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a b s t r a c t

Bisphenol A (BPA) is used in the manufacture of many products and is ubiquitous in the environment.
Adverse effects of BPA on animal reproductive health have been reported, however most of the stud-
ies relied on the approaches in the assessment of conventional histology and anatomical features. The
mechanistic actions of BPA are not clear. In the present study, a murine model was used to study
potential effects of BPA exposure during perinatal and postnatal periods on endocrine functions of
hypothalamic–pituitary–gonadal (HPG)-axis. At the hypothalamic-pituitary level, BPA exposure resulted
in the up-regulation of the expression levels of KiSS-1, GnRH and FSH mRNA in both male and female
pups. At the gonadal levels, BPA caused inhibition in the expressions of testicular steroidogenic enzymes
PR-54
onadotrophin
teroidogenesis

and the synthesis of testosterone in the male pups. Conversely exposure to BPA resulted in a greater
aromatase expression level and the synthesis of estrogen in the female pups. BPA is a weak estrogen
agonist and its effects reported on animal studies are difficult to reconcile with mechanistic action of
estrogen. In this study we hypothesized that the effects of BPA on reproductive dysfunction may be due
to its actions on gonadal steroidogenesis and so the anomalous releases of endogenous steroid hormones.
This non-ER-mediated effect is more potent in affecting the feedback regulatory circuits in the HPG-axis.
. Introduction

In the past century the production of synthetic industrial and
iomedical chemicals, as well as unexpected by-products, have

mposed adverse health consequences on wildlife and humans.
ome chemical contaminants are classified as endocrine disrupt-
ng chemicals (EDCs) since they can interfere with the synthesis,

etabolism and action of endogenous hormones [1,2]. EDCs can
ffect the hormonal system via (but not limited to) estrogenic,
ndrogenic, anti-androgenic and anti-thyroid mechanisms [1,2],
eading to the long-term effects on animal development and health
3–5]. Among different synthetic chemicals, bisphenol A (BPA) is

roduced in one of the largest-volumes and is used in many prod-
cts. Currently over 2.7 million metric tons of BPA have been
roduced for the manufacture of epoxy resins and polycarbonate
lastics as constituents of a wide variety of consumer products,

∗ Corresponding author. Tel.: +852 3411 7053; fax: +852 3411 5995.
E-mail address: ckcwong@hkbu.edu.hk (C.K.C. Wong).
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including water/milk carboys/bottles, food wrap, food cans and
dental fillings [6–12]. Miserably over 100 t are released into the
atmosphere annually [11,12].

BPA can be accumulated along food chains and is detectable
in tissues of both wildlife and humans [12–15]. More impor-
tantly trans-placental transport of BPA was observed and has been
demonstrated in both rodents and humans [16–19]. Hence fetus
may act as a sink of BPA and would be mostly affected during
gestational development [20–22]. Adverse effects of BPA on devel-
opmental and reproductive processes in rodents and primates were
reported [23–30], including increased prostate weight, decreased
epididymis weight, reduced sperm production and decreased
concentrations of LH and testosterone in blood serum [31–34].
Although the adverse effects of BPA on reproduction have been
reported, most of the studies assessed the impacts only at the levels
of conventional histology and the gross comparison of anatomi-

cal features/tissue mass. The mechanistic actions of BPA on animal
reproductive health have not yet been elucidated.

To fill this knowledge gap, in this study the effects
of BPA on expressions of reproduction-related genes along
hypothalamus–pituitary–gonadal (HPG)-axis were studied. Both

dx.doi.org/10.1016/j.reprotox.2010.12.002
http://www.sciencedirect.com/science/journal/08906238
http://www.elsevier.com/locate/reprotox
mailto:ckcwong@hkbu.edu.hk
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ass records of dams during gestation and lactational periods. (C) Body masses of fe

rom cohort-A.

erinatal and/or postnatal exposures were investigated to reveal

he significance of maternal transfer of BPA to fetus/neonates dur-
ng gestational and lactation periods. In a previous in vivo study,
he minimum concentration of BPA that was found to cause statis-
ically significant effects on reproductive performance was 50 mg
PA/kg/day [35]. Accordingly the acceptable human BPA intake
ass and sex-ratio) of the maternal (F0) and pups (F1) from cohort-A (B–D). (B) Body
(left panel) and male pups (right panel) from PND 21 to 49. (D) Sex ratio of the pups

was calculated to be 50 �g/kg/day. However recent studies have

revealed that human exposure to BPA could be considerably greater
than this acceptable level, and daily intake of BPA is not restricted
to the diet [36–38]. Concentrations of BPA in human tissues were
in the ng per ml or per gram range (i.e. blood (0.2–20 ng/ml),
amniotic fluids (1.1–8.3 ng/ml), placenta (11.2 ng/g), breast milk
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Table 1
The DNA sequences of primers used in the present study.

Forward Reverse

Kisspeptin (KiSS-1) GAATGATCTCAATGGCTTCTTGG TTTCCCAGGCATTAACGAGTT
Kisspeptin receptor (GPR54) GCTCACT GCATGTCCTACAG GCCTGTCTGAAGTGTGAACC
Gonadotrophin-releasing hormone (GnRH) GGGAAAGAGAAACACTGAACAC GGACAGTACAT TCGAAGTGCT
Gonadotrophin-releasing hormone receptor (GnRH-R) CTCTATGTATGCCCCAGCTTTCA GCAAAGACAATGCTGAGAATCCA
Luteinizing hormone (LH) CCTAGCATGGTCCGAGTACT GCTACAGGAAAGGAGACTATGG
Follicle-stimulating hormone (FSH) GCTGCTCAACTCCTCTGAAG GGCAATACCTTGGGAAATTCTG
Growth hormone (GH) AGCAGAGAACCGACATGGAA GTTGGTGAAAATCCTGCTGAG
Thyroid-stimulating hormone (TSH) TCGGGTTGTTCAAAGCATGA GGCACACTCTCTCCTATCCA
Prolactin (PRL) CTGCTGTTCTGCCAAAATGTT CAGGGTATGGATGTAGTGAGAAA
LH receptor (LH-R) GCACTCTCCAGAGTTGTCAG AGGGAGA TAGGTGAGAGATAGTC
FSH receptor (FSH-R) TCTGCATGGCCCCAATTTTA GGTAGAACAGAACTAGGAGGATC
Estrogen receptor-� (ER˛) AATTCTGACAATCGACGCCAG GTGCTTCAACATTCTCCCTCCTC
Estrogen receptor-� (ERˇ) TTCCCGGCAGCACCAGTAACC TCCCTCTTTGCGTTTGGACTA
Steroidogenic acute regulatory protein (StAR) GGAACCCAAATGTCAAGGAGATCA GCACGCTCACGAAGTCTCGA

TGGG
CTAAG
TCGTG
ACAG
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Cytochrome P450scc (CYPscc) AGC
Cytochrome P450 17 (CYP17) GAT
Cytochrome P450 19a (CYP19a) CTG
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) ACC

0.28–0.97 ng/ml), follicular fluids (2 ng/ml), semen (5.1 ng/ml) and
rine (1.37 ng/ml) [37,38]. Using concentrations of unconjugated
PA detected in human blood, Vandenberg et al. calculated that
o achieve such internal doses, exposures to BPA would need
o be approximately 0.5 mg BPA/kg, bw/day [37]. This exposure
s approximately 10-fold greater than the dose of 50 �g BPA/kg,
w/day recommended by the USEPA. Using a physiologically based
harmacokinetic model, a comparable exposure (1.42 mg BPA/kg,
w/day) to achieve a steady state human blood level of BPA
0.9–1.6 ng/ml) [39] was estimated. In the present study, doses
f 12–50 mg BPA/kg, bw/day were selected. These doses fall into
he similar order of magnitude of no observed adverse effects
evel (NOAEL), 5 mg/kg/day and low observed adverse effects level
LOAEL), 50 mg/kg/day used in rodents for risk assessment pur-
oses and is also used as a base to calculate the tolerable daily intake
TDI) for humans [40].

. Materials and methods

.1. Animals and administration procedures

All experimental animals were housed and handled in accordance with Guide-
ines and Regulations in Hong Kong Baptist University. Six-week-old male and
emale CD-1 mice were used in this study. The entire study was conducted in
eplicate with mice that were received in two separate batches. Adult mice were
uarantined for 1 week during which time they were observed for any abnormali-
ies. The mice were housed in polypropylene cages with sterilized bedding and were

aintained under controlled temperature (23 ± 1 ◦C) and humidity (55 ± 5%) with
12 h light–dark cycle (06:00–18:00). The mice were given ad libitum access to

tandard rodent food Rodentdiet 5002 (Labdiet, IN, USA) and water (in glass bot-
les). Mice were bred and female mice were checked for vaginal plugs the following

orning. Each copulated mouse (F0) was housed individually, and was randomly
ssigned to two cohorts (A and B). Each cohort was further divided into 3–4 groups
ith approximately 5 pregnant mice per group. The 4 groups of cohort A were gav-

ged in the morning with corn oil (group I-A), or bisphenol A (BPA purity >99.5%,
igma) in corn oil. The doses were: 12 mg/kg/day (group II-A), 25 mg/kg/day (group
II-A), 50 mg/kg/day (group IV-A). The dams were exposed beginning on gestational
ay 1 until weaning (postnatal day, PND 20) (Fig. 1A). Individual dams were checked
or birth at least twice a day and the day when pups were first observed was desig-
ated as PND 0. From PND 21 to PND 49, the pups (F1) produced from cohort-A were
osed by gavage in the morning with the corresponding concentrations of corn oil
r BPA.

Pregnant mice from cohort B were divided into 3 groups but not dosed. Starting
rom PND 20 to PND 49, pups from the respective groups were dosed in the morn-
ng by gavage with corn oil (group 1-B), or 25 mg BPA/kg/day (group II-B), 50 mg
PA/kg/day (group III-B).
.2. Measurement of physical parameters and sampling procedures

Changes in gross anatomy, histology and molecular function were examined.
ody masses of dams and neonates were measured by use of an electronic bal-
nce (Shimadzu, Kyoto, Japan). The number of pups per dam and the sex-ratio were
ecorded on PND 1 and PND 15 respectively. Stillbirths and loss of pups during
CAACATGGAGTCA CCTCTGGTAATACTGGTGATAGGC
AAGCTCAGGCA GGGCACTGCATCACGATAAA
GACTTGGTCATG GGGGCCCAAAGCCAAATGGC

TCCATGCCATCAC TCCACCACCCTGTTG CTGTA

the weaning period were monitored. Male pups produced from cohorts A and B
were sacrificed by cervical dislocation in the morning at PND 50. For female pups,
vaginal smears were examined at PND 50 ± 2 and the pups were sacrificed on
proestrus phase. Blood samples were collected by cardiocenthesis and serum was
prepared by centrifugation at 3000 × g. Hypothalami, pituitaries and gonads were
collected in liquid N2 and were stored at −80 ◦C immediately. Real-time PCR assays
were conducted to measure expression levels of reproductive-related hormones and
receptors for both male and female pups.

2.3. ELISA for gonadotrophins (Gn) and steroid hormones

Serum hormones were quantified in triplicates by use of commercial kits. Follicle
stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone
(P) and estradiol (E2) were quantified by use of kits for the Beckman Coulter ACCESS
2 immunoassay system (Beckman Coulter, Fullerton, CA USA). Concentrations of
testosterone (T) in serum were assayed using ELISA kits (MP Biomedicals, Ohio,
USA) according to the manufacturer’s instruction.

2.4. Real-time PCR

The expression of genes was measured by real-time (quantitative) polymerase
chain reaction (Q-PCR). Primers were synthesized (Table 1) and PCR products were
cloned into pCRII-TOPO (Invitrogen, Carlsbad, CA) and were subjected to dideoxy
sequencing for verification. Cloned PCR fragments with known diluted concentra-
tions (copy number) were then prepared and used for quantification of mRNA by
Q-PCR. Tissue or cellular total RNA was extracted using TRIzol Reagent (Invitrogen)
according to the manufacturer’s instruction. Purified RNA with a A260/A280 ratio
of 1.8–2.0 was used. Briefly, 0.5 �g of total cellular RNA was reversed transcribed
(iScript, BioRad). PCR reactions were conducted using an iCycler iQ real-time PCR
detection system using iQTM SYBR® Green Supermix (Bio-Rad, Pacific Ltd.). The copy
number of transcripts was calculated in reference to the parallel amplifications of
known concentrations of the respective cloned PCR fragments. Standard curves were
constructed and amplification efficiencies were between 0.9 and 0.95. The data were
then normalized to expression of GAPDH mRNA. Based on melting curve analyses
there were no primer–dimers or secondary products formed. There was only one
PCR product amplified for each set of primers. Control amplifications were done
either without RT or without RNA.

2.5. Western blot

For Western blotting, samples were homogenized in sodium dodecyl sulfate
(SDS) lysis buffer (2% SDS and 25% glycerol in 125 mM Tris/HCl (pH6.8)) and sub-
jected to electrophoresis in 10% polyacrylamide gels. Gels were blotted onto PVDF
membranes (PerkinElmer Life Sciences). Western blotting was conducted using
rabbit polyclonal antibodies for StAR (1:500, Santa Cruz, USA), CYPscc (1:1000,
Chemicon USA) and CYP19a1 (1:300, Abcam, UK), followed by an incubation
with horseradish peroxidase-conjugated anti-rabbit antibody (Bio-Rad). Specific
bands were visualized with chemiluminescent reagents (Western-lightening Plus,
PerkinElmer Life Sciences). Blots were then washed in PBS–0.5% Tween20 and re-
probed with rabbit polyclonal antibodies for �-actin (Sigma, USA).
2.6. Estrus cycle monitoring

Estrus cycle in pups was monitored by characterization of vaginal cytology at
approximately the same time each day. Fresh vaginal smear samples were collected
with fine-tipped eyedroppers by inserting the tip into the vaginal orifice approxi-
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he gene expression levels of (A) hypothalamic hormones/receptor, (B) pituitary ho
emale (left panels) and male (right panels) pups. Bars with the same letter are not

ultiple range test (p < 0.05).

ately 1 cm deep. The dropper contained a small volume (0.2–0.25 ml) of normal
aline for flushing. One drop of the solution was placed on a slide. Vaginal smear
as evaluated immediately using a light microscope.
.7. Histological assessment of testis and ovaries

Testis and ovary were fixed in 4% paraformaldehyde, dehydrated in graded
thanol and embedded in paraffin. Serial microscopic sections (5–6 �m) were pre-
ared and 5 slides from each testis were stained with hematoxylin and eosin (H&E,
dal steroidogenic enzymes at the HPG-axis of female and male pups from cohort-A.
es/receptors and (C) gonadal hormone receptors and steroidogenic enzymes of the
cantly different according to the results of one-way ANOVA followed by Duncan’s

Sigma) for histological assessment. The diameter of seminiferous tubules and diam-
eter of lumen were measured by an ocular grid using light microscopy. An estimate
of this parameter was performed by examining 10 fields in 5 histological sections
from each testis.
2.8. Statistical analysis

Statistical evaluations were conducted by use of SPSS16. All data were tested
to be normally distributed and independent by using the Normal Plots in SPSS and
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s the mean ± SEM. Groups were considered significantly different if p < 0.05.

. Results

.1. Survival, growth and reproduction
There were no significant differences in the body masses of
aternal animals (during the gestational and weaning periods)

Fig. 1B) and F1 pups (from PND 21 to PND49) (Fig. 1C) among
roup 1–4 from cohort-A. No statistically significant differences in
female and male pups from cohort-A. Western blot analysis of (A) StAR, (B) CYPscc
ntrol.

perinatal mortality, number of pups per dam (data not shown) or
sex ratio of pups (Fig. 1D) between any of the BPA treatments and
controls were observed. No differences in the weights and sizes of
various organs, such as testis, ovary, seminal vesicles, liver, spleen
and thymus of the pups at PND 50 were noted. Histological exami-
nation of the testis sections of the male pups showed no noticeable
changes in the histology and diameter of the seminiferous tubules
(Supplementary Figure 1A). No observable differences in the num-
ber of growing follicles in ovary sections (Supplementary Figure 1B)

and no noticeable shift in the pattern of estrus cycle were found in
the female pups (Supplementary Figure 1C). Similarly for group 1–3
of cohort-B animals, no significant differences in the growth of the
pups among the control and the treatment groups were observed
(data not shown).
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.2. Hormones and receptors of the HPG-axis

Dose-dependent increases in the expression levels of KiSS-1
nd GnRH were observed in hypothalami of BPA-exposed female
nd male pups of cohort A (Fig. 2A). There were no statistically
ignificant differences in the expression levels of GPR54 mRNA
mong treatments. No changes in ER�, ER� and GnRH-R were
bserved in pituitaries of male or female pups (Fig. 2B), except
5 mg BPA/kg/day which caused a statistically significant down-
egulation of ER� expression in the male pups (Fig. 2B, right panel).
p-regulations of FSH mRNA expressions were observed in female
ups exposed to 25 and 50 mg/kg/day BPA and in male pups
xposed to 25 mg/kg/day BPA (Fig. 2B). There were no significant
ifferences in the transcript levels of pituitary hormones LH, TSH,
H or PRL of pups exposed to BPA and corn-oil or between the BPA
oses. For BPA-exposed pups of cohort B, no noticeable changes

n the gene expression levels were detected in hypothalami and
ituitaries (data not shown).

The expression levels of steroidogenic enzymes in the gonads
f BPA-exposed male and female pups of cohort A were altered
Fig. 2C). In the male pups, both CYPscc and CYP17 expressions were
own-regulated (Fig. 2C, right panel). However in the female pups
xposed to high dose of BPA, the expression levels of CYPscc were
pregulated. In both female and male pups, CYP19a expressions
ere up-regulated (Fig. 2C). The changes in the transcript levels of

he steroidogenic enzymes were consistently demonstrated in the
estern blot data (Fig. 3A–C).
Changes in the expression levels of steroidogenic enzymes were

ssociated with changes in the concentrations of E2 and testos-
erone respectively in serum of female and male pups. Exposure to
PA resulted in a greater concentration of E2 in serum of the female
Fig. 4A) while lesser concentrations of testosterone in serum of the

ale (Fig. 4B). In male pups of cohort-B, the expression levels of
he steroidogenic enzymes CYPscc and CYP17 and concentrations
f serum testosterone were significantly less in the BPA treatment
roups than the controls (Supplementary Figure 2). No noticeable
ffect on the BPA-exposed female pups was observed.

. Discussion

In the present study, effects of BPA exposure on the reproductive
ealth of offspring were highlighted. Responses of conventional
hysical and anatomical parameters, such as number of pups
er litter, survival and growth of pups were monitored in this
tudy. No statistically significant effects on these parameters were
ound. The data are generally consistent with those reported by
ther researchers, using exposure doses from 0.003 to 600 mg
PA/kg, bw/day [41]. However in this study when more sensi-
ive endpoints were recorded (i.e. the expression levels of selected
eproductive-related hormone and receptor genes along the HPG-
xis), significant effects on the regulatory circuits at the HPG axis
ere observed. Gestational and lactational BPA exposure induced

ranscript levels of KiSS-1/GnRH in the hypothalami and FSH in the
ituitaries of the male and female offspring. Altered in the tran-
cript levels of steroidogenic enzymes in the gonads and the serum
evels of the sex hormones in the offspring were demonstrated.

KiSS-1 functions as a gatekeeper for initiation of puberty and for
he regulation of gene expression along the HPG-axis [42,43]. Up-
egulation of expression of hypothalamic KiSS-1 is hypothesized to
timulate synthesis and release of GnRH and Gn in the hypotha-

amus and pituitary, respectively. Because postnatal exposure to
PA caused no statistically significant effects on the expressions of
he genes in either the hypothalami or pituitaries of the pups in
ohort-B, the perinatal period seems to be a critical “exposure win-
ow” for BPA to affect reproductive neural circuits in hypothalami
Fig. 4. Effects of BPA on concentrations of pituitary and gonadal hormones in serum
of (A) female and (B) male pups of cohort-A. Bars with the same letter are not signif-
icantly different according to the results of one-way ANOVA followed by Duncan’s
multiple range test (p < 0.05).

of both male and female mice. In the studies of rats, BPA exposure
were found to affect hypothalamic kisspeptin fiber density, KiSS-1
mRNA expression at the prepubertal stages [44,45], hypothala-
mic ER� expression [46] and pituitary GnRH-signaling [47]. The
present study revealed that the BPA-stimulated hypothalamic KiSS-
1 mRNA expressions induced transcript levels of GnRH and FSH in
the male and female pups of cohort-A (Table 2). This observation is
consistent with the physiological role of the HPG-axis in regulation
of puberty and reproduction in animals [48,49] and highlighted the
possible mechanistic effects of BPA on the local regulatory circuits
of hypothalamus and pituitary [50].

The fact that there are feed-back regulatory mechanisms in place
to maintain hormonal homeostasis along the HPG-axis [51,52]. The
altered expression levels of hormones at the hypothalamus and
pituitary levels may be the cause and/or the consequence of the
changes in gonadal steroidogenesis and sex hormone production.
Our data illustrated that BPA-elicited differential effects on the
expression levels of gonadal steroidogenic enzymes and the con-

centrations of sex hormones in the serum of BPA-exposed male
and female pups. In BPA-exposed female pups from cohort A, the
increases of KiSS-1, GnRH and FSH expressions positively correlated
with the increased expression level of CYP19a (Table 2) as well as
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Table 2
Pearson correlation coefficients (r) between mRNA expressions of the genes along the HPG-axis in pups of cohort-A, after perinatal and postnatal BPA exposure.

Female Hypothalamus Pituitary Ovary

KiSS-1 GnRH FSH LH StAR CYPscc CYP17 CYP19a

Hypothalamus
KiSS-1 1.000
GnRH 0.610* 1.000

Pituitary
FSH 0.850** 0.707* 1.000
LH 0.160 0.227 −0.325 1.000

Ovary
StAR 0.578 −0.278 −0.108 0.280 1.000
CYPscc 0.464 0.221 0.111 −0.484 0.066 1.000
CYP17 −0.418 −0.517* 0.126 −0.152 −0.283 0.225 1.000
CYP19a 0.677* 0.834** 0.376 0.169 −0.573 −0.430 0.219 1.000

Male Hypothalamus Pituitary Testis

KiSS-1 GnRH FSH LH StAR CYPscc CYP17 CYP19a

Hypothalamus
KiSS-1 1.000
GnRH 0.567* 1.000

Pituitary
FSH 0.114 −0.108 1.000
LH 0.222 −0.157 −0.182 1.000

Testis
StAR −0.326 −0.512 0.111 −0.352 1.000
CYPscc −0.598* −0.583* 0.319 −0.092 0.066 1.000
CYP17 −0.772* −0.674* 0.008 −0.152 0.414 0.838* 1.000
CYP19a 0.819* 0.947* 0.154 0.169 0.162 −0.573* −0.780* 1.000

Only parameters which have significant differences are shown here.
Significant correlation is indicated by asterisk(s) (*p < 0.05; **p < 0.01).

Table 3
Correlation coefficients (r) between the concentrations of serum steroid hormones and the mRNA expressions of steroidogenic enzymes in the gonads of pups from cohort-A,
after perinatal and postnatal exposure to BPA.

Dose (mg BPA/kg, bw/day) Female Male

12 25 50 12 25 50

Cohort A
P4 vs. CYP17 0.152 0.243 0.334 T vs. CYP17 0.568* 0.863** 0.746**
P4 vs. CYPscc 0.327 −0.156 −0.243 T vs. CYPscc 0.732* 0.804** 0.902**
P4 vs. CYP19a −0.158 −0.709* −0.533* T vs. CYP19a −0.236 −0.558* −0.659*
P4 vs. StAR 0.332 0.330 0.279 T vs. StAR 0.179 0.659* 0.501*
E2 vs. CYP17 0.119 −0.363 −0.298 E2 vs. CYP17 0.133 0.110 0.143
E2 vs. CYPscc 0.047 0.265 0.374 E2 vs. CYPscc −0.175 −0.123 −0.079

*

S

s
w
n
t
C

T
C
a

S

E2 vs. CYP19a 0.65* 0.554* 0.717
E2 vs. StAR 0.156 0.058 0.079

ignificant correlation is indicated by asterisk(s) (*p < 0.05; **p < 0.01).
erum E2 (Table 3). For the BPA-exposed male pups, although there
ere stimulations on the expressions of KiSS-1, GnRH and FSH, a
egative correlation was observed with the expression levels of
esticular steroidogenic enzymes (Table 2). The down-regulation of
YPscc and CYP17 resulted in lesser serum concentrations of testos-

able 4
orrelation coefficients (r) between the concentrations of serum steroid hormones and th
fter postnatal BPA exposure.

Female

BPA (mg/kg/day) 25 50

Cohort B
P4 vs. CYP17a 0.125 −0.026
P4 vs. CYPscc 0.258 0.152
P4 vs. CYP19a 0.168 −0.257
P4 vs. StAR 0.109 0.046
E2 vs. CYP17a 0.056 −0.112
E2 vs. CYPscc 0.425 0.130.
E2 vs. CYP19a 0.022 −0.166
E2 vs. StAR 0.198 0.279

ignificant correlation is indicated by asterisk(s) (*p < 0.05; **p < 0.01).
E2 vs. CYP19a 0.246 0.421 0.449
E2 vs. StAR 0.314 −0.191 0.420
terone (Table 3). Similar to the male pups of cohort-A, the reduced
testosterone concentrations in the serum of male pups from cohort
B were directly proportional to the decreased expressions of the
testicular enzymes (Table 4). The up-regulations of CYP19a expres-
sion in the testes of male pups from cohort A could further reduce

e mRNA expressions of steroidogenic enzymes in the gonads of pups from cohort-B,

Male

BPA (mg/kg/day) 25 50

T vs. CYP17a 0.674* 0.826**
T vs. CYPscc −0.335 0.524*
T vs. CYP19a 0.102 0.458
T vs. StAR −0.275 0.169
E2 vs. CYP17a 0.049 −0.338
E2 vs. CYPscc 0.265 −0.316
E2 vs. CYP19a 0.095 0.098
E2 vs. StAR −0.044 0.123
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erum testosterone levels. The data of the present study are in
greement with another study where doses of 100–200 mg BPA/kg,
w/day suppressed expressions of steroidogenic enzymes in testes
f rats [53]. Furthermore, an in vitro stimulatory effect of BPA
n CYP19a gene expression was reported in rat Leydig cells [53].
lthough it was suggested by another study that the reduced tes-

icular steroidogenesis could be due to lesser concentrations of LH
n blood serum [31], no significant changes in the transcript levels
f LH in the pituitary or LH-R in the testes of BPA-exposed pups
ere observed in our study.

BPA is a weak estrogen agonist and so its effects observed in
nimal studies are difficult to reconcile with the actions as estro-
en agonists [6]. According to the “spare receptor” hypothesis, the
ormonal system is sensitive to changes in a small proportion
f receptor binding (10%), leading to a great change in cellu-
ar responses [34,54]. Any further increase in receptor occupancy

ould only produce a small increase of cellular responses. There-
ore it seems unlikely that the observed BPA effects are due to the
dditional estrogen potency of BPA relative to the existing endoge-
ous estrogen equivalents. Also, BPA has low binding affinity to
ex-hormone-binding globulin (SHBG) and further minimizes the
otential of BPA to activate membrane SHBG receptor [55–57].
herefore the contribution of BPA to the total estrogen equiva-
ents in the blood of female pups would be considerably small
elative to the estrogen equivalents from endogenous estrogens.
omparatively male pups should be more sensitive to the effects
f BPA. The data reported here indicated that perinatal and post-
atal exposure to BPA was associated with functional changes in
PG-axis of the animals. These functional changes were unlikely
ue to the effects of BPA as an ER agonist. Moreover it has been
eported that steroidogenesis is a major target for EDCs including
PA [58]. Retrospectively BPA may interfere with steroid hormone
ynthesis pathways and the release of the more potent endoge-
ous steroid hormones (i.e. E2 and testosterone) into circulations
6,58–60]. The change in serum sex hormone levels may cause sub-
equent reproductive dysfunction by interfering with the feedback
egulatory mechanisms of the HPG-axis. Our data supported this
otion as the altered serum levels of E2 and/or testosterone were
etected in the BPA-exposed pups. Although significant effects of
PA on HPG-regulatory circuits were identified in this study, the
oses might not be necessarily reflective of general human expo-
ure to BPA. These data are more relevant for the highly exposed or
ccupationally exposed individuals [61].
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Supplementary Figure 1. Effect of BPA exposure on the 
histological structure of (A) testes, (B)
and (C) estrous cycle of pups from cohort-A. An assessment of 
the smear was entered. The
symbols D, E and P are entered to indicate diestrus, estrus and 
proestrus respectively.
Supplementary Figure 2. Effects of postnatal BPA exposure on 
the expressions of gonadal
steroidogenic enzymes and the concentrations of serum sex 
hormones of (A) female and (B)
male pups from cohort-B. Bars with the same letter are not 
significantly different according to
the results of one-way ANOVA followed by Duncan’s multiple 
range test (p<0.05). 
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