
Compositional Development from Reusable Components RequiresConnectors for Managing Both Protocols and ResourcesGul A. AghaDepartment of Computer ScienceUniv. of Illinois at Urbana-Champaign, Urbana, IL 61801, USAPhone: (217) 244-3087 Email: agha@cs.uiuc.edu1 IntroductionCurrent component-based approaches for software architecture factor a system into a set of components,which encapsulate computation, and a set of connectors, which describe how components are integratedinto the architecture. This separation of design concerns favors a compositional approach to system design;a methodology which is particularly important when specifying architectures for open (e.g. web-based)distributed systems. Heterogeneity, failure, and the potential for unpredictable interactions yield evolvingsystems which require complex management policies. Allowing architectural speci�cations in which thesepolicies are separated into abstract connectors has clear advantages for system design, veri�cation and reuse.Note that policies for managing distributed systems (e.g. reliability protocols, load balance and place-ment, security constraints, coordination, etc.) not only assert properties on the connections between com-ponent interfaces, but must also enforce constraints on how resources are allocated to components. Forexample, a reliable server may be developed by adding a backup to an existing server and installing aninstance of the primary backup protocol. In addition to recording interactions at the backup, the primarybackup protocol must also ensure that the backup and server use separate, failure-independent resources(e.g. they must execute on separate processors). While component-based models have made great stridesin recent years, we argue that the perceived gap between current middleware systems and the demands oflarge scale distributed applications is due in part to inadequate component models and the inability to de�nemore exible connectors that manage both resources and interactions. Similarly, we claim that architecturaldesign from reusable components will remain an unful�lled goal until architectural connectors become amechanism for �tting components to architectural contexts, rather than de�ning interconnections betweencomponent interfaces.Our argument is based on the observation that component interfaces abstract over functionality but notresource management and that therefore, connectors are limited in their ability to specify system-criticalproperties of distributed systems. We describe key aspects of our argument and potential solutions in theremainder of this paper.1.1 Component Interfaces Have Limited AbstractionCurrent notions of component interfaces are based on a functional representation of the services provided bya component. This abstraction is a natural extension of the object model. However, when placing an objectin an architectural setting, this model fails to describe many important features such as:� Locality properties: The distribution and communication behavior of internal computational ele-ments.� Resource usage patterns: Distinctions such as computation bound versus i/o bound elements,degree of concurrency, and the resources corresponding to critical and transient state.� Existing lower-level constraints: The policies de�ned by sub-connectors in the case of componentswhich encapsulate collections of sub-components.In general, components should provide comprehensive model of architectural context: the relationships be-tween component behavior and architectural features such as those described above. A natural solution would1



be to extend current interfaces with additional functional entry points for selecting, for example, placementpolicies, reliability features (e.g. fault-tolerance protocols), and so on. However, such an approach compli-cates component code by embedding orthogonal, context-speci�c concerns. The more preferable approachwould be to design generalized components which may be customized to particular architectural contexts.Connectors would encapsulate these customizations, preserving compositional system development.1.2 Connectors Not Composable Property Speci�cationsThe structure of component interfaces has limited connectors to representing protocols between interfaces.As described above, however, this limitation prevents the design of even a simple primary backup protocol.We believe that connectors should have the role of enforcing properties over a collection of components, ratherthan adapting their interactions to one another. Given a more exible model of components, connectors mayspecify both the individual protocols which govern interactions as well as global policies which control howcomponents are deployed in a particular architectural setting.In addition to serving as policy speci�cations, connectors may also be required to compose. Moreover,the policies required for a particular interaction may not be determined until run-time. For example, futureweb-based applications, in which the potential set of clients is not known until run-time, may require di�erentcollections of policies depending on the client. That is, policies may be required to compose dynamically.Note that connector composition di�ers from component composition. In particular, while componentscompose by connecting their interfaces, connector composition consists of multiple policies simultaneouslyapplied to a collection of components. For example, where interactions are concerned, connector compositionmay be modeled as a protocol stack applied to the endpoints of a particular interaction. The composition ofresource management policies, on the other hand, may be modeled as a collection of constraints applied tothe resource acquisition behavior of a component. Understanding and designing mechanisms for connectorcomposition is a critical pre-requisite for achieving software development from reusable components.2 Research DirectionsIn order to explore solutions to the problems described above, we suggest two directions for further research:a more descriptive model of component computation, and a comprehensive meta-model which describes howdistributed management policies may be used to customize the underlying component computation model.2.1 A Uniform Computational Model for ComponentsIn order to reason about architectural context, we require a model of component computation which rep-resents component behavior in terms of interactions with a set of default system services. Relative tocomputational behavior, the semantics of these services will remain the same regardless of architecturalcontext. However, the semantics observed by the implementation of these services will vary as componentsare placed in di�erent architectures. This distinction allows compositional development in which generalizedcomponents are �tted to particular architectures not by changing their computational behavior (which wouldbreak encapsulation) but by customizing the architectural implementation of underlying services.We propose the Actor model [1, 2] as a candidate for describing component behavior. Actors providea general and exible model of concurrency which may be used as an atomic unit for building typicalarchitectural elements including procedural, functional, and object-oriented components. Conceptually, anactor encapsulates a state, a thread of control, and a set of procedures which manipulate the state. Actorscoordinate by asynchronously sending messages to one another. Each actor has a unique mail address and amail bu�er to receive messages. Communication is point-to-point and is assumed to be weakly fair. Actorsrequire three services from the underlying system: the ability to send messages asynchronously to otheractors; the ability to create actors with speci�ed behaviors; and the ability to become ready to receive thenext message.Components may be modeled as encapsulated collections of actors in which a distinguished subset, calledliaisons, are used for interactions with other components. Interactions between liaisons correspond to currentnotions of component connection. In particular, by customizing these interactions, speci�c protocols may2



be enforced. Moreover, the architectural context of a component is represented by the service invocationbehavior of internal (i.e. non-liaison) actors. Thus, the collective behavior of a component relative toarchitectural features is captured by the interactions through its liaisons and the resource access patterns ofits internal actors. Both of these behaviors are represented uniformly in terms of invocations of the basicactor services described above, providing a clean representation for architectural customization.2.2 Connectors as Protocol and Policy Speci�cationsBy de�ning component behavior in terms of the invocation of basic system services, we allow exible con-nectors which customize both interactions and resource management. In particular, we may model systemservices in terms of a meta-architecture which describes the implementation of these services on a per-actorbasis. A connector then consists of a collection of meta-level behaviors that, when installed on a set of com-ponent actors, rede�ne the basic system services provided to those actors. By de�ning a notion of meta-levelcomposition, we may compose connectors and thus enforce multiple policies on a collection of components.Liaisons are the only externally visible elements of a component. Thus, connectors which specify proto-cols between components are naturally represented in terms of customizations applied to individual liaisons.However, connectors which specify resource management policies are more challenging because they cus-tomize internal component elements. In particular, we would like to specify arbitrary customizations ofinternal actors while respecting the encapsulation properties of a component. To this end, connectors areconstructed from two types of meta-level behavior:� Roles: A role is a speci�c customization applied to one or more liaisons. Roles are used to implementprotocols on connections between components. For example, an encryption protocol may be imple-mented by customizing the \send" behavior of one liaison (e.g. to encrypt outgoing messages) and the\receive" behavior of another (e.g. to decrypt incoming messages). Roles are installed explicitly on aset of liaisons.� Context: A context is a single meta-level behavior which customizes all actors within a componentand is automatically installed on any dynamically created actors. Contexts are used to manage the al-location of resources. For example, a local load balancing strategy may be implemented by customizingthe \create" behavior of all actors within a component.3 ConclusionModeling components as hierarchical collections of actors provides a exible mechanism for specifying ar-bitrarily concurrent, local computation while restricting remote communication to adhere to a well-de�nedinteraction mechanism. The interface of a component is represented by a dynamic set of liaisons. Thus,component interfaces may change in response to run-time constraints by creating new liaisons to handle newconnections.While components describe an architecture at a functional level, we view connectors as lower level ab-stractions which de�ne how an architecture is deployed in a particular execution environment. By accessingan open implementation of the interface between actors and their underlying system services, connectors im-plement transparent customizations of component behavior. We factor customizations into two categories:roles are explicit customizations of liaisons, while contexts are implicit customizations of all actors withina component. Roles allow the enforcement of interaction policies over connections between components.Contexts support component-wide resource management and coordination. Composition allows multipleconnectors to be applied to a single component.References[1] G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.[2] G. A. Agha. Abstracting interaction patterns: A programming paradigm for open distributed systems. InE. Najm and J.-B. Stefani, editors, Formal Methods for Open Object-basedDistributed Systems, IFIP Transactions.Chapman & Hall, 1997. 3


