
Article

Component-based approach for
programming and running scientific
applications on grids and clouds

Maciej Malawski1,2, Tomasz Gubała3,4 and Marian Bubak1,4

Abstract
This paper presents an approach to programming and running scientific applications on grid and cloud infrastructures
based on two principles: the first one is to follow a component-based programming model, the second is to apply a flexible
technology which allows for virtualization of the underlying infrastructure. The solutions described in this paper include
high-level composition and deployment consisting of a scripting-based environment and a manager system based on an
architecture description language (ADL), a dynamically managed pool of component containers, and interoperability with
other component models such as Grid Component Model (GCM). We demonstrate how the proposed methodology can
be implemented by combining the unique features of the Common Component Architecture (CCA) model together with
the H2O resource sharing platform, resulting in the MOCCA component framework. Applications and tests include data
mining using the Weka library, Monte Carlo simulation of the formation of clusters of gold atoms, as well as a set of syn-
thetic benchmarks. The conclusion is that the component approach to scientific applications can be successfully applied to
both grid and cloud infrastructures.
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1 Introduction

Recently, such paradigms of scientific investigation as e-

Science and system-level science have been established

(Foster and Kesselman, 2006). E-Science applications have

many common properties: they are compute- and data-

intensive, custom-developed by scientists using many pro-

gramming languages, and used in dynamic scenarios –

experiments – which involve various levels of coupling and

composition types such as parallel or workflow processing.

Grid infrastructures like EGI (Kranzlmüller et al., 2010),

DEISA (Gentzsch et al., 2011), Grid’5000 (Bolze et al.,

2006), Open Science Grid (Altunay et al., 2011), and Ter-

aGrid (Beckman, 2005) are now considered the key techno-

logical platforms enabling the realization of the e-Science

paradigm (Schwiegelshohn et al., 2010). Additionally,

there is an evolution from simple computing (metacomput-

ing) infrastructures supporting batch processing to more

advanced software systems which provide high-level ser-

vices. Recently, cloud computing has gained attention from

the point of view of scientific applications (Vecchiola et al.,

2009; Deelman, 2010). Problems such as access to computa-

tion, deployment, and application management still remain a

challenge, due to some inherent features of the grid and

cloud environments.

The main objective of the research presented in this paper

can be stated as follows: How to program and run e-Science

applications on the grid and cloud infrastructures?

Although significant effort is being invested in research on

programming models, tools, and environments, the problem

remains challenging (NGG Group, 2004). The challenges

for scientific application developers and users include lim-

ited support for high-level programming models and

abstractions, the necessity of deploying application code

on shared resources, heterogeneity of the environment in

terms of computing nodes and also of the network links

between them, lack of single middleware for accessing
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computing resources, and the fact that the infrastructures are

based on diverse concepts and programming models. As an

answer to these challenges, we propose a methodology, con-

sisting of a set of methods and tools, possibly integrated into

a programming environment characterized by the following

features:

1. facilitating high-level programming;

2. facilitating deployment on shared resources;

3. scalable to diverse environments;

4. communication adjusted to various levels of coupling;

5. adapted to the unreliable distributed environment;

6. interoperable;

7. secure.

These features have been identified based on our expe-

rience with grid computing infrastructures, which pose sig-

nificant challenges for scientific application developers and

users.

Below, the desired features are described in more detail.

Facilitating high-level programming The program-

ming model should allow the composition of the

application from smaller blocks (modules) and

should be able to express temporal dependencies

between them as well as direct connections. This

composition should be performable by a third party,

not hard-coded in the modules. It should also be pos-

sible to compose the application at a high level of

abstraction, without the need to specify too many

technical, infrastructure- and middleware-specific

details.

Facilitating deployment on shared resources The

environment should support the deployment, possi-

bly dynamic, of custom application code on the

available resource pool, taking into account the het-

erogeneity of the infrastructure and middleware. That

is, it should provide a virtualization layer, capable of

hiding the diversity of lower layers.

Scalable to diverse environments The programming

environment should be scalable to run on machines

ranging from single PCs or laptops, through High-

Performance Computing (HPC) clusters to multiple

grid or cloud infrastructures. In other words, the envi-

ronment should guarantee that the underlying infra-

structure does not determine the programming

model.

Communication adjusted to various levels of cou-

pling As the communication layer of the grid may

be heterogeneous, comprising peer-to-peer networks,

WANs, LANs, inter-cluster connections, and even

direct binding in a single process, the communication

layer of the environment should be able to adjust the

connections between application modules to these

physical constraints. The communication layer

should also support collective or parallel connections

between application modules.

Adapted to the unreliable distributed environment

As the environment may be highly dynamic and

undependable, it will be crucial for the environment

to provide some means of adaptability and fault

tolerance.

Interoperable As it is important for the environment to

be usable and not isolated, it should provide mechan-

isms for interoperability with existing and standard

technologies. These standards include Web services

and, in the case of specific programming models, it

will be important to interoperate with their most

popular implementations.

Secure Running applications on shared resources

requires providing or inter-facing with proper authen-

tication and authorization mechanisms, as well as

ensuring isolation between multiple users and their

applications. These aspects should be clearly sepa-

rated from the actual application programming, but

be configurable at runtime.

This methodology requires an appropriate high-level

programming and execution environment based on an

appropriate programming model and supported by specific

tools and services. An environment supporting these fea-

tures will simplify the usage of complex computing infra-

structures for people involved in e-Science. In this paper,

we describe how such an environment can be built follow-

ing the component-based approach and we explain why we

have chosen CCA as a component standard. In order to pro-

vide a virtualization layer to the environment, we selected

the H2O resource-sharing platform which gives us several

benefits thanks to the unique features it offers.

The experience with interactive applications in Cross-

Grid (Bubak et al., 2003), workflow applications (Bubak

et al., 2005; Gubła et al., 2006), and virtual laboratories

(Sloot et al., 2006) gave us the opportunity to verify differ-

ent approaches to constructing such applications. The

component-based approach was investigated in various

aspects: MOCCA (Malawski et al., 2005) is an implemen-

tation of the CCA standard using the H2O platform which

provides a lightweight container for components. The Grid-

Space environment (Malawski et al., 2008a) provides a

high-level scripting approach for rapid exploratory pro-

gramming and it integrates multiple technologies, includ-

ing services, components, and batch jobs (Malawski

et al., 2010). We also conducted experiments with deploy-

ment of component applications on grid infrastructures

(Malawski et al., 2006b) and the applicability of P2P over-

lay networks for providing communication in the environ-

ment (Jurczyk et al., 2006). Our recent experiments with

the Amazon EC2 compute cloud as well as with private

clouds (Malawski et al., 2011) indicate that the proposed

component-based approach fits the cloud computing model

as well.

The main contribution of this paper is to present a com-

plete overview of carefully designed methods and tools

which, combined together, support the component-based
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approach to e-Science applications development. Intercon-

nected, they constitute a complete and self-sufficient pro-

gramming and execution environment for scientific

applications. We discuss the advantages and disadvantages

of the component-based approach based on our experience

and the lessons learned.

The paper is organized as follows: after the analysis of

the state of the art (Section 2) we underline the advantages

of using a component programming model and the ratio-

nale for choosing CCA and H2O as base technologies (Sec-

tion 3). Next, we discuss in detail how all the requirements

are met by the methods and tools we develop. In Section 4

we present case studies with model scientific applications,

as well as results of benchmarks demonstrating the correct-

ness of the approach taken. Section 5 provides a thorough

analysis of our solution, its advantages and shortcomings,

and general remarks about lessons learned. Finally, in Sec-

tion 6 we give a summary and suggestions for future work.

2 State of the art

The programming models which can be used to map com-

putations performed by a program onto the distributed

nodes of a grid come from parallel and distributed comput-

ing, and include task processing, e.g. PBS (Henderson,

1995), Globus Toolkit (Foster, 2006); message passing,

MPICH-G2 (Karonis et al., 2003), OpenMPI (Gabriel

et al., 2004); distributed objects, including active objects

as in ProActive (Baduel et al., 2006); tuple spaces, includ-

ing JavaSpaces (Bishop and Warren, 2003) or HLA (HLA,

2010); and component- or service-oriented models. Task

processing models require the use of many low-level tech-

niques such as scripting and system tools to build and run

their applications. For message passing, the lack of support

for application deployment in the programming model, and

no mechanisms for high-level composition, remain draw-

backs of MPI. The main drawback of distributed object

systems such as CORBA (Object Management Group, Inc.,

2004) is the tight coupling between objects in terms of

dependencies, which becomes an obstacle to the adaptabil-

ity and flexibility of applications. On the other hand, the

component and service-oriented models provide better

support for third-party composition and reconfiguration

of applications. Generally, components are considered to

be larger units of composition than objects (Mougin and

Barriolade, 2001), while services are more suitable for

loosely-coupled applications based on document exchange

(Vogels, 2003), where efficient communication is not

essential (Henning, 2008). This makes distributed compo-

nents an attractive technology for scientific applications

which require both performance and flexibility.

At a high level, a programming model defines how the

whole application can be composed from basic blocks to

provide the functionality required by the users. One deals

with composition in space when there are many application

units running (possibly in parallel) and they need to interact

with one another using direct links. In component-based

systems, there are several techniques of composition:

low-level API as in CCA (Armstrong et al., 2006), scripting

languages, descriptor-based programming – ADL as in

Fractal (Bruneton et al., 2006), skeletons and high-order

components, and graphical tools. The popular Map-

Reduce model (Dean and Ghemawat, 2008) also belongs

to this class. Composition in time takes place when there

are several tasks (or service operations) which have to be

executed in the order of their temporal dependencies. Usu-

ally, there is a need for some external execution (workflow)

engine which triggers activities and controls the order of

execution. Many workflow systems are available for grids,

including Kepler, Triana, Pegasus, and K-WfGrid (Gubała
et al., 2006) systems. Challenges in scientific workflow

applications and systems are outlined in Gil et al. (2007)

and Zhao et al. (2009). On the other hand, scripting languages

(Ousterhout, 1998) are useful for that purpose, since they pro-

vide constructs such as pipes and loops which allow the full

expression of the complex control flow of the program.

In addition to composition in space and composition in

time we should mention parallel and structured component

composition. One approach is investigated in the CCA

(Armstrong et al., 2006) model, taking into account such

issues as data redistribution for MxN component connec-

tions (Bertrand et al., 2005). Parallel extensions to compo-

nent models are introduced to the Corba Component Model

(CCM) (Perez et al., 2003). Another type, which can be

useful for more distributed and loosely-coupled scenarios,

appears as component collections, as in the XCAT frame-

work (Govindaraju et al., 2003) or the ProActive imple-

mentation of the Fractal component model (Baduel et al.,

2006) with Grid Component Model (GCM) (Baude et al.,

2009) extensions, including collective interfaces (Baude

et al., 2007). The skeleton approach can be used, as in

ASSIST (Danelutto and Aldinucci, 2006) and HOC-SA

(Dünnweber and Gorlatch, 2009). The choice of the under-

lying programming model can restrict the high-level com-

position types available for applications. For instance, the

component model can support all composition types,

whereas, for example, pure service-oriented models do not

allow (or do not directly support) composition in space.

The examples of the XCAT and ICENI (Mayer et al.,

2003) frameworks suggest that it is possible to combine

both composition types in a single high-level model. Bou-

ziane (Bouziane et al., 2008) suggests a graph-based nota-

tion which does not necessarily imply a simple solution. It

is noteworthy that composition can also be applied to Web

services, as it is in the Service Component Architecture

(SCA) (Beisiegel et al., 2007).

The problem of obtaining access to remote computing

resources is addressed in the following ways. In Globus and

Unicore (Streit et al., 2005), virtualization is applied at the

job processing level, whereas in Legion it reaches the higher

software object level. In the case of service-oriented archi-

tectures, access to computation can be reduced to accessing

a specific service. Due to this highest level of virtualization,

Web service technologies can provide seamless access to
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computing resources, however they do not solve deploy-

ment problems.

E-Science applications are often custom-developed and

can evolve during their development and the lifecycle of

the scientific experiment – thus the process of application

deployment becomes a challenge. Grid middleware, such

as Globus Toolkit, provides the low-level means of applica-

tion installation on the execution host by the mechanism of

staging. Another technology-enabling application deploy-

ment is virtualization (Sotomayor et al., 2008). A similar

approach is offered by the cloud computing initiatives and

the Infrastructure-as-a-Service model. Solutions such as

the Amazon Elastic Compute Cloud (EC2) (Murty 2008)

allow the deployment and running of virtual machine

images on a configurable infrastructure. These solutions

demonstrate that the need for software deployment and

resource provisioning is important. The Web services

model, while providing good mechanisms for accessing

remote services in a loosely-coupled way, does not define

any standard mechanisms for service deployment. Compo-

nent technologies include the deployment process directly

into the programming model and in the standards (Object

Management Group, Inc., 2006b; Baude et al., 2009), since

a component by definition is the basic unit of deployment.

As an alternative solution to the resource sharing prob-

lem H2O, a lightweight resource-sharing platform was

proposed (Kurzyniec et al., 2003a). In H2O, resource pro-

viders only need to install an H2O kernel which serves as

a basic container for deploying components, called plug-

lets; thus in H2O virtualization is applied at the container

(H2O kernel) level. Remarkably important in the H2O

model is the separation of the role of container providers

(resource owners) from the role of software deployers. This

means that a provider can offer a raw resource (CPU, stor-

age) by setting up an H2O kernel with a specified security

policy, and other parties (called deployers) can install soft-

ware by deploying their pluglets into kernels. As a light-

weight deployment mechanism, H2O uses Java dynamic

class loading features which allow the deployment and

launching of any Java classes published remotely (and pos-

sibly packaged as JAR files) on HTTP or FTP servers. In

addition to deploying Java classes, H2O provides a staging

mechanism, which can be used to transfer arbitrary files,

including native libraries or programs which are made

available by the container to the pluglets. However, the use

of native code in Java with JNI will sacrifice the portability

of components and isolation between them, so this trade-off

has to be taken into account. One of the advantages of H2O

is that it uses RMIX (Kurzyniec et al., 2003b) as a multipro-

tocol communication library. Being similar in concept to

other efficient implementations of RMI, such as Ibis (van

Nieuwpoort et al., 2005), RMIX offers several benefits,

including asynchronous and one-way calls as well as

communication in peer-to-peer networks based on JXTA

(Jurczyk et al., 2006).

The discussion of the features of the main programming

models presented above allows us to draw some general

conclusions about their advantages and disadvantages. The

job processing model, although widely supported in grids,

does not offer composition in space and communication

between jobs other than via inter-job dependencies.

Although the MPI model (since version 2.0) supports

dynamic creation of processes and communication estab-

lishment, it still does not provide high-level composition

or deployment mechanisms. Distributed objects lack

deployment and composition support in the model, so these

important features need to be externally provided. The

component model compares favorably with others, since

it supports composition and deployment directly in the

model.

The Common Component Architecture has unique fea-

tures, which are of particular interest from the point of view

of scientific applications. It was from the beginning

designed to support scientific applications by introducing

the Scientific Interface Definition Language (SIDL),

which, together with the Babel system (Kohn et al.,

2001), adds support for such datatypes as complex num-

bers, multidimensional arrays as well as multiple program-

ming languages such as FORTRAN, Cþþ and Python.

This makes CCA distinct from the Corba Component

Model (CCM) (Object Management Group, Inc., 2006a)

or Fractal (Bruneton et al., 2006). One of the advantages

of a CCA specification is its simplicity: it is achieved by

defining only a set of basic interfaces for interactions of

components with the framework and for building applica-

tions, without making assumptions as to whether compo-

nents are local or distributed. The CCA model is also

dynamic: it allows the definition of component interfaces

(ports) at runtime, which may be useful in dynamic compo-

sition and interaction scenarios.

We have to note that other component standards, such as

CCM or Fractal (and its extended version, GCM), also have

interesting features. CORBA was designed from the begin-

ning to support distributed computing, so it standardizes,

for example, Naming Services or deployment mechanisms.

Fractal offers hierarchical composition of components and

separates functional component interfaces from more gen-

eric controllers: these features have been exploited in GCM

to support hierarchical deployment and autonomic control-

lers (Baude et al., 2009). However, we believe that the most

important features of component models in general, such as

communication using well-defined interfaces, third-party

composition, and deployment support are common to all

the component standards and implementations. Moreover,

they can be used to provide interoperability between frame-

works as we show in Section 3.6. We consider the choice of

the CCA model as a practical decision, which helps focus

and narrow down the research work while at the same time

leveraging the benefits of the chosen solution.

Below we briefly synthesize how the related solutions

address the key issues.

Facilitating high-level programming Most component

frameworks support composition in space using
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various techniques, from APIs, through descriptors to

skeleton-based solutions. Composition in time was

reported as available in XCAT and ProActive. Web

services support workflows as their main composi-

tion type, although the recent SCA specifications

intend to bridge this gap.

Facilitating deployment on shared resources Deploy-

ment on shared resources is handled by most grid-

oriented frameworks, where descriptor-based solutions

are the most popular – ADAGE, GEA, Virtual Nodes in

ProActive and GCM (Coppola et al., 2005; Baude et al.,

2009). In the case of Web services, deployment is not

covered by specifications.

Scalable to diverse environments Target environments

range from parallel machines to grid and cloud infra-

structures, although it must be noted that the extent of

grid middleware support may vary and is often lim-

ited to a single type of middleware (e.g. Globus).

Communication adjusted to various levels of coupling

Most of the frame works offer a single communication

mechanism, using either SOAP or some type of RPC

protocol (RMI, CORBA). Support for multiple pro-

tocols to adjust communication to various levels of

coupling is not present in the frameworks.

Adapted to the unreliable distributed environment

Most of the frameworks provide some adaptive fea-

tures, such as dynamic and interactive reconfigura-

tion. Additionally, ProActive and XCAT support

migration and checkpointing. On the other hand,

ASSIST focuses on autonomic behavior of applica-

tions, and these features are also being incorporated

into GCM and ProActive.

Interoperable Regarding interoperability, in most cases

it can be achieved by using standard protocols, such

as CORBA or SOAP. It should be noted here that

ProActive is the only framework which is compliant

with the emerging GCM specification.

Secure Most of the frameworks support Grid Security

Infrastructure as the most widely used standard. Shib-

boleth support is provided in some Web services

based frameworks, including Globus WSRF.

The conclusion is that although the component model

remains the most appropriate one for scientific applications

on distributed e-infrastructures, none of the environments

fully support all the features which have been identified

as important (Section 1). This conclusion motivates us to

work on new solutions, which is the subject of this paper.

3 Basic methods and tools

Having selected the component model in general, there is a

need to focus on a concrete model and choose a base platform

for constructing the environment. In this research the CCA as

a component model and the H2O platform as a technology

were selected. This decision introduces several benefits, some

of which are immediate and result from the features of CCA

and H2O, and some of which have to be elaborated upon and

result in the higher layers of the proposed environment.

Component models, and particularly CCA, offer APIs

for component composition. To facilitate high-level pro-

gramming, we propose to extend the composition mechan-

isms with a high-level scripting language or, alternatively,

with a manager system based on the architecture descrip-

tion language. For facilitating deployment we exploit the

dynamic deployment mechanisms offered by the H2O plat-

form and we propose methods for creating a pool of H2O

containers dynamically in existing grid or cloud infrastruc-

tures. Support for diverse environments is possible with

H2O as a lightweight platform and the dynamic reconfi-

guration capabilities of the CCA model, including changes

in component structure at runtime by adding or removing

ports. Regarding communication adjusted to various levels

of coupling, it is natural to rely on the RMIX multiprotocol

library offered by H2O, and we propose extensions for

multiple connections between CCA components. Option-

ally, CCA gives the possibility of using the Babel system

for multilanguage support. To ensure that applications can

be adapted to the dynamic distributed environment, the

solution is to rely on the dynamic reconfiguration mech-

anisms of CCA and H2O, and to incorporate automatic

management features into the high-level programming

layers. To provide interoperability we propose to use Web

services, but at the same time we develop a solution for

integrating CCA components with GCM components,

implemented in ProActive. Finally, regarding security, we

have extended H2O to support the Grid Security Infrastruc-

ture (GSI) (Foster et al., 1998) and Shibboleth (Morgan

et al., 2004) security solutions.

The concept of the environment can be presented as a

layered architecture, outlined in Figure 1. On top, there is

the scientific application which can be built using any of

the lower layers. Below, there is a high-level composition

layer, comprising two composition modes: GScript for

the scripting approach (Malawski et al., 2008a) and the

descriptor-based MOCCAccino (Malawski et al., 2006a)

Figure 1. The layered architecture of the environment, from top:
applications, high-level composition layer, parallel and interoper-
ability extensions, base component frameworks, middleware
technologies and low-level grid or cloud infrastructure.
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system for composition based on the architecture descrip-

tion language. As discussed in Section 2, these modes are

alternative approaches, so they can be used depending on

the preferences of the developer and on the application

type. The GScript approach is better suited for rapid devel-

opment, experiments and steering, while MOCCAccino

should be used for structured applications which require

automated management.

The above-mentioned layers are built on top of base

component frameworks. MOCCA (Malawski et al., 2005)

is a component framework implementing the CCA model

with the use of the H2O platform. MOCCA can be

extended with support for the Babel system, providing pro-

gramming language interoperability. Below this layer there

are basic middleware technologies which include H2O as a

resource sharing platform and execution environment, and

infrastructure monitoring providing system status informa-

tion and techniques for deployment and management of the

pool of resources. The lowest layer is the grid and cloud

infrastructure which may include many different middle-

ware types, as the role of higher layers is to hide them from

the component model and the application itself.

3.1 Facilitating high-level programming

The chosen programming model should allow the composi-

tion of the application by third parties from smaller blocks

(modules), and should express temporal dependencies

between them, as well as direct connections. Combination

of composition in time and in space is a crucial feature of

the model, since both types of interactions are present in

e-Science applications. Additional benefits of the compo-

nent model are of a more generic software engineering

nature: it facilitates code reuse, dependency management,

and other good practices which are often neglected in sci-

entific programs.

In particular, CCA specifies an API for creating compo-

nents and connecting their ports, which can be used to pro-

vide a low-level composition in space mechanism, by using

the Java API or Python and Ruby scripting. On top of this,

in order to program at a high level of abstraction and to hide

the details of the underlying computing infrastructure, a

high-level scripting layer and an Architecture Description

Language-based layer is built. The support for both models

is shown in Figure 2.

A high-level scripting layer is provided to enable appli-

cation construction using an imperative language. By using

a user-friendly API implemented in an object-oriented

Ruby script, it is possible to compose the application at a

high level of abstraction, while the underlying runtime sys-

tem will be responsible for automatic component place-

ment. Additionally, the same Ruby script (referred to

here as GScript) is used to invoke operations on the created

components, using control structures (loops, conditions,

iterators, etc.), and hence the combined capabilities of both

composition in time and composition in space can be

expressed. The high-level scripting approach is realized

as part of the GridSpace programming environment, where

the GridSpace engine is the core of the runtime system and

the GRR registry stores the information about available

components.

As an alternative approach, we offer an option to specify

the application using a declarative language, namely an

ADL. It enables hierarchical composition of component

groups, where the actual number of components can be

parametrized and dynamically managed. Such ADL-

Figure 2. E-Science application composition with GridSpace and MOCCAccino as complementary scripting- and descriptor-based
approaches.
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based composition is realized in the MOCCAccino system,

which uses the HDNS (Gorissen et al., 2005) registry for

locating H2O kernels. MOCCAccino (Malawski et al.,

2007a) defines an XML-based ADL for MOCCAccino

(ADLM) description format, whose key features are para-

metrized groups of components which can recursively

include other component groups and handle their connec-

tions. The MOCCAccino manager allows visualization of

component groups, managing the internal representation of

application structure, and deploying the component on the

containers provided by the HDNS registry. MOCCAccino

has been designed to be compatible with the CCA component

standard. However, as new standards such as GCM emerge,

we will consider adopting them as part of our future work.

We consider MOCCAcino and GScript as alternative

and complementary approaches, but they are distinct mod-

els and it is as yet not possible to combine them together.

We have considered two approaches to combining these

models: either to generate GScript from the ADL descriptor

or to construct the descriptors using the scripting API.

Recently, our scripting approach has been more actively

developed in the scope of the GridSpace virtual laboratory

(Ciepiela et al., 2010) environment and its planned support

for other application description languages, such as Multi-

scale Modeling Language (MML) (Falcone et al., 2010).

Our environment supports the composition types

listed in Section 2 (low-level API, scripting languages,

descriptor-based programming (ADL), and graphical

tools), apart from skeletons and high-order components.

However, these constructs can, to some extent, be modeled

either by constructing parametrized scripts or ADL

descriptors. Moreover, as one of our goals was to support

flexibility in programming and experimentation, we found

the high-level scripting approach the most promising.

3.2 Deployment on shared resources

The environment should support deployment of custom

application code on the available resource pool, taking into

account the heterogeneity of the infrastructure and middle-

ware. The deployment should be dynamic, allowing adap-

tive application behavior, by providing the capabilities for

deployment, undeployment and redeployment of code at

runtime.

In the component model, the concept of a component

container and the deployment process are reflected directly.

Moreover, the container provides an abstraction layer

which can be used to virtualize the heterogeneous resources

available, making it easier to abstract the underlying

resources for the application. The selection of H2O as the

component container solves the basic deployment prob-

lems, since the H2O kernel is a fully-fledged application

server with remote and dynamic deployment capabilities.

By selecting a component model, the problem of

application deployment can be reduced to the problem of

deployment of components into a container. Therefore,

assuming that a pool of H2O kernels is available, the

underlying grid infrastructure is virtualized as a pool of

component containers. Using cloud terminology, the vir-

tualization layer of H2O and MOCCA can be considered

as a Platform-as-a-Service (PaaS) layer positioned above

the Infrastructure-as-a-Service stack.

Unfortunately, in current production infrastructures

such as EGEE/EGI, it cannot be assumed that a pool of

containers is automatically available, so there is a need for

a mechanism to deploy the kernels using the available grid

middleware prior to actual component deployment. This

approach can be seen as dynamic virtualization using a pool

of transient H2O kernels created on demand, and it is

described in detail in Malawski et al. (2006b). The idea is

to use the concept of pilot jobs, known from e.g. Condor

(Thain et al., 2005), to spawn the required number of

H2O kernels as grid jobs using available middleware.

Additionally, to support communication between compo-

nents running in private networks of multiple clusters, it

is possible to use the JXTA P2P overlay network which was

integrated with our system (Jurczyk et al., 2006). This

solves the problem of connecting machines which cannot

communicate directly because of NAT or firewall restric-

tions, which is often the case.

The same mechanism of dynamic provisioning of

component containers is even simpler when using a cloud

platform, such as Amazon EC2. We have prepared the

Amazon Machine Image (AMI) with an H2O kernel

installed and preconfigured to automatically start at system

boot time and to listen on the public interface. Using a sim-

ple API it is thus possible to dynamically, on demand, add

component containers to the resource pool. It is noteworthy

that adding the support for EC2 was a straightforward task,

which confirms that the component-based approach fits

well with the cloud infrastructure. Moreover, as the perfor-

mance experiments with the EC2 cloud indicate, the deploy-

ment times of virtual machines are on average less than 2

minutes (Ostermann et al., 2010), which gives some flexibil-

ity in terms of adjusting the size of the resource pool.

The deployment process on grids and clouds as

described above is schematically depicted in Figure 3.

First, the user creates a pool of H2O kernels using the API

for grid or cloud infrastructure. Once the kernels are run-

ning, the component application can be deployed into the

kernels using standard CCA API or tools.

One observation is noteworthy with respect to the

resource-sharing model. Since our solution is based on the

H2O lightweight platform, it is possible to use resources

either directly accessible via H2O, or to harness additional

resources from grid or cloud infrastructures by deploying

H2O on top of them. This approach isolates the component

application from the low-level mechanism of resource pro-

vision and for that reason it was possible to add support for

new infrastructures, such as Amazon EC2, without signifi-

cant effort. This means that by creating a virtualization

layer of component containers it is possible to hide the dif-

ferences between grid and cloud from the application

perspective.
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3.3 Scalability to diverse environments

Scientific applications often involve various computation

models simulated with specific, optimized environments.

To support this requirement the proposed framework

should be scalable to run on machines ranging from single

PCs or laptops, through HPC clusters to multiple grid and

cloud sites. In other words, the environment should guaran-

tee that the underlying infrastructure does not determine the

programming model. The concept of a lightweight con-

tainer and the mechanism of component composition allow

the creation of applications in a dynamic, pluggable way,

thus fitting heterogeneous environments.

In order to achieve the goal of scalability to diverse

computing bases, the environment should be based on two

principles: a lightweight platform and mechanisms for

pluggable and reconfigurable extensions. H2O can serve

as a lightweight platform, since it only requires a Java

1.4 or newer virtual machine (which provides portability),

runs out-of-the-box from a 20 MB packaged installation,

takes around 1 s to start up on a 2 GHz PC, and has a small

memory footprint (approximately 25 MB). This makes

H2O easy to run on a developer’s laptop as well as on a

cluster, and easy to deploy on such infrastructures as EGI

or Amazon EC2. Regarding reconfigurability, H2O pro-

vides hot deployment capabilities, while the CCA model

allows for dynamic reconfiguration of component bindings

at runtime. Moreover, it is possible to create new compo-

nent ports at runtime, what may be useful for handling more

dynamic scenarios.

3.4 Communication and levels of coupling

As the communication layer of the grid may be very hetero-

geneous, comprising peer-to-peer networks, WANs, LANs,

inter-cluster connections, and even direct binding in a sin-

gle process, the communication layer of the environment

should be able to adjust the connections between the

application modules to these physical constraints. The

communication layer should also support collective or par-

allel connections between application modules.

In the component model, by following the separation-of-

concerns paradigm, the communication mechanism is pro-

vided by the environment, not by components themselves,

thus allowing the same components to operate in both local

and distributed configurations, while the protocol layer is

managed by the framework. The component models also

allow for parallel or group connections and communications.

H2O offers a multiprotocol communication library

called RMIX for remote invocations. Therefore, it can be

directly used by components in the following way: compo-

nents inside a given container can use direct bindings, those

located in the same LAN or cluster can use a fast binary

protocol, whereas for communication over the Internet it

will be possible to switch on encryption or use the SOAP

protocol wherever interoperability is required.

One of the advantages of the CCA component model is

that it supports components developed in multiple pro-

gramming languages using Babel (Kohn et al., 2001).

Babel was extended to provide remote method invocation

(Babel-RMI) (Kumfert et al., 2007). Our early experiments

with combining Babel-RMI with RMIX (Malawski et al.,

2006c) show the advantages of such a multilanguage and

multiprotocol solution.

As applications are often parallel, there is a need to intro-

duce some extensions to the model to support parallel con-

nections between components. This is realized by a

MultiBuilder extension (Malawski et al., 2006b) which

allows the creation, connection and invocation of collections

of components with parametrized number of instances. The

parallel connections between component groups are handled

by the MOCCAccino ADL and manager system.

3.5 Adaptability to grid and cloud environments

As e-Science applications tend to use large-scale computa-

tion components, use of the vast, powerful computing

environments of the grid is a natural requirement.

Figure 3. Deployment of component containers (H2O kernels) as pilot jobs on grid nodes or as virtual machines on the cloud. Once
the pool of containers is available, the underlying infrastructure is hidden to the component framework.
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However, as such environments may be highly dynamic

and undependable, it will be crucial for the environment

to provide some means of adaptability and fault tolerance.

For this purpose, it should support such monitoring capabil-

ities and adaptive features as dynamic and interactive

reconfiguration of connections, locations, and bindings,

as well as provide support for migration and checkpointing.

The component model assumes the possibility of dynamic

and interactive reconfiguration of component applications,

which makes it especially attractive for long-running com-

putations within a changing environment. By restricting the

application to the constraints of a component model, it is

also easier to support such features as application migration

and checkpointing.

There are several ways to develop a system capable of

adapting to such a dynamic environment as the grid.

Dynamic and interactive reconfiguration of connections,

locations, and bindings is directly supported by the under-

lying component model (CCA) and by the base platform

(H2O). Some of the automatic adaptive management cap-

abilities are reflected in the design of the MOCCAccino

manager system, where it is possible to specify how a sys-

tem (application) should behave when new containers are

added to (or removed from) the resource pool. These are

handled by specific annotations in the ADL and by the

adaptive behavior of the application manager. In order to

be self-adaptive, a system requires some monitoring cap-

abilities. Our concept assumes two types of monitoring:

infrastructure-centric and application-centric.

In order to adapt GScript to a dynamic grid infrastruc-

ture, we introduced the GridObject abstraction (Malawski

et al., 2010) into our high-level scripting model. GridOb-

jects are used in the script to represent components, Web

services, or other executable entities such as programs sub-

mitted to the grid as computing jobs. The main feature of

GridObjects is that the programmer can specify only their

class in the script, and the environment will select or create

the appropriate instance at runtime. Subsequently, it is pos-

sible to invoke operations on such GridObjects in a similar

way as on ordinary objects in the script. To deal with the

problem of component placement or optimal instance selec-

tion, GridSpace includes the optimizer module, which

chooses the optimal resource based on the monitoring infor-

mation and simple heuristics (Malawski et al., 2008b).

3.6 Interoperability

The goal of the proposed concept is interoperability with

Web services as a standard for programming distributed

systems, and with the Grid Component Model, which is

an alternative component model supported by the Core-

GRID network of excellence. By selecting H2O with

RMIX which supports SOAP as one of the protocols, inter-

operability with Web services is, in principle, possible.

However, the fact that RMIX does not support WSDL

becomes an issue. Therefore we consider using an addi-

tional Web services layer on top of H2O, so that the

provided component ports can be exported as Web services

using a modern embedded framework, such as XFire or

Apache Axis/CXF. Since CCA is not the only component

model, and CCM and GCM are also being developed, it

becomes important for the presented environment to allow

components from one framework to be instantiated in a con-

tainer provided by another framework, and to allow inter-

framework interoperability. We developed a solution based

on the adapter concept which enables both types of intero-

perability between CCA and GCM (Malawski et al., 2007b).

3.7 Security

Security is an important requirement for a system which

allows the deployment and execution of custom application

code on remote and shared resources, including proper

authentication, authorization, and transport security. For

large-scale systems with multiple computing nodes in mul-

tiple administrative domains, additional requirements are

for Single Sign-On (SSO) and credential delegation, i.e.

allowing a process running on a remote node to access

resources on another one on behalf of a user.

The component model helps achieve separation of con-

cerns by introducing the concept of a container. The secu-

rity aspects such as authentication, authorization, and

transport security can be managed and configured by the

framework. The container can provide sandboxing to pro-

tect the code running on shared computing resources from

interfering with other code.

The H2O kernel is a component container which pro-

vides pluggable authentication modules and flexible

authorization policies. Transport security is assured by the

RMIX communication library which supports SSL, while

sandboxing is provided by the H2O kernel using Java secu-

rity features. However, it is noteworthy that due to limita-

tions of the Java platform (as described in Section 2), the

trade-off between performance of native code and security

has to be taken into account.

The first extension which we introduced into the envi-

ronment was the integration of H2O with Grid Security

Infrastructure (GSI) (Foster et al., 1998). This solution uses

X.509 certificates with proxy extensions, which provide

SSO and credential delegation, as well as compatibility

with most production grid infrastructures such as EGI. As

a result, access to the MOCCA framework can be granted

only to such clients who can provide a valid proxy certifi-

cate for a registered user (Dyrda et al., 2009).

Shibboleth (Morgan et al., 2004) is a federated Web

Single Sign-On framework based on SAML (Security

Assertion Markup Language). SSO is achieved by letting

users use their home organization logins and passwords

to access remote resources. Shibboleth features attribute-

based access control, and by mutual agreement between

participating institutions it allows the decentralized

building of virtual organizations. We implemented the

Shibboleth-based authenticator in the H2O kernel, in which

a Shibboleth handle is used as a credential and an external
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policy decision point (PDP) is used for authorization. The

advantage of Shibboleth over GSI is that the users are not

required to have their certificates, but the problem is a lack

of proper management of security handles for long-running

computations. The Shibboleth authenticator enabled the

integration of MOCCA with the virtual organization infra-

structure which controls access to the ViroLab virtual

laboratory (Meizner et al., 2009).

4 Case studies and experiments

In this section we present the results of the experiments

which demonstrate the applicability of the component

approach for the sample applications. The first experiment

presents the usage of the scripting approach on the example

of a data mining application. The second experiment

involves an application which simulates the formation of

gold clusters using the simulated annealing method. Finally,

we show the results of the synthetic benchmark prepared to

measure the overhead of the component framework.

4.1 Weka experiments in ViroLab

The ViroLab virtual laboratory (Bubak et al., 2009) is a sys-

tem for collaborative construction and execution of experi-

ments in computational science. It is focused on, but not

limited to, infectious diseases caused by such viruses as HIV.

MOCCA is one of the supported middleware technologies,

and the GridSpace scripting engine, as described in Section

3.1, is used as a core system for application execution. The

system was applied to constructing and executing real-life

examples. Below, we show how the components can be used

to perform a data mining experiment using the Weka (Witten

and Frank, 2005) library wrapped in components.

Key functionality elements of Weka, such as classifiers,

association rules, clustering algorithms, and filters, were

wrapped as components to allow for more flexible creation

of various experiments. To provide better performance in

terms of transferring and storing datasets, it was decided

to use the HTTP protocol and a WebDAV server. The com-

ponents can now retrieve the datasets from any remote

URL and store the results on a WebDAV server, which

makes them, again, available via URL. Such a pass-by-ref-

erence approach is very convenient, since the whole

(potentially large) dataset does not have to be directly

passed through the GridSpace engine.

Figure 4 presents the scenario of an experiment which

can be used to compare the performance of several classi-

fiers from Weka on a sample dataset. It is implemented as a

script as shown in Figure 5. The script demonstrates how to

create an instance of a classifier component, supply it with

a specific algorithm, and perform the classification, mea-

suring the time and accuracy of the predictions. The script-

ing approach allows easy creation of complex experiments

using constructs such as loops, thus providing effective and

flexible experiment steering.

The Weka experiment demonstrates how our environ-

ment can be used to support a pure composition in time

scenario. Components are not connected and do not inter-

act directly, instead they are controlled by an execution

engine which invokes operations on their ports. The

experiment demonstrates also how the GridObject

abstraction introduced in GridSpace allows the orchestra-

tion of components together with Web services in a trans-

parent way: the actual implementation of WekaURLGem

is a stateless Web service, while classifiers are MOCCA

components.

The experiment described above, albeit simple, demon-

strates several benefits of the component-based approach.

First, the Classifier component is a stateful entity, which

is created (deployed) on demand and can use the available

resources (H2O kernels). An instance of the classifier is

created for each experiment run. It can also be used in col-

laborative scenarios, when a classifier is trained by one

experiment (user) and then published for use by other

experiments (users).

Split
dataset

Train
Classifier

Test
Classifier

Assign
Classifier
Type

Compare
results

Loop

Dataset URL

Training
dataset

Testing
dataset

Predicted
dataset

Control flow

Data flow

Figure 4. The data and control flow for the sample script demonstrating the use of the Weka Data Mining application which uses
MOCCA components.
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4.2 Application: Gold cluster formation

The goal of the second application has been to demonstrate

how composition in time can be combined with composi-

tion in space in a more complex real application scenario.

The formation of clusters of gold atoms is an important

process in nanotechnology (Wilson and Johnston, 2000).

The goal is is to apply a simulated annealing method to

minimize the energy of the molecules, given the molecule

size and the potential. The application is compute intensive,

and it requires not only minimization of the energy, but it

involves a larger loop, in which the actual minimization

method is optimized by tuning parameters such as cooling

function or initial configurations. The component-based

application for simulating the formation of gold clusters

has evolved over time. Below, we describe a version where

the energy minimization is additionally the subject of

an automatic tuning of the application parameters (see

Figure 6).

The Starter component is responsible for coordinating

the work of other components. Configuration Generator

creates the initial random configurations of atoms which

are then consumed by multiple Simulated Annealing

components, performing the actual minimization process.

The Configuration Generator and Simulated Annealing

components may be used for both sequential and distribu-

ted configurations, since they do not have multiple ports.

The Storeroom component is responsible for storing all

achieved configurations and may be used to derive results

statistics. A single Molecule port is devoted to exchanging

data between components. The Storeroom component is

designed to support a single Molecule provider; the Gather

component handles multiple connected components and

passes their results to the Storeroom. This enables building

a hierarchical tree of gather components, which may be

required when deploying the application on a large number

of nodes.

The Simulated Annealing components were extended to

use the externally provided Annealing Function which rep-

resents the strategy of cooling the system and influences the

optimization process. Such a function can be provided by a

specialized Annealing Function Manager component

which gathers statistics about the optimization process

from the Simulated Annealing components in order to

improve the cooling function. Additionally, the Local Mini-

mization component is connected to the Storeroom to

Classifiers = [
’weka.classifiers.rules.Prism’,
’weka.classifiers.functions.Logistic’,,
’weka.classifiers.trees.J48’,
’weka.classifiers.lazy.KStar’
]

wekaURLgem = GObj.create(
’cyfronet.gridspace.gem.weka.WekaURLGem’)

classifier = GObj.create(
’cyfronet.gridspace.gem.weka.WekaClassifier’)

dataURL = ’primary-tumor’ #address in WebDav
splitDataName = ’split-primary-tumor’
splitURLData = wekaURLgem.splitURLData(dataURL, ’’, splitDataName, ’’, 50)

i = 0
10.times do
classifier.assignClassifier(Classifiers[i])
learning_time = classifier.trainURLdata(

splitURLData.trainingURLdata, ’’, ’class’)

classifiedData = classifier.classifyURLdata(
splitURLData.testingURLdata, ’’, ’’, ’’)

classificationPercetnage =
wekaURLgem.compareURLData(splitURLData.testingURLdata,

’’, classifiedData,’’, ’class’)

result = classificationPercetnage.to_f * 100.to_f

wekaURLgem.deleteURLdata(classifiedData)

i = i + 1
end

Figure 5. Data mining application script. GObj.create() deploys the component which can subsequently be used by invoking
operations directly from the script.
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improve the results using the L-BFGS method (using the

JAT (Berhold and Takada, 2002) library). For interactive

visualization, a prototype version of the Output Generator

component was developed using the Jmol (Herráez, 2006)

visualization library (not shown in the diagram).

The Molecule and Statistics ports, together with their

corresponding Gather components, have similar function-

ality. To facilitate development, a common abstract port

class called buffered port was introduced which helps man-

age the queue of data items to be processed. The gather

functionality has been abstracted so that it can be reused

in other applications. The components in this scenario were

deployed using Ruby script and MultiBuilder mechanism

(see Section 3.4), while the number of components is para-

metrized in the script.

By following a similar approach to the one described in

Malawski et al. (2006b), it was possible to deploy the simu-

lated annealing application on the French Grid’5000

testbed. The application was successfully deployed on

three clusters located at Sophia-Antipolis, Bordeaux, and

Orsay, and the computing times and throughput for the

molecules of 20 atoms were measured. Figure 7 presents

results of one of the experiments, showing the throughput

in molecules per minute versus the number of cores used.

Although the results indicate that it is possible to achieve

a good speedup with our framework, the main advantage

of the component approach is the flexibility of application

composition and facilitated adaptation to new environ-

ments, such as Grid’5000.

The gold cluster simulation has demonstrated how the

framework can be used for composition in space, i.e. the

components interact directly as in a choreography scenario

where the components communicate by involving opera-

tions on connected ports. Moreover, this can be combined

with composition in time, as it is possible to invoke opera-

tions on components directly from the script. This can be

used, for example, for interactive steering of computations.

Another benefit of the component approach is the flexibil-

ity of constructing different application scenarios on differ-

ent resources while reusing the basic components. The

same set of components has been used to deploy the appli-

cation locally with no parallelism, to run them on a local

cluster, and also on a distributed grid infrastructure.

Figure 6. Configuration of gold cluster application enabling parameter tuning in order to optimize the energy minimization process.

Figure 7. Throughput of the gold cluster application run on 3
clusters of Grid’5000 (Sophia, Orsay, Bordeaux). The line shows a
linear fit y¼(0.45+0.12)x, R2¼0.89; the error bars represent the
standard error of the fit.
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4.3 Scalability experiments on Grid’5000

The purpose of the following experiments, which were run

on the French Grid’5000, was to test and analyze the scal-

ability of the MOCCA environment on a large number of

nodes. A benchmark application was constructed to allow

the extraction of important system metrics, such as time

of deployment, connection, invocations on collections of

ports and cleanup of components.

The structure of the application is shown in Figure 8.

The Starter component is connected to the collection of

Forwarder components which in turn are connected to a

single Echo component. The echo() operation on the port

of connected components consisted of passing and return-

ing a several-byte string message. The components were

created using the MultiBuilder mechanism introduced in

Section 3.4. The goal of version 1 of the benchmark was

to measure execution times where all the stages were per-

formed sequentially, so no parallelism was exploited.

First, the application was run on a pool of 114 H2O ker-

nels running on 114 nodes of 6 clusters, totaling 258 cores;

the number of Forwarder components in the collection was

equal to the number of cores. The total run time (from client

startup to the end of cleanup) versus the number of cores is

shown in Figure 9 It can be seen that the growth of comput-

ing time is nearly linear with respect to the number of com-

ponents (cores). This can be explained by the fact that all

operations (deployment, connection, invocation, and

destruction) were invoked sequentially. As in other multi-

cluster experiments reported here, the linear fit is a simpli-

fication since increasing the number of CPU cores required

access to more computing clusters (up to 6 for 258 cores).

From the fit coefficient we can estimate that the average pro-

cessing time per component was less than 2 seconds, which is

comparable to the time for running the above application on a

single node. The conclusion is that creation of a large number

of connections between components using the MultiBuilder

mechanism does not introduce additional overhead. This

means that the environment preserves scalability when han-

dling collections of components sequentially.

The goal of the second experiment was to measure the

time of each stage of the benchmark application. Prelimi-

nary measurements were performed on the same sequential

version of the application. To illustrate the high variability

of results when executing the application on Grid’5000, the

results of the two sample runs are shown in Table 1. There

are many factors which influence the performance in a het-

erogeneous grid environment; for example, for deploying

240 components we needed machines from 6 clusters,

while 260 components required allocating them on one

more cluster. Despite that observed variability, it is possi-

ble to assess which stages have the highest time cost. As

can be seen, the most time-consuming stages are the

creation of components and the actual computing, which

is the time of passing the echo message from Starter

through Forwarders to Echo and back again. The creation

time is relatively long, since it involves opening new ses-

sions to H2O kernels and instantiating a new component,

including class loading. The reason behind the lengthy

Figure 8. Configuration of components in the benchmark appli-
cation. The number of Forwarder components in the collection is
parametrized.

Figure 9. Total execution time of the benchmark application
(version 1) on 258 cores, 6 clusters. The line shows a linear fit
y¼(1.86+0.12)x, R2¼0.98; the error bars represent the standard
error of the fit.

Table 1. Sample results for the duration (in seconds) of applica-
tion stages (version 1) for two numbers of computing cores (n).

clusters n creation connection computing destroy total

7 260 207 25 219 99 551
6 240 90 20 171 103 384
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computation time stems from the implementation of the

CCA connect () and getPort () methods in MOCCA. When

components are connected, the uses side only receives a ref-

erence to the provides side. The actual opening of a session

to the H2O kernel of the provider is performed when the user

component requests a reference to the uses port from the

framework, which is done during application execution

(compute time). In the case of the benchmark application,

there are two such operations per Forwarder instance, which

explains the delay and overall time.

The goal of the version 2 of the benchmark was to

measure the performance of parallel invocation of opera-

tions on the collection of components. The implementa-

tion of concurrent invocation in the Starter component

is based on the cached thread pool executor mechanism

from the java.util.concurrent package. The opening of

sessions and execution of forwarders can then proceed

in parallel. The results of detailed measurements of ver-

sion 2 of the benchmark performed on 100 cores distrib-

uted over 6 clusters are shown in Figure 10. This time,

the computation time is reduced to approximately 5%
of total run time, while for the sequential version it was

nearly 50%. As expected, the asynchronous execution

considerably improves the application performance, but

still we can observe overhead induced by the initial open-

ing of the connections.

In order to distinguish the opening of the H2O session

from the actual remote method invocation on component

ports, the Starter component was further modified to per-

form a series of invocations of the echo operation after

obtaining a reference to the port (version 3). The time of the

first invocation (labeled computing1) was measured sepa-

rately from the average time of the 10 subsequent invoca-

tions (labeled computing). The results are presented in

Figure 11(a), with the computing time (enlarged scale)

shown in Figure 11(b). It can be seen that the computation

time for 10 components (cores) is 0.2 s and for 100 it grows

to nearly 1 s. The average network latency between clusters

measured using the ping command was 0.017 s and the mea-

sured invocation time involves 4 such network hops. By com-

paring these values it can be seen that the component

framework does not introduce significant overhead. It was

observed that the invocation (computation) time grows with

the number of nodes, which must be caused by the combined

effects of the sequential nature of initiating asynchronous

invocations, the single network connection from Starter and

to Echo, as well as the single 2-CPU node these two compo-

nents were deployed on. The invocation time can be poten-

tially further optimized by using an efficient broadcast

algorithm, which was, however, not the goal of this work.

In addition to the benchmarks described above it was

possible to deploy and run the test application on 600 and

800 cores of 8 clusters each. The results shown in Table 2

are in agreement with the relation observed in previous

tests, although more systematic experiments would be

required to confirm this behavior for large-scale deploy-

ments on more than 1000 processor cores. The results

shown here were obtained for the scenario where all the

stages except computing were performed sequentially.

However, the average times required to deploy and destroy

a single component are in the order of 0.5 s.

The results of the large-scale deployment experiments are

very promising. First, it was possible to successfully deploy,

execute, and clean up the benchmark application on up to 800

processor cores of 8 clusters of the Grid’5000 testbed. The

times of various steps of the application lifecycle were mea-

sured and the observed behavior was explained.

Finally, we can conclude that the component-based

approach does not introduce significant overhead and the

environment retains scalability even for large-scale deploy-

ments which are typical for grids and clouds. These results

are consistent with those yielded by tests of other Java-

based frameworks such as ProActive or Satin (Van Nieuw-

poort et al., 2010).

5 Analysis

By combining matching concepts of CCA and H2O, we

have shown that it is possible to develop a programming

environment which satisfies the requirements of e-

Science applications and is capable of exploiting the cap-

abilities of grid and cloud infrastructures. As a result, the

research demonstrated that the proposed methodology can

fulfill the following requirements:

Facilitating high-level programming is supported by

offering a high-level scripting environment or

declaratively using an Architecture Description Lan-

guage approach. The applications described in this

paper have been successfully developed and run

using the scripting approach.

Figure 10. Detailed execution times of the benchmark applica-
tion (version 2) on 100 cores of 6 clusters.
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Facilitating deployment on shared resources of (pos-

sibly custom) component code is possible thanks to

H2O dynamic deployment mechanisms. When utiliz-

ing existing grid infrastructures, such as EGI, a dyna-

mically managed pool of component containers can

be created; moreover on clouds such as EC2 it can

be achieved with even less effort. This was demon-

strated by running the gold cluster simulation and test

benchmarks on these infrastructures. Moreover,

deployment times were measured and explained.

Scalable to diverse environments This feature was

demonstrated by deploying the test applications on

a wide range of resources: from single laptops,

through clusters, to national and international grid

testbeds and cloud infrastructures.

Communication adjusted to various levels of cou-

pling By applying the RMIX communication library,

inter-component bindings can use protocols

adjusted to the environment, from local in-process

connections to P2P overlay networks using JXTA.

This feature was assessed with the case studies

described in Section 4, as well as in our earlier

experiments (Malawski et al., 2005, 2006b; Jurczyk

et al., 2006).

Adapted to the unreliable distributed environment

This is achieved by combining dynamic capabilities

of the CCA model and the H2O platform, which

together enable dynamic deployment and composi-

tion. Moreover, the GridObject abstraction intro-

duced in the GridSpace environment allows

applications to be programmed using high-level

scripts which are independent from the underlying

runtime infrastructure.

Interoperability with other component models was

demonstrated in the example of the Grid Component

Model and the ProActive framework, with the con-

nection of our gold cluster simulation application

with additional components developed in ProActive,

described in detail in Malawski et al. (2007b).

Security was assured by leveraging built-in mechan-

isms of the H2O container, and developing and inte-

grating extensions to support the most widely used

authentication systems, GSI and Shibboleth. This

was particularly important as MOCCA was one of the

middleware technologies supported by the ViroLab

virtual laboratory which was based on GridSpace

(Meizner et al., 2009).

The selection of CCA and H2O as sample technologies

was motivated by pragmatic reasons, since both provide

tools which facilitate development and demonstration of

the prototype programming environment. Nevertheless, it

is important to note that both the model and the platform

are general in scope and it is possible to use other technol-

ogies than CCA and H2O. This was demonstrated by offer-

ing high-level application composition based on a scripting

approach which is technology-neutral. Moreover, the inter-

operability experience with GCM and ProActive shows

(b)(a)

Figure 11. Detailed measurements of the benchmark application (version 3) on 100 cores of 4 clusters. (a) Execution times of the
stages of the benchmark application. (b) Average execution time of the computing stage (enlarged).

Table 2. The duration of subsequent stages of application deploy-
ment on up to 800 cores of 8 clusters. The number of cores is
denoted as n and the execution time is given in seconds.

n creation connection computing destroy total

800 415 80 66 287 849
600 222 49 46 202 518
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that it is possible to combine components from many mod-

els and frameworks into one application, thus hiding the

details of any specific component standard.

The experience with the development of our component

environment and the example applications allows us to

draw some general conclusions about component models

for large-scale scientific applications.

We can conclude that the general advantages of compo-

nent models, such as clear definition of interfaces, support

for third-party composition and definition of deployment

units have proven to be really useful and facilitated the

development and execution of applications. For example,

it was possible to substitute the components in the gold

cluster simulation application or the Weka experiments

for other implementations in a flexible way. Moreover,

changing the application configuration by adding new

components, or adjusting it to different deployment config-

urations, was easy as well. This is particularly important

when the application is under continuous development and

there is a need to migrate between a laptop and the local

cluster of a grid testbed. This approach facilitates rapid

prototyping of applications and the execution of many test

runs which is a characteristic of e-Science. The component

model enforces or encourages some good software engi-

neering practices, such as modularity and extensibility, so

these productivity aspects also have to be taken into

account. For an additional example of the benefits of using

component- or object-based approaches for more tightly

coupled parallel applications, we refer to the research done

within the scope of the ProActive framework (Baduel et al.,

2005; Caromel and Henrio, 2005; Parlavantzas et al.,

2007).

Regarding using H2O and Java more generally as the

virtualization layer for our framework, we can see the obvi-

ous advantages of this approach, namely platform indepen-

dence and dynamic deployment capabilities. Without them

it would be virtually impossible to run our experiments on

such a wide range of resources. Regarding the trade-off

between portability and performance, we believe that given

the inherent complexity of distributed infrastructures and

abundance of compute resources available to scientists

from various sources, the more significant problem is how

to effectively harness the compute power that is available.

Providing a virtualization layer (in this case a pool of com-

ponent containers) simplifies the problem to large extent.

We can also contribute to the discussion comparing grid

and cloud computing models. As noted in Section 3.2, it is

possible to abstract the underlying resources by creating a

virtualization layer in the form of pool of component con-

tainers. However, we observed that the cloud computing

model, where the additional machines can be acquired on

demand is more convenient and better matches the com-

ponent paradigm than the grid model, where resources are

accessible using job submission queueing systems. It is also

possible to treat the cloud infrastructure directly as a large-

scale distributed container, and the virtual machines as

components which can be deployed thereon. This allows

us to overcome some shortcomings of using Java as virtua-

lization layer, but it introduces other challenges related to

cloud computing, such as security, interoperability between

clouds and virtual machine image management (Malawski

et al., 2011).

Regarding communication models in distributed systems,

we have observed also some limitations of our solution. In

CCA, interactions are limited to RPC-style invocations: a

component with a uses port can invoke methods on the con-

nected provides port. This implies a synchronous request-

response model. However, some component models support

asynchronous interactions directly, either as an event system

(as in CCM) or as asynchronous RMI (as in GCM and its

implementation in ProActive). Our experience shows that the

simple RPC model of interactions is not always sufficient or

convenient for many classes of applications, hence work on

supporting new types of component ports remains important.

Nevertheless, it should be noted that this issue emerges at the

level of the base component model, while the higher-level

tools for component composition proposed in this paper

remain valid and usable. As a part of our current and future

work, we have begun adding support for communication

using message queues such as Amazon SQS (Murty, 2008),

which can be useful for reducing coupling between interact-

ing components.

When comparing our solution to other component-based

approaches, such as GCM, one can observe that there are

many similarities which come from the general concepts

of component models. The similarities are confirmed by the

results of our efforts to provide interoperability between

these component models and frameworks (Section 3.6).

There are also some features which distinguish our solu-

tion. In our opinion the most valuable concept is the

high-level scripting approach that we introduced in GScript

and GridSpace (Section 3.1), and we can observe that sim-

ilar high-level scripting approaches have recently gained

importance also for petascale systems (Wilde et al., 2009).

On the other hand we observe that the problems related

to deployment of applications on shared resources are

becoming addressed by Web service and cloud computing

activities. One of the examples is OSGi, which defines how

to package and deploy software bundles, also in remote

containers (Rellermeyer et al., 2007). On the other hand

cloud computing IaaS infrastructures such as Amazon

EC2 allow deployment of virtual machines on demand

using an API very similar to the builder interfaces known

from, for example, the CCA component model. By offering

a different level of virtualization, they solve some of the

issues we encountered with Java-based solutions, related

to isolation and handling native code, but they introduce

other problems characteristic of clouds.

One interesting observation comes from comparing our

scripting-based solution to other workflow systems which

can be used for grid and cloud computing, such as Pegasus

(Deelman, 2010). The advantage of the workflow model

is that by limiting the application structure (to directed

acyclic graphs, for example) the problems of application
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composition, planning and scheduling are simplified.

However, it is not always possible or convenient to express

a given application in the form of a workflow. On the other

hand, our approach to composition using Ruby-based

scripting offers greater flexibility, and the possibility of

combining the composition script with all the programming

language constructs and libraries available to the language.

This on the one hand makes the problem of scheduling

more complex due to implicit dependencies between oper-

ations invoked on GridObjects, but on the other hand it

allows easy prototyping of applications and the addition

of, for example, Web-based interfaces, which proved to

be very useful for applications in the ViroLab Virtual

Laboratory (Bubak et al., 2009).

Finally, we should emphasize how our solution is differ-

ent from similar Java-based frameworks for distributed and

grid computing.

� The main difference between H2O and ProActive is

that ProActive assumes an underlying programming

model based on active objects and restricts the deploy-

ment capabilities to such objects, while H2O does not

have such constraints. For that reason it was convenient

to build a CCA-compliant framework on top of H2O

and later to interface with MOCCA from the GridSpace

scripting environment. Moreover, we observed that the

deployment descriptor mechanism in ProActive is quite

complex and not easy to use, while our high-level

scripting approach was from the beginning designed

to insulate users from low-level deployment details.

Additionally, we have added support for two important

security solutions, namely GSI and Shibboleth, which

were not available in ProActive.

� The main advantage of H2O with respect to IBIS (van

Nieuwpoort et al., 2005) is the lightweight deployment

mechanism and the container concept which fits the

CCA component model very well. At the higher level,

the developers of IBIS focused on supporting more spe-

cific programming paradigms, such as divide-and-

conquer in Satin (Van Nieuwpoort et al., 2010), while

our work was devoted mainly toward the high-level

scripting approach and flexible combination of compo-

sition in space and in time.

� When comparing with higher-order components or ske-

leton frameworks such as HOC (Dünnweber and Gor-

latch, 2009) or ASSIST (Danelutto and Aldinucci,

2006), or Map-Reduce implementations such as

Hadoop, we find them valuable when dealing with

more specific types of problems, e.g. Map-Reduce can

be tailored for processing large-scale genomic data in

the cloud, as in CloudBurst (Schatz, 2009). Conversely,

we pursued mainly a scripting approach as a flexible

way to support exploratory programming and more

flexible experimenting.

� Regarding Web service based solutions, such as XCAT

(Krishnan and Gannon, 2004) or SCA (Beisiegel et al.,

2007), we acknowledge that the advantages of H2O are

lightweight deployment mechanisms and more efficient

communication, which are better suited for scientific

applications.

As discussed in Section 2, many of the desired features

are present in existing frameworks, but we believe that the

combination of them which is offered by our environment

constitutes an interesting contribution and may become

useful for scientific applications.

6 Summary and future work

In this paper we analyzed the problem of programming com-

plex scientific applications on grid and cloud infrastructures.

Since this problem remains an important challenge, a new

methodology was proposed and paired with a program-

ming and execution environment. The methodology is

based on a component programming model, supported

by a virtualization mechanism which is adjusted to the

underlying distributed infrastructure and enhanced with

a set of tools facilitating the programming of applications

at a higher level of abstraction. The component model

can be used as a basis for the proposed methodology,

since it allows flexible composition (in space and in

time), and supports deployment of component code by

using the concept of lightweight containers. It possesses

adaptive capabilities and facilitates interoperability and

security. Moreover, this approach facilitates rapid proto-

typing of applications and executing many experiment

runs, which is typical for e-Science.

The main conclusion is that choosing a component

model such as CCA and a lightweight resource sharing

platform such as H2O is an appropriate solution for scien-

tific applications on grid and cloud infrastructures.

The concepts and methods devised in this paper are of a

general nature and can thus outlive specific technologies

and implementations. Experience gained from experiments

on constructing applications from components and provid-

ing higher-level tools and abstractions will be useful for

both distributed computing technologies: grids and clouds.

Moreover, the methods of creating virtualization layers

over heterogeneous resources will gain importance as

increasingly greater numbers of resource and device types

become available for solving computational problems,

ranging from petascale supercomputers, IaaS cloud provi-

ders, through gaming consoles such as the PlayStation, to

mobile devices. Specifically, adding new cloud providers

to the resource pool would not change the way in which

an application is constructed and deployed. This conclusion

is in agreement with the one stated in Schwiegelshohn et al.

(2010) that grid and cloud computing approaches can com-

plement and benefit from each other.

Scientific applications may be very diverse and include

a broad range of possible scenarios, therefore it is hardly

possible to propose a single programming model which

could cover all of them. It was shown that the component

model can be regarded as one of the most promising models
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when tackling these scenarios. To make it usable, however,

a wide range of high-level tools needs to be provided which

should be complementary in their roles. Examples include

scripting and ADL (descriptor-based) approaches, which

constitute alternative solutions to the component composi-

tion problem. The development of such models and tools

remains a highly relevant research challenge.

A list of future research directions which were iden-

tified includes systematic development of supporting

algorithms, for example for deployment planning;

higher-level programming support using semantic Web

concepts; development of a more integrated environment

to make it more usable; development of a formal model

which would enable reasoning about the properties of

the environment and the application, etc.; and better

support for wrapping legacy applications as components

to enable the environment to be practically applicable in

more real-life applications.
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Van Nieuwpoort RV, Wrzesińska G, Jacobs CJH and Bal HE

(2010) Satin: A high-level and efficient grid programming

model. ACM Transactions on Programming Languages and

Systems 32: 3.

Vecchiola C, Pandey S and Buyya R (2009) High-performance

cloud computing: A view of scientific applications. In 2009

10th International Symposium on Pervasive Systems, Algo-

rithms, and Networks (ISPAN), pp. 4–16.

Vogels W (2003) Web services are not distributed objects. IEEE

Internet Computing 7: 59–66.

Wilde M, Foster I, Iskra K, Beckman P, Zhang Z, Espinosa A

et al. (2009) Parallel scripting for applications at the petascale

and beyond. Computer 42: 50–60.

Wilson N and Johnston R (2000) Modelling gold clusters with an

empirical many-body potential. European Physical Journal D

12: 161–169.

Witten IH and Frank E (2005) Data Mining: Practical Machine

Learning Tools and Techniques, Second Edition (Morgan

Kaufmann Series in Data Management Systems). Waltham,

MA: Morgan Kaufmann.

Zhao Z, Belloum A and Bubak M (2009) Special section on work-

flow systems and applications in e-Science. Future Generation

Computer Systems 25: 525–527.

Author’s Biographies

Maciej Malawski, PhD in computer science and MSc in

computer science and in physics. Researcher and lecturer

at the Institute of Computer Science, AGH and at ACC

Cyfronet, AGH. Postdoc at Center for Research Comput-

ing, University of Notre Dame, USA. Coauthor of over

50 international publications including journal and confer-

ence papers, and book chapters. Involved in the EU IST

ViroLab project, where he was the leader responsible for

the middleware task and for contacts with external users.

Responsible for the Virtual Laboratory developed in the

PL-Grid project. His scientific interests include parallel

computing, grid systems, distributed service- and

component-based systems, and scientific applications.

Marian Bubak, PhD, is an adjunct at the Institute of Com-

puter Science, AGH, a staff member at the ACC Cyfronet,

AGH, and the Professor of Distributed System Engineering

at the Informatics Institute of the Universiteit van Amster-

dam. His research interests include distributed and grid sys-

tems for scientific simulations. He has co-authored about

230 papers. He led the architecture team of the EU IST

CrossGrid Project, he was the Scientific Coordinator of the

K-WfGrid Project and a member of the Integration

Monitoring Committee of CoreGRID. He has served as a

program committee member, chairman and organizer of

several international conferences (HPCN, Physics

Computing, EuroPVM/MPI, SupEur, HiPer, ICCS, HPCC,

e-Science 2006); he is co-editor of 17 proceedings of

international conferences.

Tomasz Gubała, MSc in Computer Science, worked for the

Computational Science Department at the University of

Amsterdam, the Netherlands, as a scientific programmer

and computer science research assistant. He was involved

in the major EU-funded project ViroLab as a chief designer

of the virtual laboratory for infectious diseases. He is an

external PhD student at the Department of Computational

Science at the University of Amsterdam, he works at the

ACC Cyfronet in Krakow as a scientific programmer, and

also applies his research as a part-time commercial solu-

tions developer. His main scientific interests are semantic

modeling of application domains, semantic integration of

tools, distributed computing, and services for e-Science.

Malawski et al. 295

 at PENNSYLVANIA STATE UNIV on September 12, 2016hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


