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Abstract

Based on a loss network model, we present an adaptive source routing schemefor a large, hierarchically-

organized network. To represent the “available” capacity of a peer group (subnetwork), we compute the

average implied cost to go through or into the peer group. Such impliedcosts reflect the congestion in

the peer group as well as the interdependencies among traffic streams in the network. We prove that both

a synchronous and asynchronous distributed computation of the implied costs will converge to a unique

solution under a light load condition. Furthermore, we present a more aggressive averaging mechanism

that, with sufficient damping, will converge to a unique solution under any traffic conditions. One of

the key features of this paper is an attempt to quantify routing “errors” due to inaccuracies caused by

aggregation. In fact, our experimental results show that these approximations are reasonably accurate

and our scheme is able to appropriately route high level flows while significantly reducing complexity.

In addition, we show how on-line measurements and multiservice extensions can be incorporated into

the routing algorithm.
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1 Introduction

In order to provide guaranteed Quality of Service (QoS), communication systems are increasingly drawing

on “connection-oriented” techniques. ATM networks are connection-oriented by design, allowing one to

properly provision for QoS. Similarly, QoS extensions to the Internet, such as RSVP [5, 14, 39], make

such networks akin to connection-oriented technologies. Indeed, the underlying idea is to reserve resources

for packet flows, but to do it in a flexible manner using “soft state” which allows flows to be rerouted (or�M. Montgomery is now at Oak Ridge National Laboratory.
†G. de Veciana is supported by a National Science Foundation Career Grant NCR-9624230 and by Southwestern Bell Co.
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“connections” repacked [18]). Similar comments apply to anIP over ATM switching environment, where

IP flows are mapped to ATM virtual circuits. In light of the above trends and the push toward global

communication, our focus in this work is on how to make routing effective and manageable in a large-scale,

connection-oriented network by using network aggregation. We shall first introduce hierarchical source

routing, explain the basics of our routing algorithm, and give an example of the complexity reduction that it

can achieve.

1.1 Hierarchical source routing: motivation and example

In a large-scale network, there are typically multiple paths connecting a given source/destination pair, and

it is the job of the routing algorithm to split the demand among the available paths. The routing algorithm

which we introduce in this paper fits nicely into the ATM Private Network-Network Interface (PNNI) frame-

work [2], but it can also be thought of as a candidate for replacing the Border Gateway Protocol (BGP) [14]

in the Internet that would split flows in “IP/RSVP” routing. Central to our algorithm is theimplied cost

[17] for a connection along a given path which measures the opportunity cost or expected loss of revenue

resulting from accepting a connection. Using implied coststakes into account the possibility of “knock-on”

effects (due to blocking and subsequent alternate routing)[17] and is geared towards achieving anetwork

optimal routing algorithm.

To make good decisions and provide acceptable QoS, it is desirable to have a global view of the network

at the source when making routing decisions for new connections. Thus, source routing, where the source

specifies the entire path for the connection, is an attractive routing method. It has the additional advantage

that, in contrast to hop-by-hop routing, there is no need to run a standardized routing algorithm to avoid

loops and policy issues such as provider selection are easily accommodated. Propagating information for

each link throughout the network quickly becomes unmanageable as the size of the network increases, so

a hierarchical structure is needed, such as that proposed inthe ATM PNNI specification [2]. Groups of

switches are organized intopeer groups(also referred to asclouds), and peer group leaders are chosen to

coordinate the representation of each group’s state. Thesecollections of switches then form peer groups at

the next level of the hierarchy and so on. Nodes keep detailedinformation for elements within their peer

group. For other peer groups, they only have an approximate view for the current state, and this view can

become coarser as the “distance” to remote areas of the network increases. We refer to the formation of

peer groups asnetwork aggregation. Besides reducing the amount of exchanged information, a hierarchical

structure also makes addressing feasible in a large-scale network, as demonstrated by the network addressing

of IP, and it permits the use of different routing schemes at different levels of the hierarchy. Prior work in

the area of routing in networks with aggregated, and thus inaccurate information, can be found in [12, 25].

By combining a hierarchical network with (loose1) source routing, we have a form of routing referred to

ashierarchical source routing. As an illustration, Fig. 1 shows a fragment of a larger network (Network 0)

in which Peer Group 2 contains Nodes 1, 2, and 3.2 These nodes contain 3, 5, and 4 switches, respectively.

1In loosesource routing, only the high-level path is specified by the source. The detailed path through a remote peer group is
determined by a border switch of that peer group.

2These nodes are peer groups in their own right, but we use the term “node” here to avoid confusion with the peer groups at the

2



1

2
3

4

5
1

2 3

4

3

Node 1

Node 2 Node 3

Peer Group 2

Destination Address: 0.2.3.4

Peer Group 3Peer Group 1

1

2

Source Address: 0.2.1.2

Figure 1: Illustration of hierarchical addressing and source routing.

To specify, for example, the source at Switch 2 of Node 1 of Peer Group 2 in Network 0, we use the 4-tuple

0.2.1.2. The example in Fig. 1 shows a source at 0.2.1.2 and destination at 0.2.3.4. The source 0.2.1.2

has specific information about its peer switches 0.2.1.1 and0.2.1.3, but only aggregated information about

nodes 0.2.2 and 0.2.3. The result of performing source routing is a tentative hierarchical path to reach

the destination, e.g., 0:2:1:2! 0:2:1:1! 0:2:2! 0:2:3 which specifies the exact path locally (0:2:1:2!
0:2:1:1) then the sequence of remote nodes to reach the destination(! 0:2:2 ! 0:2:3). Upon initiating

the connection request, the specified path is fleshed out, and, if successful, a (virtual circuit) connection

satisfying prespecified end-to-end QoS requirements is setup. In this case, the border switches 0.2.2.4 and

0.2.3.2 in Nodes 2 and 3, respectively, are responsible for determining the detailed path to follow within

their respective group. Furthermore, each switch will havea local Connection Admission Control (CAC)

algorithm which it uses to determine whether new connectionrequests can in fact be admitted without

degraded performance. If the attempt fails,crankbackoccurs, and new attempts are made at routing the

request. (Our model will ignore crankback.)

1.2 Explicit vs. implicit representations of available capacity

To do routing in this hierarchical framework, we must decidehow to represent the “available” capacity of a

peer group, either explicitly or implicitly. The explicit representation takes the physical topology and state

of a peer group and represents it with a logical topology plusa metric denoting available capacity that is

associated with each logical link. There may also be other metrics such as the average delay associated with

logical links.

next level of the hierarchy.
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Figure 2: Peer group with three links and two routes.

Typically, the first step in forming the explicit representation is to find the maximum available bandwidth

path between each pair of border nodes, i.e., nodes directlyconnected to a link that goes outside the peer

group. If we then create a logical link between each pair of border nodes and assign it this bandwidth

parameter, we have taken thefull-meshapproach [22]. If we collapse the entire peer group into a single point

and advertise only one parameter value (usually the “worst case” parameter), we have taken thesymmetric-

point approach [22]. Most proposed solutions lie somewhere between these two extremes.

In the ATM PNNI specification [2], the baseline representation is a star in which each spoke has the

same parameter value associated with it. More complex representations are permitted in whichexceptions

have a different associated parameter value than the default. These exceptions can be a spoke of the star or

an additional logical link that connects a pair of border nodes.

Another alternative is to start with the full-mesh approachand encode the mesh in a maximum weight

spanning tree [22]. External nodes can recover the full-mesh representation from the spanning tree if they

desire. Whereas the symmetric star topology approximates the “capacity region” of the peer group by a

hyper-cube region, the spanning tree approximates it with ahyper-rectangle. A simple example will help

clarify the meaning of the term “capacity region.” Suppose we have the three-link peer group shown in

Fig. 2 with available link capacitiesC1, C2, andC3 and routesr1 andr2. Let f1 ( f2) be the current amount

of capacity in use by connections on routesr1 (r2). Then we have three link constraints:f1 �C1, f2 �C2,

and f1+ f2 �C3, plus the requirement thatf1 � 0 and f2 � 0. These constraints define the capacity region

as shown in Fig. 3. The symmetric star topology approximatesthe capacity region with a square defined by

f1 � min[C1;C2], f2 � min[C1;C2], f1 � 0, and f2 � 0. The spanning tree approximates it with a rectangle

given by f1�C1, f2�C2, f1� 0, andf2� 0. It should be clear from Fig. 4 that neither of these approaches

captures the sharing of capacity by routesr1 andr2 on link 3, leading to a somewhat optimistic advertised

capacity.

A third approach is to approximate the capacity region with ahyperplane [38]. For the example shown

in Fig. 3, one possible choice would be the triangle given byf1+ f2 �C3, f1 � 0, and f2 � 0 (see Fig. 4).
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Figure 3: The capacity region based on the link constraints imposed on the flows along the two routes.
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Figure 4: Various approximations to the capacity region in Fig. 3.
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When coupled with prediction of offered loads, the hyperplane approach has the potential to provide a more

accurate picture of the available capacity than the star or the spanning tree.

None of the explicit representations, however, are withoutproblems. For example, as mentioned earlier,

the maximum available bandwidth paths between different pairs of border nodes may overlap, causing the

advertised capacity to be too optimistic. Another questionable area is scalability to larger networks with

more levels of hierarchy.

1.3 QoS routing based on implied costs

A more important problem is how the representation couples with routing. Can we really devise an accurate

representation that is independent of the choice of routingalgorithm? None of the explicit representations

address the effect that accepting a call would have on the congestion level both within the peer group and

in other parts of the network due to interdependencies amongtraffic streams. For this reason, we introduce

an implicit representation based on the average implied cost to go through or into a peer group that directly

addresses this issue and is an integral part of the adaptive hierarchical source routing algorithm that we

propose.

Such implied costs reflect the congestion in peer groups as well as the interdependencies among traffic

streams in the network, and, independent of their use in a routing algorithm, they may be useful to network

operators for the purpose of assessing current congestion levels as well as providing information valuable

for determining the best location for future capacity upgrades and how much they should be willing to pay

for them. A rough motivation behind using the average is that, in a large network with diverse routing, a

connection coming into a peer group can be thought of as taking a random path through that group, and hence

the expected cost that a call would incur would simply be the average over all transit routes through that

group. We will develop two closely related approximations:one in which the computed average implied

costs are never used for the local portion of a route, and a more aggressive approximation in which the

average implied cost is used locally as well as remotely for transit routes traversing more than one peer

group. This second approximation will enable us to guarantee convergence of the implied cost computation

under any traffic conditions, not just under light loads. With this approach, a route transiting through a

peer group can be thought of as consuming an amount of bandwidth on each link in that peer group that is

proportional to the fraction of actual transit traffic in that peer group which passes through that link.

In order for our scheme to succeed, we need a hierarchical computation of the implied costs and a

complementary routing algorithm to select among various hierarchical paths. The path selection will be

done through adaptive (sometimes called quasi-static) routing, i.e., slowly varying how demand is split

between transit routes that traverse more than one peer group, with the goal of maximizing the rate of

revenue generated by the network. After eliminating routeswhich do not satisfy the QoS constraints, e.g.,

end-to-end delay,3 the demand for transit routes connecting a given source/destination pair can be split based

on the revenue sensitivities which are calculated using theimplied costs. Within peer groups, we feel that

dynamic routing should be used because of the availability of accurate local routing information.

3In our model,effective bandwidth[7, 19] allocation is used to control queueing delays which translates to a limit on hop counts
plus propagation delay in order to satisfy a given delay bound.
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By using an adaptive algorithm based on implied costs, we take the point of view that first it is of

essence to design an algorithm that does the right thing on the “average,” or say in terms of orienting the

high-level flows in the system toward a desirable steady state. In order to make the routing scheme robust to

fluctuations, appropriate actions would need to be taken upon blocking/crankback to ensure good, equitable

performance in scenarios with temporary heavy loads.

1.4 Using hierarchy to reduce complexity

We now give an example of the complexity reduction achievable with our algorithm. Consider a network

consisting solely of Peer Group 2 in Fig. 1. As will be explained in Sec. 4, the implied costs are computed

via a distributed, iterative computation. At each iteration, the links must exchange their current values.

Making the assumption that Nodes 1, 2, and 3 are connected locally using a broadcast medium, this would

require 81 messages per iteration if we did not employ averaging. With our algorithm for computing the

implied costs, only 41 messages per iteration would be needed, a savings of 49%. The memory savings

would be commensurate with these numbers, and the computational complexity of the two algorithms is

roughly the same. This reduction is significant because information update in an algorithm such as PNNI is

a real problem, as it can easily overload the network elements [32].

1.5 Paper organization

The rest of this paper is organized as follows. Sec. 2 summarizes the prior work directly relevant to the

material in this paper. Sec. 3 explains our model and notation. The theoretical basis of our adaptive routing

scheme and its relation to Kelly’s work is given in Sec. 4. An alternative approximation of the implied costs

that works under any traffic conditions is developed in Sec. 5. Sec. 6 presents some computational results

which attempt to quantify routing “errors” due to inaccuracies caused by aggregation. In Sec. 7, we discuss

on-line measurements of some necessary parameters, and Sec. 8 briefly outlines extensions to a multiservice

environment. Finally, Sec. 9 concludes with a summary.

2 Related work

Hierarchical routing has been widely studied and used in both telephone and data networks [6, 11, 15, 20,

35]. Generally, only simple routing metrics such as hop count have been used to select appropriate paths.

With the current trend toward integrated broadband networks, interest in QoS-sensitive routing algorithms

has been increasing [24, 30, 37]. In addition, the desire forlarge-scale networking has made a combination

of the above, hierarchical QoS-sensitive routing algorithms, an important area of study [12, 25, 29, 2].

For the specific case of routing in ATM networks, which supports QoS and makes use of hierarchy and is

consequently quite complex, a good overview can be found in [1]. As an aside, we note that QoS routing

problems such as the constrained shortest path problem are typically NP-complete [10, 37].

As part of the research on hierarchical QoS-sensitive routing, the explicit representation of available

subnetwork capacity has been studied in detail [22, 23, 2, 38]. However, our implicit representation based
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Symbol Description
J (J ) Number (set) of links in the network.
Cj Capacity of link j in circuits.

R(R ) Number (set) of routes defined in the network.
N (N ) Number (set) of nodes where a node is defined as a collection of links that form a peer group or that

connect two peer groups.
n( j) Link j is an element of noden( j).
A jr Number of circuits (or units of capacity) used by router on link j.
E jn Indicator function for the event that linkj is an element of noden.
Tnr Indicator function for the event that transit router passes through noden.
Pjk Indicator function for the event that linkj is a peer of linkk (i.e., in the same node).
νr Rate of independent Poisson arrival process for router.
Lr Blocking probability for router.
λr Throughput achieved on router.
B j Blocking probability at linkj.
ρ j Reduced load at linkj from thinned Poisson streams which pass throughj.
θ j Throughput achieved through linkj.
η j The expected increase in blocking probability at linkj from removing a single circuit.
δ j The expected number of calls blocked at linkj as a result of removing a single circuit for unit time.
wr Revenue generated by accepting a connection on router.

W(ν;C) Rate of revenue for the network.
c j Implied cost to later calls which are blocked due to accepting a connection through link j.
cn

r Sum of implied costs for links in router that lie in noden.
c̄n Average implied cost of transiting through noden.
sr Surplus value (revenue minus costs) of an additional connection on route r.
sr; j Surplus value of an additional connection on router from the perspective of linkj 2 r (in the hierar-

chical framework).
Hn Set of hierarchical paths from the point of view of noden.
H jh Number of circuits used explicitly by hierarchical pathh on link j.
Lh Blocking probability for hierarchical pathh.
λh Throughput achieved on hierarchical pathh.
sh; j Surplus value of an additional connection on hierarchical pathh of which j is an explicit member.

Table 1: Definition of symbols for single-service model.

on implied costs is new. Here we have extended the work of Kelly and others on the computation of implied

costs and their use in adaptive routing schemes in single-service and multiservice flat networks [9, 17, 27].

Our proposed routing algorithm lies in the class of network optimal algorithms as it attempts to maximize

the rate of revenue for the network instead of greedily trying to individually maximize each user’s benefit.

Network versus user optimization and the possible effects on stability in QoS-sensitive routing is an issue

worthy of further study. An earlier version of the material in this paper can be found in [28].

3 Model and notation

Our model is that of a loss network serving asingle type of traffic,4 i.e., all calls require unit bandwidth,

call holding times are independent (of all earlier arrival times and holding times) and identically distributed

4Extensions to multiservice networks will be presented in Sec. 8.

8



Peer Group 2 Peer Group 3

Peer Group 1

���+ �
Figure 5: Example network with a single level of aggregation.

with unit mean, and blocked calls are lost. The unit bandwidth requirement per call can be considered to

be aneffective bandwidth[7, 19] which captures the traffic behavior. The capacity of each link j 2 J is Cj

units, and there are a total ofJ links in the network. Each linkj is an element of a single noden( j) 2 N ,

where an aggregated noden is defined as a collection of links that form a peer group or that connect two

peer groups.5 We defineE jn to be an indicator function for the event that linkj is an element of noden, and

Pjk is an indicator function for the event that linkj is a peer of linkk (i.e., in the same node). A route is

considered to be a collection of links inJ ; router 2R usesA jr circuits on link j 2 J , whereA jr 2 f0;1g.6 A

transit routeis defined as a route that contains links in more than one node,andTnr is an indicator function

for the event that transit router passes through noden. A call requesting router is accepted if there are at

leastA jr circuits available on every linkj. If accepted, the call simultaneously holdsA jr circuits from link

j for the holding time of the call. Otherwise, the call is blocked and lost. Calls requesting router arrive as

an independent Poisson process of rateνr . For convenience, definitions of the symbols we will be usingare

collected in Table 1. Where appropriate, all values referred to in this paper are steady-state quantities.

For simplicity, we only consider a network with one level of aggregation like that shown in Fig. 5. This

network has three peer groups, consisting of 3, 5, and 4 switches, respectively. The logical view of the

network from a given peer group’s perspective consists of complete information for all links within the peer

group but only aggregated information for links between peer groups and in other peer groups. The other

peer groups conceptually have logical links which connect each pair of border switches and connect each

border switch to each internal destination. These logical links have an associatedimplied cost, i.e., marginal

cost of using this logical resource, which is approximated from the real link implied costs. Currently, we

calculate an average implied cost for any transit route thatpasses through or into a node, i.e., all of the

5There may be multiple links connecting the border switches of two peer groups. This set of one or more interconnecting links
is considered to be a separate aggregated node in our model.

6In general, these routes might include multicast routes.
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Figure 6: Logical view of the network from the perspective ofpeer group 1. The set of links connecting two
peer groups is also considered to be an aggregated node in ourmodel.

logical links in a node have the same implied cost, and this value is then advertised to other peer groups.

Fig. 6 shows the logical view of the example network from the perspective of peer group 1.

4 Approximations to revenue sensitivity

To calculate the revenue sensitivities, we must first find theblocking probability for each route, an important

performance measure in its own right. Steady-state blocking probabilities can be obtained through the

invariant distribution of the number of calls in progress oneach route. However, the normalization constant

for this distribution can be difficult to compute, especially for large networks. Therefore, the blocking

probabilities are usually estimated using the Erlang fixed point approximation [11, 18].

Let B= (B j ; j 2 J ) be the solution to the equations

B j = E(ρ j ;Cj); j 2 J ; (1)

where

ρ j = ∑
r2R A jr νr ∏

k2r�f jg(1�Bk) (2)

and the functionE is the Erlang B formula [3]

E(ρ j ;Cj) = ρCj
j

Cj !

"
Cj

∑
n=0

ρn
j

n!

#�1 : (3)

The vectorB is called the Erlang fixed point; its existence follows from the Brouwer fixed point theorem
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and uniqueness was proved in [16]. UsingB, an approximation for the blocking probability on router is

Lr � 1�∏
k2r

(1�Bk): (4)

The idea behind the approximation is as follows. Each Poisson stream of rateνr that passes through linkj

is thinned by a factor 1�Bk at each linkk2 r�f jg before being offered toj. Assuming these thinnings are

independent both from link to link and over all routes, then the traffic offered to linkj is Poisson with rate

ρ j as given in (2), the blocking probability at linkj is B j as given in (1), and the loss probability on router

is exactlyLr as given in (4).

Alternatively, instead of using the Erlang fixed point to approximate the blocking probabilities, it may be

more accurate and efficient to measure the relevant quantities. Specifically,Lr , λr (the throughput achieved

on router), andθ j = ∑r2R A jr λr (the total throughput through linkj) can be obtained based on moving-

average estimates. This will in turn allow us to compute the associated implied costs and hence the approx-

imate revenue sensitivities. We will discuss the subject ofon-line measurements more fully in Sec. 7.

Assuming that a call accepted on router generates an expected revenuewr , the rate of revenue for the

network is

W(ν;C) = ∑
r2R wrλr : (5)

Starting from the Erlang fixed point approximation and by extending the definition of the Erlang B formula

(3) to non-integral values ofCj via linear interpolation,7 the sensitivity of the rate of revenue with respect to

the offered loads has been derived by Kelly [17] and is given by

∂
∂νr

W(ν;C) = (1�Lr)sr (6)

where

sr = wr � ∑
k2J Akrck (7)

is the surplus value of an additional connection on router, and the link implied costs are the (unique) solution

to the equations

cj = η j(1�B j)�1 ∑
r2R A jr λr(sr +cj); j 2 J ; (8)

whereη j =E(ρ j ;Cj�1)�E(ρ j ;Cj). B j , ρ j , andLr are obtained from the Erlang fixed point approximation,

andλr = νr(1�Lr).
Remark. In a flat network, the offered load for a given source/destination pair should be split among the

available routes based on the revenue sensitivities in (6).An additional call offered to router will be

7At integer values ofCj , define the derivative ofE(ρ j ;Cj ) with respect toCj to be the left derivative.
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Figure 7: Computation of ¯cn for an aggregated noden with two transit routes.

accepted with probability 1�Lr . If accepted, it will generate revenuewr , but at a cost ofcj for each j 2 r.

The implied costsc quantify the potential knock-on effects or expected loss inrevenue due to accepting a

call. The goal of the routing algorithm is to maximize the rate of network revenueW(ν;C) by adaptively

adjusting the splitting for each source/destination pair over time in response to changing traffic conditions.

The splitting for a source/destination pair should favor routes for which(1�Lr)sr has a positive value since

increasing the offered traffic on these routes will increasethe rate of revenue. Routes for which(1�Lr)sr

is negative should be avoided, with all adjustments of the splitting made gradually to guard against sudden

congestion. We note that, in general,W(ν;C) is not concave, so there may exist nonoptimal local maxima.

However, Kelly has shown that it is asymptotically linear asν andC are increased in proportion [17].

Furthermore, even though the routing algorithm could potentially reach a nonoptimal local maximum of

the revenue function, the stochastic fluctuations in the offered traffic may allow it to escape that particular

region.

To perform aggregation by peer group, we first define the quantity c̄n as the weighted average of the

implied costs associated with pieces of transit routes thatpass through or enter noden (or, equivalently, over

the links inn visited by such routes) where, in the following,cn
r = ∑ j2J A jr E jncj :

c̄n = ∑r2R Tnrλrcn
r

∑r2R Tnrλr= ∑ j2J E jn(∑r2R TnrA jr λr)cj

∑r2R Tnrλr
: (9)

This averaging is illustrated in Fig. 7. We redefine the surplus value for a route as a function of the local link

implied costs and the remote nodal implied costs,from the perspective of link j2 r (see Fig. 8):

sr ; j = wr � ∑
k2J AkrPk jck� ∑

n6=n( j)Tnrc̄n: (10)
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Figure 8: Implied costs for a route from the perspective of link j.

The link implied costs are now calculated as

cj = η j(1�B j)�1 ∑
r2R A jr λr(sr ; j +cj); j 2 J : (11)

In the sequel, we will address the following issues: the existence of a unique solution to these equations,

convergence to that solution, and the accuracy relative to Kelly’s implied costs.

Eq. (11) can be solved iteratively in a distributed fashion via successive substitution. If we define a linear

mapping f : RJ ! RJ by f = ( f1; f2; : : : ; fJ),
f j(x) = η j(1�B j)�1 ∑

r2R A jr λr(wr �∑
k6= j

AkrPk jxk� ∑
n6=n( j)Tnrx̄n); (12)

then successive substitution corresponds to calculating the sequencef i(x); i = 1;2; : : : , where f i(x) is the

result of iterating the linear mappingi times.

Define a norm onRJ by kxkM = max
j;r fA jr (∑

k6= j

AkrPk jjxkj+ ∑
n6=n( j)Tnrjxjn)g (13)

where jxjn = ∑ j2J E jn(∑r2R TnrA jr λr)jxj j
∑r2R Tnrλr

:
For any positive vectorα, we define the weighted maximum norm onRJ by kxkα

∞ = maxj j xj

α j
j, where we

suppress the indexα if α j = 1 for all j . Also, let δ = (δ1;δ2; : : : ;δJ), whereδ j = η jρ j denotes Erlang’s

improvement formula.

Theorem 1. Suppose thatkδkM < 1. Then the mapping f: RJ ! RJ is a contraction mapping under the
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normk �kM, and the sequence fi(x); i = 1;2; : : : , converges to c0, the unique solution of(11), for any x2 RJ .

Proof. See Appendix A.

Remark.The productη jρ j increases to 1 asρ j , the offered load at linkj, increases [17]. SokδkM < 1

can be referred to as a light load condition. If the network has long routes and/or heavily loaded links, this

constraint may be violated, but at moderate utilization levels, we expect that it will hold. As an example,

consider a loss network in which all links have capacityC = 150 and the reduced load at each link from

thinned Poisson streams isρ = 100. Furthermore, for simplicity, assume that each transitroute across a

node has the same length. Thenδ = 3:3� 10�5 for each link, and the conditionkδkM < 1 requires the

maximum route length to be at most 30,717 links. The blockingprobability for a route of maximum length

is approximately 2% (under the link independence assumption). If ρ is increased to 120 for each link, the

maximum route length is 33 links with a blocking probabilityof approximately 3% along such a route. At

ρ = 140, the maximum route length is 3 links with a blocking probability of approximately 8%. For this

example, link utilizations up to about 80% are certainly feasible under our “light load” condition. As the

capacities of the links increase (relative to bandwidth requests), even higher utilizations are possible before

the maximum route length becomes too small and/or blocking becomes prohibitive.

The convergence proved in Thm. 1 assumes iterates are computed synchronously. In a large-scale net-

work, synchronous computation may be infeasible, so we willshow that our light load condition is sufficient

for convergence of an asynchronous computation in the following sense [4]:

Assumption 1. (Total Asynchronism) Each link performs updates infinitelyoften, and given any timet1,

there exists a timet2 > t1 such that for allt � t2, no component values (link and average implied costs) used

in updates occurring at timet were computed beforet1.

Note that, under this assumption, old information is eventually purged from the computation, but the

amount of time by which the variables are outdated can becomeunbounded ast increases.

Theorem 2. Suppose thatkδkM < 1 and δ > 0. Then, under Assumption 1 (total asynchronism), the se-

quence fi(x); i = 1;2; : : : , converges to c0, the unique solution of(11), for any x2 RJ .

Proof. See Appendix B.

Remark.With the additional restriction of bounded communication delays, the convergence rate of an asyn-

chronous iteration satisfying the conditions of Thm. 2 is geometric and can actually be faster than the corre-

sponding synchronous version which has to wait for all values from the previous iteration to be distributed

before performing the next update. See [4, pp. 441–443] for the details of a situation analogous to ours

which has “fast” local communication (within peer groups) and “slower” remote communication (between

peer groups) and where the asynchronous convergence rate isfaster if there is a “strong coupling” among the

local variables (i.e., the local implied costs), a condition which should typically hold true in a hierarchical

network if the amount of local traffic dominates the amount ofremote traffic in each peer group.
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Theorem 3. Suppose thatkδkM < 1 and denote c and c0 as the solutions to(8) and(11), respectively. Define

∆ = maxn;rfTnr ∑m6=nTmrjcm
r � c̄mjg where cmr = ∑ j2J A jr E jmcj andc̄m is defined by(9). Then we haveks�s0k∞ � ∆kδ+1k∞

1�kδkM
(14)

where byks�s0k∞ we meanmaxj;r : j2r jsr �s0r ; j j.
Proof. See Appendix C.

Remark.The error between our modified implied costs and Kelly’s implied costs will be minimized under

light loads (kδkM � 1) and if the difference between transit route costs and the average for each node is

small (∆ close to 0). We use the maximum norm ofs� s0 as a comparison because it directly affects the

difference in the revenue sensitivity in (6) using the flat and hierarchical frameworks. The measured value

of Lr used in (6) may also be different from that in a flat network because it is potentially averaged over

several routes with the same hierarchical path from a given node’s point of view. When making adaptive

routing decisions, we are really only concerned with the relative values of ∂
∂νr

W(ν;C) among routes sharing

a common source/destination pair. It is unclear in what situations our approximation might affect this

ordering.

5 An alternative approximation

In this section, we consider a more aggressive averaging mechanism. In the previous approach, we used

exact information for resources within a peer group and aggregated metrics to represent its remote peers. By

contrast, herein we also perform local averaging among routes transiting through or into a local peer group.

We will show that this alternative approximation has a similar structure to the previous case, although the

relation to the exact implied costs is further “removed.” The key advantage of this approach is that, subject to

sufficient damping, one can show convergence to new approximate implied costs under any traffic conditions

and route topology. In fact, the required damping within a peer group depends only on local information,

the number of links within the peer group, and aggregated global information, the total number of peer

groups. Thus, the damping factor within a peer group only requires information that is consistent with

its hierarchically aggregated view of the network, and the nonlocal knowledge required, namely the total

number of peer groups, is not detrimental to the decentralized nature of the computation.

Define the matrixĀ with elementsĀ jr 2 [0;1] such that

Ā jr =8<:∑q2R Tn( j)qA jqλq

∑q2R Tn( j)qλq
if Tn( j)r = 1;

A jr if Tn( j)r = 0: (15)

Local routes remain unchanged: they take a single circuit oneach link that they traverse. However, transit

routes can be thought of as consuming a fraction of a circuit on every link in each node that they traverse.

This fraction is equal to the fraction̄A jr of transit traffic in noden( j) which passes through that link. Note
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that the offered loadρ j at link j remains the same whether it is computed based on the flat network’s routing

matrix A or the aggregated routing matrix̄A. Indeed, for fixedλr , we haveρ j = (1�B j)�1∑r2R A jr λr =(1�B j)�1 ∑r2R Ā jr λr .

By substitutingĀ for A in (8), we have the following implied cost equations:

cj = η j(1�B j)�1 ∑
r2R Ā jr λr(wr �∑

k6= j

Ākrck); j 2 J : (16)

We can rewrite these equations in various ways to bring out the connections with both our first aggregation

method (9) and the original implied cost equations (8) for a flat network. First, we note that for a given

link j and router such thatTn( j)r = 1, we have∑k2J ĀkrPk jck = c̄n( j), which illuminates the role of̄A jr in

performing additional averaging of implied costs at the local level; compare this with (9). Second, we can

rewrite (16) as

cj = η j(1�B j)�1 ∑
r2R Ā jr λr(wr �∑

k6= j

ĀkrPk jck� ∑
n6=n( j)Tnrc̄n) (17)= η j(1�B j)�1 ∑

r2R �(1�Tn( j)r)A jr λr(wr � ∑
k2J Akrck+cj)+Tn( j)rĀ jr λr(wr � ∑

n2N Tnrc̄n+ Ā jr cj)�: (18)

Eq. (17) indicates the connection with our previous equations (11) for a hierarchical network, the only

difference being the use of thēA matrix locally. In (18), we see that the equation forcj is a combination of

the original equation (8) for routes not transiting throughnoden( j) and an equation based on “averaged”

surplus valuessr = wr �∑n2N Tnrc̄n for routes transiting through noden( j) plus the use of̄A jr instead of

A jr .

Based on the above, we define a new linear mappingf̃ : RJ ! RJ by f̃ = ( f̃1; f̃2; : : : ; f̃J),
f̃ j(x) = η j(1�B j)�1 ∑

r2R Ā jr λr(wr �∑
k6= j

Ākrxk); (19)

where f̃ i(x) is the result of iterating the linear mappingi times. Definef̃(γ) :RJ !RJ to be a damped version

of the iteration f̃ (�) for γ = diag(γ j) j whereγ j 2 (0;1) 8 j 2 J :
f̃(γ)(x) = (I � γ)x+ γ f̃ (x): (20)

If we define a norm onRJ by kxkM̃ = max
j;r f1(Ā jr > 0) ∑

k6= j

Ākrjxkjg; (21)

then Thms. 1 and 2 can be shown to hold forf̃ (x) under the conditionkδkM̃ < 1. However, our main interest

here lies in proving convergence of the damped iterationf̃(γ)(x) without requiringkδkM̃ to be less than one.

Theorem 4. The equations(16) have a unique solutioñc.

Proof. See Appendix D.
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In the following, letJn denote the number of links in noden, and recall thatN denotes the total number

of aggregated nodes in the network.

Theorem 5. If γ j � (NJn( j))�1 8 j 2 J , then the sequencẽf i(γ)(x); i = 1;2; : : : , converges tõc, the unique

solution of (16), for any x2 RJ .

Proof. See Appendix E.

Remark.The convergence proved in Thm. 5 is based on synchronous iterations. To prove totally asyn-

chronous convergence of the damped computation, it is sufficient to show that the iteration matrixG =[I � γ(I � δ̃)� γηβ�1ĀλĀT ] corresponds to a weighted maximum norm contraction, or equivalently, that

ρ(jGj)< 1, whereρ(jGj) is the spectral radius of the matrixjGj having as elements the absolute valuesjgjkj
of the elements ofG. The proof of Thm. 5 showed that withγ j � (NJn( j))�1 8 j 2 J , we haveρ(G) < 1.

However, the off-diagonal entries ofG are nonpositive, and its structure is such that no matter howsmall we

makeγ > 0, we cannot guarantee thatρ(jGj)< 1 without requiring the light load conditionkδkM̃ < 1. Our

conjecture is that under a partially asynchronous model [4], i.e., there is a fixed boundD on the amount of

time by which the information used at a link can become outdated, the algorithm will converge if we use a

small enough stepsizeγ. As the asynchronism measureD or the number of linksJ increases, we would have

to decreaseγ to mitigate the effects of asynchronism.

6 Computational results

In this section, we explore the computation of the implied costs at one point in time for a given set of

offered loads. We use the Erlang fixed point equations to obtain the route blocking probabilities, and then

input the results to the implied cost calculations. Letc, c0, and c̃ denote the solutions to (8), (11), and

(16), respectively. The surplus valuess ands0 are computed according to (7) and (10), respectively. For

our alternative approximation, we compute ˜sr = wr �∑k2J Ākrc̃k. Because we use the same route blocking

probabilitiesL in computing the revenue sensitivities for all three cases,the expected and maximum relative

surplus value differences are equal to the expected and maximum relative revenue sensitivity errors. The

results discussed below are summarized in Tables 2 and 4.

We start with the symmetric network shown in Fig. 9 and assigna capacity of 20 to each link. We

define a total of 45 routes with offered loads ranging from 1:0 to 3:0 in such a way that the offered loads

at each link in the three peer groups are the same and all transit routes use only one link in the peer groups

that they pass through. Each accepted connection generatesa revenue of 1:0. Under these conditions, the

calculated implied costsc andc0 are the same. Thus,k(s�s0)=sk∞ = maxj;r : j2r j(sr �s0r ; j)=sr j = 0, and, as

a result, the revenue sensitivities are also the same. For each link in the peer groups,c j = 0:015. For the

links connecting the peer groups,cj = 0:129. Compared to our alternative approximation, the differences

are quite small:k(c� c̃)=ck∞ = 0:7%, andk(s� s̃)=sk∞ = 0:04%.

Next, we take the symmetric case and increase the load on the links in peer group 1 to near capacity by

increasing the offered loads for local routes in peer group 1to three and a half times their previous values.
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Figure 9: Symmetric network with a single level of aggregation.

This causes the implied cost calculations forc andc0 to differ slightly, resulting ink(c� c0)=ck∞ = 0:3%

andk(s� s0)=sk∞ = 1:5%. Due to the heavy loads in peer group 1, the implied costs ˜c are not as accurate:k(c� c̃)=ck∞ = 9:0%, andk(s� s̃)=sk∞ = 97:5%. (Despite the latter result, we note thatE [(s� s̃)=s] =
∑r2R (νr(sr � s̃r)=sr )=∑r2R νr is only 15:0%.8) To demonstrate the change in revenue sensitivities from the

symmetric case, consider the two alternative routes consisting of the following sets of links:r1 = f2;9;3g
and r2 = f10;6;11;5g. In the symmetric case, the revenue sensitives forr1 and r2 are 0:823 and 0:684,

respectively. In the present overloaded case, the revenue sensitivities change to approximately 0:416 and

0:772, respectively.9 The longer route is now favored because it avoids passing through the overloaded peer

group. We note that, using our first hierarchical approximation, the revenue sensitivity may vary along a

particular route depending on which link is making the calculation (due to thesr ; j term). To be exact, all

links of a route in a given peer group will compute the same sensitivity, but links of the route in a different

peer group may compute a different value. For our current example, the revenue sensitivities vary only

slightly along routes, on the order of 0:004 in the worst case.

As another example of an overload scenario, we start with thesymmetric case and increase the loads on

transit routes between peer groups 1 and 2 by one and a half times, causing link 9 to be near capacity. For this

case, the differences between the first two approximations are greater than in the previous overload scenario,k(c�c0)=ck∞ = 1:1% andk(s�s0)=sk∞ = 5:0%, but the surplus values ˜s fare much better:k(c� c̃)=ck∞ =
18:1% andk(s� s̃)=sk∞ = 4:4%. This is due to the fact that the overloaded node consists of only a single

link, mitigating the errors due to local averaging of transit route costs. The revenue sensitivities forr1

andr2 are approximately 0:335 and 0:686, respectively, which would cause the routing algorithmto send

more traffic around the overload as desired. Compared to the previous case, there is greater variation in the

revenue sensitivities along each route usings0, on the order of 0:013 in the worst case.

8Similarly, we defineE[(c� c̃)=c] = ∑ j2J (ρ j(c j � c̃ j )=c j )=∑ j2J ρ j .
9The revenue sensitivity values presented in this section are computed using the surplus valuess. Usings0 or s̃ results in slightly

different values but the same relative ordering.
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Rev. sens. error:E [�] = k � k∞
s�s0

s
s� s̃

s
∂W=∂ν1 ∂W=∂ν2

Symmetric load 0.0% / 0.0% 0.01% / 0.04% 0.823 0.684
Local overload 0.2% / 1.5% 15.0% / 97.5% 0.416 0.772
Transit overload 0.9% / 5.0% 1.0% / 4.4% 0.335 0.686
Asymmetric net 2.4% / 15.5% 2.2% / 15.5% — —

Imp. cost error:E [�] = k � k∞
c�c0

c
c� c̃

c
Lmax kδkM Iterations

Symmetric load 0.0% / 0.0% 0.5% / 0.7% 2.1% 0.297 5
Local overload 0.1% / 0.3% 5.7% / 9.0% 25% 0.764 10–13
Transit overload 0.4% / 1.1% 6.3% / 18.1% 16% 0.780 8–9
Asymmetric net 0.7% / 2.1% 1.9% / 6.2% 3.8% 0.327 6–7

Table 2: Computational results for the four experiments.

For a fourth experiment with a more varied topology, we use the network shown in Fig. 5. We define

a total of 122 routes with offered loads ranging from 0:1 to 2:0. Two routes are defined between each pair

of switches except for the members of peer group 2 which have only one local route between each pair. As

before, each accepted connection generates a revenue of 1:0. The link capacities are varied between peer

groups: links in peer groups 1, 2, and 3 have capacities 25, 40, and 30, respectively, and the connecting

links have a capacity of 35 each. Despite the loss of symmetry, the implied cost calculations are surprisingly

close: the worst-case differences arek(c� c0)=ck∞ = 2:1%, k(c� c̃)=ck∞ = 6:2%, andk(s� s0)=sk∞ =k(s� s̃)=sk∞ = 15:5%.

Table 2 summarizes the main results of the four experiments.Lmax is the maximum route blocking

probability; the high values for the middle two experimentsare for a local route in peer group 1 and a transit

route from peer group 1 to 2, respectively. The iterations column denotes the range of iterations needed for

convergence of the three implied cost computations. Note that the light load conditionkδkM < 1 holds in

every case.

Two comments on the above experiments are in order. First, using our first hierarchical approximation

scheme, one can unfortunately construct cases where the revenue sensitivities vary enough along a route

to cause an ordering between alternative routes from the source’s point of view that is different from that

obtained in a flat network. This would cause the adaptive routing algorithm to temporarily shift offered loads

in the wrong direction until the sensitivities became farther apart. As a result, the routing algorithm would

adapt more slowly, but it is unclear whether this is a common or troubling situation. Second, the bound in

Thm. 3 appears to be rather weak. It was too high by an order of magnitude in the two overload cases. In

the fourth experiment, however, it was less than twice the actual value.

We also performed experiments on the larger network shown inFig. 10 with a variable number of defined

groups. The group memberships in terms of the links in each group are listed in Table 3. We define a total

of 247 routes with offered loads ranging from 0:2 to 3:0. As before, each accepted connection generates a
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Figure 10: A larger symmetric network.

revenue of 1:0. The link capacities vary from 20 to 30, and no attempt was made to equalize the offered

loads on the links.

Table 4 summarizes the main results of these six experiments. In terms of relative implied cost and

revenue sensitivity errors, the 6 groups case performed thebest, and the 6 alternate groups and 9 groups

performed the worst. For these experiments (with fixed routes and offered loads), the error results seem to

be correlated to the number of transit routes per group with alower average number of transit routes tending

to produce better results. We also compute the number of messages per iteration under the assumption that

the groups of three switches in a triangle are connected locally using a broadcast medium, i.e., only one

message is required to reach the three link controllers in the triangle. For a flat network, 807 messages

per iteration are required, so each group structure tested provides a significant reduction. The most savings

3 groups f0–11, 36g f12–23, 38g f24–35, 37g
6 groups f0–11g f12–23g f24–35g f36g f37g f38g
6 alt. groups f0–2, 9–10g f3–8, 11, 36g f12–14, 18–20, 22, 38g f15–17, 21, 23gf24–29, 33, 37g f30–32, 34–35g
9 groups f0–2, 9g f3–5, 11, 36g f6–8, 10g f12–14, 21g f15–17, 23g f18–20, 22, 38gf24–26, 33, 37g f27–29, 35g f30–32, 34g
12 groups f0–2, 9g f3–5, 11g f6–8, 10g f12–14, 21g f15–17, 23g f18–20, 22gf24–26, 33g f27–29, 35g f30–32, 34g f36g f37g f38g
21 groups f0–2g f3–5g f6–8g f9g f10g f11g f12–14g f15–17g f18–20g f21g f22gf23g f24–26g f27–29g f30–32g f33g f34g f35g f36g f37g f38g

Table 3: Group memberships for the experiments on the largernetwork.

20



Rev. sens. error:E [�] = k � k∞ Imp. cost error:E [�] = k � k∞
s�s0

s
s� s̃

s
c�c0

c
c� c̃

c
3 groups 3.7% / 63.9% 2.8% / 120.1% 0.7% / 2.9% 1.6% / 5.9%
6 groups 0.3% / 12.2% 0.7% / 16.2% 0.05% / 0.3% 1.7% / 3.9%
6 alt. groups 6.8% / 159.1% 7.1% / 163.1% 1.9% / 4.5% 4.9% / 8.3%
9 groups 10.1% / 136.8% 6.9% / 98.4% 4.0% / 9.6% 4.3% / 9.1%
12 groups 7.7% / 48.6% 4.1% / 46.7% 4.5% / 8.9% 4.2% / 7.7%
21 groups 2.7% / 13.5% 2.5% / 13.5% 1.0% / 2.9% 2.2% / 8.2%

Messages Avg. Transit Routes Avg. Local Routes
per Iteration per Group per Group

3 groups 303 14.7 75.0
6 groups 312 12.2 36.5
6 alt. groups 234 49.0 18.0
9 groups 249 43.9 9.7
12 groups 294 35.1 7.0
21 groups 447 31.0 3.1

Table 4: Computational results for the larger network.

occurs with the 6 alternate groups and the 9 groups which, as noted above, provide the worst performance

in terms of revenue sensitivity error.

7 On-line measurements

We now return to the subject of on-line measurements, as briefly mentioned in Sec. 4. Instead of using the

Erlang fixed point approximation, we show how estimates of the carried loads and blocking probabilities

can be used to implement a hierarchical adaptive routing scheme. Our discussion follows that of Kelly [17],

with additional optimizations to take advantage of the hierarchical framework.

We say that two routes have the samehierarchical pathfrom the point of view of link j if they use the

same set of links in peer groupn( j) and follow the same sequence of peer groups outside ofn( j). LetHn

be the set of hierarchical paths from the point of view of noden, and letH jh be the amount of bandwidth

used explicitly by hierarchical pathh 2 Hn on link j. (H jh is 0 for all links j outside ofn.) If we make

the assumption thatwr1 = wr2 for two routesr1 andr2 with the same hierarchical structure from the point

of view of link j 2 r1; r2, thensr1; j = sr2; j . Recalling thatρ j(1�B j) = ∑r2R A jr λr andδ j = η jρ j , we can

rewrite (11) as

cj = δ j ∑
h2Hn( j) H jh

flow carried on pathh
flow carried through linkj

(sh; j +cj); j 2 J : (22)

Suppose we have on-line measuresΛ̂h(t) andΘ̂ j(t) of the carried flows on pathh and link j, respectively,

over the interval[t; t +1). Smoothed, moving-average estimatesλ̂h(t) andθ̂ j(t) of the mean carried flows
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can be computed using the iterations

λ̂h(t +1) = (1� γ)λ̂h(t)+ γΛ̂h(t)
θ̂ j(t +1) = (1� γ)θ̂ j(t)+ γΘ̂ j(t)

whereγ 2 (0;1). If we consider link j to be in isolation with Poisson traffic offered at rateρ j , we can

estimateρ j (and thusδ j ) by solving the equation̂θ j = ρ j [1�E(ρ j ;Cj)] to obtainρ̂ j . Then we would have

δ̂ j = ρ̂ j [E(ρ̂ j ;Cj �1)�E(ρ̂ j ;Cj)].
Now suppose that the implied costs ˆc and the associated surplus values ˆshave been computed using these

estimates and successive substitution. Suppose also that the blocking probabilityLh has been estimated for

each hierarchical path, possibly using a moving-average estimate similar to the above. The revenue sensi-

tivity (1� L̂h)ŝh; j tells us the net expected revenue that a call on pathh will generate from the perspective

of link j. Traffic from a source to a given destination peer group should be split among the possible hierar-

chical paths based on these revenue sensitivities. A greater share of the traffic should be offered to a path

that has a higher value of(1� L̂h)ŝh; j than the others. Also, if(1� L̂h)ŝh; j is negative for a particular path,

that path should not be used since a net loss in revenue would occur by accepting connections on that path.

Any adjustments of the splitting should be done gradually toprevent sudden congestion. Note that we have

assumed that routes not satisfying the QoS constraints of a particular connection will be eliminated prior to

choosing a path based on the revenue sensitivities.

8 Multiservice extensions

To accommodate different types of services, our model can beextended to a multirate loss network. Now we

allow A jr 2 Z+. Several additional problems arise in this context. First and foremost, the Erlang B formula

no longer suffices to compute the blocking probability at a link for each type of call. Letπ j(n) denote the

steady-state probability ofn circuits being in use at linkj. Then the blocking probability for router at link

j is B jr = ∑Cj

n=Cj�A jr+1π j(n). We can computeπ j using a recursive formula of complexityO(CjK j) where

K j denotes the number of traffic classes (distinct values ofA jr > 0) arriving at link j [33]. This result was

derived independently by Kaufman and Roberts. To reduce complexity, many asymptotic approximations

have been proposed in the literature as the offered load and link capacity are scaled in proportion [13, 21,

26, 31, 34, 36]. We have found Mitra and Morrison’s Uniform Asymptotic Approximation (UAA) [26] to

be particularly accurate.

The Erlang fixed point approximation can be extended in a straightforward manner to the multiservice

case using an appropriate blocking function at each link. Note that, in this case, the fixed point is no longer

guaranteed to be unique [33].10 Based on this approximation, implied cost equations can be derived [9, 27],

where we now have a different implied cost at each link for each type of service. The straightforward

extension to our hierarchical setting is to further computean average implied cost for each type of service

10Using a certain single-link blocking function, convergence to a unique fixed point was recently proved in the light load regime
only [36].
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passing through each peer group. Computing a single averageimplied cost for each peer group is attractive

but would probably result in an unacceptable loss in accuracy.

Define S to be the set of services offered by the network and partitionR into setsR s;s2 S . Let

s(r) denote the service type associated with router.11 Also, let ρ jr = λr=(1�B jr ), and defineη jrq =
B jr (~ρ j ; ~A j ;Cj �A jq)�B jr (~ρ j ; ~A j ;Cj), which is the expected increase in blocking probability at link j for

router given thatA jq circuits are removed from linkj. The multiservice implied costs satisfy the following

system of equations:

cjq = ∑
r : j2r

η jrqρ jr (sr ; j +cjr ); j 2 J ; q2 R ; (23)

where

sr ; j = wr �∑
k2r

Pk jckr� ∑
n6=n( j)Tnrc̄ns(r) (24)

and

c̄ns= ∑r2R s Tnrλr(∑ j2r E jncjr )
∑r2R s Tnrλr

: (25)

Note thatcjr = cjq if A jr = A jq. In a large capacity network, we can further reduce (23) to a system of only

J equations by employing the UAA [27]. If we redefine our norm onRJR (R is the total number of routes)

as kxkM = max
j;r : j2r

f ∑
k6= j:k2r

Pk jjxkrj+ ∑
n6=n( j)Tnrjxjns(r)g; (26)

let δ = (δ11;δ12; : : : ;δ1R;δ21; : : : ;δJR) whereδ jq = ∑r : j2r η jrqρ jr , and define∆ = maxn;rfTnr ∑m6=nTmrjcm
r �

c̄ms(r)jg wherecm
r = ∑ j2r E jmcjr , then Thms. 1, 2, and 3 can be easily shown to hold for the multiservice

case.

9 Conclusion

This paper is based on the premise that the use of hierarchical source routing is a key to both reducing

complexity and providing acceptable QoS in a large-scale network. Although aggregating network elements

into subnetworks is an old idea, we have taken a unique approach to representing the “available” capacity

of a subnetwork by formulating an implicit representation based on the average implied cost to go through

or into the subnetwork. This average implied cost reflects the congestion in the subnetwork and captures

the interdependencies among traffic streams, a feature sorely lacking in explicit representations of available

capacity.

11Note that when multiple service types are carried between two points, we assign various routes that may follow the same path.
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We proved that both a synchronous and asynchronous distributed computation of the approximate im-

plied costs will converge to a unique solution under a light load condition. Furthermore, we presented a

more aggressive averaging mechanism that also performs local averaging among routes transiting through

or into a local subnetwork. We proved that with sufficient damping, a synchronous distributed computation

of these new approximate implied costs will converge to a unique solution under any traffic conditions. Our

experimental results showed that these approximations arereasonably accurate.

Based on this representation for available subnetwork capacity, we proposed a hierarchical source rout-

ing algorithm that adaptively selects high-level routes soas to maximize network revenue. Prior to path

selection, routes not likely to meet prespecified QoS constraints, such as end-to-end delay, are eliminated

from consideration. Our scheme can incorporate on-line measurements, and it can be extended to a multi-

service environment. The low-level routing within subnetworks was deliberately not specified, as we feel

that some form of dynamic routing would be beneficial in coping with traffic fluctuations at that level.

Possible topics for future research directly related to ourrouting algorithm include� extensions to more than two levels of hierarchy,� the optimal subnetwork size and switch arrangement to achieve the best tradeoff between accuracy

and reduced overheads,� the robustness of the implied costs and routing to link failures,� investigation of the need to reserve capacity for local traffic using trunk reservation, and� the role of our algorithm in a layered approach to IP over ATM routing [8].

A Proof of Theorem 1

Choosex;x0 2 RJ . Then,8 j 2 J ,
f j(x)� f j(x0) =�η j(1�B j)�1 ∑

r2R A jr λr
�
∑
k6= j

AkrPk j(xk�x0k)+ ∑
n6=n( j)Tnr(x̄n� x̄0n)�:

Therefore j f j(x)� f j(x0)j � η j(1�B j)�1 ∑
r2R A jr λr

�
∑
k6= j

AkrPk jjxk�x0kj+ ∑
n6=n( j)Tnrjx̄n� x̄0nj�� η j(1�B j)�1 ∑

r2R A jr λrkx�x0kM= η jρ jkx�x0kM:
Taking the norm on both sides, we havek f (x)� f (x0)kM � kδkMkx�x0kM:
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So f (�) is a contraction mapping ifkδkM < 1. Using the definition of a contraction mapping and the proper-

ties of norms, one can easily show that the sequencef i(x); i = 1;2; : : : , converges toc0, the unique solution

of (11), for anyx2 RJ .

B Proof of Theorem 2

Rewrite (11) in matrix form asf (x) = Gx+b. The goal is to show thatG corresponds to a weighted max-

imum norm contraction. For, in that case, we can satisfy the conditions of the Asynchronous Convergence

Theorem in [4] (see Sec. 6.2 and 6.3, pp. 431–435), which guarantees asynchronous convergence to the

unique fixed pointc0. In the following, we useδ as the weight vector for the weighted maximum norm; in

order to do so, we require the conditionδ� 0. (We are guaranteed thatδ� 0, but in all practical casesδ > 0

as we have assumed).

Choosex;x0 2 RJ . Then,8 j 2 J ,j f j(x)� f j(x0)j � η j(1�B j)�1 ∑
r2R A jr λr

�
∑
k6= j

AkrPk jjxk�x0kj+ ∑
n6=n( j)Tnrjx̄n� x̄0nj�:

Therefore ���� f j(x)� f j(x0)
δ j

����� η j(1�B j)�1

δ j
∑

r2R A jr λr

�
∑
k6= j

AkrPk jδk

����xk�x0k
δk

����+ ∑
n6=n( j)Tnr

∑l2J Eln(∑q2R TnqAlqλq)δl

���xl�x0l
δl

���
∑q2R Tnqλq

�� η j(1�B j)�1

δ j
∑

r2R A jr λr

�
∑
k6= j

AkrPk jδk+ ∑
n6=n( j)Tnr

∑l2J Eln(∑q2R TnqAlqλq)δl

∑q2R Tnqλq

�kx�x0kδ
∞

since the weighted maximum normkxkδ
∞ = maxj2J j xj

δ j
j. Taking the norm on both sides, we havek f (x)� f (x0)kδ

∞ � kGkδ
∞kx�x0kδ

∞

where the induced matrix normkGkδ
∞ = maxj2J f 1

δ j
∑k2J jgjkjδkg [4]. So G corresponds to a weighted

maximum norm contraction ifkGkδ
∞ < 1. This follows fromkδkM < 1 becausekGkδ

∞ = max
j2J η j(1�B j)�1

δ j
∑

r2R A jr λr

�
∑
k6= j

AkrPk jδk+ ∑
n6=n( j)Tnr

∑l2J Eln(∑q2R TnqAlqλq)δl

∑q2R Tnqλq

��max
j2J η j(1�B j)�1

δ j
∑

r2R A jr λrkδkM= kδkM
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sinceρ j = (1�B j)�1∑r2R A jr λr andδ j = η jρ j .

C Proof of Theorem 3

We have,8 j 2 J ,
c0j �cj = η j(1�B j)�1 ∑

r2R A jr λr
�
∑
k6= j

AkrPk j(ck�c0k)+ ∑
n6=n( j)Tnr(cn

r � c̄0n)�:
Hence jc0j �cj j � η j(1�B j)�1 ∑

r2R A jr λr
�
∑
k6= j

AkrPk jjck�c0kj+ ∑
n6=n( j)Tnrjcn

r � c̄n+ c̄n� c̄0nj�� η jρ j(kc0�ckM +∆): (27)

Taking the M-norm on both sides and rearranging, we havekc0�ckM � ∆kδkM

1�kδkM
: (28)

We also have,8 j; r such thatj 2 r,

sr �s0r ; j = ∑
k2J AkrPk j(c0k�ck)+ ∑

n6=n( j)Tnr(c̄0n�cn
r ):

Hence jsr �s0r ; j j � ∑
k2J AkrPk jjc0k�ckj+ ∑

n6=n( j)Tnrjc̄0n� c̄n+ c̄n�cn
r j� jc0j �cj j+kc0�ckM +∆ sinceA jr = 1� η jρ j(kc0�ckM +∆)+kc0�ckM +∆ using (27)= (δ j +1)(kc0�ckM +∆)� (δ j +1) ∆

1�kδkM
using (28).

Taking the maximum norm on both sides, the result follows.

D Proof of Theorem 4

(The proofs of this theorem and Theorem 5 closely resemble the development in [17, Sec. 4]. Note that all

vectors are considered to be column vectors.)
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Rewrite (16) in the equivalent form

cj = η j(1� δ̃ j)�1(1�B j)�1 ∑
r2R Ā jr λr(wr � ∑

k2J Ākrck); (29)

whereδ̃ j = η j(1�B j)�1∑r2R Ā2
jr λr � η jρ j . Let g̃ = (g̃1; g̃2; : : : ; g̃J) whereg̃j(c) denotes the right-hand

side of (29). Also, define the positive diagonal matrices

λ = diag(λr)r ; ζ = diag(η j(1� δ̃ j)�1(1�B j)�1) j :
Then we can write (29) in matrix form as

c= g̃(c) = ζĀλ(w� ĀTc):
Define the positive diagonal matricesζ 1

2 , ζ� 1
2 componentwise. The equationc = g̃(c) is equivalent to(I +ζĀλĀT)c= ζĀλw. Multiplying both sides of this equation on the left byζ� 1

2 , we have(I +ζ
1
2 ĀλĀTζ

1
2 )ζ� 1

2 c= ζ
1
2 Āλw:

The symmetric matrix(I +ζ 1
2 ĀλĀTζ 1

2 ) is positive definite and hence invertible. Thus the equationc= g̃(c)
has a unique solution

c̃= ζ
1
2 (I +ζ

1
2 ĀλĀTζ

1
2 )�1ζ

1
2 Āλw; (30)

which is also the unique solution to (16).

E Proof of Theorem 5

It is enough to establish that the sequencef̃ i(γ)(x); i = 1;2; : : : , converges since the limit vector must solve

(16) by the continuity off̃(γ)(�). Define the diagonal matrices

λ = diag(λr)r ; β = diag(1�B j) j ; η = diag(η j) j ; δ̃ = diag(η j ρ̃ j) j ;
whereρ̃ j = (1�B j)�1 ∑r2R Ā2

jr λr . Then in matrix form

f̃ (x) = ηβ�1Āλw�ηβ�1ĀλĀTx+ δ̃x;
and so

f̃(γ)(x) = [I � γ(I � δ̃)� γηβ�1ĀλĀT ]x+ γηβ�1Āλw:
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The sequencẽf i(γ)(x); i = 1;2; : : : , will converge provided the eigenvalues of the iteration matrix [I � γ(I �
δ̃)� γηβ�1ĀλĀT ] lie in the interval(�1;1). The eigenvalues of this matrix coincide with the eigenvalues of

the matrix

γ� 1
2 η� 1

2 β
1
2 [I � γ(I � δ̃)� γηβ�1ĀλĀT ]β� 1

2 η
1
2 γ

1
2 = I � γ(I � δ̃)� γ

1
2 η

1
2 β� 1

2 ĀλĀTβ� 1
2 η

1
2 γ

1
2= I � γ(I � δ̃)� (λ 1

2 ĀTβ� 1
2 η

1
2 γ

1
2 )T(λ 1

2 ĀTβ� 1
2 η

1
2 γ

1
2 )

which is of the formI � (D+M) whereD is a diagonal matrix andM is a symmetric, positive semi-definite

matrix of the formM =YTY. The eigenvalues ofD are equal to its diagonal termsdj ; j 2 J . Letρ(D) denote

the spectral radius ofD, i.e., the maximum of the magnitudes of its eigenvalues. Since 0� δ̃ j � η jρ j < 1

andγ j 2 (0;1) for all j 2 J , we have that 0< dj < 1; j 2 J , and thusρ(D)< 1.

Next, we determine a bound on the spectral radius ofM. Let k � k2 denote the Euclidean norm, and

define the induced matrix normkMk2 as maxkxk2=1kMxk2. SinceM is symmetric, it can be shown that

ρ(M) = kMk2 = maxkxk2=1 jxTMxj = maxkxk2=1 jxTYTYxj = maxkxk2=1kYxk2
2. We will show thatρ(M) is

guaranteed to be less than one if we chooseγ j � (NJn( j))�1 8 j 2 J . We have the following:kYxk2 = kλ
1
2 ĀTβ� 1

2 η
1
2 γ

1
2 xk2 = �

∑
r2R�∑

j2J λ
1
2
r Ā jr β� 1

2
j η

1
2
j γ

1
2
j xj

�2
� 1

2� �
∑

r2R�∑
j2J λrĀ

2
jr β�1

j η jγ j

�kxk2
2

� 1
2

by the Cauchy-Schwarz inequality= �
∑
j2J δ̃ jγ j

� 1
2kxk2 � �

∑
j2J γ j

� 1
2kxk2 � �

∑
j2J 1

NJn( j)� 1
2kxk2= �

∑
n2N ∑

j2J E jn

NJn

� 1
2kxk2 = �

∑
n2N 1

N

� 1
2kxk2 = kxk2:

Therefore,ρ(M) = kMk2 = maxkxk2=1kYxk2
2 � 1.

SinceD is a diagonal matrix with positive terms,D+M is symmetric and positive definite. Therefore,

its eigenvalues are strictly positive, and it can be writtenin the formSKS�1 whereK is a diagonal matrix

with the same eigenvalues. The maximum eigenvalue ofD+M is strictly less than 2 because

ρ(D+M) = kD+Mk2� kDk2+kMk2 = ρ(D)+ρ(M)< 2:
Hence, the terms ofK lie in the interval(0;2), and so the terms ofI�K lie in the interval(�1;1). But these

terms are the eigenvalues ofI � (D+M) because

S(I �K)S�1 = I �SKS�1 = I � (D+M):
Thus, the eigenvalues of the original iteration matrix lie in the interval(�1;1), and the sequencẽf i(γ)(x); i =
1;2; : : : , converges to ˜c.
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