Au($S_2C_2(CN)_2$)^{2⁻} has been isolated as a green Bu₄N⁺ salt; the gold(II) state appears to be stabilized by delocalization of Next Page

Index

This index is divided by element into eight parts. Each part is subdivided into sections devoted to each oxidation state, preceded by a general section. Thus if you want to find out about phosphine complexes of Rhodium, there is a general entry to phosphine complexes as well as separate references to phosphine complexes under the headings of Rhodium(0), (I), (II) and (III).

<u>Index terms</u>		<u>Lin</u>	<u>lks</u>	
Gold				
Alkene complexes	319			
Alkynyl complexes	313			
Ammine complexes	292			
Aqueous chemistry	283			
Arsine complexes	292	304	317	
Auranofin	325			
Auride ion	291			
Aurophilicity	323			
Binary compounds	276	279		
Bond lengths				
acetylacetonate complex	316			
alkyls and aryls	293	310	313	316
ammine complexes	292	302		
carboxylates	293			
cyanide complexes	303			
dialkyl sulphide complexes	304			
dithiocarbamates	305			
to gold	274	297	312	320
	323			

364							
Index terms		<u>Links</u>					
Bond lengths (Continued)							
halide complexes	287	293	301	317			
halides	278						
hydroxide complexes	302						
nitrate complexes	301						
oxides	283						
phosphine complexes	287	293	301	313			
thiocyanate complexes	293	295					
thiolate complexes	293	296					
xanthate complexes	293						
Carbonyl complexes	296	313					
Carboxylate complexes	292						
Chemical vapour deposition (CVD)	310	316					
Cluster compounds	319						
Colour	323						
Co-ordination numbers	273	305					
Cyanide complexes	276	305	325				
Dithiocarbamates	297	305					
Divalent	298						
Element	274						
ESR	299						
Extraction	275						
Gold(-I) complexes	291						
Gold(I) complexes							
arsenic-donors	292						
carbon-donors							
decomposition	313						
structures	292	296	310				
syntheses	293	296	310				

Index terms

Gold(I) complexes (Continued)				
halogen-donors				
structure	292			
synthesis	295			
vibrational spectra	295			
nitrogen-donors	282			
oxygen donors	292			
phosphorus-donors				
structure	292	310	326	
synthesis	292	310		
trans-influence	293			
sulphur-donors	296	324	325	
two coordinate	273	280	283	292
	310			
Gold(II) complexes				
sulphur-donors	298			
ylids	299	318		
Gold(III) complexes				
arsenic-donors	317			
carbon-donors	313			
decomposition	318			
structures	313	317		
syntheses	317			
five co-ordinate	305			
halogen-donors				
structure	301			
synthesis	301			
vibrational spectra	301			
nitrogen-donors	302			
phosphorus-donors	303	316		

This page has been reformatted by Knovel to provide easier navigation.

<u>Links</u>

366

Index terms

<u>Links</u>

Gold(III) complexes (Continued)			
sulphur-donors	304		
trans-effect	306		
trans-influence	303	306	
unusual co-ordination numbers	305		
Gold(IV) complexes	307		
Gold(V) complexes	281	307	
Halide complexes	292	300	
Halides	276	279	
+1 state	279		
+2 state	280		
+3 state	280		
+5 state	281		
+7 state	281		
Heptavalent	281		
Ionisation energies	273		
Isolation	275		
'Liquid gold'	297		
Macrocycle complexes	299		
Medicinal chemistry	325		
Mixed-valence systems	280	300	327
Monovalent	292	310	
Mössbauer spectroscopy	326		
Myocrisin	325		
Nitrate complexes	292	301	
Organo compounds	292	296	307
Oxidation states	273		
Oxidative addition reactions	303	311	
Pentavalent	281	307	

				367
Index terms		Lin	<u>ks</u>	
Phosphine complexes	273	292	303	316
	326			
Plating	276			
Redox potentials	283			
Relativistic effects	273	323		
Solganol	325			
Tetravalent	307			
Thiocyanate complexes	297			
Thiolate complexes	292	296		
Trivalent	280	283	301	313
Trans-effect	306			
Trans-influence	293	303	306	
Two coordinate	273	280	283	292
	310			
Ylids	299	318		
Iridium				
Alkene complexes	132	157		
Alkyls and aryls	145	152	155	170
Ammine complexes	146			
Aqueous chemistry	87			
Arsine complexes	148	158		
Binary compounds	79			
Bond lengths				
aqua complexes	87	156		
alkyl and aryl complexes	156	170		
alkylsulphide complexes	147			
bipyridyl complexes	158			
buckminsterfullerene complexes	136			

368

Index terms

<u>Links</u>

Bond lengths (Continued)				
carbonyl complexes	136	142		
dioxygen complexes	136	143		
disulphur complexes	144			
dithiocarbamates	147			
fullerene complexes	136			
halide complexes	82	136	156	158
halides	81			
hydride complexes	136	150	155	161
nitrosyl complexes	136	165		
phosphine complexes	134	151	155	158
	161			
Carbonyl complexes	132	149		
infrared spectra	138			
oxidative additions	135	139		
reactions	135	141		
structures	136	142		
syntheses	135	138		
Dimethylphenylphosphine complexes	143	152		
Dinitrogen complexes	144			
Dioxygen complexes	134	142		
Disulphur complexes	143			
Divalent	144			
Element	78			
ESR spectra	83	158	160	
Ethylenediamine complexes	147			
Extraction	79			
Halide complexes	81	85	87	
structures	82	88		
vibrational spectra	83			

Index terms		<u>Links</u>		
Halides				
+3 state	80			
+4 state	81			
+5 state	81			
+6 state	81	83		
Hydride complexes	86	133	141	149
	155	160		
NMR spectra	150	154	162	
non-classical	150	152	162	
structures	150	155	161	
syntheses	148	160		
Hydroxide	86			
Iridium(I) complexes	132			
arsine complexes	140			
carbonyl complexes	132			
infrared spectra	138			
structures	136	139		
syntheses	135	138		
dinitrogen complexes	143			
dioxygen complexes	134	142		
oxidative addition reactions	132	139		
phosphorus donors	132			
structures	132	136	142	
syntheses	132	138		
thiocarbonyl complexes	144			
trans-influence	133			
Iridium(II) complexes				
aryl complexes	145			
phosphorus donors	144			

370

Index terms

<u>Links</u>

Iridium(III) complexes			
ammine complexes	146		
alkyls and aryls	152	170	
alkylsulphide complexes	147		
aqua ion	87	146	
arsine complexes	148		
carbonyl complexes	149		
dithiocarbamates	147		
halogen donors	81	146	
hydride complexes	86	149	155
NMR spectra	150	154	
structures	150	155	
syntheses	148	152	
vibrational spectra	150		
phosphorus donors	148		
NMR spectra	150	154	162
structures	150	155	
syntheses	148		
pyridine complexes	147		
sulphur donors	147		
trans-influence	155		
Iridium(IV) complexes			
alkyls and aryls	171		
arsine complexes	158		
bipyridyl complexes	158		
halogen donors	82	85	158
structures	82		
vibrational spectra	83	158	
hydride complexes	160		
hydroxy anions	160		

Index terms

Iridium(IV) complexes (Continued)				
nitrate complexes	160			
oxygen donors	160			
phenanthroline complexes	158			
phosphorus donors	158			
ESR spectra	158	160		
pyridine complexes	158			
Iridium(V) complexes				
aryls	171			
halogen donors	82			
hydride complexes	161			
Isocyanide complexes	134			
Isomerism in complexes	85	146	151	156
Monovalent	131			
Nitrosyl complexes	163			
MO diagrams	167			
structures	165			
syntheses	163			
vibrational spectra	165			
NMR spectra	151	154	162	
Oxidation states	78	80	131	145
Oxidative addition reactions	132	139	149	
Oxides	86			
Paramagnetic compounds	81	83	144	158
	160			
Pentavalent	82	161	171	
Phenanthroline complexes	158			
Phosphine complexes	132	148		
complexes of alkyldi-t-butylphosphines	161			
complexes of bis(diphenylphosphino)ethane	134	141	143	

This page has been reformatted by Knovel to provide easier navigation.

<u>Links</u>

Index terms

372

<u>Links</u>

Phosphine complexes (Continued)				
complexes of diethylphenylphosphine	148	158	161	
complexes of dimethylphenylphosphine	143	150	160	171
complexes of methyldiphenylphosphine	132			
complexes of tricyclohexylphosphine	139	162		
complexes of triisopropylphosphine	150	161		
complexes of trimethylphosphine	133	138	140	161
complexes of triphenylphosphine	132	135	138	143
	163			
complexes of tris(o-tolyl)phosphine	139			
infrared spectra	140	162		
NMR spectra	154	162		
structures	143	151	155	161
syntheses	132	148	161	
Photochemistry	147			
Pyridine complexes	147	158		
Sulphides	86			
Sulphur dioxide complexes	135			
σ -bonded organo compounds	145	152	155	170
Tetravalent	82	86	158	171
Thiocarbonyl complexes	144			
Trans-influence in complexes	133			
Trivalent	81	146		
Vaska's compound	135			
Vibrational spectra				
ammine complexes	147			
carbonyl complexes	138			
dioxygen complexes	134	138		
halide complexes	83	147	158	
halides	81			

				373
Index terms		Lin	<u>ks</u>	
Vibrational spectra (Continued)				
hydride complexes	150	162		
nitrosyl complexes	165			
Osmium				
Acetylacetonates	68			
Alkyls and aryls	76			
Ammine complexes	54			
Aqueous chemistry	22			
Arsine complexes	61			
Binary compounds	2			
Bipyridyl complexes	56			
Bond lengths				
alky Is and aryls	76			
ammine complexes	56			
arsine complexes	61			
bipyridyl complexes	56	66		
carboxylate complexes	66			
dinitrogen complexes	56			
ethylenediamine complexes	56	70		
Bond lengths halide complexes	10	14	59	61
	68			
halides	4	9		
hydride complexes	21	57	62	
imide complexes	74			
nitride complexes	20	72		
osmyl complexes	57	70	76	
oxides	19			
oxyhalide complexes	17			
oxyhalides	7			

574			
Index terms		Lin	KS
Bond lengths (Continued)			
phosphine complexes	59	61	
porphyrin complexes	71		
pyridine complexes	68		
Carbonyl complexes	54		
Carboxylates	14	66	
Diketonate complexes	68		
Dinitrogen complexes	56		
Discovery	1		
Dithiocarbamate complexes	68		
Divalent	54	58	64
Element	1		
EPR spectra	7	59	
Ethylenediamine complexes	56		
Extraction	1		
Halide complexes	9		
dinuclear	14		
structures	10	14	
vibrational spectra	9	12	15
Halides			
+3 state	4		
+4 state	5		
+5 state	5		
+7 state	6		
Hydride complexes			
classical	21		
NMR spectra	62		
non-classical	56	62	65
+2 state	64		
+4 state	21	58	63

374

Index terms	<u>Links</u>		ks	
Hydride complexes (Continued)				
+6 state	62			
Imide complexes	71	74		
Isocyanide complexes	68			
Isolation	1			
Isomerism in complexes	12	55	58	68
Magnetic properties				
ammines	57			
halide complexes	10	11	14	
halides	4	6		
oxyhalides	7			
phosphine complexes	59	60		
Nitrido complexes	20	55	73	
Nitrile complexes	68			
Nitrosyl complexes	66			
Octavalent	6	18	74	
Osmiamate ion	20			
Osmium(0) complexes	54			
Osmium(II) complexes				
ammine complexes	55			
arsine complexes	61			
dinitrogen complexes	55			
hydride complexes	64			
phosphorus donors	58	64		
Osmium(III) complexes				
ammine complexes	55			
dinitrogen complexes	55			
halogen donors	14			
oxygen donors	68			
phosphorus donors	57			

376			
Index terms		Linl	KS
Osmium(III) complexes (Continued)			
sulphur donors	68		
Osmium(IV) complexes			
ammine complexes	51	55	
arsine complexes	61		
carbon donors	76		
halogen donors	9		
hydride complexes	21	58	63
oxygen donors	68		
phosphorus donors	57		
sulphur donors	66		
Osmium(V) complexes			
halogen donors	9	10	
imides	75		
Osmium(VI) complexes			
carbon donors	76		
halogen donors	9		
imide complexes	74		
nitride complexes	55	72	
oxygen donors	57	69	
phosphorus donors	57		
Osmium(VIII) complexes	17	74	
Osmyl compounds	1	57	69
Osmyl esters	70		
Oxidation states	1		
Oxidative addition reactions	67		
Oxides	1	18	
Oxyanions	20		
Oxyhalides	6		
Pentavalent	5	10	74
	-		

76

				377
Index terms		Lin	ks	
Phenanthroline complexes	56			
Phosphine complexes	54	57		
ESR spectra	59			
NMR spectra	62			
structures	59	61		
Porphyrin complexes	71			
Pyridine complexes	68			
σ -bonded organo compounds	76			
Terpyridyl complexes	73			
Tetravalent	9	21	51	55
	63	76		
Thiolate complexes	60			
Trivalent	14	55	68	
Uses	2			
Vibrational spectra				
dinitrogen complexes	55			
halide complexes	9			
halides	9			
hydride complexes	57	62		
nitride complexes	20	55	73	
nitrosyl complexes	67			
osmiamate ion	20			
osmyl complexes	58	69		
oxide	19			
oxyhalides and complexes	7	17		
Zerovalent	54			

378				
Index terms		Links		
Palladium				
Ammine complexes	201	260		
infrared spectra	205			
Aqueous chemistry	187			
Arsine complexes	217	231	260	
Binary compounds	175			
Bipyridyl complexes	207	260		
Bond lengths				
alkyl and aryl complexes	271			
bipyridyl complexes	271			
dioxygen complexes	271			
halide complexes	181	185	260	271
halides	175	177		
isocyanide complexes	271			
phosphine complexes	188	271		
porphyrin complexes	208			
sulphoxide complexes	271			
thiaethers	227			
thiocyanate complexes	231			
Carbonyl complexes	195			
Carboxylates	200			
Cyanide complexes	224			
Diketonates	199			
Dioxygen complexes	194	271		
Divalent complexes	180	199		
Element	173			
ESR spectra	181	248		
Extraction	174			
Five co-ordinate complexes	199	211	235	

Index terms

Halide complexes			
+2 state	180		
+3 state	181		
+4 state	181		
+5 state	183		
Halides	175		
Hydride complexes	186	214	
Hydrides	185		
Internal metallation	217		
Isocyanide complexes	197		
Isomerism in complexes	201	209	232
Monovalent complexes	197		
Oxidation states	171	199	260
Oxidative addition reactions	193		
Oxides	186		
Palladium(0) complexes	188		
carbonyl complexes	195		
isocyanide complexes	197		
phosphorus donors			
effect of ligand size on coordination number	189		
reactions	193		
structures	188		
syntheses	188		
Palladium(I) complexes			
carbon-donors	198		
phosphorus donors	197		
Palladium(II) complexes			
ammine complexes	201	205	
infrared spectra	205		
isomerism	201		

This page has been reformatted by Knovel to provide easier navigation.

<u>Links</u>

380

Index terms

Palladium(II) complexes (Continued) 187 aqua ion arsine complexes 217 231 bipyridyl complexes 207 carbon-donor ligands 219 carboxylates 200 cyanide complexes 224 diketonates 199 halogen donors 180 hydride complexes 214 201 205 nitrogen-donors oxygen donors 199 phenanthroline complexes 207 phosphorus donors 210 214 216 217 219 220 dimeric complexes 216 214 structures 210 syntheses porphyrin complexes 208 selenium donors 226 sulphoxide complexes 227 sulphur donors 225 thiocyanate complexes 231 225 thiolates Palladium(III) complexes halogen donors 181 macrocyclic complexes 248 nitrogen donors 248

sulphur donors

This page has been reformatted by Knovel to provide easier navigation.

248

Links
Palladium(IV) complexes				
ammine complexes	260			
arsine complexes	260			
bipyridyl complexes	260			
carbon-donor ligands	260	264		
halogen donors	181	260		
structures	182	260		
vibrational spectra	183			
nitrogen-donors	260			
phenanthroline complexes	260			
phosphorus donors	260			
sulphur donors	260			
Palladium(V) complexes	183			
Paramagnetic compounds	175	181	183	
Phenanthroline complexes	207	260		
Phosphine complexes	188	210	214	216
	218	260		
Porphyrins	208			
Sulphides	186			
Sulphoxide complexes	227			
σ -bonded organo compounds	219	222	260	264
Tetravalent complexes	181	260	264	
Thiocyanate complexes	231			
Thiolates	225			
Trans-influence in complexes	216			
Trivalent complexes	181	248		
Vauquelin's salt	206			
Vibrational spectra				
ammine complexes	205			
halide complexes	181	183		

This page has been reformatted by Knovel to provide easier navigation.

382				
Index terms		Links		
Vibrational spectra (Continued)				
halides	177			
thiocyanate complexes	231			
Zerovalent	188			
Platinum				
Ammine complexes	201	250	257	
infrared spectra	204	252		
synthesis	201			
Anti-cancer compounds	267			
Aqueous chemistry	187			
Arsine complexes	217	245	254	256
Binary compounds	175			
Bond lengths	271			
alkyl and aryl complexes	219			
ammine complexes	202	251	271	
arsine complexes	235	256		
bipyridyl complexes	271			
dioxygen complexes	194	271		
ethylenediamine complexes	225	253		
halide complexes	181	185	242	251
	253	259	271	
halides	178			
halostannate complexes	235			
hydride complexes	242			
isocyanide complexes	271			
macrocycle complexes	254			
phosphine complexes	188	193	212	219
	242	254	259	271
sulphoxide complexes	271			

Bond lengths (Continued)				
thiolates	226			
Carbene complexes	222			
Carbonyl complexes	195			
Carboxylates	200			
Cisplatin	201	267		
Cyanide complexes	224			
Diketonates	199			
Dioxygen complexes	192	271		
Dithiocarbamates	227			
Divalent complexes	180	199		
Element	173			
extraction	174			
Five coordinate complexes	211	235		
Halide complexes				
+2 state	180			
+4 state	181			
+5 state	178	180		
Halides				
+2 state	175			
+3 state	175			
+4 state	175			
+5 state	178	180		
+6 state	175	180		
Hydride complexes	186	213	238	242
	255			
Internal metallation	217	266		
Isocyanide complexes	197	212		

Index terms Links			ks	
Isomerism in complexes	183	193	205	212
	226	233	246	253
	256	265		
Krogmann salts	224			
Kurnakov's test	202			
Magnus's salt	204			
Mixed-valence compounds	224	250		
Monovalent complexes	197			
NMR spectra	214	245	255	263
Olefin complexes	222			
Oxidation states				
Oxidative addition reactions	193	251	257	261
Oxides	186			
Paramagnetic compounds	209			
Phenanthroline complexes	253			
Phosphine complexes	188	196	209	233
	242	254	259	264
Platinum blues	209			
Platinum(0) complexes				
carbonyl compounds	195			
isocyanide complexes	197			
phosphorus donors				
effect of ligand size on coordination number	189			
reactions	192			
structures	188			
syntheses	188			
Platinum(I) complexes				
carbon-donors	198			
phosphorus donors	198			

Platinum(II) complexes				
ammine complexes	201			
infrared spectra	204			
isomerism	210			
synthesis	201			
aqua ion	187			
arsine complexes	217	245		
bipyridyl complexes	207	233		
carbon-donor ligands				
reactions	220			
structures	219	243	271	
syntheses	219			
carboxylates	200			
diketonates	199			
dithiocarbamates	227			
ethylenediamine complexes	207			
five co-ordinate complexes	211	235		
halogen donors				
structures	181			
syntheses	180			
vibrational spectra	181			
hydride complexes				
infrared spectra	214	245		
NMR spectra	214	245		
structures	242			
syntheses	213			
isomerism	193	205	212	220
	226	229	233	245
nitrogen-donors	201	240		
oxygen donors	199			
phenanthroline complexes	207			

This page has been reformatted by Knovel to provide easier navigation.

Index terms

Platinum(II) complexes (Continued)		
phosphorus donors	209	235
dimeric	212	216
NMR spectra	214	245
structures	242	271
syntheses	209	233
trans-influence	242	
porphyrin complexes	208	
pyridine complexes	206	
selenium donors	227	
sulphoxide complexes	228	
sulphur donors	225	
thiocyanate complexes	233	
trans-effect	236	
trans-influence	240	
Platinum(III) complexes		
carbon-donor ligands	249	
nitrogen donors	248	
oxygen donors	249	
sulphur donors	248	
Platinum(IV) complexes		
ammine complexes	250	
isomerism	251	
synthesis	250	256
arsine complexes	254	
bipyridyl complexes	253	
carbon-donor ligands	261	
reactions	262	
structures	262	
syntheses	262	

This page has been reformatted by Knovel to provide easier navigation.

				387
Index terms		Lin	ks	
Platinum(IV) complexes (Continued)				
ethylenediamine complexes	253			
halogen donors				
structures	182	185	271	
vibrational spectra	182			
hydride complexes	255			
isomerism	183	251	256	
nitrogen-donors	225	250		
phenanthroline complexes	253			
phosphorus donors	254	259	264	
isomerism	254			
structures	259			
syntheses	254			
trans-influence	259			
porphyrin complexes	254			
sulphur donors	256			
thiocyanate complexes	256			
Platinum(V) compounds	183			
Platinum(VI) compounds	178	180	183	184
Porphyrins	208			
Pyridine complexes	206			
Reductive elimination reactions	218	220	241	266
Stability of isomers	220	229	233	252
Sulphoxide complexes	228			
σ -bonded organo compounds	219	261		
Tetravalent complexes	181	250	261	
Thiocyanate complexes	233			
Thiolates	225			

<u>Index terms</u>		<u>Links</u>			
Trans-effect in complexes	202	223	230	236	
	256				
use in synthesis	202	240	256		
Trans-influence in complexes	242	258			
Trivalent	178	248			
Vauquelin's salt	206				
Vibrational spectra					
ammine complexes	204	252	254		
halide complexes	181	183	184	254	
hydride complexes	214	245	247		
phosphine complexes	254				
sulphoxide complexes	229				
thiocyanate complexes	233				
Wolfram's red salt	225				
Zeise's salt	222				
Zerovalent	188				
Rhodium					
Alkene complexes	104				
Ammine complexes	116				
Aqueous chemistry	87				
Arsine complexes	109				
Binary compounds	79				
Bipyridyl complexes	122				
Bond lengths					
acetylacetonate	115				
alkene complexes	104				
alkyl and aryl complexes	118	170			
ammine complexes	118				

87

388

aqua ion

Bond lengths (Continued)				
carbonyl complexes	98			
carboxylates	109			
dimethyl gylpxime complex	114			
dithiocarbamates	124			
EDTA complex	116			
halide complexes	82	88		
halides	79	80		
hydride complexes	128	130		
isocyanide complexes	105			
nitrile complexes	113			
nitrite complexes	122			
oxalate	115			
phosphine complexes	89	94	96	100
	106	126	130	
porphyrin complexes	123			
tetrahydrothiophen complex	124			
thiocyanate complexes	123			
Carbonyl complexes	98	114	126	
infrared spectra	99			
oxidative addition reactions	101			
structures	98			
syntheses	98	103		
Carboxylate complexes	107	115		
bonding	111			
Raman spectra	110			
structures	109			
Catalysis	92	95		
Dinitrogen complexes	130			
Dioxygen complexes	97	123		
		-		

This page has been reformatted by Knovel to provide easier navigation.

Index terms	Links			
Divalent	106			
EDTA complexes	125			
Element	78			
ESR spectra	107	114		
Ethylenediamine complexes	121			
Extraction	79			
Halide complexes	81			
structures	82	88		
vibrational spectra	83			
Halides				
+3 state	79			
+4 state	80			
+5 state	80			
+6 state	80			
Hydride complexes	86	98		
NMR spectra	95	99	133	
Hydroxide	86			
Infrared spectra	99			
Isocyanide complexes	105			
Isomerism in complexes	84	87	119	121
	124			
Monovalent	88			
Nitrile complexes	113	121		
Nitrite complexes	121			
Nitrosyl complexes	163			
NMR spectra	84	90	93	99
	101	118	127	131
	133			
Olefin complexes	104			

				391
Index terms	<u>Links</u>			
Oxidation states	78	88	106	114
Oxidative addition reactions	92	95	97	101
	105			
Oxides	85			
Paramagnetic compounds	80	83	106	114
	170			
Phenanthroline complexes	122			
Phosphine complexes	88	106	125	170
complexes of alkyldi-t-butylphosphines	103	126	132	
complexes of diethylphenylphosphine	126			
complexes of dimethylphenylphosphine	88	125	128	
complexes of tricyclohexylphosphine	89	106		
complexes of triethylphosphine	126			
complexes of triisopropylphosphine	89	130		
complexes of trimethylphosphine	89	129	170	
complexes of triphenylphosphine	88	98	129	
complexes of tris(o-tolyl)phosphine	106			
complexes of tris(2,4,6-trimethoxyphenyl)phosphine	107			
complexes of tri-t-butylphosphine	128	131		
NMR spectra	90	93	95	99
	101	126	131	133
reactions	92	97		
structures	89	94	126	130
syntheses	89	96	125	129
Photochemistry	120			
Photography	80			
Pyridine complexes	121			
Rhodium(0) complexes	88			

Index terms			Links		
Rhodium(I) complexes	88				
alkene complexes	104				
carbonyl complexes	98				
infrared spectra	99				
reactions	101				
dioxygen complexes	91				
hydride complexes	93	98			
isocyanide complexes	105				
phosphorus donors	89				
NMR spectra	90	93	95		
reactions	92	97			
structures	90	94			
syntheses	89	96			
sulphur donors	101				
Rhodium(II) complexes	106				
aqua ion	87	113			
aryl	170				
carbonyl complexes	107	114			
carboxylate complexes	107				
bonding	111				
Raman spectra	110				
structures	109				
dimethylglyoxime complex	114				
EPR spectra	106	114			
nitrile complexes	113				
phosphorus donors	106				
porphyrin	114				
sulphur donors	175				
σ -bonded organo compounds	170				

Rhodium(III) complexes				
acetylacetonate	115			
ammine complexes	116			
infrared spectra	116			
photochemistry	120			
synthesis	116			
aqua ion	87			
bipyridyl complexes	122			
carbonyl complexes	126			
carboxylate complexes	115			
dialkylsulphide complexes	123			
dithiocarbamates	124			
EDTA complex	115			
ethylenediamine complexes	121			
halogen donors	81			
hydride complexes	86	95	125	129
	133			
NMR spectra	95	133		
nitrile complexes	121			
nitrite complexes	121			
oxalate	115			
oxygen donors	115			
phenanthroline complexes	121			
phosphorus donors	125			
NMR spectra	127	133		
reactions	126	129		
structures	125	127		
syntheses	125	129	132	
virtual coupling	127			
photochemistry	120			
pyridine complexes	121			

This page has been reformatted by Knovel to provide easier navigation.

2	0	Λ
2	2	+

<u>Links</u>

52

Rhodium(III) complexes (Continued)			
sulphur donors	123		
σ -bonded organo compounds	118	170	
Rhodium(IV) complexes			
halogen donors	82		
Rhodium(V) complexes			
halogen donors	82		
Sulphur dioxide complexes	100		
σ -bonded organo compounds	94	118	170
Tetravalent complexes	81		
Thiocarbonyl complexes	92	94	
Thiocyanate complexes	123		
Trivalent complexes	114		
Vibrational spectra			
ammine complexes	116		
carbonyl complexes	99		
carboxylate complexes	110		
halide complexes	83		
hydride complexes	118		
nitrosyl complexes	165		
Virtual coupling	127		
Wilkinson's compound	89		
Zerovalent	88		
Duthonium			
	10		
Alkyls and aryls	49	75	
Ammine complexes	21		
Anti-cancer compounds	39	41	49
Aqueous chemistry	21		

Index terms		Lin	ks	
Arsine complexes				
Binary compounds	20			
Bipyridyl complexes	26			
Bond lengths				
alkyls and aryls	49	75		
ammine complexes	21			
aqua ions	21			
bipyridyl complexes	26			
carboxylates	36			
dinitrogen complexes	23	29		
EDTA complexes	52			
ethylenediamine complexes	28			
halide complexes	9	10	17	
halides	2			
hydride complexes	21	30	34	36
nitride complexes	73			
nitrosyl complexes	46			
oxides	18			
oxyanions	20			
oxyhalide complexes	17			
oxyhalides	6			
phosphine complexes	31	34	36	
porphyrin complexes	48	50		
pyridine complexes	52			
sulphoxide complexes	42			
Carbonyl complexes	22			
Carboxylates				
dimeric	36			
monomeric	39			
trimeric	37			

Index terms		Lin	ks	
Catalysts	30	31	39	51
Dinitrogen complexes	22			
Dithiocarbamates	45	53		
Divalent	21	39		
EDTA complexes	49			
Element	1			
EPR spectra	20	24	32	36
Ethylenediamine complexes	27			
Extraction	1			
Halide complexes	9			
dimeric	15			
Halides				
+3 state	2			
+4 state	3			
+5 state	3			
+6 state	4			
Heptavalent	20			
Hydride complexes	21	30	33	
classical	21	30		
NMR spectra	35			
non-classical	35			
+2 state	30	33		
+4 state	35			
+6 state	35			
structures	21	31	34	36
Imide complexes	73			
Isolation	1			
Isomerism in complexes	31	34		

				571
<u>Index terms</u>		Lin	<u>ks</u>	
Magnetic properties				
halide complexes	10	16		
halides	3			
Medicinal uses	29	39	41	
Mixed-valence complexes	24	30	32	36
Nitrido complexes	73			
infrared spectra	73			
Nitrile complexes	52			
Nitrosyl complexes	43			
Octavalent	18			
Oxidation states	1			
Oxides	18			
Oxyanions	20			
Oxyhalides	6			
Pentavalent	3	10		
Phenanthroline complexes	26			
Phosphine complexes	29			
dimeric	32			
ESR spectra	32			
infrared spectra	31			
NMR spectra	31	35		
structures	30			
Photochemistry	26			
Porphyrin complexes	48			
Pyridine complexes	31	52		
'Ruthenium blues'	16			
Ruthenium brown	25			
Ruthenium(0) complexes	22			

Index terms

<u>Links</u>

Ruthenium(II) complexes			
ammine complexes	22		
aqua ion	21		
bipyridyl complexes	26		
carboxylates	37		
dinitrogen complexes	21		
EDTA complexes	50		
ethylenediamine complexes	27		
hydride complexes	30		
nitrile complexes	53		
nitrosyl complexes	43		
phenanthroline complexes	26		
phosphorus donors	29		
porphyrin complexes	48		
pyridine complexes	31	42	52
sulphoxide complexes	39		
Ruthenium(III) complexes			
ammine complexes	23		
aqua ion	21		
bipyridyl complexes	26		
carbon donors	75		
carboxylates	37		
EDTA complexes	50		
ethylenediamine complexes	27		
halide complexes	14		
nitrile complexes	52		
oxygen donors	52		
phenanthroline complexes	26		
phosphorus donors	29	32	
porphyrin complexes	49		

Ruthenium(III) complexes (Continued)				
sulphoxide complexes	39			
sulphur donors	41			
terpyridyl complexes	29			
Ruthenium(IV) complexes				
carbon donors	76			
halogen donors	10			
hydride complexes	21			
nitrogen donors	49			
phosphorus donors	35			
porphyrins	49			
sulphur donors	53			
thiolates	53			
Ruthenium(V) complexes	10			
Ruthenium(VI) complexes				
nitride complexes	73			
phosphine complexes	35			
porphyrin complexes	49			
Ruthenium red	25			
Sulphide complexes	43			
Sulphoxide complexes	39			
σ -bonded organo compounds	75			
Terpyridyl complexes	29			
Tetravalent	4	10	17	21
	35	48	53	
Thiolates	53			
Thionitrosyls	48			
Trivalent	3	14	21	32
	36	38	41	48
	75			

Links

400		
Index terms		Links
Uses	2	
Vibrational spectra		
aqua complexes	21	
dinitrogen complexes	23	28
halide complexes	9	
halides	9	
hydride complexes	31	
nitride complexes	73	
nitrosyl complexes	43	46
oxyhalide complexes	6	
sulphoxide complexes	40	41
Zerovalent	22	
Silver		
Alkene complexes	308	
Ammine complexes	285	
Aqueous chemistry	283	
Arsine complexes	286	
Binary compounds	282	
Bond lengths		
ammine complexes	285	
aqua ion	284	
carbonyl complexes	308	
halide complexes	287	290
halides	278	
macrocyclic complexes	290	
phosphine complexes	287	
to silver	274	
Carbonyl complexes	308	
Carboxylates	285	

<u>Index terms</u>		<u>Links</u>
Chemical vapour deposition (CVD)	287	
Cluster compounds	288	
Colour	323	
Co-ordination numbers	273	
Cyanide complexes	288	
Dithiocarbamates	288	
Element	274	
Extraction	275	
Halide complexes	287	
Halides		
+1 state	277	
+2 state	278	
+3 state	279	
Ionisation energies	273	
Isolation	275	
Macrocycle complexes	290	
Medicinal chemistry	285	
Mixed-valence systems	300	327
Nitrate	284	
Organo compounds	307	
Oxidation states	273	290
Oxides	282	
Phosphine complexes	286	
Photography	278	285
Redox potentials	283	
Silver(I) complexes		
arsenic-donors	286	
carbon-donors	288	
halogen-donors	287	290

Index terms

Silver(I) complexes (Continued)		
nitrogen-donors	285	
oxygen donors	285	
phosphorus-donors	286	
sulphur-donors	288	
two coordinate		
Silver(II) complexes		
halogen donors	290	
macrocyclic complexes	290	
nitrogen-donors	290	
Silver(III) complexes		
halogen-donors	291	
macrocyclic complexes	291	
nitrogen-donors	291	
oxygen-donors	291	
Thiolates	288	
Thiosulphate complexes	285	
Trivalent		
Two coordinate	287	308

This page has been reformatted by Knovel to provide easier navigation.

References

Chapter 1

- 1. W.P. Griffith, *The Chemistry of the Rarer Platinum Metals*, Wiley-Interscience, New York, 1967.
- S.E. Livingstone, in *Comprehensive Inorganic Chemistry*, eds J.C. Bailar, H.J. Emeleus, R.S. Nyholm and A.F. Trotman-Dickenson, Pergamon, Oxford, 1973, Vol. 3, p. 1163.
- 3. D.J. Gulliver and W. Levason, Coord. Chem. Rev., 1982, 44, 1 (high oxidation states).
- W. Levason, in *The Chemistry of the Platinum Group Metals*, ed. F.R. Hartley, Elsevier, Amsterdam, 1991, p. 470; C.M. Che and V.W.-W. Lam, *Adv. Inorg. Chem.*, 1992, 39, 233 (high oxidation states).
- 5. E.A. Seddon and K.R. Seddon, The Chemistry of Ruthenium, Elsevier, Amsterdam, 1984.
- Gmelin Handbook of Inorganic Chemistry, System No. 63, Ruthenium. (a) Main volume, 1938 (reprint 1968); (b) Elements and compounds, Suppl. 1970.
- 7. J.A. Rard, Chem. Rev., 85, 1, 1985 (ruthenium).
- M. Schroder and T.A. Stevenson, in *Comprehensive Coordination Chemistry*, eds G. Wilkinson, R.D. Gillard and J.A. McCleverty, Pergamon, Oxford, 1987, Vol. 4, p. 277 (ruthenium).
- M.I. Bruce et al., in Comprehensive Organometallic Chemistry I, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1982, Vol. 4, p. 651; M.I. Bruce et al., in Comprehensive Organometallic Chemistry II, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1995, Vol. 7, p. 291 (ruthenium).
- Gmelin Handbook of Inorganic Chemistry, System No. 66, Osmium. (a) Main volume, 1939;
 (b) Element and Compounds, Suppl, Section 1, The Metal. Alloys. Compounds, 1980.
- 11. P.A. Lay and W.D. Harman, Adv. Inorg. Chem., 1992, 37, 219 (osmium).
- 12. W.P. Griffith, in *Comprehensive Coordination Chemistry*, eds G. Wilkinson, R.D. Gillard and J.A. McCleverty, Pergamon, Oxford, 1987, Vol. 4, p. 519 (osmium).
- R.D. Adams and J.P. Selegue, in Comprehensive Organometallic Chemistry, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1982, Vol. 4, p. 967; M.I. Bruce et al., in Comprehensive Organometallic Chemistry II, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1995, Vol. 7, p. 291 (osmium).
- 14. For extraction, see F.R. Hartley (ed.), Chemistry of the Platinum Group Metals, Elsevier, Amsterdam, 1991, p. 9.
- W.J. Casteel, A.P. Wilkinson, H. Borrmann, R.E. Serfass and N. Bartlett, *Inorg. Chem.*, 1992, 31, 3124.
- Y. Kobayashi, T. Okada, K. Asai, M. Katada, H. Sano and F. Ambe, *Inorg. Chem.*, 1992, 31, 4570.
- K. Broderson, H.-K. Breitbach and G. Thiele, Z. Anorg. Allgem. Chem., 1968, 357, 162;
 K. Broderson, Angew. Chem. Int. Ed. Engl., 1968, 7, 147.
- (a) J.H. Holloway, R.D. Peacock and R.W.H. Small, J. Chem. Soc., 1964, 644; (b) J.H. Holloway, E.G. Hope, G. Stanger and D.A. Boyd, J. Fluorine Chem., 1992, 56, 77; (c) E.M. Page, D.A. Rice, M.J. Almond et al., Inorg. Chem., 1993, 32, 4311.
- A.K. Brisdon, P.J. Jones, W. Levason et al., J. Chem. Soc., Dalton Trans., 1990, 715; A.K. Brisdon, J.H. Holloway, E.G. Hope, W. Levason and J.S. Ogden, J. Chem. Soc., Dalton Trans., 1992, 447.
- 20. F.A. Cotton and C.E. Rice, Inorg. Chem., 1977, 16, 1865.
- 21. G. Thiele, H. Wockner and H. Wagner, Z. Anorg. Allgem. Chem., 1985, 530, 178.
- E.W. Kaiser, J.S. Muenter, W. Klemperer, W.E. Falconer and W.A. Sunder, J. Chem. Phys., 1970, 53, 1411; A.K. Brisdon, J.H. Holloway, E.G. Hope, W. Levason, J.S. Ogden and A.K. Saad, J. Chem. Soc., Dalton Trans., 1992, 139; S.A. Brewer, A.K. Brisdon, J.H. Holloway and E.G. Hope, Polyhedron, 1994, 13, 749 (EXAFS in solution).

- (a) O. Glemser, H.W. Roesky, K.-H. Halberg and H.-U. Werter, Chem. Ber., 1966, 99, 2652; (b) A. Veldkamp and G. Frenking, Chem. Ber., 1993, 126, 1325.
- 24. T. Sakurai and A. Takahashi, J. Inorg. Nucl. Chem., 1979, 41, 681.
- 25. K.O. Christe, D.A. Dixon, H.G. Mack et al., J. Am. Chem. Soc., 1993, 115, 11279.
- (a) S.A. Brewer, A.K. Brisdon, J.H. Holloway et al., J. Fluorine Chem., 1993, 60, 13;
 (b) R. Bougon, W.V. Cicha and J. Isabey, J. Fluorine Chem., 1994, 67, 271.
- 27. J.H. Holloway, E.G. Hope, J.B. Raynor and P.T. Townson, J. Chem. Soc., Dalton Trans. 1992, 1131.
- 28. E.G. Hope, W. Levason and J.S. Ogden, J. Chem. Soc., Dalton Trans., 1988, 997.
- W.A. Sunder and F.A. Stevie, J. Fluorine Chem., 1975, 6, 449; W.E. Falconer, F.J. DiSalvo, J.E. Griffiths, F.A. Stevie, W.A. Sunder and M.J. Vasile, J. Fluorine Chem., 1975, 6, 499.
- K. Hagen, R.J. Hobson, C.J. Holwill and D.A. Rice, *Inorg. Chem.*, 1986, 25, 3659;
 W. Levason, J.S. Ogden, A.J. Rest, *J. Chem. Soc.*, *Dalton Trans.*, 1982, 1877; H. Schäfer,
 R. Gerken and L. Zylka, *Z. Anorg. Allgem. Chem.*, 1986, 534, 210.
- 31. K.H. Huenke and H. Schäfer, Z. Anorg. Allgem. Chem., 1986, 534, 216.
- 32. H. Schäfer, Z. Anorg. Allgem. Chem., 1986, 535, 219.
- N. Bartlett, M. Gennis, D.D. Gibler, B.K. Morell and A. Zalkin, *Inorg. Chem.*, 1973, 12, 1717.
- 34. E.E. Kim, K. Eriks and R. Magnusson, Inorg. Chem., 1984, 23, 393.
- A.K. Brisdon, J.H. Holloway, E.G. Hope, W. Levason, J.S. Ogden and A.K. Saad, J. Chem. Soc., Dalton Trans., 1992, 139; 1992, 447.
- J.M. Arrieta, G. Germain, M. Vlassi, D.G. Craciunescu, E. Parrondo Iglesias and T. Debaerdemaeker, Acta Crystallogr. Sect. C, 1992, 48, 1305.
- W. Preetz, D. Ruf and D. Tensfeldt, Z. Naturforsch., Teil B, 1984, 39, 1100; W. Preetz and H.J. Walter, J. Inorg. Nucl. Chem., 1971, 33, 3179; H. Muller, J. Inorg. Nucl. Chem., 1966, 28, 2081 (nuclear); G. Barka and W. Preetz, Z. Anorg. Allgem. Chem., 1977, 433, 147; Z. Anorg. Allgem. Chem., 1973, 402, 168; W. Preetz, H.J. Walter and E.W. Fries, Z. Anorg. Allgem. Chem., 1973, 402, 180.
- (a) H.-J. Keller and H. Homberg, Z. Anorg. Allgem. Chem., 1976, 422, 261; W. Preetz and Y. Petros, Z. Anorg. Allgem. Chem., 1975, 415, 15; (b) C. Bruhn and W. Preetz, Acta Crystallogr. Sect. C, 1994, 50, 1555; (c) C. Bruhn and W. Preetz, Acta Crystallogr. Sect. C, 1994, 50, 1687; Acta Crystallogr. Sect. C, 1995, 51, 1112; Acta Crystallogr. Sect. C, 1996, 52, 321.
- T.E. Hopkins, A. Zalkin, D.H. Templeton and M.G. Adamson, Inorg. Chem., 1969, 8, 2421; M.G.B. Drew, D.A. Rice and C.W. Timewell, Inorg. Nucl. Chem. Lett., 1971, 5, 59.
- W. Preetz, P. Hollmann, G. Thiele and H. Hillebrecht, Z. Naturforsch., Teil B, 1990, 45, 1416; P.E. Fanwick, M.K. King, S.M. Tetrick and R.A. Walton, J. Am. Chem. Soc., 1985, 107, 5009; P.A. Agaskar, F.A. Cotton, K.R. Dunbar, L.R. Favello, S.M. Tetrick and R.A. Walton, J. Am. Chem. Soc., 1986, 108, 4850; F.A. Cotton and K. Vidyasagar, Inorg. Chim. Acta, 1989, 166, 109.
- 41. S.F. Gheller, G.A. Heath and R.G. Raptis, J. Am. Chem. Soc., 1992, 114, 7925; G.A. Heath and D.G. Humphrey, J. Chem. Soc., Chem. Commun., 1990, 613; T.W. Johnson, S.M. Tetrick, P.E. Fanwick and R.A. Walton, Inorg. Chem., 1991, 30, 4146.
- S.F. Gheller, G.A. Heath, D.C.R. Hockless, D.G. Humphrey and J.E. McGrady, Inorg. Chem., 1994, 33, 3986; B.J. Kennedy, G.A. Heath and T.J. Khoo, Inorg. Chim. Acta, 1991, 190, 265; J.E. Fergusson and A.M. Greenaway, Aust. J. Chem., 1978, 31, 497; D. Appleby, R.I. Crisp, P.B. Hitchcock et al., J. Chem. Soc., Chem. Commun., 1986, 483.
- J.D. Gilbert, D. Rose and G. Wilkinson, J. Chem. Soc. (A), 1970, 2765; F. Bottomley and M. Mukaida, J. Chem. Soc., Dalton Trans., 1982, 1933; H. Nagao, H. Nishimura, Y. Kitanaka, F.S. Howell, M. Muakida and H. Kakihana, Inorg. Chem., 1990, 29, 1693; T. Togano, N. Nagao, M. Tsuchida et al., Inorg. Chim. Acta, 1992, 195, 221.
- 44. A. Bino and F.A. Cotton, J. Am. Chem. Soc., 1980, 102, 608.
- 45. R. Weber, K. Dehnicke, U. Muller and D. Fenske, Z. Anorg. Allgem. Chem., 1984, 516, 214.
- 46. S. Perrier and J.K. Kochi, *Inorg. Chem.*, 1988, 27, 4165; W.P. Griffith, J. Chem. Soc. (A), 1969, 211; and Ref. 45.

- R.J.H. Clark, M.L. Franks and P.C. Turtle, J. Am. Chem. Soc., 1977, 99, 2473; S.K. Harthorn, H.C. Jewiss, W. Levason and M. Webster, Acta Crystallogr. Sect. C, 1987, 43, 37.
- 48. (a) L. Schafer and H.M. Seip, Acta Chem. Scand., 1967, 21, 737; (b) W.P. Griffith, Chem. Soc. Rev., 1992, 21, 179; (c) A.C. Dengel, A.M. El-Hendawy, W.P. Griffith, C.A. O'Mahoney and D.J. Williams, J. Chem. Soc., Dalton Trans., 1994, 737.
- G.L. Zimmermann, S.J. Riviello, T.A. Glauser and J.G. Kay, J. Phys. Chem., 1990, 94, 2399; J.G. Kay, D.W. Green, K. Duca and G.L. Zimmerman, J. Mol. Spectrosc., 1989, 138, 49.
- 50. W.P. Griffith, Platinum Metals Rev., 1974, 18, 94.
- 51. B. Krebs and K.D. Hassel, Acta Crystallogr. Sect. B, 1976, 32, 1334.
- J.C. Green, M.F. Guest, I.H. Hillier, et al., Inorg. Chem., 1992, 31, 1588; B.E. Bursten, J.C. Green and N. Kaltsayannis, Inorg. Chem., 1994, 33, 2315.
- 53. W.P. Griffith, Transition Met. Chem., 1990, 15, 251; Platinum Metals Rev., 1989, 33, 181.
- S.V. Ley, J. Norman, W.P. Griffith and S.P. Marsden, Synthesis, 1994, 639; A.C. Dengel, J.F. Gibson and W.P. Griffith, J. Chem. Soc., Dalton Trans., 1991, 2799.
- 55. M.O. Elout, W.G. Haije and W.J.A. Maaskant, Inorg. Chem., 1988, 27, 610.
- Y. Laurent, R. Pastuszak, P. L'Haridon and R. Marchand, Acta Crystallogr. Sect. B, 1982, 38, 914; R. Pastuszak, P. L'Haridon, R. Marchand and Y. Laurent, Acta Crystallogr. Sect. B, 1982, 38, 1427; P. L'Haridon, R. Pastuszak and Y. Laurent, J. Solid State Chem., 1982, 43, 29.
- M. Kritikis, D. Novens, A.F. Andresen and P. Fischer, J. Solid State Chem., 1991, 92, 514;
 B. Huang, F. Bonhomme, P. Selvam, K. Yvon and P. Fischer, J. Less Common Metals, 1991, 171, 301;
 B. Huang, K. Yvon and P. Fischer, J. Alloys Compd., 1994, 210, 243.
- (a) P. Bernhard, H.-B. Burgi, J. Hauser, H. Lehmann and A. Ludi, *Inorg. Chem.*, 1982, 21, 3936; P. Bernhard and A. Ludi, *Inorg. Chem.*, 1984, 23, 870; F. Joensen and C.E. Schaffer, *Acta Chem. Scand. A*, 1984, 38, 819; S.P. Best, J.B. Forsyth and P.L. Tregenna-Pigott, *J. Chem. Soc., Dalton Trans.*, 1993, 2711; (b) J. Chatt, G.J. Leigh, D.M.P. Mingos and R.J. Paske, *J. Chem. Soc. (A)*, 1968, 2636; J. Chatt, G.J. Leigh and D.M.P. Mingos, *J. Chem. Soc (A)*, 1969, 1674.
- 59. G. Laurenczy, L. Helm, A.E. Merbach and A. Ludi, Inorg. Chim. Acta, 1991, 189, 131.
- 60. A. Patel and D.T. Richens, Inorg. Chem., 1991, 30, 3789.
- 61. (a) J.P. Jesson, M.A. Cushing and S.D. Ittel, *Inorg. Synth.*, 1980, **20**, 80; V.T. Kruck and A. Prasch, Z. Anorg. Allgem. Chem., 1969, **371**, 1; (b) R.J. Mawby, R.N. Perutz and M.K. Whittlesey, Organometallics, 1995, **14**, 3268.
- 62. R.N. Perutz, Chem. Soc. Rev., 1993, 22, 361.
- L. Cronin, M.C. Nicasio, R.N. Perutz, R.G. Peters, D.M. Roddick and M.K. Whittlesey, J. Am. Chem. Soc., 1995, 117, 10047.
- 64. S. Pell, R.H. Mann, H. Taube and J.N. Armor, Inorg. Chem., 1974, 13, 479.
- A.D. Allen and C.V. Senoff, J. Chem. Soc., Chem. Commun., 1965, 621; F. Bottomley and S.C. Nyberg, J. Chem. Soc., Chem. Commun., 1966, 897; Acta Crystallogr. Sect. B, 1968, 24, 1289 (structure).
- N.E. Dixon, G.A. Lawrance, P.A. Lay and A.M. Sargeson, *Inorg. Chem.*, 1983, 22, 846;
 J.F. Wishart, H. Taube, K. Breslauer and S.S. Islied, *Inorg. Chem.*, 1984, 23, 2997; B.T. Anders, S.T. Collins and D.K. Lavalee, *Inorg. Chem.*, 1985, 24, 2201.
- P.A. Reynolds, C.D. Delfs, B.N. Figgis, L.M. Engelhardt, B. Moubaraki and K.S. Murray, J. Chem. Soc., Dalton Trans., 1992, 2029; A.B. Blake, C.D. Delfs, L.M. Engelhardt et al., J. Chem. Soc., Dalton Trans., 1993, 1417; B.N. Figgis, P.A. Reynolds and A.N. Sobolev, J. Chem. Soc., Dalton Trans., 1994, 1429; H.C. Stynes and J.A. Ibers, Inorg. Chem., 1971, 10, 2304.
- 68. C.A. Creutz and H. Taube, J. Am. Chem. Soc., 1969, 91, 3988; U. Furholz, S. Joss, H.B. Burgi and A. Ludi, Inorg. Chem., 1985, 24, 943.
- S. Donovan-Mtunzi, R.L. Richards and J. Mason, J. Chem. Soc., Dalton Trans., 1984, 2429; I.M. Treitel, M.T. Flood, R.E. Marsh and H.B. Gray, J. Am. Chem. Soc., 1969, 91, 6512.
- M.A.A.C.F. de C.T. Carrondo, W.P. Griffith, J.P. Hall and A.C. Skapski, *Biochim. Biophys. Acta*, 1980, 627, 332; P.M. Smith, T. Fealey, J.E. Earley and J.V. Silverton, *Inorg. Chem.*, 1971, 10, 1943.

- E. Krausz and J. Ferguson, Progr. Inorg. Chem., 1989, 37, 293; A. Juris, V. Balzani,
 F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988,
 84, 85; A. Mills in The Chemistry of the Platinum Group Metals, ed. F.R. Hartley, Elsevier,
 Amsterdam, 1991, Ch. 11, p. 311; D.M. Roundhill, Photochemistry and Photophysics of
 Metal Complexes, Plenum Press, New York, 1994.
- (a) M.M. Richter, B. Scott, K.J. Brewer and R.D. Willett, Acta Crystallogr. Sect. C, 1991, 47, 2443; (b) M. Biner, H.-B. Burgi, A. Ludi and C. Rohr, J. Am. Chem. Soc., 1992, 114, 5197; (c) D.P. Rillema, D.S. Jones, C. Woods and H.A. Levy, Inorg. Chem., 1992, 31, 2935.
- 73. B.H. Ye, X.M. Chen, T.X. Zeng and L.N. Ji, Inorg. Chim. Acta, 1995, 240, 5.
- P.J. Smolenaers, J.K. Beattie and N.D. Hutchinson, *Inorg. Chem.*, 1981, 20, 2202; H.J. Peresie and J.A. Stanko, J. Chem. Soc., Chem. Commun., 1970, 1674; *Inorg. Synth*, 1979, 19, 118; 1992, 29, 164.
- 75. B.R. Davis and J.A. Ibers, Inorg. Chem., 1970, 9, 2768.
- 76. J.-P. Sauvage, J.-P. Collin, J.-C. Chambron et al., Chem. Rev., 1994, 94, 993.
- 77. P.M. Van Vliet, S.M.S. Toekimin, J.G. Haasnoot et al., Inorg. Chim. Acta, 1995, 231, 57.
- 78. P.W. Armit, A.S.F. Boyd and T.A. Stephenson, J. Chem. Soc., Dalton Trans. 1975, 1663.
- 79. F.H. Jardine, Progr. Inorg. Chem., 1984, 31, 265.
- 80. S.J. LaPlaca and J.A. Ibers, Inorg. Chem., 1965, 4, 778.
- 81. N.R. Champness, W. Levason and M. Webster, Inorg. Chim. Acta, 1993, 208, 189.
- P.A. Chaloner, Handbook of Coordination Catalysis in Organic Chemistry, Butterworths, London, 1986, p. 39.
- 83. A.C. Skapski and P.G.H. Troughton, J. Chem. Soc., Chem. Commun., 1968, 1230.
- J.K. Nicholson, Angew. Chem. Int. Ed. Engl., 1967, 6, 264; G. Chioccola and J.J. Daly, J. Chem. Soc. (A), 1968, 1981; F.A. Cotton, M. Matusz and R.C. Torralba, Inorg. Chem., 1989, 28, 1516; F.A. Cotton and R.C. Torralba, Inorg. Chem., 1991, 30, 2196, 3293, 4387, 4392.
- J. Chatt and R.G. Hayter, J. Chem. Soc., 1961, 896; J. Chatt and J.M. Davidson, J. Chem. Soc., 1965, 843; T.S. Lobana, R. Singh and E.R.K. Tiekink, J. Coord. Chem., 1990, 21, 225.
- 86. C.A. Tolman, S.D. Ittel, A.D. English and J.P. Jesson, J. Am. Chem. Soc., 1978, 100, 4080.
- 87. F.A. Cotton, D.L. Hunter and B.A. Frenz, Inorg. Chim. Acta, 1975, 15, 155.
- C. Hall, W.D. Jones, R.J. Mawby, R. Osman, R.N. Perutz and M.K. Whittlesey, J. Am. Chem. Soc., 1992, 114, 7425; J.F. Hartwig, R.A. Andersen and R.G. Bergman, Organometallics, 1991, 10, 1710.
- 89. G. Jia, I. Lee, D.W. Meek and J.C. Gallucci, Inorg. Chim. Acta, 1990, 177, 81.
- 90. L. Dahlenberg and K.-M. Frosin, Polyhedron, 1993, 12, 427.
- 91. L.D. Field, T.W. Hambley and B.C.K. Yau, Inorg. Chem., 1994, 33, 2009.
- 92. J. Li, R.M. Dickson and T. Ziegler, J. Am. Chem. Soc., 1995, 117, 11482.
- 93. R.H. Crabtree and D.G. Hamilton, J. Am. Chem. Soc., 1986, 108, 3124.
- M. Bautista, K.A. Earl, R.H. Morris and A. Sella, J. Am. Chem. Soc., 1987, 109, 3780;
 M. Bautista, K.A. Earl, P.A. Maltby, R.H. Morris, C.T. Schweitzer and A. Sella, J. Am. Chem. Soc., 1987, 110, 7031.
- 95. A.S.C. Chan and H.-S. Shieh, J. Chem. Soc., Chem. Commun., 1985, 1379 .
- 96. F.A. Cotton, Y. Kim and T. Ren, *Polyhedron*, 1993, **12**, 607 and references therein; T. Kimura, T. Sakurai, M. Shima, T. Togano, M. Mukaida and T. Nomura, *Bull. Chem. Soc. Japan*, 1982, **55**, 3927. For the carboxylates of Ru and Os in general, see F.A. Cotton and R.A. Walton, *Multiple Bonds between Metal Atoms*, 2nd edn, Clarendon Press, Oxford, 1993, 399 ff., 630 ff.
- M.C. Barral, R. Jiminez-Aparicio, E.C. Royer, C. Ruiz-Valero, M.J. Saucedo and F.A. Urbanos, *Inorg. Chem.*, 1994, 33, 2692.
- 98. M.C. Barral, R. Jiminez-Aparicio, J.L. Priego et al., J. Chem. Soc., Dalton Trans., 1995, 2183.
- F.A. Cotton and E. Pedersen, *Inorg. Chem.*, 1975, 14, 388; D.S. Martin, R.A. Newman and L.M. Vlasek, *Inorg. Chem.*, 1980, 19, 3404.
- 100. A.J. Lindsay, G. Wilkinson, M. Motevalli and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1985, 2321.
- 101. J.G. Norman, G.E. Renzoni and D.A. Case, J. Am. Chem. Soc., 1979, 101, 5256.

- 102. F.A. Cotton, L. Labella and M. Shang, *Inorg. Chem.*, 1992, **31**, 2385; F.A. Cotton, L.R. Favello, T. Ren and K. Vidyasagar, *Inorg. Chim. Acta*, 1992, **194**, 163.
- 103. M. Abe, Y. Sasaki, T. Yamaguchi and T. Ito, Bull. Chem. Soc. Japan, 1992, 65, 1585; G. Powell, D.J. Richens and A.K. Powell, Inorg. Chim. Acta, 1993, 213, 147.
- 104. (a) F.A. Cotton and J.G. Norman, Inorg. Chim. Acta, 1972, 6, 411; (b) A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1972, 1570; (c) R.W. Mitchell, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 847.
- 105. Y. Sasaki, M. Suzuki, A. Nagasawa et al., Inorg. Chem., 1991, 30, 4903; A. Symala and A.R. Chakravarty, Polyhedron, 1993, 12, 1545.
- 106. A.C. Skapski and F.A. Stephens, J. Chem. Soc., Dalton Trans., 1974, 390; R.J. Young and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1976, 719.
- 107. E. Lindner, R. Fawzi, W. Hiller, A. Carvill and M. McCann, Chem. Ber., 1991, 124, 2691.
- 108. E. Alessio, G. Mestroni, W.M. Attia, M. Calligaris, G. Sava and S. Zorzet, *Inorg. Chem.*, 1988, 27, 4099; J.D. Oliver and D.P. Riley, *Inorg. Chem.*, 1984, 23, 156; A. Mercer and J. Trotter, J. Chem. Soc., Dalton Trans., 1975, 2480.
- M. Henn, E. Alessio, G. Mestroni, M. Calligaris and W.M. Attia, *Inorg. Chim. Acta*, 1991, 187, 39.
- 110. M. Calligaris, P. Faleschini and E. Alessio, Acta Crystallogr. Sect. C, 1993, 49, 663.
- 111. E. Alessio, G. Balducci, M. Calligaris, G. Costa, W.M. Attia and G. Mestroni, *Inorg. Chem.*, 1991, **30**, 609; E. Alessio, G. Balducci, A. Lutman, G. Mestroni, M. Calligaris and W.M. Attia, *Inorg. Chim. Acta*, 1993, **203**, 205.
- 112. M. Calligaris, P. Faleschini, F. Todone, E. Alessio and S. Geremia, J. Chem. Soc., Dalton Trans., 1995, 1653.
- E. Alessio, M. Bolle, B. Milani et al., Inorg. Chem., 1995, 34, 4716; E. Alessio, B. Milani, M. Bolle et al., Inorg. Chem., 1995, 34, 4722.
- 114. (a) R.S. Srivastava, B. Milani, E. Alessio and G. Mestroni, *Inorg. Chim. Acta*, 1992, 191, 15;
 (b) J. Chatt, G.J. Leigh and A.P. Storace, *J. Chem. Soc.* (A), 1971, 1380; J.S. Jaswal, S.J. Rettig and B.R. James, *Can. J. Chem.*, 1990, 68, 1808.
- F. Bottomley, Coord. Chem. Rev., 1978, 26, 7; J.A. McCleverty, Chem. Rev., 1979, 79, 53;
 D.M.P. Mingos and D.J. Sherman, Adv. Inorg. Chem., 1989, 34, 293 (for nitrogen-15 NMR);
 A.A. Svetlov, Yu.E. Gorbunova, Yu.N. Mikhailov, A.S. Kanischeva and Yu.A. Buslaev, Russ. J. Inorg. Chem., 1995, 40, 1417.
- 116. A. Joly, C. R. Hebd. Seances Acad. Sci., 1889, 708, 854; M.I. Khan, R. Saheb and U. Agarwala, Ind. J. Chem., Sect. A, 1983, 22, 417; J.E. Fergusson and P.F. Heveldt, J. Inorg. Nucl. Chem., 1977, 39, 825.
- 117. A. Domenicano, A. Vaciago, L. Zambonelli, P.L. Loader and L.M. Venanzi, J. Chem. Soc., Chem. Commun., 1966, 476.
- 118. J.B. Goodwin and T.J. Meyer, Inorg. Chem., 1971, 10, 215.
- T. Togano, H. Kuroda, N. Nagao et al., Inorg. Chim. Acta, 1992, 196, 57; H. Tomiazwa, K. Harada, E. Miki et al., Bull. Chem. Soc. Japan, 1993, 66, 1658; R. Asanuma, H. Tomiazwa, A. Urushiyama, E. Miki, K. Mizumachi and T. Ishimori, Bull. Chem. Soc. Japan, 1994, 67, 1274; H. Tomiazwa, E. Miki, K. Mizumachi and T. Ishimori, Bull. Chem. Soc. Japan, 1994, 67, 1816.
- H. Ikezawa, Y. Ikezawa, E. Miki, K. Mizumachi and T. Ishimori, *Inorg. Chim. Acta*, 1995, 238, 89.
- Much of the structural data for [Ru(NO)X₅] systems is found in R. Zarhloul, R. Faure and J.-P. Deloume, J. Crystallogr. Spect. Res., 1992, 22, 601; M. Rudlinger, J. Schefer, P. Fischer, N. Furer and H.U. Gudel, J. Solid State Chem., 1993, 103, 170.
- 122. IR data for [Ru(NO)X₅] systems is largely taken from N.L. Rogalevich, E.Y. Bobkova, G.G. Novitskii, I.K. Skutov, A.A. Svetlov and N.M. Sinitsyn, *Russ. J. Inorg. Chem.*, 1986, **31**, 694. See also D.H.F. Souza, G. Oliva, A. Teixeira and A.A. Batista, *Polyhedron*, 1995, **14**, 1031.
- 123. J.E. Fergusson and R.K. Coll, *Inorg. Chim. Acta*, 1993, 207, 191; R.E. Townsend and K.J. Coskran, *Inorg. Chem.*, 1971, 10, 1661.
- 124. M.H.B. Stiddard and R.E. Townsend, J. Chem. Soc., Chem. Commun., 1969, 1372; J. Reed, C.G. Pierpont and R. Eisenberg, Inorg. Synth., 1976, 16, 21; M.W. Schoonover, C.P. Kubiak and R. Eisenberg, Inorg. Chem., 1978, 17, 3050.
- 125. C.G. Pierpont and R. Eisenberg, Inorg. Chem., 1972, 11, 1088.

- 126. J.J. Levison and S.D. Robinson, J. Chem. Soc. (A), 1970, 2947; K.R. Grundy, K.R. Laing and W.R. Roper, J. Chem. Soc., Chem. Commun., 1970, 1500; A.P. Gaughan, B.J. Corden, R. Eisenberg and J.A. Ibers, Inorg. Chem., 1974, 13, 786.
- 127. C.G. Pierpont and R. Eisenberg, Inorg. Chem., 1972, 11, 1094; S.T. Wilson and J.A. Osborn, J. Am. Chem. Soc., 1971, 93, 3068.
- 128. J.W. Bats, K.K. Pandey and H.W. Roesky, J. Chem. Soc., Dalton Trans., 1984, 2081; K.K. Pandey, J. Coord. Chem., 1991, 22, 307.
- 129. (a) B.R. James, A. Pacheco, S.J. Rettig and J.A. Ibers, *Inorg. Chem.*, 1988, 27, 2414; M. Ke, S.J. Rettig, B.R. James and D. Dolphin, *J. Chem. Soc., Chem. Commun.*, 1987, 1110; J.P. Collman, C.E. Nes, P.N. Swepston and J.A. Ibers, *J. Am. Chem. Soc.*, 1984, 106, 3501; J.-S. Huang, C.-M. Che, Z.-Y. Li and C.K. Poon, *Inorg. Chem.*, 1992, 31, 1313; M. Ke, C. Sishta, B.R. James, D. Dolphin, J.W. Sparapany and J.A. Ibers, *Inorg. Chem.*, 1991, 30, 4766; J.-S. Huang, C.-M. Che and C.K. Poon, *J. Chem. Soc., Chem. Commun.*, 1992, 161; (b) M.J. Abrams, *Platinum Metals Rev.*, 1995, 39, 14; (c) J.W. Buchler, C. Dreher and F.M. Kunzel, *Struct. Bonding*, 1995, 84, 1.
- 130. For a review, see M.M. Taqui Khan, Platinum Metals Rev., 1991, 35, 70.
- 131. M.M. Taqui Khan, K. Venkatasubramanian, H.C. Bajaj and Z. Shirin, Ind. J. Chem., Sect. A, 1992, 306.
- 132. M.M. Taqui Khan, D. Chatterjee, M.R.H. Siddiqui, et al., Polyhedron, 1993, 12, 1443; M.M. Taqui Khan, K. Venkatasubramanian, Z. Shirin and M.M. Bhadbhade, J. Chem. Soc., Dalton Trans., 1992, 1031; M.M. Taqui Khan, D. Chatterjee, R.R. Merchant et al., Inorg. Chem., 1992, 31, 2711; M.M. Taqui Khan, M.M. Bhadbhade, K. Venkatasubramanian and M.R.H. Siddiqui, Acta Crystallogr. Sect. C, 1992, 48, 1202.
- 133. (a) R.J. Judd, R. Cao, M. Biner et al., Inorg. Chem., 1995, 34, 5080; (b) T.S. Knowles, M.E. Howells, B.J. Howlin, G.W. Smith and C.A. Amodio, Polyhedron, 1994, 13, 2197.
- J.L. Templeton, J. Am. Chem. Soc., 1979, 101, 4906; F. Bottomley and M. Mukaida, J. Chem. Soc., Dalton Trans., 1982, 1933; D.W. Reichert and H. Taube, Inorg. Chem., 1972, 11, 999; W.T. Wong and T.C. Lu, Acta Crystallogr. Sect. C., 1994, 50, 1406; M.R.J. Elsegood and D.A. Tocher, Acta Crystallogr. Sect. C, 1995, 51, 40; B.J. Coe, T.J. Meyer and P.S. White, Inorg. Chem., 1995, 34, 593.
- 135. C. Anderson and A.L. Beauchamp, Can. J. Chem., 1995, 73, 471; Inorg. Chem., 1995, 34, 6065; J. Chatlas, R. van Eldik and B.K. Keppler, Inorg. Chim. Acta, 1995, 233, 59.
- 136. C.M. Duff and G.A. Heath, *Inorg. Chem.*, 1991, 30, 2528; C.M. Duff, G.A. Heath and A.C. Willis, *Acta Crystallogr. Sect. C*, 1990, 46, 2320.
- 137. L.H. Pignolet, Inorg. Chem., 1974, 13, 2051.
- 138. C.L. Raston and A.H. White, J. Chem. Soc., Dalton Trans., 1975, 2410.
- 139. S.A. Koch and M. Millar, J. Am. Chem. Soc., 1983, 105, 3363; M. Millar, T. O'Sullivan, N. de Vries and S.A. Koch, J. Am. Chem. Soc., 1985, 107, 3714; S.P. Satsangee, J.H. Hain, P.T. Cooper and S.A. Koch. Inorg. Chem., 1992, 31, 5160.
- 140. C.M. Che, K.Y. Wong and T.C.W. Mak, J. Chem. Soc., Chem. Commun., 1985, 988; C.M. Che, T.-F. Lai and K.Y. Wong, Inorg. Chem., 1987, 26, 2289.
- 141. R.K. Pomeroy, J. Organomet. Chem., 1990, 383, 387 (review); P. Rushman, G.N. van Buren and R.K. Pomeroy, Organometallics, 1983, 2, 693; F.W.B. Einstein, V.J. Johnston and R.K. Pomeroy, Organometallics, 1990, 9, 2754; W. Wang, F.W.B Einstein and R.K. Pomeroy, J. Chem. Soc., Chem. Commun., 1992, 1737; D. Coughlin, J. Lewis, J.R. Moss, A.J. Edwards and M. McPartlin, J. Organomet. Chem., 1993, 444, C55.
- 142. V.T. Kruck and A. Prasch, Z. Anorg. Allgem. Chem., 1969, 371, 1; A.D. English, S.D. Ittel, C.A. Tolman, P. Meakin and J.P. Jesson, J. Am. Chem. Soc., 1977, 99, 117; S.P. Ermer, R.S. Shinomoto, M.A. Deming and T.C. Flood, Organometallics, 1989, 8, 1377.
- 143. J.D. Buhr, J.R. Winkler and H. Taube, *Inorg. Chem.*, 1980, 19, 2416; Z.-W. Wei, W.D. Harman, P.A. Lay and H. Taube, *Inorg. Chem.*, 1994, 33, 3635.
- 144. H.-W. Lam, C.-M. Che and K.Y. Wong, J. Chem. Soc., Dalton Trans., 1992, 1411.
- 145. J.L. Love and W.T. Robinson, *Inorg. Chem.*, 1972, 11, 1662; P.A. Lay, R.H. Magnuson, J. Sen and H. Taube, *J. Am. Chem. Soc.*, 1982, 104, 7658.
- 146. J.T. Call, K.A. Hughes, W.D. Harman and M.G. Finn, Inorg. Chem., 1993, 32, 2123.
- 147. H.A. Goodwin, D.L. Kepert, J.M. Patrick, B.W. Skelton and A.H. White, Aust. J. Chem., 1984, 37, 1817; M.M. Richter, B. Scott, K.J. Brewer and R.D. Willett, Acta Crystallogr. Sect. C, 1991, 47, 2443.

- 148. F.P. Dwyer and J.W. Hogarth, J. Am. Chem. Soc., 1955, 77, 6152; M.A. Bolourtschi, H.-J. Deiseroth and W. Preetz, Z. Anorg. Allgem. Chem., 1975, 415, 25; P.A. Lay, A.M. Sargeson, B.W. Skelton and A.H. White, J. Am. Chem. Soc., 1982, 104, 6161.
- 149. Z. Wei and H. Taube, J. Am. Chem. Soc., 1991, 113, 8946; Z. Li and H. Taube, Science, 1992, 256, 210; L. Pu, T. Hasegawa, S. Parkin and H. Taube, J. Am. Chem. Soc., 1993, 115, 2545; U. Frey, Z.-W. Li and A. Matras, Inorg. Chem., 1996, 35, 980.
- 150. T. Hasegawa, Z.W. Li, S. Parkin et al., J. Am. Chem. Soc., 1994, 116, 4352; Z.W. Li and H. Taube, J. Am. Chem. Soc., 1994, 116, 9506.
- 151. D.J. Salmon and R.A. Walton, *Inorg. Chem.*, 1978, 17, 2379; J.E. Armstrong and R.A. Walton, *Inorg. Chem.*, 1983, 22, 1545; S.K. Harbron and W. Levason, *J. Chem. Soc.*, *Dalton Trans.*, 1987, 633.
- 152. R.A. Cipriano, W. Levason, R.A.S. Mould, D. Pletcher and M. Webster, J. Chem. Soc., Dalton Trans., 1990, 2609.
- 153. A. Hudson and M.J. Kennedy, J. Chem. Soc. (A), 1968, 1116; N.J. Hill, J. Chem. Soc., Faraday Trans. 2, 1972, 427.
- 154. V.T. Coombe, G.A. Heath, T.A. Stephenson, J.D. Whitelock and L.J. Yellowlees, J. Chem. Soc., Dalton Trans., 1985, 947; B.D. Yeomans, G.A. Heath and D.C.R. Hockless, Acta Crystallogr. Sect. C, 1995, 51, 1807.
- 155. J. Chatt, G.J. Leigh and R.L. Richards, J. Chem. Soc., Chem. Commun., 1969, 515; J. Chem. Soc. (A), 1970, 2243; J. Chatt, D.P. Melville and R.L. Richards, J. Chem. Soc. (A), 1971, 1169.
- 156. A. Hills, D.L. Hughes, R.L. Richards, M. Arroyo, D. Cruz-Garritz and H. Torrens, J. Chem. Soc., Dalton Trans., 1991, 1281.
- 157. L. Aslanov, R. Mason, A.G. Wheeler and P.O. Whimp, J. Chem. Soc., Chem. Commun., 1970, 30; C.C. Hinkley, M.T. Matusz and P.D. Robinson, Acta Crystallogr. Sect. C, 1988, 44, 371; C.C. Hinkley, M.T. Matusz and P.D. Robinson, Acta Crystallogr. Sect C, 1988, 44, 1829; R.A. Cipriano, W. Levason, R.A.S. Mould, D. Pletcher and M. Webster, J. Chem. Soc., Dalton Trans., 1990, 339; N.R. Champness, W. Levason, R.A.S. Mould, D. Pletcher and M. Webster, J. Chem. Soc., Dalton Trans., 1991, 2777.
- 158. N.R. Champness, W. Levason, D. Pletcher, M.D. Spicer and M. Webster, J. Chem. Soc., Dalton Trans., 1992, 2201.
- 159. W. Levason, N.R. Champness and M. Webster, Acta Crystallogr. Sect. C, 1993, 49, 1884; A.J. Lough, R.H. Morris and M. Schlaf, Z. Kristallogr., 1995, 210, 973.
- 160. P.G. Douglas and B.L. Shaw, J. Chem. Soc. (A), 1970, 334.
- P.W. Frost, J.A.K. Howard and J.L. Spencer, Acta Crystallogr. Sect. C, 1984, 40, 960;
 N.G. Connelly, J.A.K. Howard, J.L. Spencer and P.K. Woodley, J. Chem. Soc., Dalton Trans., 1984, 2005; J.A.K. Howard, O. Johnson, T.F. Koetzle and J.L. Spencer, Inorg. Chem., 1987, 26, 2930; 1991, 30, 289.
- 162. K.T. Smith, M. Tilset, R. Kuhlman and K.G. Caulton, 1995, 117, 9473.
- 163. B. Bell, J. Chatt and G.J. Leigh, J. Chem. Soc., Dalton Trans., 1973, 997.
- 164. D.W. Hart, R. Bau and T.F. Koetzle, J. Am. Chem. Soc., 1977, 99, 7559; J.W. Bruno, J.C. Huffman, M.A. Green, J.D. Zubkowski, W.E. Hatfield and K.G. Caulton, Organometallics, 1990, 9, 2556; P.J. Desrosiers, L. Cai, Z. Lin, R. Richards and J. Halpern, J. Am. Chem. Soc., 1991, 113, 4173.
- 165. F. Maseras, X.-K. Li, N. Koga and K. Morokuma, J. Am. Chem. Soc., 1993, 115, 10974.
- 166. J.C. Huffman, M.A. Green, S.L. Kaiser and K.G. Caulton, J. Am. Chem. Soc., 1985, 107, 5111.
- 167. J. Chatt, D.P. Melville and R.L. Richards, J. Chem. Soc. (A), 1971, 895; M. Aracama, M.A. Esteruelas, F.J. Lahoz, J.A. Lopez, U. Meyer, L.A. Oro and H. Werner, Inorg. Chem., 1991, 30, 288; J. Espuelas, M.A. Esteruelas, F.J. Lahoz, L.A. Oro and N. Ruiz, J. Am. Chem. Soc., 1993, 115, 4683; D.G. Gusev, R. Kuhlman, J.R. Rambo, H. Berke, O. Eisenstein and K.G. Caulton, J. Am. Chem. Soc., 1995, 117, 281.
- 168. D.G. Gusev, V.F. Kuznetsov, I.L. Eremenko and H. Berke, J. Am. Chem. Soc., 1993, 115, 5831.
- 169. D.G. Gusev, R. Kuhlman, G. Sini, O. Eisenstein and K.G. Caulton, J. Am. Chem. Soc., 1994, 116, 2685.
- M.T. Bautista, K.A. Earl and R.H. Morris, *Inorg. Chem*, 1988, 27, 1124; M.T. Bautista,
 K.A. Earl, P.A. Maltby, R.H. Morris, C.T. Schweitzer and A. Sella, *J. Am. Chem. Soc.*,
 1988, 110, 4126; P. Amendola, S. Antoniutti, G. Alberti, C. Albertin and E. Borgignon,
 Inorg. Chem., 1990, 29, 318.

- 171. D.H. Farrar, P.A. Maltby and R.H. Morris, Acta Crystallogr. Sect. C, 1992, 48, 28.
- F. Maseras, N. Koga and K. Morokuma, J. Am. Chem. Soc., 1993, 115, 8313; T.J. Johnson,
 A. Albinati, T.F. Koetzle, J. Ricci, O. Eisenstein, J.C. Huffman and K.G. Caulton, Inorg. Chem., 1994, 33, 4966.
- 173. T. Behling, G. Wilkinson, T.A. Stephenson, D.A. Tocher and M.D. Walkinshaw, J. Chem. Soc., Dalton Trans., 1983, 2109; A.R. Chakravarty, F.A. Cotton and D.A. Tocher, Inorg. Chem., 1984, 23, 4697.
- 174. H. Werner, A. Michenfelder and M. Schulz, Angew. Chem. Int. Ed. Engl., 1991, 30, 596.
- 175. J.E. Fergusson, W.T. Robinson and R.K. Coll, *Inorg. Chim. Acta*, 1991, 181, 37; J.M. Waters and K.R. Whittle, *J. Chem. Soc., Chem. Commun.*, 1971, 518; K.R. Grundy, K.R. Laing and W.R. Roper, *J. Chem. Soc., Chem. Commun.*, 1970, 1500; B.L. Haymore and J.A. Ibers, *Inorg. Chem.*, 1975, 14, 2610.
- 176. F.P. Dwyer and A.M. Sargeson, J. Am. Chem. Soc., 1955, 77, 1285; W. Preetz and H. Petersen, Z. Naturforsch., Teil B, 1979, 34, 595.
- 177. A.J. Blake, G.A. Heath, G. Smith, L.J. Yellowlees and D.W.A. Sharp, Acta Crystallogr. Sect. C, 1988, 44, 1836.
- K.W. Given, S.H. Wheeler, B.S. Lick, L.J. Meheu and L.H. Pignolet, *Inorg. Chem.*, 1979, 18, 1261; S.H. Wheeler and L.H. Pignolet, *Inorg. Chem.*, 1980, 19, 972; L.J. Meheu and L.H. Pignolet, *J. Am. Chem. Soc.*, 1980, 102, 6346. See also G.A. Heath and R.L. Martin, *Aust. J. Chem.*, 1970, 23, 1721.
- 179. M. Arroyo, J.A. Chamizo, D.L. Hughes et al., J. Chem. Soc., Dalton Trans., 1994, 1819.
- 180. A. Araneo, G. Mercati, F. Morazzoni and T. Napoletano, Inorg. Chem., 1977, 16, 1197.
- 181. L.O. Atovmyan, V.G. Adrianov and M.A. Porai-Koshits, J. Struct. Chem. USSR, 1962, 3, 660; J.M. Malin, E.O. Schlemper and R.K. Murmann, Inorg. Chem., 1977, 16, 165; J.M. Malin and H. Taube, Inorg. Chem., 1971, 10, 2403.
- 182. For OsO₄ as oxidant, see W.P. Griffith, *Transition Met. Chem.*, 1990, **15**, 251; *Platinum Metals Rev.*, 1989, **33**, 181; *Chem. Soc. Rev.*, 1992, 179.
- 183. A good discussion of this is: W.P. Griffith, in Ref. 10b, p. 81.
- 184. J.M. Hawkins, A. Meyer, T.A. Lewis, S. Loren and F.J. Hollander, Science, 1991, 252, 312; J.M. Hawkins, Acc. Chem. Res., 1992, 25, 150.
- 185. C.-M. Che, W.-C. Chung and T.-F. Lai, *Inorg. Chem.*, 1988, 27, 2801; C.-M. Che, C.K. Poon, W.-C. Chung and H.B. Gray, *Inorg. Chem.*, 1985, 24, 1277.
- 186. J.M. Smieja, K.M. Omberg and G.L. Breneman, *Inorg. Chem.*, 1994, 33, 614; for a recent osmium(IV) report, see J.A. Smieja, K.M. Omberg, L.N. Busuego and G.L. Breneman, *Polyhedron*, 1994, 13, 339.
- 187. J.C. Dobson, K.J. Takeuchi, D.W. Pipes, D.A. Geselowitz and T.J. Meyer, *Inorg. Chem.*, 1986, 25, 2357; T. Behling, M.V. Caparelli, A.C. Skapski and G. Wilkinson, *Polyhedron*, 1982, 1, 840.
- 188. P.D. Lyne and D.M.P. Mingos, J. Chem. Soc., Dalton Trans., 1995, 1635.
- D. Bright and J.A. Ibers, Inorg. Chem., 1969, 8, 709; F.L. Phillips and A.C. Skapski, J. Cryst. Mol. Struct., 1975, 5, 83; D. Collison, C.D. Garner, F.E. Mabbs, J.A. Salthouse and T.J. King, J. Chem. Soc., Dalton Trans., 1981, 1812; F.L. Phillips, A.C. Skapski and M.J. Withers, Transition Met. Chem., 1975, 1, 28; D. Pawson and W.P. Griffith, J. Chem. Soc., Dalton Trans., 1975, 417; P.A. Belmonte and Z.-Y. Own, J. Am. Chem. Soc., 1984, 106, 7493.
- 190. W.H. Leung, M.C. Wu, C.M. Che, W.T. Wong and K.F. Chin, J. Chem. Soc., Dalton Trans., 1994, 2519; D.C. Ware and H.Taube, Inorg. Chem., 1991, 30, 4598.
- 191. P.A. Shapley, R.M. Marshman, J.M. Shusta, Z. Gebeyehu and S.R. Wilson, *Inorg. Chem.*, 1994, 33, 498.
- 192. D.S. Williams, T.J. Meyer and P.S. White, J. Am. Chem. Soc., 1995, 117, 823.
- 193. K.W. Given and L.H. Pignolet, *Inorg. Chem.*, 1977, 16, 2982; M.J. Cleare and W.P. Griffith, J. Chem. Soc. (A), 1970, 1117.
- 194. A.A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1991, 269; A.A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1991, 1855; D.W.H. Rankin, H.E. Robertson, A.A. Danopoulos, P.D. Lyne, D.M.P. Mingos and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1994, 1563; M.H. Schofield, T.P. Kee, J.T. Anhaus, R.R. Schrock, K.H. Johnson and W.M. Davis, Inorg. Chem., 1991, 30, 3595; A.A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, Polyhedron, 1992, 11, 2961.

- 195. J.R. Wolf, G.C. Bazan and R.R. Schrock, Inorg. Chem., 1993, 32, 4155.
- 196. A.M. La Pointe, R.R. Schrock and W.M. Davis, Organometallics, 1995, 14, 2699.
- 197. R.S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, *Polyhedron*, 1990, 9, 2071; R.P. Tooze, G. Wilkinson, M. Motevalli and M.B. Hursthouse, *J. Chem. Soc., Dalton Trans.*, 1986, 2711; R.S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse *J. Chem. Soc., Dalton Trans.*, 1992, 3411.
- 198. D.T. Hardy, G. Wilkinson and G.B. Young, Polyhedron, 1996, 15, 1363.
- P. Stravropoulos, P.D. Savage, R.P. Tooze, G. Wilkinson, B. Hussain, M. Motevalli and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1987, 557; J. Arnold, G. Wilkinson, B. Hussain and M.B. Hursthouse, J. Chem. Soc., Chem. Commun., 1988, 1548; Organometallics, 1988, 8, 1362; P. Stravropoulos, P.G. Edwards, T. Behling, G. Wilkinson, M. Motevalli and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1987, 169; C.J. Longley, P.D. Savage, G. Wilkinson, B. Hussain and M.B. Hursthouse, Polyhedron, 1988, 7, 1079.
- 200. A.M. La Pointe, R.R. Schrock and W.M. Davis, J. Am. Chem. Soc., 1995, 117, 4802.
- - J. Organomet. Chem., 1993, 454, 257.

Chapter 2

- 1. F.R. Hartley (ed.), *The Chemistry of the Platinum Group Metals*, Elsevier, Amsterdam, 1991, p. 407.
- 2. W.P. Griffith, *The Chemistry of the Rarer Platinum Metals*, Wiley-Interscience, New York, 1967.
- Gmelin Handbook of Inorganic Chemistry, System No. 64, Rhodium. (a) Main volume 1938 (Element and Compounds); Supplement Volumes: (b) Section 1 Compounds (Compounds with Ligands whose Donor Atoms include O, N, Halide, B, C) 1982; (c) Section 2, Coordination Compounds (Complexes with ligands containing O and N) 1984; (d) Section 3, Coordination Compounds (Complexes with ligands containing S, Se, Te, P, As, and Sb) 1984.
- Gmelin Handbook of Inorganic Chemistry, System No. 67, Iridium. Main volume 1939 (Element and Compounds); Supplement Volumes: Section 1; The Metal Alloys. 1978; Section 2: Compounds. 1978.
- 5. S.E. Livingstone, in *Comprehensive Inorganic Chemistry*, eds J.C. Bailar, H.J. Emeleus, R.S. Nyholm and A.F. Trotman-Dickenson, Pergamon, Oxford, 1973, Vol. 3, p. 1233 (rhodium and iridium).
- F.H. Jardine and P.S. Sheridan, in *Comprehensive Coordination Chemistry*, eds G. Wilkinson, R.D. Gillard and J.A. McCleverty, Pergamon, Oxford, 1987, Vol. 5, p. 901 (rhodium).
- R.P. Hughes, in Comprehensive Organometallic Chemistry I, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1982, Vol. 5, p. 277; P.R. Sharp, in Comprehensive Organometallic Chemistry II, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1995, Vol. 8, p. 115 (rhodium).
- N. Serpone and M.A. Jamieson, in *Comprehensive Coordination Chemistry*, eds G. Wilkinson, R.D. Gillard and J.A. McCleverty, Pergamon, Oxford, 1987, Vol. 5, p. 1097 (iridium).
- G.J. Leigh and R.L. Richards, in Comprehensive Organometallic Chemistry, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1982, Vol. 5, p. 241; J.D. Atwood, in Comprehensive Organometallic Chemistry II, eds G. Wilkinson, F.G.A. Stone and E.W. Abel, Pergamon, Oxford, 1995, Vol. 8, p. 303 (iridium).
- 10. R.S. Dickson, Organometallic Chemistry of Rhodium and Iridium, Academic Press, 1983.
- 11. F.R. Hartley in Ref. 1, p. 9.
- 12. L. Grosse and R. Hoppe, Z. Anorg. Allgem. Chem., 1987, 552, 123.
- 13. P.A. Lee and G. Beni, Phys. Rev. B, 1977, 15, 2862.

- 14. J. Reed and P. Eisenberger, Acta Crystallogr. Sect. B, 1978, 34, 344.
- 15. Ref. 6, p. 1218.
- B. Cox, D.W.A. Sharp and A.G. Sharpe, J. Chem. Soc., 1956, 1242; P.R. Rao, A. Tressaud and N. Bartlett, J. Inorg. Nucl. Chem. Suppl., 1976, 23.
- 17. B.K. Morrell, A. Zalkin, A. Tressaud and N. Bartlett, Inorg. Chem., 1973, 12, 2640.
- A.K. Brisdon, P.J. Jones, W. Levason, J.S. Ogden, J.H. Holloway, E.G. Hope and G. Stanger, J. Chem. Soc., Dalton Trans., 1990, 715; A.K. Brisdon, J.H. Holloway, E.G. Hope, W. Levason and J.S. Ogden, J. Chem. Soc., Dalton Trans., 1992, 447.
- K. Broderson, G. Thiele, H. Ohnsorge, I. Recke and F. Moers, J. Less Common Metals, 1968, 15, 347.
- 20. W.A. Sunder and W.E. Falconer, Inorg. Nucl. Chem. Lett., 1972, 8, 537.
- 21. R.T. Payne and L.B. Asprey, Inorg. Chem., 1975, 14, 1111.
- 22. S.A. Brewer, A.K. Brisdon, J.H. Holloway and E.G. Hope, Polyhedron, 1994, 13, 748.
- L. Grosse and R. Hoppe, Z. Anorg. Allgem. Chem., 1987, 552, 123; P.J. Cresswell, J.E. Fergusson, B.R. Penfold and D.E. Scaife, J. Chem. Soc., Dalton Trans., 1972, 255; J.E. Fergusson and R.R. Sherlock, Aust. J. Chem., 1977, 30, 1445; J.E. Fergusson and D.A. Rankin, Aust. J. Chem., 1983, 36, 863; R.D. Gillard, D.E. Hibbs, C. Holland, M.B. Hursthouse, K.M.A. Malik and G. Sykara, Polyhedron, 1996, 15, 225; for vibrational spectra, see in particular Y.M. Bosworth and R.J.H. Clark, J. Chem. Soc., Dalton Trans., 1974, 1749; K. Irmer and W. Preetz, Z. Naturforsch., Teil B, 1991, 46, 1200.
- A.K. Brisdon, J.H. Holloway, E.G. Hope and W. Levason, *Polyhedron*, 1992, 11, 7; A.K. Brisdon, J.H. Holloway, E.G. Hope, W. Levason, J.S. Ogden and A.K. Saad, *J. Chem. Soc.*, *Dalton Trans.*, 1992, 139.
- 25. W. Preetz and H.-J. Steinebach, Z. Naturforsch., Teil B, 1986, 41, 260.
- 26. I.J. Ellison and R.D. Gillard, Polyhedron, 1996, 15, 339.
- J.H.E. Griffiths, J. Owen and J. Ward, Proc. R. Soc. London, Series A, 1953, 219, 526.
 J. Owen and K.W.H. Stevens, Nature, 1953, 171, 836; J.H.M. Thornley, Proc. Phys. Soc., Solid State, 1968, 1, 1027.
- W. Preetz and H.J. Steinebach, Z. Naturforsch., Teil B, 1985, 40, 745; W. Preetz and W. Kuhr, Z. Naturforsch., Teil B, 1989, 44, 1221; W. Kuhr, G. Peters and W. Preetz, Z. Naturforsch., Teil B, 1989, 44, 1402.
- 29. W. Kuhr and W. Preetz, Z. Anorg. Allgem. Chem., 1990, 584, 165.
- J.H.M. Biesterbos and J. Hornstra, J. Less Common Metals, 1973, 30, 121; G. Bayer and H.G. Wiedermann, Thermochim. Acta, 1976, 15, 213.
- 31. S.J. Crimp and L. Spiccia, Aust. J. Chem., 1995, 48, 447.
- 32. S. Jobic, P. Deniard, R. Brec, J. Rouxel, M.G.B. Drew and W.I.F. David, J. Solid State Chem., 1990, 89, 315.
- 33. A. F. Wells, Structural Inorganic Chemistry, 4th edn, Clarendon Press, Oxford, 1975, p. 215.
- W. Bronger, M. Gehlen and G. Auffermann, J. Alloys Compd., 1991, 176, 255; W. Bronger,
 P. Müller, J. Kowalczyk and G. Auffermann, J. Alloys Compd, 1991, 176, 262; W. Bronger,
 M. Gehlen and G. Auffermann, Z. Anorg. Allgem. Chem., 1994, 620, 1983.
- P. Beutler and H. Gamsjager, J. Chem. Soc., Chem. Commun., 1976, 554; R.S. Armstrong, J.K. Beattie, S.P. Best, B.W. Skelton and A.H. White, J. Chem. Soc., Dalton Trans., 1983, 1973; G.D. Fallon and L. Spiccia, Aust. J. Chem., 1989, 42, 2051; S.P. Best, J.K. Beattie, R.S. Armstrong and G.P. Braithwaite, J. Chem. Soc., Dalton Trans., 1989, 1771; S.P. Best, R.S. Armstrong and J.K. Beattie, J. Chem. Soc., Dalton Trans., 1992, 299; J.K. Beattie, S.P. Best, F.H. Moore, B.W. Skelton and A.H. White, Aust. J. Chem., 1993, 46, 1337; M. Gajhede, K. Simonsen and L.K. Skov, Acta Chem. Scand., 1993, 47, 271.
- 36. M.C. Read and H. Sandstrom, Acta Chem. Scand., 1992, 46, 1177.
- 37. C.R. Wilson and H. Taube, Inorg. Chem., 1973, 12, 2276.
- M.J. Pavelich and G.M. Harris, *Inorg. Chem.*, 1972, 12, 423; D.A. Palmer and G.M. Harris, *Inorg. Chem.*, 1974, 14, 1316; C. Carr, J.A. Glaser and M. Sandstrom, *Inorg. Chim. Acta*, 1987, 131, 153.
- 39. M.C. Read, J. Glaser and M. Sandstrom, J. Chem. Soc., Dalton Trans., 1992, 233.
- (a) C.K. Thomas and J.A. Stanko, J. Coord. Chem., 1972, 2, 211; G. Bugli and C. Potvin, Acta Crystallogr. Sect. B, 1981, 37, 1394; (b) C. Flensberg, K. Simonsen and L.K. Skov, Acta Chem. Scand., 1993, 47, 862.
- 41. See Ref. 6, p. 905.

- 42. Refs 3(d) and 6, p. 906.
- (a) H.L.M. van Gaal and F.L.A. van den Bekorom, J. Organomet. Chem., 1977, 134, 237;
 M.D. Curtis, W.M. Butler and J. Greene, Inorg. Chem., 1978, 17, 2928; (b) P. Binger,
 J. Haas, G. Glaser, R. Goddard and C. Krüger, Chem. Ber., 1994, 127, 1927; (c) K.P.
 Wang, G. P. Rosini, S.P. Nolan and A.S. Goldman, J. Am. Chem. Soc., 1995, 117, 5082.
- 44. F.H. Jardine, Progr. Inorg. Chem., 1981, 28, 63 (review).
- 45. J.A. Osborn, F.H. Jardine, J.F. Young and G. Wilkinson, J. Chem. Soc. (A), 1966, 1711; J.M. Brown and A.R. Lucy, J. Chem. Soc., Chem. Commun., 1984, 914; S.B. Duckett, C.L. Newell and R. Eisenberg, J. Am. Chem. Soc, 1994, 116, 10548 and references therein.
- M.J. Bennett and P.B. Donaldson, *Inorg. Chim. Acta.*, 1977, 16, 655; P. Binger, J. Haas, R. Goddard and K. Kringer, *Chem. Ber.*, 1994, 127, 1927. See also Ref. 52.
- P. Meakin, J.P. Jesson and C.A. Tolman, J. Am. Chem. Soc., 1972, 92, 3241; for solid-state phosphorus-31 NMR, see J.W. Diesveld, E.M. Menger, H.T. Edzes and W.V. Veeman, J. Am. Chem. Soc., 1982, 102, 7935; G. Wu and R.E. Wasylishen, Organometallics, 1992, 11, 3243.
- 48. M.J. Bennett and P.B. Donaldson, Inorg. Chem., 1977, 16, 1581, 1585.
- 49. S.H. Strauss, S.E. Diamond, F. Mares and D.F. Shriver, Inorg. Chem., 1978, 17, 3066.
- Y.W. Yared, S.L. Miles, R. Bau and C.A. Reed, J. Am. Chem. Soc., 1979, 99, 7016;
 G. Pimblett, C.D. Garner and W. Clegg, J. Chem. Soc., Dalton Trans., 1985, 1977.
- 51. A.R. Siedle, R.A. Newmark and R.D. Howells, Inorg. Chem., 1988, 27, 2473.
- 52. (a) C. Masters, Homogeneous Transition-metal Catalysis A Gentle Art, Chapman & Hall, London, 1981 esp. pp. 40 ff; (b) P.A. Chaloner, Handbook of Coordination Catalysis in Organic Chemistry, Butterworths, London, 1986; (c) L.H. Pignolet (ed.), Homogeneous Catalysis with Metal Phosphine Complexes, Plenum, New York, 1983.
- 53. T.E. Nappier, D.W. Meek, R.M. Kirchner and J.A. Ibers, J. Am. Chem. Soc., 1973, 95, 4194.
- 54. R.A. Jones, F.M. Real, G. Wilkinson, A.M.R. Galas, M.B. Hursthouse and K.M.A. Malik, J. Chem. Soc., Dalton Trans., 1980, 511; M.C. Hall, B.T. Kilbourn and K.A. Taylor, J. Chem. Soc. (A), 1970, 2539.
- 55. See Ref. 6, p. 929; L.M. Haines, Inorg. Chem., 1971, 10, 1685.
- 56. (a) L.F. Dahl, E. Martell and D.L. Wampler, J. Am. Chem. Soc., 1961, 83, 1761; (b) J.G. Norman and D.J. Gmur, J. Am. Chem. Soc., 1979, 99, 1446.
- 57. Inorg. Synth., 1990, 28, 81; for a review see F.H. Jardine, Polyhedron, 1982, 1, 569.
- C. Masters, Homogeneous Transition-metal Catalysis A Gentle Art, Chapman & Hall, London, 1981, pp. 55, 72, 89, 121.
- Y.-J. Chen, J.-C. Wang and Y. Wong, Acta Crystallogr. Sect. C, 1991, 47, 2441; Inorg. Synth., 1968, 11, 99; 1990, 28, 79. For other derivatives see Inorg. Synth., 1974, 15, 65; and L. Vaska and J. Peone, J. Chem. Soc., Chem. Commun., 1971, 418.
- 60. T. R. Gaffney and J.A. Ibers, Inorg. Chem., 1982, 21, 2857.
- H. Schumann, S. Jurgis, M. Eisen and J. Blum, *Inorg. Chim. Acta*, 1990, **172**, 137; R.L. Harlow, S.A. Westcott, D.L. Thorn and R.T. Baker, *Inorg. Chem.*, 1992, **31**, 323.
- B.E. Mann, C. Masters, B.L. Shaw and R.E. Stainbank, J. Chem. Soc., Chem. Commun., 1971, 1103.
- J.A. Davies and C.T. Eagle in Ref. 1, p. 230. For other reactions see S.E. Boyd, L.D. Field and M.G. Partridge, J. Am. Chem. Soc., 1994, 116, 9492; G.P. Rosini, W.T. Boese and A.S. Goldman, J. Am. Chem. Soc., 1994, 116, 9498.
- J.J. Bonnet, Y. Jeannin, P. Kalck, A. Maissonat and R. Poilblanc, *Inorg. Chem.*, 1975, 14, 743.
- 65. R.E. Cramer, Inorg. Chem., 1962, 1, 722; Inorg. Synth., 1974, 15, 14.
- 66. J.A. Evans and D.R. Russell, J. Chem. Soc., Chem. Commun., 1971, 197; S.A. Vierkötter, C.E. Barnes, G.L. Garner and L.G. Butler, J. Am. Chem. Soc., 1994, 116, 7445; for propeller rotation, see Ref. 7, p. 418.
- 67. C. Nave and M.R. Truter, J. Chem. Soc., Dalton Trans., 1973, 2202.
- Ref. 7, p. 342; K.R. Mann, N.S. Lewis, R.M. Williams, H.B. Gray and J.G. Gordon, *Inorg. Chem.*, 1978, 17, 828; H. Endres, N. Gottstein, H.J. Keller, R. Martin, W.R. Odemer and W. Steiger, *Z. Naturforsch.*, *Teil B*, 1979, 34, 827.
- R.L. Harlow, D.L. Thorn, R.T. Baker and N.L. Jones, *Inorg. Chem.*, 1992, 31, 993;
 T. Rappert, J. Wolf, M. Schulz and H. Werner, *Chem. Ber.*, 1992, 125, 839.

- K.R. Dunbar, S.C. Haefner and L.E. Pence, J. Am. Chem. Soc., 1991, 111, 5505; 1993, 113, 9548.
- F.A. Cotton and R.A. Walton, Multiple Bonds between Metal Atoms, 2nd edn, Clarendon Press, Oxford, 1993, pp. 431 ff, 630 ff; E.B. Boyar and S.D. Robinson, Coord. Chem. Rev., 1983, 50, 109; T.R. Felthouse, Progr. Inorg. Chem., 1982, 29, 73 and references therein; Ref. 6, p. 934; F.A. Cotton and J.L. Thompson, Acta Crystallogr. Sect. B, 1981, 37, 2235; F.A. Cotton, B.G. DeBoer, M.D. LaPrade, J.R. Pipal and D.A. Ucko, J. Am. Chem. Soc., 1970, 92, 2926; C.G. Christoph, J. Halpern, G.P. Khare, Y.B. Koh and C. Romanowski, Inorg. Chem., 1981, 20, 3029.
- V.I. Nefedov, Ya.V. Salyn', I.B. Barnovskii and A.G. Maiorova, Russ. J. Inorg. Chem., 1980, 25, 116; V.I. Nefedov, A.V. Shtemenko and A.S. Kotelinova, Inorg. Chim. Acta, 1980, 45, L49.
- 73. C.R. Wilson and H. Taube, Inorg. Chem., 1975, 14, 2276.
- 74. F.A. Cotton, E.V. Dikarev and X. Feng, *Inorg. Chim. Acta*, 1995, 237, 19; F.A. Cotton and Y. Kim, *Eur. J. Solid State Inorg. Chem.*, 1994, 31, 525.
- (a) R.J.H. Clark, Chem. Soc. Rev., 1990, 19, 107, and references therein; (b) R.J.H. Clark, A.J. Hempleman and C.D. Flint, J. Am. Chem. Soc., 1986, 108, 519.
- E.C. Morrison and D.A. Tocher, *Inorg. Chim. Acta*, 1989, **156**, 29; N. Mehmet and D.A. Tocher, *Inorg. Chim. Acta*, 1991, **188**, 71; R.J.H. Clark, D.J. West and R. Withnall, *Inorg. Chem.*, 1992, **31**, 456.
- 77. Ref 75(a), p. 174; E.B. Boyar and S.D. Robinson, Platinum Metals Rev., 1982, 26, 65.
- J.G. Norman and H.J. Kolari, J. Am. Chem. Soc., 1978, 100, 791; T. Kawamura,
 K. Fukamachi, T. Sowa, S. Hayashida and T. Yonezawa, J. Am. Chem. Soc., 1981, 103, 364; G.O. Christoph and Y.B. Koh, J. Am. Chem. Soc., 1979, 101, 1422.
- J.L. Bear, L.M. Liu and K.M. Kadish, *Inorg. Chem.*, 1987, 26, 292; J.L. Bear, C.L. Yao, F.J. Capdeville and K.M. Kadish, *Inorg. Chem.*, 1988, 27, 3782.
- 80. H.J. Keller and K. Seebold, Z. Naturforsch., Teil B, 1970, 25, 551.
- K.G. Caulton and F.A. Cotton, J. Am. Chem. Soc., 1969, 91, 6517; 1971, 93, 1914; K.R. Dunbar, J. Am. Chem. Soc., 1988, 110, 8247.
- S. Lee, M. Mediati and B.B. Wayland, J. Chem. Soc., Chem. Commun., 1994, 2299; A.J. Blake, R.O. Gould, A.J. Holder, T.I. Hyde and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1861; S.R. Cooper, S.C. Rawle, R. Yagbasan and D.J. Watkin, J. Am. Chem. Soc, 1991, 113, 1601.
- 83. J.C. Morrow and E.B. Parker, Acta Crystallogr. Sect. B., 1973, 29, 1145.
- B.C. Dalzell and K. Eriks, J. Am. Chem. Soc., 1971, 93, 4298; R. Kuroda, Inorg. Chem., 1991, 30, 4955; S. Uemura, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 2565; T. Glowiak, M. Kubiak and T. Symanska-Buzar, Acta Crystallogr. Sect. B., 1977, 33, 1732.
- G.H.Y. Lin, J.D. Leggett and R.M. Wing, Acta Crystallogr. Sect. C., 1973, 29, 1023; compare Ru analogue K. Okamoto, J. Hidaka, I. Iida, K. Higashino and K. Kanamori, Acta Crystallogr. Sect. C, 1990, 46, 2327.
- 86. T.R. Thomas and G.A. Crosby, J. Mol. Spectrosc., 1971, 38, 118; R. Bramley, B.N. Figgis and R.S. Nyholm, J. Chem. Soc. (A), 1967, 861; Inorg. Synth, 1986, 24, 255.
- 87. P.C. Ford, Inorg. Chem., 1971, 10, 2153.
- 88. M.W. Bee, S.F.A. Kettle and D.B. Powell, Spectrochim. Acta, 1974, 30A, 139.
- Inorg. Synth., 1972, 13, 213; 1986, 24, 222, 254; M. Weishaupt, H. Bezler and J. Strähle, Z. Anorg. Allgem. Chem., 1978, 440, 52.
- 90. R.S. Evans, E.A. Hopcus, J. Bordner and A.F. Schreiner, J. Cryst. Mol. Struct., 1973, 3, 235.
- K. Thomas, J.A. Osborn, A.R. Powell and G. Wilkinson, J. Chem. Soc. (A), 1968, 1801;
 K. Thomas and G. Wilkinson, J. Chem. Soc. (A), 1970, 356.
- 92. B.A. Coyle and J.A. Ibers, Inorg. Chem., 1972, 11, 1105.
- 93. A.C. Skapski and P.G.H. Troughton, J. Chem. Soc., Chem. Commun., 1969, 666.
- 94. W. Frank, T. Stetzer and L. Heck, Z. Naturforsch., Teil B., 1988, 43, 189.
- A.J. Poe and M.V. Twigg, Can. J. Chem., 1972, 50, 1089; Inorg. Synth., 1986, 24, 223; M.P. Hancock, Acta Chem. Scand. A, 1975, 29, 468.
- 96. I.A. Baidina, N.V. Podberezskaya and L.P. Solov'eva, J. Struct. Chem. USSR, 1974, 15, 34.
- L.H. Skibsted, Coord. Chem. Rev., 1985, 64, 343; 1989, 94, 151; L.G. Vanquickenborne and A. Ceulemans, Inorg. Chem., 1978, 17, 2730; Coord. Chem. Rev., 1983, 48, 157.

- 98. Ref. 6, p. 975; Inorg. Synth., 1967, 10, 64.
- 99. S.A. Gronilov, V.I. Alekseev, I.A. Baudina and S.P. Kharanenko, Russ. J. Inorg. Chem., 1992, 37, 306.
- 100. S.A. Johnson and F. Basolo, Inorg. Chem., 1962, 1, 925.
- 101. M. Kakoti, A.K. Deb and S. Goswami, Inorg. Chem., 1992, 31, 1302.
- 102. D. Whang and K. Kim, Acta Crystallogr. Sect. C, 1991, 47, 2547.
- 103. J.-U. Vogt, O. Haeckeland and W. Preetz, Z. Anorg. Allgem. Chem., 1995, 621, 725.
- 104. E.A. Allen and W. Wilkinson, J. Chem. Soc., Dalton Trans., 1972, 613; P.D. Clark, J.H. Machin, J.F. Richardson, N.I. Dowling and J.B. Hine, Inorg. Chem., 1988, 27, 3526.
- 105. C.L. Raston and A.H. White, J. Chem. Soc., Dalton Trans., 1975, 2425; R.J. Butcher and E. Sinn, J. Chem. Soc., Dalton Trans., 1975, 2417; A.R. Hendrickson, R.L. Martin and D. Taylor, Aust. J. Chem., 1976, 29, 269.
- 106. R. Beckett and B.F. Hoskins, Inorg. Nucl. Chem. Lett., 1972, 8, 263.
- A.J. Blake, R.O. Gould, A.J. Holder, T.I. Hyde and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1861; G. Reid and M. Schröder, Chem. Soc. Rev., 1990, 19, 239; S.R. Cooper, S.C. Rawle, R. Yagbasan and D.J. Watkin, J. Am. Chem. Soc, 1991, 113, 1601; A.J. Blake and M. Schröder, Adv. Inorg. Chem., 1991, 35, 1.
- 108. See Ref. 3(d) for a review of much of the literature.
- 109. For syntheses also see (a) e.g. J. Chatt, N.P. Johnson and B.L. Shaw, J. Chem. Soc., 1964, 2508; (b) B.E. Mann, C. Masters and B.L. Shaw, J. Chem. Soc. (A), 1972, 704; (c) S.O. Grim and L.C. Satek, J. Coord. Chem., 1974, 3, 307.
- 110. A.C. Skapski and F.A. Stephens, J. Chem. Soc., Dalton Trans., 1973, 1789; R.B. English, Cryst. Struct. Commun., 1979, 8, 167.
- 111. F.H. Allen and K.M. Gabuji, *Inorg. Nucl. Chem. Lett.*, 1971, 7, 833; J.A. Muir, M.M. Muir and A.J. Rivera, *Acta Crystallogr. Sect. B*, 1974, 30, 2062; S.E. Boyd, L.D. Field and T.W. Hambley, *Acta Crystallogr. Sect. C*, 1994, 50, 1019.
- 112. For a detailed study showing how NMR can be used to unravel the transformations and structures, see F.A. Cotton, J.L. Eglin and S.-Y. Kang, J. Am. Chem. Soc., 1992, 114, 4015; Inorg. Chem., 1993, 32, 2332; F.A. Cotton and S.-Y. Kang, Inorg. Chem., 1993, 32, 2336; F.A. Cotton, S.-Y. Kang and S.K. Mandal, Inorg. Chim. Acta, 1993, 206, 29.
- 113. T. Yoshida, S. Otsuka, M. Matsumoto and K. Nakatsu, *Inorg. Nucl. Chem. Lett.*, 1978, 29, L257 and references therein.
- 114. R.V. Parish, NMR, NQR, EPR and Mössbauer Spectroscopy in Inorganic Chemistry, Ellis Horwood, Chichester, 1990; G.M. Intille, Inorg. Chem., 1972, 11, 695; B.E. Mann, C. Masters and B.L. Shaw, J. Chem. Soc., Dalton Trans., 1972, 707; Ref. 106(c); J.P. Jesson, in Transition Metal Hydrides, ed. E.L. Muetterties, Marcel Dekker, New York, 1971, p. 85; J.M. Jenkins and B.L. Shaw, Proc. Chem. Soc., 1963, 279; J. Chem. Soc. (A), 1966, 1407.
- 115. Ref. 3(d); R.A. Jones, F.M. Real, G. Wilkinson, A.M.R. Galas, M.B. Hursthouse and K.M.A. Malik, J. Chem. Soc. Dalton Trans., 1980, 511; O. Blum, J.C. Calabrese, F. Frolow and D. Milstein, Inorg. Chim. Acta, 1990, 174, 149; K. Osakada and T. Yamamoto, Bull. Chem. Soc. Japan, 1994, 67, 3271. See also Ref. 118(b).
- 116. K.R. Dunbar and S.C. Haefner, Inorg. Chem., 1992, 31, 3676.
- 117. See Ref. 69 and T. Yoshida, D.L. Thorn, T. Okano, S. Otsuka and J.A. Ibers, J. Am. Chem. Soc., 1980, 102, 6451; T. Yoshida, T. Okano, K. Saito and S. Otsuka, Inorg. Chim. Acta, 1980, 44, L135; T. Yoshida, T. Okano and S. Otsuka, J. Chem. Soc., Chem. Commun., 1979, 870.
- (a) S.H. Strauss, S.E. Diamond, F. Mares and D.F. Shriver, *Inorg. Chem.*, 1978, 17, 3064; (b)
 J. Wolf, O. Nürnberg, M. Schäfer and H. Werner, *Z. Anorg. Allgem. Chem.*, 1994, 620, 1157.
- 119. (a) C. Masters and B.L. Shaw, J. Chem. Soc. (A), 1971, 3679; (b) T. Yoshida, S. Otsuka, M. Matsumoto and K. Nakatsu, Inorg. Chim. Acta, 1978, 29, L257.
- 120. M.A. Bennett and D.L. Milner, J. Am. Chem. Soc., 1969, 91, 6983.
- 121. (a) A. Rotman and Y. Mazur, J. Am. Chem. Soc., 1972, 94, 6226; (b) T.G.P. Harper, P.J. Desrosiers and T.C. Flood, Organometallics, 1990, 9, 2523.
- (a) M.J. Nolte, E. Singleton and E. Van der Stok, Acta Crystallogr. Sect B, 1978, 34, 1674;
 (b) G.R. Clark, C.A. Reed, W.R. Roper, B.W. Skelton and T.N. Waters, Chem. Commun., 1971, 758;
 (c) D.L. Thorn, Organometallics, 1982, 1, 197. (d) D. Milstein, J.C. Calabrese and I.D. Williams, J. Am. Chem. Soc., 1986, 108, 6387.

- 123. L. Vaska and D.L. Catone, J. Am. Chem. Soc., 1966, 88, 5324.
- 124. W.M. Bedford and G. Rouchias, J. Chem. Soc., Chem. Commun., 1972, 1224; J. Chem. Soc., Dalton Trans., 1974, 2531; J.W. Dart, M.K. Lloyd, R. Mason and J.A. McCleverty, Chem. Commun., 1971, 1197.
- See L. Vaska, Acc. Chem. Res., 1968, 1, 335. For syntheses, see Inorg. Synth., 1991, 28, 92;
 M. Rahim and K.J. Ahmed, Inorg. Chem., 1994, 33, 3003.
- 126. (a) M.R. Churchill, J.C. Fettinger, L.A. Buttery, M.D. Barkan and J.S. Thompson, J. Organomet. Chem., 1988, 340, 257; A.J. Blake, E.A.V. Ebsworth, H.M. Murdoch and L.J. Yellowlees, Acta Crystallogr. Sect. C, 1991, 47, 657; (b) R. Brady, W.H. De Camp, B.R. Flynn, M.L. Schneider, J.D. Scott, L. Vaska and M.F. Werneke, Inorg. Chem., 1975, 14, 2669; (c) M.R. Churchill, J.C. Fettinger, B.J. Rappoli and J.D. Atwood, Acta Crystallogr. Sect. C, 1987, 43, 1697; (d) M.R. Churchill, C.H. Lake, C.A. Miller and J.D. Atwood, J. Chem. Crystallogr., 1994, 24, 557.
- 127. (SO₂): A.J. Blake, E.A.V. Ebsworth, S.G.D. Henderson, H.M. Murdoch and L.J. Yellowlees, Z. Krist., 1992, 199, 290; (Cl₂) F. DeMartin and N. Mascioccini, Acta Crystallogr. Sect. C, 1983, 39, 1225; (C₆₀): A.L. Balch, V.J. Catalano and J.W. Lee, Inorg. Chem., 1991, 30, 3980; (C₇₀): A.L. Balch, V.J. Catalano, J.W. Lee, M.M. Olmstead and S.R. Parkin, J. Am. Chem. Soc., 1991, 113, 8953; (C₈₄): A.L. Balch, A.S. Ginwalla, J.W. Lee, B.C. Noll and M.M. Olmstead, J. Am. Chem. Soc., 1994, 116, 2227; (C₆₀O): A.L. Balch, D.A. Costa, J.W. Lee, B.C. Noll and M.M. Olmstead, J. Am. Chem. Soc., 1994, 116, 2227; (C₆₀O): A.L. Balch, D.A. Costa, J.W. Lee, B.C. Noll and M.M. Olmstead, Inorg. Chem., 1994, 33, 2071; (CO): N.C. Payne and J.A. Ibers, Inorg. Chem., 1969, 8, 2714, but see also F. Abu-Hasanayn, T.J. Emge, J.A. McGuire, K. Krogh-Jespersen and A.S. Goldman, Organometallics, 1994, 13, 5177; (HgCl₂) P.D. Brotherton, C.L. Raston, A.H. White and S.B. Wild, J. Chem. Soc., Dalton Trans., 1976, 1799. For a dioxygen adduct: M.S. Weininger, E.A.H. Griffith, C.T. Sears and E.L. Amma, Inorg. Chim. Acta, 1982, 60, 67; a comparable tetracyanoethylene adduct: L. Manojlvic-Muir, K.W. Muir and J.A. Ibers, Discuss. Faraday Soc., 1969, 47, 84.
- 128. R.R. Holmes, Progr. Inorg. Chem., 1984, 32, 134.
- 129. Largely based on C.A. Reed and W.R. Roper, J. Chem. Soc., Dalton Trans., 1973, 1371.
- (C₆F₅): A. Clearfield, R. Gopal, I. Bernal, G.A. Moser and M.D. Rausch, *Inorg. Chem.*, 1975, 14, 2727; (2,4,6-Me₃C₆H₂): L. Dahlenberg, K. von Deuten and J. Kopf, *J. Organomet. Chem.*, 1981, 216, 113; (OH): L. Dahlenberg and F. Mirzeei, *Cryst. Struct. Commun.*, 1982, 11, 1577; (C₆H₅O): W.M. Rees, J.C. Fettinger, M.R. Churchill and J.D. Atwood, *Organometallics*, 1985, 4, 2179; (Me): W.M. Rees, M.R. Churchill, Y.J. Li and J.D. Atwood, *Organometallics*, 1985, 4, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, *J. Organometallics*, 1985, 4, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, *J. Organometallics*, 1985, 4, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, *J. Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, *J. Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, *J. Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, J. *Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, J. *Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, J. *Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, J. *Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, J. *Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, J. *Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, W.M. Rees and J.D. Atwood, J. *Organometallics*, 1985, 40, 1162; (C₆F₅O): M.R. Churchill, J.C. Fettinger, M.R. Churchill, J.C. F
- 131. Based mainly on W. Strohmeier and T. Onada, Z. Naturforsch., Teil. B, 1968, 23, 1377.
- 132. L. Vaska and J. Peone, Chem. Commun., 1971, 418.
- 133. See, e.g. J.D. Atwood, in *Inorganic and Organometallic Reaction Mechanisms*, Brooks/Cole, 1985; J.P. Collman and W.R. Roper, *Adv. Organomet. Chem.*, 1968, 7, 54; J. Halpern, *Accounts Chem. Res.*, 1970, 3, 386; and Ref. 10.
- 134. (a) C.E. Johnson, B.J. Fisher and R. Eisenberg, J. Am. Chem. Soc., 1983, 105, 7772, (b) C.E. Johnson and R. Eisenberg, J. Am. Chem. Soc., 1985, 107, 3148, 6531.
- 135. A.L. Sargent and M.B. Hall, Inorg. Chem., 1992, 31, 320.
- 136. C.E. Johnson and R. Eisenberg, J. Am. Chem. Soc., 1985, 107, 3148.
- 137. A.L. Sargent, M.B. Hall and M.F. Guest, J. Am. Chem. Soc., 1992, 114, 517.
- For structures see: M. Laing, M.J. Nolte and E. Singleton, J. Chem. Soc., Chem. Commun., 1975, 661; M.J. Nolte, E. Singleton and M. Laing, J. Am. Chem. Soc., 1975, 97, 6396; L. Vaska, Accts. Chem. Res., 1976, 9, 175; J.-C. Wang, L.-Y. Chou, W.-Y. Hsien and L.-K. Liu, Acta Crystallogr. Sect. C, 1994, 50, 879.
- 139. Data largely from C.A. Reed and W.R. Roper, J. Chem. Soc., Dalton Trans., 1973, 1371.
- 140. S. Sasaki, K. Hori and A. Ohyoshi, Inorg. Chem., 1978, 17, 3183.
- 141. H.A.O. Hill and D.G. Tew, in Comprehensive Coordination Chemistry, eds G. Wilkinson, R.D. Gillard and J.A. McCleverty, Pergamon, Oxford, 1987, Vol. 2, p. 315.
- 142. A.P. Ginsberg and W.E. Lindsell, *Chem. Commun.*, 1971, 232; for structure W.D. Bonds and J.A. Ibers, *J. Am. Chem. Soc.*, 1972, 94, 3415;.
- 143. J.P. Collman, M. Kubota, F.D. Vastine, J.Y. Sun and J.W. Kang, J. Am. Chem. Soc., 1968, 90, 5430.
- 144. M.P. Yagupsky and G. Wilkinson, J. Chem. Soc. (A), 1968, 2813; J.S. Field and P.J. Wheatley, J. Chem. Soc., Dalton Trans., 1972, 2269.
- 145. W.A. Schenk, J. Leissner and C. Burschka, Ang. Chem. Int. Ed. Engl., 1984, 23, 806.
- 146. H.D. Empsall, E.M. Hyde and B.L. Shaw, J. Chem. Soc., Dalton Trans., 1975, 1690.
- 147. M.P. Garcia, M.V. Jiminez, L.A. Oro, F.J. Lahoz, M.C. Tiripicchio and A. Tiripicchio, *Organometallics*, 1993, **12**, 4660.
- 148. B.C. Lane, J.W. McDonald, F. Basolo and R.G. Pearson, J. Am. Chem. Soc., 1972, 94, 3786; W.P. Griffith, J. Chem. Soc. (A), 1966, 899; Inorg. Synth., 1963, 7, 227; 1970, 12, 243; 1986, 24, 264.
- 149. F. Galsbøl, S.K. Hansen and K. Simonsen, Acta Chem. Scand. A, 1990, 24, 796.
- 150. (a) M. Delepine, Ann. Chim., 1923, 19, 172.; (b) J.J. Bonnet and Y. Jeannin, J. Inorg. Nucl. Chem., 1973, 35, 4103.
- 151. S.A. Johnson and F. Basolo, Inorg. Chem., 1962, 1, 925; R.A. Bauer and F. Basolo, Inorg. Chem., 1969, 8, 2231; S. Kida, Bull. Chem. Soc. Japan, 1966, 39, 2415.
- 152. G.B. Kauffmann, J.H. Tsai, R.C. Fay and C.K. Jorgensen, *Inorg. Chem*, 1963, 2, 1133; J. Chatt, G.J. Leigh, A.P. Storace, D.A. Squire and B.J. Starkey, J. Chem. Soc. (A), 1971, 899.
- 153. E. Sinn, Inorg. Chem., 1976, 15, 369.
- 154. J. Chatt, A.E. Field and B.L. Shaw, J. Chem. Soc., 1963, 3371.
- 155. (a) P.R. Brookes, C. Masters and B.L. Shaw, J. Chem. Soc. (A), 1971, 3752; (b) B.L. Shaw and R.M. Slade, J. Chem. Soc. (A), 1971, 1185; (c) J.M. Jenkins and B.L. Shaw, J. Chem. Soc., 1965, 6789.
- 156. R.S. Coffey, J. Chatt and B.L. Shaw, J. Chem. Soc., 1965, 7391.
- 157. (a) C. Masters, B.L. Shaw and R.E. Stainbank, J. Chem. Soc., Dalton Trans., 1972, 664.
 (b) B.E. Mann, C. Masters and B.L. Shaw, J. Inorg. Nucl. Chem., 1973, 33, 2195; (c) H.D. Empsall, E.M. Hyde, E. Mentzer, B.L. Shaw and M.F. Uttley, J. Chem. Soc., Dalton Trans., 1976, 2069; (d) A. Albinati et al., J. Am. Chem. Soc., 1993, 115, 7300; V.V. Grushin, A.B. Vymenits and M.E. Vol'pin, J. Organomet. Chem., 1990, 382, 185; (e) B.E. Hauger, D. Gusev and K.G. Caulton, J. Am. Chem. Soc., 1994, 116, 208.
- 158. J.U. Notheis, R.H. Heyn and K.G. Caulton, Inorg. Chim. Acta, 1995, 229, 187.
- 159. J. Belli and C.M. Jensen, Organometallics, 1996, 15, 1532.
- 160. J.P. Jesson, in *Transition Metal Hydrides*, ed. E.L. Muetterties, Marcel Dekker, New York, 1971, p. 80.
- 161. G.R. Clark, B.W. Skelton and T.N. Waters, *Inorg. Chim. Acta*, 1975, 12, 235; R. Bau, W.E. Carroll, D.W. Hart, R.G. Telfer and T.F. Koetzle, *Advan. Chem. Ser.*, 1978, 167, 73; R. Bau, C.J. Schwerdtfeger, L. Garlaschelli and T.F. Koetzle, *J. Chem. Soc., Dalton Trans.*, 1993, 3359.
- D.G. Gusev, V.I. Bakhmutov, V.V. Grushin and M.E. Vol'pin, *Inorg. Chim. Acta*, 1990, 177, 115; E.G. Lundquist, K. Folting, W.E. Streib, J.C. Huffman, O. Eisenstein and K.G. Caulton, *J. Am. Chem. Soc.*, 1990, 112, 855; L.F. Rhodes and K.G. Caulton, *J. Am. Chem. Soc.*, 1985, 107, 259.
- 163. For many syntheses see J.M. Jenkins and B.L. Shaw, J. Chem. Soc., 1965, 6789; J. Chem. Soc., Dalton Trans., 1966, 1407.
- 164. P.R. Brookes, C. Masters and B.L. Shaw, J. Chem. Soc., Dalton Trans., 1971, 3756.
- 165. S. Al-Jibori, C. Crocker, W.S. McDonald and B.L. Shaw, J. Chem. Soc., Dalton Trans., 1981, 1572.
- 166. B.L. Shaw and A.C. Smithies, J. Chem. Soc., Dalton Trans., 1967, 1047; E.G. Lundquist, K. Folting, J.C. Huffman and K.G. Caulton, Polyhedron, 1988, 7, 2171.
- 167. A.J. Deeming, G.P. Proud, H.M. Dawes and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1986, 2545; A.J. Deeming, G.P. Proud, H.M. Dawes and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1988, 2475; A.J. Deeming and G.P. Proud, Inorg. Chim. Acta, 1988, 144, 253; A.J. Deeming, S. Doherty, J.E. Marshall and N.I. Powell, J. Chem. Soc., Chem. Commun., 1989, 1351.
- 168. E.G. Lundquist, K. Folting, J.C. Huffman and K.G. Caulton, Organometallics, 1990, 9, 2254; D.E. Westreib, L.F. Rhodes, J. Edwin, W.E. Geiger and K.G. Caulton, Inorg. Chem., 1991, 30, 1107.
- 169. G.B. Robertson and P.A. Tucker, Acta Crystallogr. Sect. B., 1981, 37, 814; J. Am. Chem. Soc., 1982, 104, 318; Aust. J. Chem., 1988, 41, 641 and refs therein.

- 170. L.F. Rhodes, J.C. Huffman and K.G. Caulton, J. Am. Chem. Soc., 1984, 106, 6874; R.L. Geerts, J.C. Huffman, D.E. Westenberg, K. Folting and K.G. Caulton, New J. Chem., 1988, 12, 455.
- 171. J. Chatt, G.J. Leigh and D.M.P. Mingos, J. Chem. Soc. (A), 1968, 1674; C.E. Briant, K.A. Rowland, C.T. Webber and D.M.P. Mingos, J. Chem. Soc., Dalton Trans., 1981, 1515; R.A. Cipriano, W. Levason, D. Pletcher, N.A. Powell and M. Webster, J. Chem. Soc., Dalton Trans., 1987, 1901; R.A. Cipriano, L.R. Hanton, W. Levason, D. Pletcher, N.A. Powell and M. Webster, J. Chem. Soc., Dalton Trans., 1988, 2483; R.A. Cipriano, W. Levason, R.A.S. Mould, D. Pletcher and N.A. Powell, J. Chem. Soc., Dalton Trans., 1988, 2677.
- 172. P. Mura, A. Segre and S. Sostero, *Inorg. Chem.*, 1989, 28, 2853; D. Attanasio, P. Mura, A. Maldotti, S. Sostero and O. Traverso, *New J. Chem.*, 1992, 16, 347.
- 173. M.B. Bardin and P.M. Ketrush, Russ. J. Inorg. Chem., 1973, 18, 693.
- 174. B. Harrison, N. Logan and A.D. Harris, J. Chem. Soc., Dalton Trans., 1980, 2382.
- 175. L. Garlaschelli, S.I. Khan, R. Bau, G. Longoni and T.F. Koetzle, J. Am. Chem. Soc., 1985, 107, 7212.
- 176. E. Farnetti, J. Kaspar, R. Spogliarich and M. Graziani, J. Chem. Soc., Dalton Trans., 1988, 947; J.W. Faller and C.J. Smart, Organometallics, 1989, 8, 602.
- 177. T. Le-Husebo and C.M. Jensen, *Inorg. Chem.*, 1993, **32**, 3797; L.L. Wisniewski, M. Mediati, C.M. Jensen and K.W. Zilm, *J. Am. Chem. Soc.*, 1993, **115**, 7533; J. Eckert, C.M. Jensen, G. Jones, E. Clot and O. Eisenstein, *J. Am. Chem. Soc.*, 1993, **115**, 11057 and Ref. 157(d).
- M. Mediati, G.N. Tachibana and C.M. Jensen, *Inorg. Chem.*, 1990, **29**, 3; 1992, **31**, 1827;
 R.H. Crabtree and M. Lavin, *J. Chem. Soc., Chem. Commun.*, 1985, 1661; D. Ma, Y. Yu and X. Lu, *J. Org. Chem.*, 1989, **54**, 1105; X. Lu, Y. Lin and D. Ma, *Pure Appl. Chem.*, 1988, **60**, 1299.
- 179. R. Eisenberg and C.D. Meyer, Accts. Chem. Res., 1975, 8, 26; J.H. Enemark and R.D. Feltham, Coord. Chem. Rev., 1974, 13, 339; B.F.G. Johnson, B.L. Haymore and J.R. Dilworth, in Comprehensive Coordination Chemistry, eds G. Wilkinson, R.D. Gillard and J.A. McCleverty, Pergamon, Oxford, 1987, Vol. 2, 99; D.M.P. Mingos and D.J. Sherman, Adv. Inorg. Chem., 1989, 34, 293.
- 180. D.J. Hodgson and J.A. Ibers, Inorg. Chem., 1968, 7, 2345.
- 181. S. Bhaduri and B.F.G. Johnson, J. Chem. Soc., Chem. Commun., 1973, 650; S. Bhaduri, K. Grundy and B.F.G. Johnson, J. Chem. Soc., Dalton Trans., 1977, 20.
- 182. L.K. Bell, J. Mason, D.M.P. Mingos and D.G. Tew, Inorg. Chem., 1983, 22, 3497.
- 183. C.A. Reed and W.R. Roper, Chem. Commun., 1969, 1459; J. Chem. Soc., Dalton Trans., 1973, 1014.
- 184. M.W. Schoonover, E.C. Baker and R. Eisenberg, J. Am. Chem. Soc., 1979, 101, 1880.
- 185. R. Hoffmann, M.M.L. Chen, M. Elian, A.R. Rossi and D.M.P. Mingos, *Inorg. Chem.*, 1974, 13, 2666.
- 186. R.A. Andersen, R.A. Jones and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1978, 447; R.S. Hay-Motherwell, G. Wilkinson, B. Hussain and M.B. Hursthouse, J. Chem. Soc., Chem. Commun., 1989, 1436.
- 187. L. Wang, C. Wang, R. Bau and T.C. Flood, Organometallics, 1996, 15, 491.
- R.S. Hay-Motherwell, S.U. Koschmieder, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1991, 2821; R.S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, J. Chem. Soc., Chem. Commun., 1990, 1242.
- 189. R.S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, *Polyhedron*, 1991, 10, 1457.
- A.A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1992, 3165; R.S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1992, 3477; R.S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, Polyhedron, 1993, 12, 2009.
- 191. R.S. Hay-Motherwell, B. Hussain-Bates, M.B. Hursthouse, B.E. Mann and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1993, 3219.
- 192. M.P. Garcia, L.A. Oro and F.J. Lahoz, Angew. Chem. Int. Ed. Engl., 1988, 27, 1700; M.P. Garcia, M.V. Jiminez, F.J. Lahoz, L.A. Oro, A. Tiripicchio and J.A. Lopez, J. Chem. Soc., Dalton Trans., 1990, 1503.