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Abstract

Face recognition with variant pose, illumination and expression (PIE) is a challenging problem. In this paper, we propose
an analysis-by-synthesis framework for face recognition with variant PIE. First, an efficient two-dimensional (2D)-to-three-
dimensional (3D) integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a
single frontal face image with neutral expression and normal illumination. Then, realistic virtual faces with different PIE are
synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based
on these representative virtual faces. Compared with other related work, this framework has following advantages: (1) only
one single frontal face is required for face recognition, which avoids the burdensome enrollment work; (2) the synthesized
face samples provide the capability to conduct recognition under difficult conditions like complex PIE; and (3) compared with
other 3D reconstruction approaches, our proposed 2D-to-3D integrated face reconstruction approach is fully automatic and
more efficient. The extensive experimental results show that the synthesized virtual faces significantly improve the accuracy
of face recognition with changing PIE.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Human faces are one of the most important content in
photograph, thus detecting and recognizing faces are ex-
tremely desirable in content understanding of digital pho-
tographs. However, robustly recognition of faces in digital
photographs, especially family photographs, remains a chal-
lenging problem despite of over three decades of research
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efforts [1]. To evaluate the progress made both in theo-
ries and practices, face recognition vendor test in 2002
(FRVT2002) [2] evaluated the state of art algorithms and
systems by large-scale, real-world test datasets. The results
indicate that face recognition (verification) accuracy on
frontal face with indoor lighting has reached about 90%,
which is basically acceptable for general face recognition
tasks. On the other hand, FRVT2002 also expose that face
recognition among different pose, illumination and expres-
sion (PIE) is still far from satisfactory. The reason for the
low face recognition accuracy on multi-view, un-constrained
illumination and arbitrary expression samples is that two-
dimension (2D) face images are greatly influenced by PIE
besides the identity, i.e. unique head geometry and skin
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texture of a person. These differences between the gallery
and probe samples should either be explicitly decoupled
before classification or be implicitly described by the face
model during recognition.

In order to deal with the aforementioned problems, two
different strategies have been conducted in previous works,
i.e. normalization based strategy and expansion based strat-
egy. The first kind of methods either tries to normalize probe
samples to a unified PIE which is the same or similar to
the gallery samples to ensure the generalization capability
of the classifier trained on the gallery samples[3–6], or
tries to extract specific features which are invariant or in-
sensitive to different PIE[7–10]. Besides these 2D meth-
ods, three-dimensional (3D) methods are also explored. In
[11], face samples with out-of-plane rotation are warped
to frontal faces according to a cylinder face model. Vetter
et al. proposed a 3D alignment algorithm[12–14] to re-
cover the shape and texture parameters of a 3D morphable
model. In their solution, the shape parameters are com-
puted from a shape error estimated by optical flow and the
texture parameters are obtained from a texture error. Their
algorithm uses linear equations to recover the shape and
texture parameters irrespective of pose and lighting con-
ditions of the face image. Face recognition is conducted
by matching the recovered shape and texture parameters.
In general, the aforementioned 2D based methods do not
consider the specific structures of human faces, and thus
frequently leads to the worse performance on profile pose
face samples. 3D based methods overcome this problem, but
they either require heavy manual labeling work or are time-
consuming.

In contrast to the normalization based methods, the other
kind of methods tries to utilize more samples which cover
different PIE to enhance the representation capability of the
face gallery. View-based method[15] has shown its effi-
ciencies, but it needs sufficient gallery samples. While for
typical face recognition systems, the quantity and quality of
the training and testing samples are asymmetrical in most
cases. Generally, it is cumbersome to collect sufficient face
samples to represent the identities, but it is convenient to
control the PIE of these face samples during acquisition or
model these factors by sophisticated off-line analysis algo-
rithms. On the other hand, face samples with variant PIE
will appear in test sets, which are difficult to be predicted
or controlled. Actually, such asymmetries are common in
practical systems. For example, in public security applica-
tions such as security check in airports, there are generally
two mug shots, one for frontal face and the other for profile
face, being available to match a suspect. (Sometimes only
one frontal face image is provided.) While the PIEs of the
passengers’ faces are frequently too different to be normal-
ized, the asymmetry between training and testing samples
requires the face recognition system to be able to charac-
terize the face of each identity by as few training samples
as possible, which may be achieved by analyzing training
samples and generating more representative ones.

To enlarge the training set and improve its representative
ability, variant analysis-by-synthesis methods are put for-
ward, i.e., the labeled training samples are warped to cover
different poses or re-lighted to simulate different illumina-
tions[16–21]. Photometric stereo technologies such as illu-
mination cones and quotation image are used to recover the
illumination or relight the sample face images. Shape from
shading[22–25] has been explored to extract 3D geome-
try information of a face and to generate virtual samples by
rotating the result 3D face models.

The aforementioned expansion based algorithms have
achieved improvement in face recognition; however, the
intrinsic drawbacks limit their practice in real applications:
(1) photometric methods assume that the faces have similar
geometries; as a result, if the pose of an unknown face is
not the same as that of the known face or it is not aligned
well, the synthesized faces will not be realistic; (2) shape
from shading algorithm requires that the face images are
precisely aligned pixel-wise, which is difficult to be im-
plemented in practice or even impossible for practical face
recognition applications; and (3) the 3D face alignment
[14] requires manual initialization and the speed (1min for
a face image) is not able to meet the requirement of most
real face recognition systems.

In this paper, we propose an efficient and fully automatic
2D-to-3D integrated face reconstruction method to provide
a solution to the above problems in an analysis-by-synthesis
manner. First, frontal face detection and alignment are uti-
lized to locate a frontal face and the facial feature points
within an image, such as the contour points of the face, left
and right eyes, mouth and nose. Then, the 3D face shape is
reconstructed according to the feature points and a 3D face
database. After that, the face model is texture-mapped by
projecting the input 2D image onto the 3D face shape. Based
on this 3D face model, virtual samples with variant PIE are
synthesized to represent the 2D face image space. Finally,
face recognition is conducted in this enlarged face subspace
after standard normalization of testing sample face images.
The only input to this system is a frontal face image with
normal illumination and neutral expression. The outputs are
images with variant PIE for recognition. Compared with pre-
vious work, this framework has following advantages: (1)
only one single frontal face is required for training, which
avoids the burdensome enrollment work; (2) the synthesized
face samples provide the capability of recognizing faces un-
der complex conditions such as arbitrary PIE; (3) the pro-
posed integrated 2D-to-3D face reconstruction approach is
fully automatic and the speed is fast. It takes about 4 s per
face image (512×512 pixels) on a P4 1.3GHz, 256M RAM
computer, which is about 15 times faster than the 3D face
alignment processing[14].

The rest of this paper is organized as follows. The 2D-
to-3D face reconstruction algorithm and the method of gen-
erating realistic virtual face sample images with variant IE
is described in detail in Section 2. Face recognition ex-
perimental results are provided in Section 3 to justify the
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efficiency of the proposed algorithm. Section 4 gives con-
clusion remarks and discussions about the future directions.

2. Efficient 3D face reconstruction for face recognition

Previous works in face recognition have witnessed the ef-
ficiency of virtual faces and 3D face modeling. In this sec-
tion, we present an efficient and fully automatic framework
for face recognition by performing 3D face reconstruction
and generating virtual faces from a single frontal face with
normal illumination and neutral expression. The framework,
as shown inFig. 1, consists of two parts: (1) 2D-to-3D in-
tegrated face reconstruction; and (2) face recognition using
the virtual faces with different PIEs. The following subsec-
tions will describe these two parts in detail.

2.1. 2D-to-3D integrated face reconstruction

The only required input to the system is a frontal face
image of a subject with normal illumination and neutral
expression. Based on our previous 2D alignment algorithm
[26], 83 key feature points are automatically located. The

Fig. 1. System overview. (The input image is copied from AR face database[34].)

Fig. 2. 3D reconstruction. (a) 2D alignment; (b) 3D shape reconstructed by PCA coefficients of eigenvectors; (c) 3D shape after Kriging
interpolation; (d) 3D model with texture; (e) a new view with PIE.

feature points, as shown inFig. 1, are accurate enough for
face reconstruction in most cases. A general 3D face model
is applied for personalized 3D face reconstruction. The 3D
shapes have been compressed by the principal component
analysis (PCA). After the 2D face alignment, the key feature
points are used to compute the 3D shape coefficients of the
eigenvectors. Then, the coefficients are used to reconstruct
the 3D face shape. Finally, the face texture is extracted from
the input image. By mapping the texture onto the 3D face
geometry, the 3D face model for the input 2D face image is
reconstructed.

2.1.1. Efficient 2D face alignment
Automatic alignment on multi-view face images is still an

open problem. But face alignment on frontal face has been
well studied[26]. In our work, the input 2D face images are
in frontal pose with normal illumination and neutral expres-
sion, which is the most common case in face recognition.
Under such a constraint, a fast and accurate 2D face align-
ment algorithm is deployed to locate key facial points such
as face contour points, eye centers and nose tip. Eighty three
feature points can be aligned, some of which are selected for
face reconstruction, as shown inFig. 2(a). The position of
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these feature points can be modified in case the alignment
is not accurate, which rarely occurs.

2.1.2. 3D face geometry reconstruction
To reconstruct a 3D face model, we use the USF Human

ID 3-D database which includes 100 laser-scanned heads
[13]. Each face model in the database has approximately
70,000 vertices. In this paper, the number of the vertices
is reduced to about 8900 for better performance. Then the
vertices on the lip line are duplicated and the triangles around
the lip line are reconstructed so that the mouth of the face
model can be opened for lip motion and expression, which
will be described later.

In general, matching a 3D geometry to a 2D image is an
ill-posed problem. Fortunately, the differences between the
3D shapes of different face models are not dramatic. In this
paper, the geometry of a 3D face model is represented with
a shape-vectorS = (X1, Y1, Z1, X2, . . . , Yn, Zn)T ∈ R3n,
which contains theX, Y, Z coordinates of itsn vertices.
Since all facial feature points such as corners of eyes and
tips of nose of different faces are fully corresponded by
means of their semantic position, PCA is appropriate to be
conducted to get a more compact shape representation of
face by the primary components. LetS be the average shape,
P ∈ R3n×m be the matrix of the firstm eigenvectors (in
descending order according to their eigenvalues).A new face
shapeS′ can be expressed as

S′ = S + P ��, (1)

where��=(�1, �2, . . . , �m)T ∈ Rm is the coefficients of the
shape eigenvectors.

In the alignment step, it is assumed thatt 2D facial feature
points are selected for 3D reconstruction.t vertices, corre-
sponding to the feature points, are also chosen on the face
geometry. LetSf =(X1, Y1, X2, . . . , Xt , Yt )

T ∈ R2t be the
set ofX, Y coordinates of the feature vertices on the face.
Thus,Sf is the sub shape-vector ofS. According to Eq. (1),
theX, Y coordinates of those feature vertices of a new face
shapeS′

f
, assumed zero centered, can be expressed as

S′
f = Sf + Pf ��, (2)

whereSf ∈ R2t and Pf ∈ R2t×m are theX, Y coordi-
nates of the feature vertices onS andP, respectively. To
transform face coordinate to image coordinate, letS′′

f
be

the transformed shape, which can be obtained from the face
alignment result, then

S′′
f = cS′

f + T , (3)

where T ∈ R2t is the translation vector andc ∈ R is
the scale coefficient. Note that since the 2D face image
and 3D face model are both frontal, the rotation matrix is
not required. SincePf is an orthogonal matrix,�� can be

derived from Eq. (2) as

�� = (PT
f Pf )−1PT

f (S′
f − Sf ). (4)

To avoid the outliers, the priors are applied to constrain��,
and Eq. (4) is changed to

�� = (PT
f Pf + ��−1)−1PT

f (S′
f − Sf ), (5)

where� = diag(v1, v2, . . . , vm), � is the weighting factor,
andvi is the ith eigenvalue.

In Eqs. (2) and (3), there are five variables(��, S′
f
, S′′

f
,

T , c). To compute the face geometry coefficient��, an itera-
tive procedure is applied as outlined below.

Before the first iteration, letSf be the initial value ofS′
f
.

Step1. LetTx andTy be the average offsets of allt feature
points ofS′′

f
to the origin alongX, Y axes, respectively, then

(Tx, Ty)T = 1

t

t∑
i=1

S′′
f i .

ThenT = (Tx, Ty, . . . , Tx, Ty)T and

c =
∑t

i=1

〈
S′′
f

− (Tx, Ty)T, S′
f

〉
∑t

i=1 ‖S′
f
‖2 ,

S′
f
can then be computed from Eq. (3).
Step2: The face geometry coefficient�� can be computed

using Eq. (5); and then a newS′
f
can be obtained by applying

�� to Eq. (2).
The geometry coefficient�� generally converges to a fixed

value after repeating step 1 and step 2 for mostly 10 itera-
tions. Then we apply�� to Eq. (1) to get the whole 3D face
geometryS′. The reconstructed face shape is shown asFig.
2(b). The face geometry looks quite well, but theX, Y co-
ordinates of the feature vertices on the face are somewhat
different from theX, Y coordinates of the feature points on
the 2D image. The reason is that the shape space is limited
by the 3D face database. To ensure that the feature vertices
are exactly correct, theX, Y coordinates of the feature ver-
tices on the face are forced to be aligned to theX, Y coor-
dinates of the feature points on the 2D image. According to
the displacements of the feature vertices, the Kriging inter-
polation method[27] is used to compute the displacement of
non-feature vertices. For interpolation purpose, radius base
function (RBF) is a good alternative. By using the method
we described above, the final 3D face geometry is recon-
structed with the accurate feature vertices. The final 3D face
shape is shown asFig. 2(c).

2.1.3. Texture extraction
In this paper, the input image is projected orthogonally

to the 3D geometry to generate the face texture. Compared
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Fig. 3. Texture interpolation.

with Vetter’s method[12], our texture extraction is real
time, and the extracted texture has detailed and realistic fea-
tures, which is important for face recognition. On the other
hand, the face texture can also be reconstructed by PCA or
other subspace methods. But the insufficient training data
compared to the high dimensional face texture space, i.e.
curse of dimension, limits the reconstruction effect so that
it is not practical here, which has been indicated in our
experiments.
After the 2D image is directly mapped to the 3D geome-

try, no corresponding color information is available for some
vertices because they are occluded in the frontal face image.
Therefore, it is possible that there are still some blank areas
on the generated texture map, which need to be corrected, as
shown inFig. 4(a). In this paper, a linear interpolation algo-
rithm is employed to interpolate the blank areas by known
colors. As shown inFig. 3, let P be one of the points in the
blank area. It is assumed thatn radials, which averagely

Fig. 4. Fill the blank areas in the texture. (a) Texture before filling the blank; (b) texture after filling the blank,n=4; (c) texture after filling
the blank,n = 16.

divide the 360◦, come fromP. Let Pi (i = 1,2, . . . , n) be
the points at which the radials intersect the known color
areas. Then,C(R, G, B), theRGBcolor of P, is computed
by using the following equation:

C(R, G, B) =
∑n

i=1(�iCi(R, G, B))∑n
i=1 �i

, (6)

where�i = 1/Di andDi is the distance betweenP andPi .
If Pi is at the edge of the image, then�i is set to 0. The non-
interpolated texture image inFig. 4(a) can be compared with
the interpolated texture image inFig. 4(b) and (c), where
the numbers of radialsn are 4 and 16, respectively. The
interpolated areasmay be not accurate enough and lose some
details, but most of them are near the neck and ears, which
are not crucial to face recognition. The texture mapped face
model is also shown inFig. 2(d) and (e). For interpolation
purpose, the thin-plate relaxation algorithm[28] may be a
good alternative.

2.1.4. Discussion
Only 100 3D heads in the USF Human ID 3D database are

used for PCA in this paper. The face space spanned by these
models is quite limited. For reconstruction purpose, more
3D heads are needed. If there are more 3D head samples, the
reconstruction results should be more accurate, especially
the vertices’s positions along theZ-axis.
Another promising method to improve the 3D reconstruc-

tion accuracy is to add one additional input face image with
the profile pose. Alignment on the side view acquires the ac-
curateZ coordinates of the feature vertices. Combined with
the alignment on the frontal image, the accurate positions of
the feature vertices can be obtained. The reconstructed 3D
model will be more accurate by using the accurate feature
vertices. However, the automated alignment algorithms on
profile faces are not as robust as those on frontal faces, thus
manual alignment will be required.
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Fig. 5. Poses. The first and third lines are poses in CMU-PIE. The second and fourth lines are the corresponding poses generated by rotating
the reconstructed model.

2.2. Synthesis with different pose, illumination and
expression

In natural environments, PIE remains a critical and chal-
lenging issue in face recognition algorithms. To increase the
accuracy of face recognition, acquiring sample face images
with variant PIE are necessary. However, it’s difficult to
generate new face images with different PIE from a frontal
image using any existing 2D-to-2D methods. The problem
could be solved by proposed approach to reconstructing the
3D face model from the given 2D face image. The recon-
structed 3D face model is then rotated to generate images
with variant poses. By applying different lights, variant il-
luminations are created. Finally, a MPEG-4 based facial an-
imation technique is used to generate expressions, which
are also an important factor in face recognition but are not
considered in most researches.

2.2.1. Pose
Pose variation is the primary source of difficulties for face

recognition. The difficulties have been documented in the
FERET test report and suggested as a major research issue
[29]. The performance of face recognition systems drops
dramatically, when large pose variations are presented in
the input images, especially when the system’s training data

have few non-frontal images. A reasonable way to improve
multi-view recognition is to use multiple training views. In
our work, it is very easy to generate any views by rotating
the 3D model to the right pose. The poses in CMU-PIE
[30] and those generated by our approach are compared
in Fig. 5.

For face recognition training purpose, the positions of
feature points on the multi-view face images are needed. In
general, face alignment on arbitrary multi-view face images
is quite difficult, and no technique is able to automatically
solve this problem with high accuracy so far. Most multi-
view face recognition methods require manually labeling
these feature points on large number of training and testing
sample images to align them, which is inaccurate and time-
consuming.

In the proposed method, since the multi-view images are
generated by rotating the 3D face model, the alignment on
the new face images is no longer a problem. When a multi-
view face image is projected after rotating the 3D model, the
positions of facial feature points are obtained by projecting
the corresponding feature vertices on the 3D model to 2D
image, i.e., no more alignment is required on the generated
multi-view images. The acquisition of the feature point po-
sitions on the multi-view face images is thus automatic and
accurate.
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Fig. 6. Illuminations. The first and third lines are CMU-PIE images. The second and fourth lines are the corresponding generated images.

2.2.2. Illumination
Illumination is another important issue for face recogni-

tion. The same face appears different due to changes in light-
ing. The changes induced by illumination are often larger
than the differences between individuals.

In our work, in order to generate variant illumination im-
ages of a 3D face model, two lights are applied to the 3D
models. One is an environment light; the other is a mov-
able spot light. The whole face model illumination is con-
trolled by the environment light. The specular areas and
shadows of the face model are generated by the spot light.
Several attributes of the spot light can be controlled, includ-
ing ambient, diffuse, specular and position. Some illumina-
tion images are imitated with CMU-PIE.Fig. 6 shows that
the generated illuminations of the images are quite similar
to CMU-PIE. If enough lights are applied, most common
illumination conditions can be generated.

In this paper, it is assumed that all the face surfaces are
in the same material. Actually, the materials in different
face are different. Even for the same face, the materials are
also different in the different areas. For example, eyeballs
should reflect more lights than skins. In the future work,
the complex face material should be considered to simulate
more real illuminations.

2.2.3. Expression
In general, expression changes are not as important as

pose and illumination changes for face recognition. But,
expression changes are still a problem to be solved in order
to achieve robust face recognition.

In our work, the MEPG-4 based animation framework is
used to drive the 3D face model and generate different ex-

pressions[31,32]. In the MPEG-4 standard, there are alto-
gether 68 facial animation parameters (FAPs), each of which
expresses the motion in a specific direction on specific re-
gion of the face. Complex facial expressions are generated
by combining all the FAPs. FAPs are a set of general pa-
rameters. One specific set of FAPs denotes one expression.
It is independent of the facial model being used.

In the MPEG-4 based facial animation system, the mo-
tion trajectory of each mesh vertex is piece-wise linearly
approximated. Precise results can be acquired by increasing
the segments. Each vertex within the control region of each
FAP has a 3D motion factors in each segment of a specific
FAP. Facial animation table (FAT) is combined by these 3D
motion factors, which depicts how the FAP influences the
facial model to perform the desired animation. Getting the
value of an FAP, FAT provides corresponding information to
convert the FAP to facial animation. FAT depends on facial
models being used. The FAT for our general facial model
has been built up manually. But, it can be only applied to
those facial models that have the same topology as the gen-
eral model. In this paper, the 3D facial models have different
topology. To drive these 3D facial models, a novel approach
is proposed to build the FAT for the 3D models based on
the known FAT of the general facial model.

Since the face muscle motions are mainly within theX, Y

plane, we mainly compute the motion factors of mesh ver-
tices in theX, Y plane when constructing FAT for a new
model. First, the Kriging interpolation method[27] is used
to transform the general model according to the extracted
feature points on the new model. In this way, the vertices
on the general model have the same physical meaning as
those on the new model. Second, each vertex on the new
model is projected orthographically onto theX, Y plane of
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Fig. 7. Expressions. (a) The first line is the expressions in CMU-PIE; the second line is the generated expressions corresponding to the first
line; (b) other generated expressions.

Fig. 8. CMU-PIE database camera and light positions. (a) A plot of the azimuth and altitude angles of the cameras; (b) 3D locations of the
cameras, the flashes and the head. (The pictures are copied from[35] and [30].)

the general model. From the projection of each vertex, it is
determined that which FAP controls this vertex and what
the motion factors should be for this vertex. After all the
mesh vertices are computed, the FAT for the new model
can be obtained. The detail to construct FAT for arbitrary
3D face models has been thoroughly investigated in earlier
works [33]. By the FAT built for the reconstructed 3D face
model in this paper, variant expressions are generated. As
Fig. 7(a) shows, the expressions in the first line are images
in CMU-PIE. The expressions in the second line, which
corresponds to the first line, are generated by our MPEG-
4 animation system.Fig. 7(b) shows some other generated
expressions.

3. Experiments

In this work, we aim at exploring face recognition per-
formance across variant PIE. We systematically evaluated
the performance of our algorithm compared with the con-
ventional algorithm that do not use the virtual faces synthe-
sized from the personalized 3D face models. The CMU-PIE
database is used in the evaluation since it takes into ac-
count all the three factors. The CMU-PIE database contains
68 subjects with 41,368 face images, captured by 13 syn-
chronized cameras and 21 flashes, under varying PIE. The
CMU-PIE database camera and light positions are shown in
Fig. 8.
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Table 1
Recognition accuracy comparison between face recognition with/without virtual face using PCA

Pose. 22 25 02 37 05 09 07 29 11 14 31 34
Con (%) 3.9 5.3 4.5 6.5 65.9 82.7 79.8 48.5 6.0 4.4 3.8 4.3
Vir (%) 12.0 34.3 28.4 44.7 67.4 83.8 83.0 46.5 42.3 25.2 14.3 6.3
Vir+ (%) 13.6 34.7 29.8 45.2 66.6 83.2 82.5 46.7 43.0 17.0 10.7 6.4

(Con: conventional algorithms; Vir: using virtual faces; Vir+: using virtual face for special pose.)

Table 2
Recognition accuracy comparison between face recognition with/without virtual face using LDA

Pose. 22 25 02 37 05 09 07 29 11 14 31 34
Con (%) 4.4 4.3 3.8 4.7 64.7 75.9 79.6 48.6 6.3 6.7 4.7 4.5
Vir (%) 12.6 38.3 36.3 53.0 77.4 78.2 81.4 54.0 45.2 22.9 17.5 8.4
Vir+ (%) 15.6 35.1 28.6 53.3 84.9 85.0 92.1 68.0 48.4 22.1 17.6 9.2

(Con: conventional algorithms; Vir: using virtual faces; Vir+: using virtual face for special pose.)

We used the frontal face at pose-27 with neutral expres-
sion and environment light to automatically construct the
personalized 3D faces. All the 68 3D faces are constructed
and the virtual faces with different PIE combinations are
synthesized; the comparisons with the real faces are illus-
trated atFigs. 5–7. Note that all the reconstruction is fully
automatic. Only one frontal face of a subject with normal
illumination and neutral expression is required to construct
the personalized 3D face model of the subject, which can
be easily satisfied in real application.

In all the experiments, the conventional method used only
the frontal faces at pose-27 for training and the other faces
are all used for testing. The comparison experiments have
been conducted to evaluate the effectiveness of the virtual
faces from constructed 3D face model for face recognition
with arbitrary PIE. We used two traditional methods, princi-
pal component analysis (PCA) and linear discriminant anal-
ysis (LDA), to perform dimensionality reduction, and we
used the nearest neighbors (NN) as similarity matching ap-
proach for classification. The results using PCA and LDA
are listed inTables 1and2. From the listed results, we have
the following observations:

(1) In general, face recognition accuracy using virtual faces
from reconstructed 3D faces is higher than conventional
algorithms, especially for the experiment using LDA and
with the pose information ahead.

(2) Our proposed algorithm significantly improved the per-
formance in half-profile views, like pose 37 and 11;
while for the profile views, the improvements are lim-
ited. This is because that the reconstructed texture for
the unseen points in frontal view is not accurate enough.
We are exploring new methods for realistic missing data
reconstruction, like using the 3D texture models.

(3) With prior pose information, the performance was im-
proved than that using all the virtual faces and one single

global model, when we constructed separated models
for each view.

4. Conclusions

Experimental evaluation of face reconstruction for face
recognition have illustrated that the proposed fully auto-
matic system is efficient and of high accuracy and robust-
ness. Compared to other related works, this framework has
following highlights: (1) only one single frontal face is re-
quired for face recognition and the outputs are realistic im-
ages with variant PIE for the individual of the input im-
age, which avoids the burdensome enrollment work; (2) the
synthesized face samples provide the capability to conduct
recognition under difficult conditions of complex PIE; and
(3) the proposed 2D-to-3D integrated face reconstruction
approach is fully automatic and faster than other 3D recon-
struction approaches.

In order to compare with the most related work by Blanz
et al.[12], Table 3lists the differences between their method
and ours. In this table, the two methods are compared in
brief on input requirements, initialization, shape and texture
reconstruction methods and overall system performance. As
a result, our approach is fully automatic and much faster
than their method. Although the input requirements in our
method are stricter than theirs, it is not difficult to satisfy
such requirements, which are quite general in most scenar-
ios.

In the work presented in this paper, the CMU-PIE image
database was used in the experiments. The images captured
by camera c27 with only environment light are used as the
input images to reconstruct 3D face models. The images
captured by camera c27 should be frontal in CMU-PIE.
Actually, many of these “frontal” images are not really in
frontal. Such input images contribute to the errors in the
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Table 3
Comparison with Vetter’s work

Vetter’s method Our method

Input Single face image with arbitrary pose, illumination Single frontal face image with homogeneous illumina-
tion, neutral expression

Initialization Manually initialization is required Fully automatic
Shape Shape parameters are computed from a shape error es-

timated by optical flow
The 3D shape is recovered by the correspondence be-
tween the 2D–3D fiducial feature points and a statistical
model

Texture Texture parameters are obtained from the texture error The 3D face texture is directly mapped from the 2D
input image

Speed About 1min per face image Less than 5 s for a 512×512 face image on P4 1.3GHz
CPU

3D reconstruction and the generated images. If all the input
images are constrained strictly with frontal pose, normal
illumination and neutral expression, the experiment results
should be more encouraging.

In the future works, the 3D alignment work which re-
constructs 3D face model based on non-frontal face images
will be investigated based on the method introduced in this
paper. Reconstruction based on multiple face images with
in-plane or out-plane variance will also be considered to im-
prove the precision of the reconstructed shape and texture.
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