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Abstract

Based on a loss network model, we present an adaptive source routing Scharfegge, hierarchically-
organized network. To represent the “available” capacity of a peer group (sutmigtwe compute the
average implied cost to go through or into the peer group. Such imptiet$ reflect the congestion in
the peer group as well as the interdependencies among traffic streams in thekn®¥ prove that both

a synchronous and asynchronous distributed computation of theshgasts will converge to a unique
solution under a light load condition. Furthermore, we present &raggressive averaging mechanism
that, with sufficient damping, will converge to a unique solutiomlemany traffic conditions. One of
the key features of this paper is an attempt to quantify routing “erroug’td inaccuracies caused by
aggregation. In fact, our experimental results show that these apptam are reasonably accurate
and our scheme is able to appropriately route high level flows whilgfgigntly reducing complexity.
In addition, we show how on-line measurements and multiservice éatensan be incorporated into
the routing algorithm.
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1 Introduction

In order to provide guaranteed Quality of Service (Q0S), emamication systems are increasingly drawing
on “connection-oriented” techniques. ATM networks arerestion-oriented by design, allowing one to
properly provision for QoS. Similarly, QoS extensions te timternet, such as RSVP [5, 14, 39], make
such networks akin to connection-oriented technologiedeéd, the underlying idea is to reserve resources
for packet flows, but to do it in a flexible manner using “sofitet which allows flows to be rerouted (or
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“connections” repacked [18]). Similar comments apply toRrover ATM switching environment, where
IP flows are mapped to ATM virtual circuits. In light of the al@otrends and the push toward global
communication, our focus in this work is on how to make rogitififective and manageable in a large-scale,
connection-oriented network by using network aggregatiwve shall first introduce hierarchical source
routing, explain the basics of our routing algorithm, angegan example of the complexity reduction that it
can achieve.

1.1 Hierarchical sourcerouting: motivation and example

In a large-scale network, there are typically multiple gatbnnecting a given source/destination pair, and
it is the job of the routing algorithm to split the demand amahe available paths. The routing algorithm
which we introduce in this paper fits nicely into the ATM PtiwdNetwork-Network Interface (PNNI) frame-
work [2], but it can also be thought of as a candidate for repthe Border Gateway Protocol (BGP) [14]
in the Internet that would split flows in “IP/RSVP” routing. e@tral to our algorithm is thémplied cost
[17] for a connection along a given path which measures tip@mpnity cost or expected loss of revenue
resulting from accepting a connection. Using implied ctskes into account the possibility of “knock-on”
effects (due to blocking and subsequent alternate roufitifj)and is geared towards achievingratwork
optimalrouting algorithm.

To make good decisions and provide acceptable QoS, it isathsito have a global view of the network
at the source when making routing decisions for new conmesti Thus, source routing, where the source
specifies the entire path for the connection, is an attractiuting method. It has the additional advantage
that, in contrast to hop-by-hop routing, there is no needutoa standardized routing algorithm to avoid
loops and policy issues such as provider selection areyemsiiommodated. Propagating information for
each link throughout the network quickly becomes unmartalgeas the size of the network increases, so
a hierarchical structure is needed, such as that proposttiATM PNNI specification [2]. Groups of
switches are organized infeer groupgalso referred to asloudg, and peer group leaders are chosen to
coordinate the representation of each group’s state. Téwketions of switches then form peer groups at
the next level of the hierarchy and so on. Nodes keep detaifedmation for elements within their peer
group. For other peer groups, they only have an approximiate for the current state, and this view can
become coarser as the “distance” to remote areas of the rieta@eases. We refer to the formation of
peer groups asetwork aggregationBesides reducing the amount of exchanged informationgratthical
structure also makes addressing feasible in a large-seblrk, as demonstrated by the network addressing
of IP, and it permits the use of different routing schemesifégrént levels of the hierarchy. Prior work in
the area of routing in networks with aggregated, and thuscimate information, can be found in [12, 25].

By combining a hierarchical network with (lod9esource routing, we have a form of routing referred to
ashierarchical source routingAs an illustration, Fig. 1 shows a fragment of a larger nekn®letwork 0)
in which Peer Group 2 contains Nodes 1, 2, arfdThese nodes contain 3, 5, and 4 switches, respectively.

1in loosesource routing, only the high-level path is specified by tiarse. The detailed path through a remote peer group is
determined by a border switch of that peer group.
2These nodes are peer groups in their own right, but we usetire“hode” here to avoid confusion with the peer groups at the



Source Address: 0.2.1.2
. . Peer Group 2

Peer Group 1  Nodel - " Peer Group 3

‘ Désvtination Address: 0.2.3.4

Figure 1: lllustration of hierarchical addressing and seuouting.

To specify, for example, the source at Switch 2 of Node 1 of Bgeup 2 in Network 0, we use the 4-tuple
0.2.1.2. The example in Fig. 1 shows a source at 0.2.1.2 astihdon at 0.2.3.4. The source 0.2.1.2
has specific information about its peer switches 0.2.1.10a2d .3, but only aggregated information about
nodes 0.2.2 and 0.2.3. The result of performing source mgug a tentative hierarchical path to reach
the destination, e.g.,.21.2 — 0.2.1.1 — 0.2.2 — 0.2.3 which specifies the exact path locallyZa.2 —
0.2.1.1) then the sequence of remote nodes to reach the destiratidn2.2 — 0.2.3). Upon initiating
the connection request, the specified path is fleshed out,ifasdccessful, a (virtual circuit) connection
satisfying prespecified end-to-end QoS requirements igfseln this case, the border switches 0.2.2.4 and
0.2.3.2 in Nodes 2 and 3, respectively, are responsible dterohining the detailed path to follow within
their respective group. Furthermore, each switch will havecal Connection Admission Control (CAC)
algorithm which it uses to determine whether new connectaquests can in fact be admitted without
degraded performance. If the attempt fadsankbackoccurs, and new attempts are made at routing the
request. (Our model will ignore crankback.)

1.2 Explicit vs. implicit representations of available capacity

To do routing in this hierarchical framework, we must dedidev to represent the “available” capacity of a
peer group, either explicitly or implicitly. The expliciepresentation takes the physical topology and state
of a peer group and represents it with a logical topology plusetric denoting available capacity that is
associated with each logical link. There may also be othéricsesuch as the average delay associated with
logical links.

next level of the hierarchy.
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Figure 2: Peer group with three links and two routes.

Typically, the first step in forming the explicit represdiua is to find the maximum available bandwidth
path between each pair of border nodes, i.e., nodes directipected to a link that goes outside the peer
group. If we then create a logical link between each pair ofleonodes and assign it this bandwidth
parameter, we have taken thii-meshapproach [22]. If we collapse the entire peer group into glsipoint
and advertise only one parameter value (usually the “w@sg¢tparameter), we have taken gyenmetric-
point approach [22]. Most proposed solutions lie somewhere vieese two extremes.

In the ATM PNNI specification [2], the baseline represetatis a star in which each spoke has the
same parameter value associated with it. More complex septations are permitted in whiexceptions
have a different associated parameter value than the tleTdndse exceptions can be a spoke of the star or
an additional logical link that connects a pair of border esmd

Another alternative is to start with the full-mesh approacid encode the mesh in a maximum weight
spanning tree [22]. External nodes can recover the fullnrepresentation from the spanning tree if they
desire. Whereas the symmetric star topology approximdtesdapacity region” of the peer group by a
hyper-cube region, the spanning tree approximates it wilgper-rectangle. A simple example will help
clarify the meaning of the term “capacity region.” Suppose lave the three-link peer group shown in
Fig. 2 with available link capacitie§;, C,, andCs and routes; andr,. Let f1 (f2) be the current amount
of capacity in use by connections on routgegr,). Then we have three link constraintl; < C,, fo < Cy,
and f; + fo < Cg, plus the requirement thdf > 0 andf, > 0. These constraints define the capacity region
as shown in Fig. 3. The symmetric star topology approximttesapacity region with a square defined by
f1 <min[Cy,Cy), f2 < min[Cq,Cy], f1 > 0, andf, > 0. The spanning tree approximates it with a rectangle
given by f; <Gy, f, <Gy, f1 > 0, andf, > 0. It should be clear from Fig. 4 that neither of these appgreac
captures the sharing of capacity by routgegndr, on link 3, leading to a somewhat optimistic advertised
capacity.

A third approach is to approximate the capacity region wittyperplane [38]. For the example shown
in Fig. 3, one possible choice would be the triangle giverfpy f, < Cs, f1 > 0, andf, > 0 (see Fig. 4).

4
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Figure 3: The capacity region based on the link constrainfsosed on the flows along the two routes.
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When coupled with prediction of offered loads, the hypeamplapproach has the potential to provide a more
accurate picture of the available capacity than the stare@spanning tree.

None of the explicit representations, however, are witfwablems. For example, as mentioned earlier,
the maximum available bandwidth paths between differems jud border nodes may overlap, causing the
advertised capacity to be too optimistic. Another questild@ area is scalability to larger networks with
more levels of hierarchy.

1.3 QoSrouting based on implied costs

A more important problem is how the representation coupliéls reuting. Can we really devise an accurate
representation that is independent of the choice of rowtggrithm? None of the explicit representations
address the effect that accepting a call would have on thgestion level both within the peer group and
in other parts of the network due to interdependencies artraffgc streams. For this reason, we introduce
an implicit representation based on the average implietitoag through or into a peer group that directly
addresses this issue and is an integral part of the adapt@varthical source routing algorithm that we
propose.

Such implied costs reflect the congestion in peer groups dsawéhe interdependencies among traffic
streams in the network, and, independent of their use in ingpalgorithm, they may be useful to network
operators for the purpose of assessing current congesti@islas well as providing information valuable
for determining the best location for future capacity uplgimand how much they should be willing to pay
for them. A rough motivation behind using the average is, timt large network with diverse routing, a
connection coming into a peer group can be thought of asgakiandom path through that group, and hence
the expected cost that a call would incur would simply be trexage over all transit routes through that
group. We will develop two closely related approximatiomste in which the computed average implied
costs are never used for the local portion of a route, and @ raggressive approximation in which the
average implied cost is used locally as well as remotely famdit routes traversing more than one peer
group. This second approximation will enable us to guamotvergence of the implied cost computation
under any traffic conditions, not just under light loads. Mfihis approach, a route transiting through a
peer group can be thought of as consuming an amount of batidaideach link in that peer group that is
proportional to the fraction of actual transit traffic in theer group which passes through that link.

In order for our scheme to succeed, we need a hierarchicapetation of the implied costs and a
complementary routing algorithm to select among variowsanchical paths. The path selection will be
done through adaptive (sometimes called quasi-statidjngui.e., slowly varying how demand is split
between transit routes that traverse more than one peepgwith the goal of maximizing the rate of
revenue generated by the network. After eliminating romtbich do not satisfy the QoS constraints, e.g.,
end-to-end delaythe demand for transit routes connecting a given sourciria¢isn pair can be split based
on the revenue sensitivities which are calculated usingnipdied costs. Within peer groups, we feel that
dynamic routing should be used because of the availabiliscourate local routing information.

3In our model effective bandwidtfi7, 19] allocation is used to control queueing delays whiahslates to a limit on hop counts
plus propagation delay in order to satisfy a given delay bloun



By using an adaptive algorithm based on implied costs, we thk point of view that first it is of
essence to design an algorithm that does the right thing efiatferage,” or say in terms of orienting the
high-level flows in the system toward a desirable steadg statorder to make the routing scheme robust to
fluctuations, appropriate actions would need to be taken ipacking/crankback to ensure good, equitable
performance in scenarios with temporary heavy loads.

1.4 Using hierarchy to reduce complexity

We now give an example of the complexity reduction achieyatith our algorithm. Consider a network
consisting solely of Peer Group 2 in Fig. 1. As will be expladrin Sec. 4, the implied costs are computed
via a distributed, iterative computation. At each itematithe links must exchange their current values.
Making the assumption that Nodes 1, 2, and 3 are connectatlylasing a broadcast medium, this would
require 81 messages per iteration if we did not employ awegagwWith our algorithm for computing the
implied costs, only 41 messages per iteration would be ngelsavings of 49%. The memory savings
would be commensurate with these numbers, and the commahitomplexity of the two algorithms is
roughly the same. This reduction is significant becausemnmition update in an algorithm such as PNNI is
a real problem, as it can easily overload the network eles&2f.

1.5 Paper organization

The rest of this paper is organized as follows. Sec. 2 sunmemtihe prior work directly relevant to the
material in this paper. Sec. 3 explains our model and notafitne theoretical basis of our adaptive routing
scheme and its relation to Kelly's work is given in Sec. 4. Ataraative approximation of the implied costs
that works under any traffic conditions is developed in SecSéc. 6 presents some computational results
which attempt to quantify routing “errors” due to inaccuegccaused by aggregation. In Sec. 7, we discuss
on-line measurements of some necessary parameters, arit8igfly outlines extensions to a multiservice
environment. Finally, Sec. 9 concludes with a summary.

2 Related work

Hierarchical routing has been widely studied and used ih belephone and data networks [6, 11, 15, 20,
35]. Generally, only simple routing metrics such as hop tdave been used to select appropriate paths.
With the current trend toward integrated broadband netgjarkerest in QoS-sensitive routing algorithms
has been increasing [24, 30, 37]. In addition, the desiréafge-scale networking has made a combination
of the above, hierarchical QoS-sensitive routing algamgh an important area of study [12, 25, 29, 2].
For the specific case of routing in ATM networks, which supp@oS and makes use of hierarchy and is
consequently quite complex, a good overview can be found]in4s an aside, we note that QoS routing
problems such as the constrained shortest path problergmcalty NP-complete [10, 37].

As part of the research on hierarchical QoS-sensitive mgutihe explicit representation of available
subnetwork capacity has been studied in detail [22, 23, R,B8wever, our implicit representation based



Symbol Description

J(J)  Number (set) of links in the network.

Cj Capacity of linkj in circuits.
R(®) Number (set) of routes defined in the network.
N (A)) Number (set) of nodes where a node is defined as a collection of links tiagfpeer group or that

connect two peer groups.

n(j) Link j is an element of node(j).

Ajr Number of circuits (or units of capacity) used by routen link j.

Ejn Indicator function for the event that linkis an element of node.

Tr Indicator function for the event that transit routpasses through node

Pik Indicator function for the event that linkis a peer of linkk (i.e., in the same node).

Vr Rate of independent Poisson arrival process for route

Ly Blocking probability for route.

Ar Throughput achieved on route

Bj Blocking probability at linkj.

Pj Reduced load at link from thinned Poisson streams which pass throjugh

6 Throughput achieved through link

n; The expected increase in blocking probability at linfkom removing a single circuit.

9 The expected number of calls blocked at lip&s a result of removing a single circuit for unit time

Wy Revenue generated by accepting a connection on route

W(v;C) Rate of revenue for the network.

Cj Implied cost to later calls which are blocked due to accepting a connectiorgthliok j.

o Sum of implied costs for links in routethat lie in noden.

Cn Average implied cost of transiting through noale

S Surplus value (revenue minus costs) of an additional connection éarou

S Surplus value of an additional connection on roufeom the perspective of link € r (in the hierar-

chical framework).

Hn Set of hierarchical paths from the point of view of nade

Hin Number of circuits used explicitly by hierarchical pdtlon link j.

(I Blocking probability for hierarchical path.

Ah Throughput achieved on hierarchical path

Shij Surplus value of an additional connection on hierarchical pathwhich j is an explicit member.

on implied costs is new. Here we have extended the work of/keeltl others on the computation of implied
costs and their use in adaptive routing schemes in singléeseand multiservice flat networks [9, 17, 27].
Our proposed routing algorithm lies in the class of netwqgpkimnal algorithms as it attempts to maximize
the rate of revenue for the network instead of greedily fytio individually maximize each user’s benefit.
Network versus user optimization and the possible effentstability in QoS-sensitive routing is an issue

Table 1: Definition of symbols for single-service model.

worthy of further study. An earlier version of the materialthis paper can be found in [28].

3 Modd and notation

Our model is that of a loss network servingiagletype of traffic? i.e., all calls require unit bandwidth,

call holding times are independent (of all earlier arriviadés and holding times) and identically distributed

4Extensions to multiservice networks will be presented in. 8e



Peer Group 1

Peer Group 2 Peer Group 3

Figure 5: Example network with a single level of aggregation

with unit mean, and blocked calls are lost. The unit bandwigguirement per call can be considered to
be aneffective bandwidtfi7, 19] which captures the traffic behavior. The capacityadtelink j € 7 is C;
units, and there are a total dflinks in the network. Each link is an element of a single nod¢j) € A,
where an aggregated nodes defined as a collection of links that form a peer group ot dmmnect two
peer groups. We defineEj, to be an indicator function for the event that lifks an element of node, and
Pjk is an indicator function for the event that linkis a peer of linkk (i.e., in the same node). A route is
considered to be a collection of links jiy router € ® usesAj; circuits on linkj € 7, whereA, € {0, 1}.6 A
transit routeis defined as a route that contains links in more than one raodEl,, is an indicator function
for the event that transit routepasses through node A call requesting route is accepted if there are at
leastAj; circuits available on every link. If accepted, the call simultaneously hollg circuits from link

j for the holding time of the call. Otherwise, the call is bledkand lost. Calls requesting rout@rrive as
an independent Poisson process of kgateé-or convenience, definitions of the symbols we will be usging
collected in Table 1. Where appropriate, all values reteteein this paper are steady-state quantities.

For simplicity, we only consider a network with one level gigaegation like that shown in Fig. 5. This
network has three peer groups, consisting of 3, 5, and 4 sestcrespectively. The logical view of the
network from a given peer group’s perspective consists ofmlete information for all links within the peer
group but only aggregated information for links betweenrggeups and in other peer groups. The other
peer groups conceptually have logical links which connechepair of border switches and connect each
border switch to each internal destination. These loginkklhave an associatéuplied costi.e., marginal
cost of using this logical resource, which is approximatexinf the real link implied costs. Currently, we
calculate an average implied cost for any transit route plaases through or into a node, i.e., all of the

5There may be multiple links connecting the border switcHe®/o peer groups. This set of one or more interconnectinkslin
is considered to be a separate aggregated node in our model.
61n general, these routes might include multicast routes.



Peer Group 2 Peer Group 3

Figure 6: Logical view of the network from the perspectivegpekr group 1. The set of links connecting two
peer groups is also considered to be an aggregated node incalsl.

logical links in a node have the same implied cost, and thisevis then advertised to other peer groups.
Fig. 6 shows the logical view of the example network from thespective of peer group 1.

4  Approximationsto revenue sensitivity

To calculate the revenue sensitivities, we must first findotbeking probability for each route, an important
performance measure in its own right. Steady-state blgckirobabilities can be obtained through the
invariant distribution of the number of calls in progresseath route. However, the normalization constant
for this distribution can be difficult to compute, espegididr large networks. Therefore, the blocking
probabilities are usually estimated using the Erlang fixeidtoapproximation [11, 18].

LetB = (Bj, ] € J) be the solution to the equations

Bj =E(p;.Cj), je, (1)

where

pi=Y A ] (1-BY )
reg. ker—{j}

and the functiork is the Erlang B formula [3]

Cj
Pj

Cj pT
E(pj,Cj) = c/ —

-1
> m] . ©

n=

The vectorB is called the Erlang fixed point; its existence follows froine Brouwer fixed point theorem

10



and unigueness was proved in [16]. UsBigan approximation for the blocking probability on routtes

erl—l_l(l—Bk). 4)
ker
The idea behind the approximation is as follows. Each Poiss@am of rate, that passes through link
is thinned by a factor & By at each linkk e r — { j } before being offered t§. Assuming these thinnings are
independent both from link to link and over all routes, thiea traffic offered to linkj is Poisson with rate
p;j as given in (2), the blocking probability at linkis Bj as given in (1), and the loss probability on route
is exactlyL; as given in (4).

Alternatively, instead of using the Erlang fixed point to appgimate the blocking probabilities, it may be
more accurate and efficient to measure the relevant quemti@pecificallyl,, A, (the throughput achieved
on router), and8j = ¥« AjrAr (the total throughput through link) can be obtained based on moving-
average estimates. This will in turn allow us to compute tsoaiated implied costs and hence the approx-
imate revenue sensitivities. We will discuss the subjectimfine measurements more fully in Sec. 7.

Assuming that a call accepted on routgenerates an expected revenyethe rate of revenue for the
network is

regk.
Starting from the Erlang fixed point approximation and byeexting the definition of the Erlang B formula
(3) to non-integral values @; via linear interpolatior, the sensitivity of the rate of revenue with respect to
the offered loads has been derived by Kelly [17] and is given b

0

S W0 = (- Los (6)

where

S =W — ) Ak (7
ke g

is the surplus value of an additional connection on rougad the link implied costs are the (unique) solution
to the equations

=n;j(1-Bj)" ZAJr (s+cj), jeJ, (8)
regR.

wheren; = E(p;,Cj — 1) — E(p;,Cj). Bj, pj, andL, are obtained from the Erlang fixed point approximation,
and)\r - Vr (1 - Lr) .

Remark.In a flat network, the offered load for a given source/desitimapair should be split among the
available routes based on the revenue sensitivities in £8).additional call offered to route will be

At integer values o€;, define the derivative dE(p;,Cj) with respect taC; to be the left derivative.

11
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Figure 7: Computation af,, for an aggregated nodewith two transit routes.

accepted with probability I L;. If accepted, it will generate revenue, but at a cost o€; for eachj € r.
The implied costs quantify the potential knock-on effects or expected lossgeuenue due to accepting a
call. The goal of the routing algorithm is to maximize theeraf network revenu&V(v;C) by adaptively
adjusting the splitting for each source/destination paérdime in response to changing traffic conditions.
The splitting for a source/destination pair should favartes for which(1—L;)s has a positive value since
increasing the offered traffic on these routes will incredigerate of revenue. Routes for whith—L,)s

is negative should be avoided, with all adjustments of thittisg made gradually to guard against sudden
congestion. We note that, in genefal(v;C) is not concave, so there may exist nonoptimal local maxima.
However, Kelly has shown that it is asymptotically linearvaandC are increased in proportion [17].
Furthermore, even though the routing algorithm could pidéyn reach a nonoptimal local maximum of
the revenue function, the stochastic fluctuations in thereff traffic may allow it to escape that particular
region.

To perform aggregation by peer group, we first define the diyaat as the weighted average of the
implied costs associated with pieces of transit routespghss through or enter noddor, equivalently, over
the links inn visited by such routes) where, in the following},= ¥ jc 5 Ajr EjnC;:

— Sreg Tk G

" ZreKan)\r
_ Yjes Ein(Trex TarAjrAr)C;
B zrey{an)\r .

(9)

This averaging is illustrated in Fig. 7. We redefine the sugplalue for a route as a function of the local link
implied costs and the remote nodal implied costan the perspective of linkg r (see Fig. 8):

S;j=Wr — Z AxrPcjck — Z TnrCn. (10)
keJ nz£n(j)

12



Figure 8: Implied costs for a route from the perspective ik |j

The link implied costs are now calculated as

=nj(1-B)) "y Ajhi(s;+¢), €T (11)
rex.

In the sequel, we will address the following issues: theterise of a unique solution to these equations
convergence to that solution, and the accuracy relativeelty& implied costs

Eqg. (11) can be solved iteratively in a distributed fashi@successive substitution. If we define a linear
mappingf : R — RI by f = (f1, fo,..., ),

fi(xX) =n;j(1-Bj) ZAJI’ r—zAerqu— z TnrXn), (12)
rex. k7] n#n(j)
then successive substitution corresponds to calculatiagséquencé'(x),i = 1,2
result of iterating the linear mappindimes

., where fi(x) is the
Define a norm o’ by

[1X][m —maX{AJr > APixd+ Y TarXio)}

n (13)
k] n#n(j)
where

X, = Yics Ein(Zreg TarAjrAr) X
" Srer Tnhr

For any positive vectoa, we define the weighted maximum norm B by ||x||3 = max; |
suppress the index if aj = 1 for all |

. Also, letd = (81,8, ...
improvement formula.

,03), whered; = n;p; denotes Erlang’s
Theorem 1. Suppose thattd||y < 1. Then the mapping fR’ — R’ is a contraction mapping under the

13



norm|| - ||, and the sequenceé (k),i = 1,2,..., converges to'cthe unique solution of11), for any xe R’.
Proof. See Appendix A. O

Remark. The productn;p;j increases to 1 ag;, the offered load at link, increases [17]. S@d|m < 1
can be referred to as a light load condition. If the network lomg routes and/or heavily loaded links, this
constraint may be violated, but at moderate utilizatiorelevwe expect that it will hold. As an example,
consider a loss network in which all links have capa€ity= 150 and the reduced load at each link from
thinned Poisson streams gs= 100. Furthermore, for simplicity, assume that each tramgite across a
node has the same length. Th&ge- 3.3 x 10~° for each link, and the conditiofid|y < 1 requires the
maximum route length to be at most 30,717 links. The blockiragpability for a route of maximum length
is approximately 2% (under the link independence assumptilh p is increased to 120 for each link, the
maximum route length is 33 links with a blocking probabilaf/approximately 3% along such a route. At
p = 140, the maximum route length is 3 links with a blocking proibty of approximately 8%. For this
example, link utilizations up to about 80% are certainlysible under our “light load” condition. As the
capacities of the links increase (relative to bandwidthuesgs), even higher utilizations are possible before
the maximum route length becomes too small and/or blockeapimes prohibitive.

The convergence proved in Thm. 1 assumes iterates are cethgymchronously. In a large-scale net-
work, synchronous computation may be infeasible, so weshidw that our light load condition is sufficient
for convergence of an asynchronous computation in thevidtig sense [4]:

Assumption 1. (Total Asynchronism) Each link performs updates infinitefyen, and given any timg,
there exists a time > t; such that for alt > t,, no component values (link and average implied costs) used
in updates occurring at timtewere computed beforg.

Note that, under this assumption, old information is evalyupurged from the computation, but the
amount of time by which the variables are outdated can beastheunded asincreases.

Theorem 2. Suppose thafd||w < 1 andd > 0. Then, under Assumption 1 (total asynchronism), the se-
quence f(x),i = 1,2,..., converges to'cthe unique solution of11), for any xe R’.

Proof. See Appendix B. O

Remark. With the additional restriction of bounded communicati@hays, the convergence rate of an asyn-
chronous iteration satisfying the conditions of Thm. 2 iemetric and can actually be faster than the corre-
sponding synchronous version which has to wait for all valitem the previous iteration to be distributed
before performing the next update. See [4, pp. 441-443]Herdetails of a situation analogous to ours
which has “fast” local communication (within peer groupggdslower” remote communication (between
peer groups) and where the asynchronous convergence fastasif there is a “strong coupling” among the
local variables (i.e., the local implied costs), a conditighich should typically hold true in a hierarchical
network if the amount of local traffic dominates the amountawfiote traffic in each peer group.
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Theorem 3. Suppose thatd||m < 1 and denote ¢ and as the solutions t(8) and (11), respectively. Define
A = max, {Tnr Y mzn Trr|C — Cml} Where §' = ¥ . Ajr EjmCj andcy, is defined by9). Then we have

||Sf5’|| < M

=T 0w (14)

where byl[s— ||« we meammax r:jer | — |-
Proof. See Appendix C. O

Remark. The error between our modified implied costs and Kelly’s iegblcosts will be minimized under
light loads (|8]|m < 1) and if the difference between transit route costs and tleeage for each node is
small A close to 0). We use the maximum normf s as a comparison because it directly affects the
difference in the revenue sensitivity in (6) using the flad &ierarchical frameworks. The measured value
of L, used in (6) may also be different from that in a flat networkawese it is potentially averaged over
several routes with the same hierarchical path from a giwaeis point of view. When making adaptive
routing decisions, we are really only concerned with thatie¢ values of(%rW(v;C) among routes sharing

a common source/destination pair. It is unclear in whatasitns our approximation might affect this
ordering.

5 An alternative approximation

In this section, we consider a more aggressive averagindgnamém. In the previous approach, we used
exact information for resources within a peer group and eg@ged metrics to represent its remote peers. By
contrast, herein we also perform local averaging amongesotrainsiting through or into a local peer group.
We will show that this alternative approximation has a simgtructure to the previous case, although the
relation to the exact implied costs is further “removed. € ey advantage of this approach is that, subject to
sufficient damping, one can show convergence to new appatgiimplied costs under any traffic conditions
and route topology. In fact, the required damping within arpggroup depends only on local information,
the number of links within the peer group, and aggregatetbajlinformation, the total number of peer
groups. Thus, the damping factor within a peer group onlyireg information that is consistent with
its hierarchically aggregated view of the network, and tbalocal knowledge required, namely the total
number of peer groups, is not detrimental to the deceng@limture of the computation.

Define the matrixA with elementszﬁ_\jr € [0,1] such that

Yacx TnjoAiara R
Ajr = e Tn(j)jala ?f Tojr =1, (15)
Ajr if Tn(j)r =0.

Local routes remain unchanged: they take a single circugamh link that they traverse. However, transit
routes can be thought of as consuming a fraction of a cirauig\@ry link in each node that they traverse.
This fraction is equal to the fractiod?ljr of transit traffic in noden(j) which passes through that link. Note
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that the offered loag; at link j remains the same whether it is computed based on the flat hétwouting
matrix A or the aggregated routing matri Indeed, for fixed\,, we havep; = (1-Bj) ! Srex AirAr =
(1- Bj)ilzre:&Ajr}lr-

By substitutingA for Ain (8), we have the following implied cost equations:

=nj(1-B) 'y Ajr s ZAerk jeys. (16)
reR. k# ]
We can rewrite these equations in various ways to bring @ittmnections with both our first aggregation
method (9) and the original implied cost equations (8) fora fletwork. First, we note that for a given
link j and router such thafT, ), = 1, we havey ., AkrPchk = cn( y» Which illuminates the role o;lkJr in
performing additional averaging of implied costs at thealdevel; compare this with (9). Second, we can
rewrite (16) as

cj =nj(1-Bj) Z A]I’ Wy — Z 'KkrF‘(jCk_ Z TnrCn) (17)
rex. kZ ] n#n(j)
=Nj(1=-B) " [(1=Toge)Arhe(We — 5 AcrCic+€j) + TogyrAjrAr(We — Y TrCn+ Ajrcy)]. (18)
rex keg neN

Eq. (17) indicates the connection with our previous equati¢ll) for a hierarchical network, the only
difference being the use of thematrix locally. In (18), we see that the equation épris a combination of
the original equation (8) for routes not transiting througsden(j) and an equation based on “averaged”
surplus values;, = W — ¥ nca TnrCn for routes transiting through nodd j) plus the use oﬁ_\jr instead of
Aj,—.

Based on the above, we define a new linear mapping’ — R’ by f = (f1, fo,... , f3),

~( X) =nj(1-Bj) Z AJr Wr — Zp_\erk), (29)
rex kZ]

wheref! (x) is the result of iterating the linear mappintimes. Defineﬂy) :R? — R’ to be a damped version
of the iterationf (-) for y = diag(y;j); wherey; € (0,1) V j € J:

(0 = (1 —Yx+yF(K. (20)
If we define a norm o’ by

Xl = max( 1Ay > 0) 5 Al (21)
KZ]

then Thms. 1 and 2 can be shown to hold fex) under the conditiorj3||; < 1. However, our main interest
here lies in proving convergence of the damped iteraﬂgmx) without requiring||d||y; to be less than one.

Theorem 4. The equationg16) have a unique solutiof.

Proof. See Appendix D. O
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In the following, letJ, denote the number of links in nodeand recall thalN denotes the total number
of aggregated nodes in the network.

Theorem 5. If y; < (N\L(J-))*l vV j € g, then the sequenc@('y) (x),i =1,2,..., converges t&, the unique
solution of (16), for any xe R’.

Proof. See Appendix E. O

Remark. The convergence proved in Thm. 5 is based on synchronowtiaes. To prove totally asyn-
chronous convergence of the damped computation, it is miffito show that the iteration matri@ =
-yl —S) —yr]B*lﬂ_J\A_\T} corresponds to a weighted maximum norm contraction, orvedgntly, that
P(|G|) < 1, wherep(|G|) is the spectral radius of the matiig| having as elements the absolute vallggg

of the elements o6. The proof of Thm. 5 showed that witfy < (NJ,j)) "'V j € 7, we havep(G) < 1.
However, the off-diagonal entries &fare nonpositive, and its structure is such that no matterdmall we
makey > 0, we cannot guarantee tha|G|) < 1 without requiring the light load conditiofd||,; < 1. Our
conjecture is that under a partially asynchronous modeli|@] there is a fixed bound on the amount of
time by which the information used at a link can become oettlathe algorithm will converge if we use a
small enough stepsize As the asynchronism measubeor the number of linkg increases, we would have
to decreasg to mitigate the effects of asynchronism.

6 Computational results

In this section, we explore the computation of the impliedtsat one point in time for a given set of
offered loads. We use the Erlang fixed point equations toillte route blocking probabilities, and then
input the results to the implied cost calculations. ktet/, andc¢ denote the solutions to (8), (11), and
(16), respectively. The surplus valussnds are computed according to (7) and (10), respectively. For
our alternative approximation, we compige="wr — 5.4 A_\krék. Because we use the same route blocking
probabilitiesL in computing the revenue sensitivities for all three cagesexpected and maximum relative
surplus value differences are equal to the expected andnmiaxirelative revenue sensitivity errors. The
results discussed below are summarized in Tables 2 and 4.

We start with the symmetric network shown in Fig. 9 and assigrapacity of 20 to each link. We
define a total of 45 routes with offered loads ranging frof tb 30 in such a way that the offered loads
at each link in the three peer groups are the same and allttrantes use only one link in the peer groups
that they pass through. Each accepted connection genera¢esnue of D. Under these conditions, the
calculated implied costsandc’ are the same. Thug(s—S) /sl = MaX r:jer [(S — ;) /5| =0, and, as
a result, the revenue sensitivities are also the same. [Ebrlek in the peer groups;; = 0.015. For the
links connecting the peer groups, = 0.129. Compared to our alternative approximation, the diffiees
are quite smallj|(c— €)/c||. = 0.7%, and||(s— §)/5]|. = 0.04%.

Next, we take the symmetric case and increase the load oimkseih peer group 1 to near capacity by
increasing the offered loads for local routes in peer grotip three and a half times their previous values.
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Peer Group 1

Peer Gr(;up 3

Peer Group 2

Figure 9: Symmetric network with a single level of aggregati

This causes the implied cost calculations éandc’ to differ slightly, resulting in||(c—c')/c|l = 0.3%
and||(s—S)/s|le = 1.5%. Due to the heavy loads in peer group 1, the implied apate hot as accurate:
|(c—¢€)/cll = 9.0%, and||(s—5)/sl|« = 97.5%. (Despite the latter result, we note tti#{s — 5)/g =
Srer (Vr (S —&)/S)/ Srex Vr is only 150%8) To demonstrate the change in revenue sensitivities frem th
symmetric case, consider the two alternative routes comgisf the following sets of linksr; = {2,9,3}
andr, = {10,6,11 5}. In the symmetric case, the revenue sensitives fandr, are 0823 and 0684,
respectively. In the present overloaded case, the revesnaitisities change to approximately4d6 and
0.772, respectively. The longer route is now favored because it avoids passiogigrthe overloaded peer
group. We note that, using our first hierarchical approxiorgtthe revenue sensitivity may vary along a
particular route depending on which link is making the ckltian (due to thes;;; term). To be exact, all
links of a route in a given peer group will compute the samesisigity, but links of the route in a different
peer group may compute a different value. For our currentrgt@, the revenue sensitivities vary only
slightly along routes, on the order ofD4 in the worst case.

As another example of an overload scenario, we start witlsyh@metric case and increase the loads on
transit routes between peer groups 1 and 2 by one and a hal tzausing link 9 to be near capacity. For this
case, the differences between the first two approximatiomgraater than in the previous overload scenario,
[(c—c)/cll =1.1% and||(s—S) /S|« = 5.0%, but the surplus valuestdare much betterf|(c— €) /c|| =
18.1% and||(s—$5)/s/|» = 4.4%. This is due to the fact that the overloaded node consigislp a single
link, mitigating the errors due to local averaging of transiute costs. The revenue sensitivities fer
andr, are approximately 335 and (0686, respectively, which would cause the routing algoritionsend
more traffic around the overload as desired. Compared torthéqus case, there is greater variation in the
revenue sensitivities along each route ush@n the order of W13 in the worst case.

8Similarly, we defineE[(c—€)/c] = zjey(p,—(c,— 76,-)/cj)/zj€] pj-
9The revenue sensitivity values presented in this sectiem@mputed using the surplus valgessings or §results in slightly
different values but the same relative ordering.
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Rev. sens. erroilE]-] / || - ||e
s—¢g s—§
e e oW/ovy O0W/dv,
Symmetric load|| 0.0%/0.0%  0.01%/0.04% 0.823 0.684
Local overload || 0.2%/1.5%  15.0%/97.5% 0.416 0.772
Transit overload|| 0.9% / 5.0% 1.0%/4.4%| 0.335 0.686
Asymmetric net|| 2.4%/15.5% 2.2%/155% — —
Imp. cost errorE[-] / || - [e
c-¢ c-¢ .
— = Lmax | ||8]lm | Iterations
Symmetric load|| 0.0%/0.0% 0.5%/0.7%| 2.1% | 0.297 5
Local overload || 0.1%/0.3% 5.7%/9.0%| 25% | 0.764| 10-13
Transit overload| 0.4%/1.1% 6.3%/18.1% 16% | 0.780 8-9
Asymmetric net| 0.7%/2.1% 1.9%/6.2%| 3.8% | 0.327 6—7

Table 2: Computational results for the four experiments.

For a fourth experiment with a more varied topology, we ugerthtwork shown in Fig. 5. We define
a total of 122 routes with offered loads ranging fromd @ 20. Two routes are defined between each pair
of switches except for the members of peer group 2 which halyeane local route between each pair. As
before, each accepted connection generates a revenu@. of e link capacities are varied between peer
groups: links in peer groups 1, 2, and 3 have capacities 25add 30, respectively, and the connecting
links have a capacity of 35 each. Despite the loss of symirtagymplied cost calculations are surprisingly
close: the worst-case differences dife —c')/cl|o = 2.1%, ||(c— €)/C|l = 6.2%, and|(s—S) /5|«
|(s—8) /9|l = 15.5%.

Table 2 summarizes the main results of the four experimehtgy is the maximum route blocking
probability; the high values for the middle two experimeats for a local route in peer group 1 and a transit
route from peer group 1 to 2, respectively. The iteratiorisiom denotes the range of iterations needed for
convergence of the three implied cost computations. Natettie light load condition|d||y < 1 holds in

every case.

Two comments on the above experiments are in order. Finstgwair first hierarchical approximation
scheme, one can unfortunately construct cases where thaue\sensitivities vary enough along a route
to cause an ordering between alternative routes from thecgisypoint of view that is different from that
obtained in a flat network. This would cause the adaptivemguigorithm to temporarily shift offered loads
in the wrong direction until the sensitivities became fartapart. As a result, the routing algorithm would
adapt more slowly, but it is unclear whether this is a commiotraubling situation. Second, the bound in
Thm. 3 appears to be rather weak. It was too high by an orderaginitude in the two overload cases. In
the fourth experiment, however, it was less than twice theawalue.

We also performed experiments on the larger network showaminl0 with a variable number of defined
groups. The group memberships in terms of the links in eacbgare listed in Table 3. We define a total
of 247 routes with offered loads ranging fron2Go 30. As before, each accepted connection generates a
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Figure 10: A larger symmetric network.

revenue of 10. The link capacities vary from 20 to 30, and no attempt wadarta equalize the offered
loads on the links.

Table 4 summarizes the main results of these six experimdntserms of relative implied cost and
revenue sensitivity errors, the 6 groups case performeddse and the 6 alternate groups and 9 groups
performed the worst. For these experiments (with fixed wared offered loads), the error results seem to
be correlated to the number of transit routes per group withwvar average number of transit routes tending
to produce better results. We also compute the number ofagesger iteration under the assumption that
the groups of three switches in a triangle are connectedlyoasing a broadcast medium, i.e., only one
message is required to reach the three link controllers éntlangle. For a flat network, 807 messages
per iteration are required, so each group structure testaddes a significant reduction. The most savings

3 groups {0-11, 36 {12-23, 3§ {24-35, 3%

6 groups {0-11} {12-23 {24-35 {36} {37} {38}

6 alt. groups| {0-2, 9-10 {3-8, 11, 36 {12-14, 18-20, 22, 38{15-17, 21, 23

{24-29, 33, 37 {30-32, 34-3%

9 groups {0-2,9 {3-5, 11, 36 {6-8, 10 {12-14, 23 {15-17, 23 {18-20, 22, 38
{24-26, 33, 3F {27-29, 35 {30-32, 34

12 groups | {0-2,9 {3-5,1% {6-8, 10 {12-14, 23} {15-17, 23 {18-20, 22
{24-26, 33 {27-29, 35 {30-32, 34 {36} {37} {38}

21 groups | {0-2} {3-5} {6-8} {9} {10} {11} {12-14 {15-17 {18-20 {21} {22}
{23} {24-26 {27-29 {30-32 {33} {34} {35} {36} {37} {38}

Table 3: Group memberships for the experiments on the largsvork.
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Rev. sens. erroilE]-] / || - ||e Imp. cost errorE[:] / || - ||
s—¢s s—§ c—¢ c—¢
s s ¢ c_
3 groups 3.7%/63.9% 2.8%/120.1% 0.7%/2.9% 1.6%/5.9%
6 groups 0.3%/12.2% 0.7%/16.2%| 0.05%/0.3% 1.7%/3.9%
6 alt. groups| 6.8%/159.1% 7.1%/163.1% 1.9%/4.5% 4.9%/8.3%
9 groups 10.1%/136.8% 6.9%/98.4% 4.0%/9.6% 4.3%/9.1%
12 groups 7.7%/48.6% 4.1%/46.7%| 4.5%/8.9% 4.2%/7.7%
21 groups 2.7%1/135% 2.5%/13.5%| 1.0%/2.9% 2.2%/8.2%
Messages | Avg. Transit Routeg Avg. Local Routes|
per Iteration per Group per Group
3 groups 303 14.7 75.0
6 groups 312 12.2 36.5
6 alt. groups 234 49.0 18.0
9 groups 249 43.9 9.7
12 groups 294 35.1 7.0
21 groups 447 31.0 3.1

Table 4: Computational results for the larger network.

occurs with the 6 alternate groups and the 9 groups whichotsirabove, provide the worst performance
in terms of revenue sensitivity error.

7 On-line measurements

We now return to the subject of on-line measurements, afiyorieentioned in Sec. 4. Instead of using the
Erlang fixed point approximation, we show how estimates efdhrried loads and blocking probabilities
can be used to implement a hierarchical adaptive routingraeh Our discussion follows that of Kelly [17],
with additional optimizations to take advantage of thedniehical framework.

We say that two routes have the sahierarchical pathfrom the point of view of linkj if they use the
same set of links in peer grouyj) and follow the same sequence of peer groups outsiae jof Let 4,
be the set of hierarchical paths from the point of view of nadand letHj, be the amount of bandwidth
used explicitly by hierarchical path e #, on link j. (Hj, is O for all links j outside ofn.) If we make
the assumption that,, = w;, for two routesr; andr, with the same hierarchical structure from the point
of view of link j € ry,r2, thens;j = s,;j. Recalling thap;(1— Bj) = Y,c« AjrAr andd; = njpj, we can
rewrite (11) as

~ flow carried on patn
I"flow carried through linkj

(Shj+cj), Jed. (22)

Cj:5j Z

he i)

Suppose we have on-line measufgét) andC:)J- (t) of the carried flows on pathand link j, respectively,
over the intervalt,t + 1). Smoothed, moving-average estimaie(st) andéj (t) of the mean carried flows
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can be computed using the iterations

wherey € (0,1). If we consider linkj to be in isolation with Poisson traffic offered at rgig we can
estimatep; (and thusd;) by solving the equatioéj = pj[1—E(pj,Cj)] to obtainp;. Then we would have
8 = PjE(B}.Ci — 1) —E(3;.Cp)].

Now suppose that the implied costarid the associated surplus valsésve been computed using these
estimates and successive substitution. Suppose alsdéhbloicking probabilitylL, has been estimated for
each hierarchical path, possibly using a moving-averagimate similar to the above. The revenue sensi-
tivity (1— Ln)&, j tells us the net expected revenue that a call on patfil generate from the perspective
of link j. Traffic from a source to a given destination peer group ghoal split among the possible hierar-
chical paths based on these revenue sensitivities. A grefadee of the traffic should be offered to a path
that has a higher value ¢ — I:h)éh;j than the others. Also, ifl— I:h)éq;j is negative for a particular path,
that path should not be used since a net loss in revenue woald by accepting connections on that path.
Any adjustments of the splitting should be done graduallgreevent sudden congestion. Note that we have
assumed that routes not satisfying the QoS constraints aftiylar connection will be eliminated prior to
choosing a path based on the revenue sensitivities.

8 Multiservice extensions

To accommodate different types of services, our model caxtended to a multirate loss network. Now we
allow Aj, € Z™. Several additional problems arise in this context. Finst foremost, the Erlang B formula
no longer suffices to compute the blocking probability atd fior each type of call. Letrj(n) denote the
steady-state probability af circuits being in use at lin. Then the blocking probability for routeat link
jisBj = Zﬁj:cj _a,+1T5(n). We can computex; using a recursive formula of complexi(C;K;) where

K; denotes the number of traffic classes (distinct valuesjof> 0) arriving at link j [33]. This result was
derived independently by Kaufman and Roberts. To reduceplaxity, many asymptotic approximations
have been proposed in the literature as the offered loadiakddpacity are scaled in proportion [13, 21,
26, 31, 34, 36]. We have found Mitra and Morrison’s Uniformyfgptotic Approximation (UAA) [26] to
be particularly accurate.

The Erlang fixed point approximation can be extended in agétifarward manner to the multiservice
case using an appropriate blocking function at each linkeNat, in this case, the fixed point is no longer
guaranteed to be unique [3%].Based on this approximation, implied cost equations carebeet! [9, 27],
where we now have a different implied cost at each link forhepe of service. The straightforward
extension to our hierarchical setting is to further companeaverage implied cost for each type of service

10ysing a certain single-link blocking function, convergerio a unique fixed point was recently proved in the light lazgime
only [36].
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passing through each peer group. Computing a single avergiied cost for each peer group is attractive
but would probably result in an unacceptable loss in acgurac

Define S to be the set of services offered by the network and partiffointo sets® > se S. Let
s(r) denote the service type associated with rauté Also, let pj; = A;/(1— Bjr), and definenjq =
Bir (0}, A},Cj — Ajq) — Bjr (0}, A}, Cj), which is the expected increase in blocking probabilityirak Ij for
router given thatAjq circuits are removed from link. The multiservice implied costs satisfy the following
system of equations:

Cig= > NjPir(S;j+Cjr), J€J, dER, (23)

rjer

where

S;j=Wr — Z PcjCur — z anc_ns(r) (24)
ker n#n(j)

and

T ZreRSan)‘r(ZjerEanjr)
ns ZreKSanAr .

(25)

Note thatc;, = cjq if Ajy = Ajq. In alarge capacity network, we can further reduce (23) tgstesn of only
J equations by employing the UAA [27]. If we redefine our norm®i¥ (Ris the total number of routes)
as

||XHM = max{ H(]|Xkr| + Z anMns(r)}a (26)
VRIS e Ter nAn(j)
letd = (811,812, ... ,01R, 021, ... ,O3r) Wheredjq = 3. jer NjrqPjr» and defingd = max,  { Tnr ¥ mzn TmrlGl" —
Cmgr) |} Wherecd" = 5 ., EimCir, then Thms. 1, 2, and 3 can be easily shown to hold for the seultice
«r) r = 2jer EjmC;j
case.

9 Conclusion

This paper is based on the premise that the use of hieratdocace routing is a key to both reducing
complexity and providing acceptable QoS in a large-scateari. Although aggregating network elements
into subnetworks is an old idea, we have taken a unique agiprmarepresenting the “available” capacity
of a subnetwork by formulating an implicit representatiaséd on the average implied cost to go through
or into the subnetwork. This average implied cost refleatsdbngestion in the subnetwork and captures
the interdependencies among traffic streams, a featurly $acking in explicit representations of available
capacity.

1INote that when multiple service types are carried betweenpivints, we assign various routes that may follow the sartte pa
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We proved that both a synchronous and asynchronous digttitlomputation of the approximate im-
plied costs will converge to a unique solution under a ligiggd condition. Furthermore, we presented a
more aggressive averaging mechanism that also performasd@eraging among routes transiting through
or into a local subnetwork. We proved that with sufficient géimg, a synchronous distributed computation
of these new approximate implied costs will converge to guaisolution under any traffic conditions. Our
experimental results showed that these approximationseasmnably accurate.

Based on this representation for available subnetworkagpave proposed a hierarchical source rout-
ing algorithm that adaptively selects high-level routesasdo maximize network revenue. Prior to path
selection, routes not likely to meet prespecified QoS caimdty, such as end-to-end delay, are eliminated
from consideration. Our scheme can incorporate on-linesoregnents, and it can be extended to a multi-
service environment. The low-level routing within subnetits was deliberately not specified, as we feel
that some form of dynamic routing would be beneficial in cgpivith traffic fluctuations at that level.

Possible topics for future research directly related torouting algorithm include

e extensions to more than two levels of hierarchy,

the optimal subnetwork size and switch arrangement to eehiee best tradeoff between accuracy
and reduced overheads,

the robustness of the implied costs and routing to link fasuy

investigation of the need to reserve capacity for locafitrafsing trunk reservation, and

the role of our algorithm in a layered approach to IP over ATddting [8].

A Proof of Theorem 1

Choosex, X € R’. ThenYj € 7,

fi00 = fi(X) = —nj(1=B) " S Arde (S AP =)+ Y T — X))
rex k#) n#n(j)

Therefore

i) = f;0)<njX=B) 1Y A (Y AcPiP—Xd + Y Torl%n— )

reR. KZj n#n(j)
rek.
=N;P;jlIx—X|m.

Taking the norm on both sides, we have

1) = £(X)Im < [18llm X=X [[m-
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Sof(-) is a contraction mapping jfd||m < 1. Using the definition of a contraction mapping and the prope
ties of norms, one can easily show that the sequdhog,i = 1,2,..., converges ta, the unique solution
of (11), for anyx € R7. O

B Proof of Theorem 2

Rewrite (11) in matrix form ag(x) = Gx+ b. The goal is to show tha® corresponds to a weighted max-
imum norm contraction. For, in that case, we can satisfy tralitions of the Asynchronous Convergence
Theorem in [4] (see Sec. 6.2 and 6.3, pp. 431-435), whichagees asynchronous convergence to the
unique fixed point’. In the following, we us& as the weight vector for the weighted maximum norm; in
order to do so, we require the conditidér> 0. (We are guaranteed that> O, but in all practical cases> 0
as we have assumed).

Choosex, X € R’. ThenYj € 7,

09— 600/ <NA-B) T A (T AcRibe— Xl + T Tl — %)
rex. KZ] n#n(j)

Therefore

!

fi () — fi(x)

< m-B) S Arh (ZAkr%k

J; 9] rex. KZ]
Yies Bin(Taex TngPighq)di ‘%‘
+ z Thr X >
n;én(') Ygex Tnoq
nj(
< ——5—— Ajr < Akrijék
r;i k;
E T, o)
by T DS AR ) s
) 20ex Inghq

since the weighted maximum norw||S = maxjcy \g—}\. Taking the norm on both sides, we have
109 = )2 < G2 x— X5,

where the induced matrix norihG||3 = max,-ej{es—lj Skes|9ik|Ok} [4]. So G corresponds to a weighted
maximum norm contraction ifG||S < 1. This follows from||8||y < 1 because

1 _R.\-1 E T, Ag)O
nj(1-Bj) S Ak (ZAer(16K+ S T Yies Bin(Taex TngPAighg) I)
5 reR KZ] n#n(j) Yaex Tnoh

IG|1% = max
jeg
(1— B -1
<max B s a )
1€J i reR.

= [|8llm
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sincepj = (1—Bj) 13 e AjrAr andd; = njp;. O
C Proof of Theorem 3
We havey| € 7,
Gi—c=nj(1-B) " Y Arh (Y AcPglac—c)+ Y Tar(c! — ).
rex. k+# | n#n(j)
Hence
cj— ¢l <n;j(1-Bj) ZAJF (Y AcRglec—cil+ > Tl —Cnt+Cn—G)
rex. kZj n#n(j)
<njpj(lic' —clm+2). (27)
Taking the M-norm on both sides and rearranging, we have
Al|3|m
¢ —cllm < —5— (28)
o= el < T3]
We also haveyj,r such thatj € r,
S — gr] ZAkr Pj(ck —c) + Z Tor(Ch—C7)-
= n£n(j)
Hence
S—95< S AdRlk—od+ Y Tl &t G- cf
key nzn(j)
<Icj —¢jl+ I —cllm+A sinceAj, =1
<njpj(lIc’ —cllm +4) +[|c' —cllm +A using (27)
= (&j+1)(Ic —cllm +2)
A
<Oj+1)—— using (28).
O DT el
Taking the maximum norm on both sides, the result follows. O

D Proof of Theorem 4

(The proofs of this theorem and Theorem 5 closely resemialel@velopment in [17, Sec. 4]. Note that all

vectors are considered to be column vectors.)
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Rewrite (16) in the equivalent form

cj =n;j(l- 6 z AJI’ Z A_krck)v (29)
reR. keg

whered; = n;(1— Bj)*lzreﬂiA_er)\r <njpj. Letg= (G1,8z,...,0s) wheregj(c) denotes the right-hand
side of (29). Also, define the positive diagonal matrices

A =diag\)r, ¢ =diagn;(1-8) *(1-B)) ;.
Then we can write (29) in matrix form as
c=g(c) = LA\(w—ATc).

Define the positive diagonal matricéé, Z*% componentwise. The equatian= §(c) is equivalent to
(I +ZANAT)c = ZAAw. Multiplying both sides of this equation on the left Byz, we have

(I + ZZANATZ2)T Zc = L2 AW

The symmetric matrix| +{2ANATL 2) is positive definite and hence invertible. Thus the equatienj(c)
has a unique solution
1 —

&= (1 +CAATYE) 12 AW, (30)

which is also the unique solution to (16). O

E Proof of Theorem 5

It is enough to establish that the sequerﬁ"@gx),i =1,2,..., converges since the limit vector must solve
(16) by the continuity off(y) (-). Define the diagonal matrices

A =diag\)r, B=diagl-By);, n=diagn;);, &=diagn;p));,
wherep; = (1— Bj)*lzrexﬁ_\ﬁ)\r. Then in matrix form
f(x) = B~ tAAW— P LAAAT X+ &x,
and so

iy 09 = [1 =y(1 —8) —ynB *ANATJx+ B~ "Aw
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The sequencé' )( X),i =1,2,..., will converge provided the eigenvalues of the iteratiortnrdl — y(I —
) B~ 1A)\AT} lie in the mterval( ,1). The eigenvalues of this matrix coincide with the eigenealaf
the matrix

Y IN B[l (I - 8) B UANATIB inzyi =1 - y(l - &) 2
=1—y(1—3)— (A

LS -
NI
'@
NH—\
;|

T 1 11
AB???
1
2

y2)T(AZAT

Nl
NII—'

>—|'
=

B2n?y?)

which is of the forml — (D + M) whereD is a diagonal matrix ant¥l is a symmetric, positive semi-definite
matrix of the formM =YTY. The eigenvalues @ are equal to its diagonal terrds, j € 7. Letp(D) denote
the spectral radius d, i.e., the maximum of the magnitudes of its eigenvaluesceSix Sj <njp;j <1
andy; € (0,1) forall j € 7, we have that &2 d; < 1, j € 7, and thup(D) < 1

Next, we determine a bound on the spectral radiuMofLet | - || denote the Euclidean norm, and
define the induced matrix norffiM||> as maxy,—1 [|[Mx||2. SinceM is symmetric, it can be shown that
P(M) = [M|l2 = maXy,—1 [X"MX| = maXy,—1 X" YTY X = maxy,_1[YX|3. We will show thatp(M) is
guaranteed to be less than one if we chogse (N\L(J-))*l v j € 4. We have the following:

1 111 2%
[ (3 A#A, nv,xj)}
reR. 'Je

11

IY |2 = [AZATB Zn3yix

Nl ‘\-.

[ (Z A AZ, lenjyj> ||x|2} by the Cauchy-Schwarz inequality
reER i€y

~ H 1 1
= ( 61Vj)2||xH2 < (Jezjvj)zllxlz < (%ﬁm)ﬂxnz

€

(35 2 o= (3 %) Itz = Il

neN 1€J neA.

&

Therefore,p(M) = [[M 2 = maxy,—1 Y §[3 < 1.

SinceD is a diagonal matrix with positive termB,+ M is symmetric and positive definite. Therefore,
its eigenvalues are strictly positive, and it can be wriitethe form SKS ! whereK is a diagonal matrix
with the same eigenvalues. The maximum eigenvalue -6fM is strictly less than 2 because

P(D+M) = [[D+M][2<[Dll2+[[M[]2=p(D) +p(M) < 2.

Hence, the terms & lie in the interval(0, 2), and so the terms df- K lie in the interval(—1,1). But these
terms are the eigenvalueslof (D + M) because

S(I-K)St=1-SKSl=1 - (D+M).

Thus, the eigenvalues of the original iteration matrix fighie interval(—1, 1), and the sequenc%) (X)
1,2,..., converges t@.” O
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