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Abstract
Enabling technologies for wireless sensor networks have gained
considerable attention in research communities over the past few years. It is
highly desirable, even necessary in certain situations, for wireless sensor
nodes to be self-powered. With this goal in mind, a vibration based
piezoelectric generator has been developed as an enabling technology for
wireless sensor networks. The focus of this paper is to discuss the modeling,
design, and optimization of a piezoelectric generator based on a two-layer
bending element. An analytical model of the generator has been developed
and validated. In addition to providing intuitive design insight, the model
has been used as the basis for design optimization. Designs of 1 cm3 in size
generated using the model have demonstrated a power output of 375 µW
from a vibration source of 2.5 m s−2 at 120 Hz. Furthermore, a 1 cm3

generator has been used to power a custom designed 1.9 GHz radio
transmitter from the same vibration source.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The vast reduction in size and power consumption of CMOS
circuitry has led to a large research effort based around
the vision of ubiquitous networks of wireless sensor and
communication nodes [1–3]. The wireless devices are usually
designed to run on batteries. However, as the networks increase
in number and the devices decrease in size, the replacement of
depleted batteries becomes impractical. Therefore, alternative
methods for powering wireless sensor nodes are needed. Solar
power is one alternative power source that has been used
to power wireless sensor devices [4]. While solar power is
abundant in some applications, it is unsatisfactory in many
others.

Mechanical vibrations have received attention from
various researchers as a potential source of power for sensors
and wireless electronics in a wide variety of applications.
Generators based on electromagnetic [5–8], electrostatic
[9–11], and piezoelectric [12–16] conversion have been
suggested in the literature.

While each type of converter has its benefits for certain
kinds of applications, a quick comparison of methods is
possible by considering the likely energy density of each type

Table 1. Summary of maximum energy densities of three kinds of
transducers.

Energy
density

Type (mJ cm−3) Equation Assumptions

Piezoelectric 35.4 (1/2)σ 2
y k2/2c PZT 5 H

Electromagnetic 24.8 (1/2)B2/µ0 0.25 T
Electrostatic 4 (1/2)ε0 E2 3 × 107 V m−1

of converter [17]. Such a comparison is given in table 1. From
the data in table 1, it appears that piezoelectric generators are
capable of producing the highest power output for a given size.
This paper will focus on piezoelectric conversion. Further
justification for this decision is published elsewhere [17].

σy is the yield stress, k is the coupling coefficient, c is the
elastic constant, B is the magnetic field, µ0 is the permeability
of free space, ε0 is the permittivity of free space, and E is the
electric field.

Commonly occurring vibration sources, such as HVAC
ducts, manufacturing and assembly equipment, and small
household appliances, typically range from 0.2 to 10 m s−2

in amplitude at frequencies from 60 to 200 Hz [16]. For the
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purposes of this paper a vibration source of 2.5 m s−2 at 120 Hz
has been chosen as a baseline with which to compare generators
of differing designs and technologies. This vibration source
sits about in the middle of a wide range of low level vibration
sources in terms of power output potential, and can thus be
considered a representative vibration source.

The purpose of this paper is to investigate the modeling
and design of a piezoelectric vibration-to-electricity converter
to be used as a power source for wireless electronics. The
focus here is on the generator device itself rather than on
the associated power electronics. The reader is referred to
the work by Ottman et al [15] for a discussion of associated
power electronics. An analytical model for the generator is
first presented. The model is then used to generate design
intuition and as a basis for optimal design of the piezoelectric
generator. Results are presented that validate the analytical
model. Finally, a piezoelectric generator of 1 cm3 in size is
used to power a wireless sensor node.

2. Generator configuration

A target size of 1 cm3 has been selected based on the size
of typical wireless sensor nodes [1]. As will be shown
later, the potential power output is directly related to size.
Size constraints play an important role in selecting a power
converter configuration. For this reason it is necessary to
specify the general size at the outset. While the model
developed holds for any size, if a generator an order of
magnitude larger or smaller were desired, a different design
configuration may be preferred.

A bending element has been chosen as the basis for a
generator rather than a stack because of the lower resonance
frequencies and higher strains attainable. A bending element
could be mounted in many ways to produce a generator. A two-
layer bender (bimorph) mounted as a cantilever beam with a
mass placed on the free end, as shown in figure 1, has been
chosen for two reasons. First, for a given force input, the
cantilever configuration results in the highest average strain,
and the power output is closely related to the average strain
developed in the bender. Second, the cantilever mounting
results in the lowest resonance frequency for a given size,
which is important because the target input vibrations are low
frequency (60–200 Hz). Note that in practice there is often
a metal shim between the two layers, which is not shown in
figure 1.

For the purposes of model development, a beam of
uniform width is assumed in order to keep the mathematics
more manageable and because benders of uniform width are
easily obtainable which makes validation of the model easier.
An improvement on the simple cantilever of uniform width
can be made by varying the width of the beam. The width can
be varied such that the strain along the length of the beam is
relatively constant. Thus the average strain can be significantly
higher (perhaps close to two times higher) than for a beam of
fixed width. The model developed does not lose generality
from the assumption of a uniform width beam. The important
relationships for design that emanate from the analytical model
hold equally well if a beam of non-uniform width is used.

Figure 1. A two-layer bender mounted as a cantilever. S is strain, V
is voltage, M is mass, and z is vertical displacement.

3. Basic model

An analytical model of the generator is important not only for
estimating the amount of power possible from a given vibration
source, but also for making explicit relationships that give the
designer of the system some intuition about how to improve
its performance. Additionally, the model can be used in
conjunction with an optimization routine to optimize geometric
design parameters. With these goals in mind, the development
of an analytical model for the piezoelectric generator in figure 1
is undertaken.

The established constitutive equations for a linear
piezoelectric material in reduced-matrix form are

{S} = [sE]{T } + [d]t{E} (1)

{D} = [d]{T } + [εT]{E} (2)

where {S} is the six-dimensional strain vector, {T } is the vector
of stresses, {D} is the three-dimensional electric displacement
vector, {E} is the electric field vector, [sE] is the six by six
compliance matrix evaluated at constant electric field, [d] is
the three by six matrix of piezoelectric strain coefficients, and
[εT] is the three by three dielectric constant matrix evaluated
at constant stress. Note that the nomenclature conventions
of Tzou [18] are implemented here. Using this convention,
T represents the stress induced by the combined mechanical
and electrical effects, and σ represents the stress induced by
mechanical effects only.

A two-layer bending element mounted as a cantilever
beam, as shown in figure 1, is assumed. As is generally the
case for bending elements, the material is poled along the 3 axis
and electrodes are placed on the surfaces perpendicular to the
3 axis. Driving vibrations are assumed to exist only along the
3 axis. Given these assumptions, the piezoelectric material
experiences a one-dimensional state of stress along the 1 axis.
Under this stress state, the piezoelectric constitutive equations
reduce to the expressions in equations (3) and (4). Note that
plane stress formulations have not been considered. While
this may lead to small errors, for the beam configuration and
dimensions under consideration, these errors are judged not to
be very significant.

S1 = sE
11T1 + d31E3 (3)

D3 = d31T1 + εT
3 E3. (4)

Hereafter S1, T1, D3, E3, sE
11, and εT

3 will be written as
S, T , D, E, s, and ε for the sake of simplicity. Additionally,
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Figure 2. Circuit representation of the piezoelectric generator.
(Note that node 1 is used in the derivation of equation (5).)

the elastic constant, c = s−1, will generally be used in place
of the compliance, s.

A convenient method of modeling piezoelectric elements
such that system equations can be easily developed is to model
both the mechanical and electrical portions of the piezoelectric
system as circuit elements. The electromechanical coupling is
then modeled as a transformer [19]. An equivalent circuit
for the bender system in figure 1 is shown in figure 2.
The equivalent inductor, Lm, represents the mass or inertia
of the generator. The equivalent resistor3, Rb, represents
mechanical damping. The equivalent capacitor, Ck , represents
the mechanical stiffness. σin is an equivalent stress generator
that represents the stress developed as a result of the input
vibrations. n represents the equivalent turns ratio of the
transformer. Cb is the capacitance of the piezoelectric bender.
V is the voltage across the piezoelectric device. The ‘across’
variable on the mechanical side of the circuit is stress, σ

(analogous to voltage), and the ‘through’ variable is strain rate,
Ṡ (analogous to current).

Using this modeling technique, the mechanical side of the
circuit is treated as an uncoupled mechanical system. Thus the
stress variable used isσ not T , and the stress–strain relationship
is S = sσ (or σ = cS). The transformer represents the
piezoelectric coupling. Transformers are characterized by a
turns ratio that relates voltage on one side to voltage on the
other side. In this case, stress on the mechanical side is related
to voltage on the electrical side.

As with purely electrical circuits, the system equations
are then determined using Kirchhoff’s voltage law (KVL) and
Kirchhoff’s current law (KCL). Taking the sum of ‘voltages’
around the mechanical side of the circuit yields the expression
in equation (5). Summing the currents at node 1 in figure 2
yields the expression in equation (6).

σin = Lm S̈ + Rb Ṡ +
S

Ck
+ nV (5)

i = Cb V̇ . (6)

In order for these expressions to be transformed into a usable
system model, equivalent expressions for σin, Lm, Rb, Ck, n,
and i need to be determined.

Figures 3 and 4 contain schematic diagrams of the
converter and composite beam showing the geometric
variables. Because the piezoelectric bender is a composite

3 Note that all symbols in the schematic diagram are electrical symbols. Thus
the symbol representing mechanical damping, Rb, is a resistor, not a spring.
Electrical symbols are used even for mechanical elements in order to make
translation to mathematics more consistent and simple.

Figure 3. A schematic diagram of the generator.

Figure 4. A schematic diagram of the composite beam.

beam, an effective moment of inertia is used. The effective
moment of inertia is given by equation (7) below.

I = 2

[
wt3

c

12
+ wtpb2

]
+

ηswt3
sh

12
(7)

where w is the width of the beam, ηs is the ratio of the
elastic constant of the center shim to that of the piezoelectric
material (ηs = csh/cp where cp is the elastic constant for the
piezoelectric material and csh is the elastic constant for the
center shim), and other variables are as shown in figures 3
and 4.

The elastic constant for the piezoelectric ceramic is then
used in conjunction with the effective moment of inertia
shown by equation (7). The different Young’s modulus of
the center shim is accounted for by the term ηs in the moment
of inertia [20].

The equivalent input stress, σin, is a result of the input
force, Fin, which is exerted by the proof mass as a direct result
of the input vibrations, ÿ. Therefore, σin can be written as

σin = k1 Fin (8)

where k1 is a geometric constant relating the average stress
in the piezoelectric material to force exerted by the mass on
the end of the beam. In order to derive an expression for k1,
consider the expression for the average stress in the beam, σ ,
as shown in equation (9).

σ = 1

le

∫ le

0

M(x)b

I
dx (9)

where M(x) is the moment, and le is the length of the electrode
covering the piezoelectric material. The electrode does not
necessarily need to extend over the whole length of the beam;
however, for the model presented here it will be assumed
that le � lb. In other words, the electrode does not extend
underneath the mass. The expression for the moment is given
by

M(x) = m(ÿ + z̈)(lb + 1
2 lm − x). (10)
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The term m(ÿ + z̈) is really a combination of input force, Fin,
and inertial force, Fm. Substituting F = Fin + Fm = m(ÿ + z̈)
into equation (10), equation (10) into (9), and integrating yields
the following expression:

σ = F
b(2lb + lm − le)

2I
. (11)

The constant, k1, is then

k1 = b(2lb + lm − le)

2I
. (12)

Remembering that Fin = m ÿ, the expression for σin becomes

σin = k1m ÿ. (13)

The stress across the ‘inductive’ element in figure 2 is a
result of the inertial force Fm = mz̈. The stress induced by
inertial effects can then be written as

σm = k1mz̈. (14)

The equivalent inductance of this element, Lm, relates
stress to the second time derivative of strain (see equation (5)
above) rather than displacement as in equation (14). In order
to derive the expression for Lm, an expression relating average
strain, S, to vertical displacement, z, needs to be obtained.
Consider the standard beam equation shown in equation (15).

d2z

dx2
= M(x)

cp I
(15)

where I is the composite moment of inertia as described by
equation (7). Substituting equation (10) into (15) yields

d2z

dx2
= 1

cp I
m(ÿ + z̈)

(
lb +

1

2
lm − x

)
. (16)

Integrating to obtain an expression for the deflection term, z,
yields

z = m(ÿ + z̈)

cp I

((
lb +

1

2
lm

)
x2

2
− x3

6

)
. (17)

At the point where the beam meets the mass (at x = lb), the
expression for z becomes

z = m(ÿ + z̈)l2
b

2cp I

(
2

3
lb +

1

2
lm

)
. (18)

On substituting σ = cpS and m(ÿ + z̈) = F into
equation (11) above, strain can be written as shown below.

S = m(ÿ + z̈)b

2cp I
(2lb + lm − le). (19)

Rearranging equation (19), the force term, m(ÿ + z̈), can be
written as shown in equation (20).

m(ÿ + z̈) = 2cp I

b(2lb + lm − le)
S. (20)

Substituting equation (20) into (18) yields

z = S
l2
b

3b

(2lb + 3
2 lm)

(2lb + lm − le)
. (21)

Let k2 be defined as the relationship between z and S as shown
in equation (21). The constant k2 can then be expressed as

k2 = l2
b

3b

(2lb + 3
2 lm)

(2lb + lm − le)
(22)

and z = k2S. Using this relationship, the displacement term
in equation (14) can be replaced with strain. The resulting
expression is

σm = k1k2mS̈. (23)

Referring back to equation (5), Lm can now be expressed as in
equation (24).

Lm = k1k2m. (24)

The resistive element in figure 2 represents damping
or mechanical loss. The traditional mechanical damping
coefficient, bm, relates force to velocity as shown in
equation (25).

Fbm = bm ż. (25)

The equivalent resistance, Rb, relates stress (σ ) to strain rate
(Ṡ). Using the constants k1 and k2, force and velocity can
easily be replaced with stress and strain rate as shown below.

σbm

k1
= bmk2 Ṡ. (26)

The expression for Rb is then

Rb = k1k2bm (27)

where the units of bm are the traditional ones: N s m−1.
The capacitive element in figure 2 represents compliance.

The equivalent capacitance, Ck , relating stress to strain is
then simply the compliance constant, s, or the inverse of the
elasticity, cp.

Finally, the transformer relates stress (T ) to voltage (V )

at zero strain [19]. Applying this condition (zero strain) to the
piezoelectric constitutive relationship in equation (3) yields the
following equation:

T = −d31cpE . (28)

The electric field is related to the voltage across the two-layer
bender by the following equation:

E = aV

2tc
(29)

where a = 1 if the two layers of the device are wired in
series and a = 2 if they are wired in parallel. Substituting
equation (29) into (28) gives

T = −ad31cp

2tc
V . (30)

Equation (30) clearly shows that the equivalent turns ratio, n,
for the transformer is

n = −ad31cp

2tc
. (31)

The current, i , as shown in figure 2 represents the current
generated as a result of the mechanical stress evaluated at zero
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electric field. Applying this condition (zero electric field) to
equation (4) and substituting strain for stress yields

D = d31cpS. (32)

Noting that electrical displacement is nothing more than charge
density across a dielectric element, electrical displacement can
be related to current for the bender device in figure 1 by

i = awle Ḋ. (33)

Substituting equation (33) into (32) yields

i = awled31cp Ṡ. (34)

It should also be noted that the capacitance of the bender is
given by

Cb = a2εwle

2tc
. (35)

A usable system model can now be developed by
substituting the expressions for σin (equation (13)), Lm (24),
Rb (27), Ck = c−1

p , n (31), i (34), and Cb (35) into equations (5)
and (6) and rearranging terms. The resulting system equations,
in terms of the state variables, S, Ṡ, and V , are

S̈ = −cp

k1k2m
S − bm

m
Ṡ +

cp

k1k2m

d31a

2tc
V +

ÿ

k2
(36)

V̇ = 2tcd31cp

aε
Ṡ. (37)

The term cp/k1k2 relates force to vertical displacement, which
is usually referred to as the equivalent spring constant, k.
Substituting k for cp/k1k2, equations (36) and (37) can be
written in state space form as shown below:

[ Ṡ
S̈
V̇

]
=




0 1 0
−k
m

−bm
m

kd31a
2mtc

0 2tcd31cp

aε
0


 +

[ 0
1/k2

0

]
ÿ. (38)

In the development of this model, three important
assumptions have been made. First, it was assumed that the
mass on the end of the beam acts as a point load located at
the center of mass (or halfway along the mass). As a result,
provision has not been made for the fact that the slopes of the
beam under the mass are identical at all locations. Second,
the moment exerted on the beam by the rotational inertia of
the proof mass was neglected. This effect is smallest for the
fundamental vibration mode, which is the only vibration mode
under consideration. Nevertheless, these two assumptions
may lead to small errors. Finally, the mass of the beam was
neglected. Given the size of the benders and proof masses
under consideration (see figures 14 and 15 below), this is a
reasonable assumption.

4. Model with resistive load

The model developed in section 3 incorporates no electrical
load. Therefore, there is no power transfer. A simple resistive
load can be applied in order to estimate how much power can
be delivered to a real electrical load. The resulting equivalent
circuit diagram is shown in figure 5.

Figure 5. Circuit representation of a piezoelectric generator with a
resistive load.

The mechanical side of the equivalent circuit is
unchanged, and therefore equations (5) and (36) are
unchanged. However, summing the currents at node 1 now
yields the following equation in place of equation (6):

i = Cb V̇ + V/R. (39)

The current, i , is still defined by equation (34). Substituting
equation (34) into (39) and rearranging terms yields the
following equation in place of equation (37):

V̇ = 2tcd31cp

aε
Ṡ − 1

RCb
V . (40)

The resulting system equations in state space form then become

[ Ṡ
S̈
V̇

]
=




0 1 0
−k
m

−bm
m

kd31a
2mtc

0 2tcd31cp

aε
−1
RCb


 +

[ 0
1/k2

0

]
ÿ. (41)

An analytical expression for power transferred to
the resistive load can be developed from the model in
equation (41). Such an analytical expression is useful not
only for estimating power, but also for giving the designer
more intuition about the system. The power dissipated by
the resistive load is simply V 2/R. Therefore, an analytical
expression for V needs to be obtained from equation (41).

Taking the Laplace transform of equation (40) and
rearranging terms yields

S = aε

cpd31tcs

(
s − 1

RCb

)
V (42)

where s is the Laplace variable, and S and V are used for
strain and voltage in both the time and frequency domain.
Taking the Laplace transform of equation (36), substituting in
the equivalent spring constant k, and rearranging terms yields

S

(
s2 +

bm

m
s +

k

m

)
= akd31

2mtc
V +

Ain

k2
(43)

where Ain is the Laplace transform of the input vibrations in
terms of acceleration. Substituting equation (42) into (43) and
rearranging terms results in the following expression:

V

[
s3 +

(
1

RCb
+

bm

m

)
s2 +

(
k

m

(
1 +

d2
31cp

ε

)
+

bm

m RCb

)
s

+
k

m RCb

]
= 2cpd31tc

k2aε
s Ain. (44)

The expression in equation (44) can be solved for the
magnitude of the output voltage. The resulting expression
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Figure 6. A piezoelectric generator with power circuitry and a load.
The equivalent circuit for mechanical elements is not shown.

is perhaps more meaningful with the following substitutions:
d2

31cp/ε is the square of a term commonly referred to as the
piezoelectric coupling coefficient denoted by the symbol k31,
the Laplace variable may be replaced with jω where j is the
imaginary number, k/m is the natural frequency of the system
squared represented by the symbol ω2

n, and the damping term
bm/m can be rewritten in terms of the unitless damping ratio ζ

as 2ζωn. Making these substitutions and solving for V yields

V =
{

jω
2cpd31tc

aε

Ain

k2

}{[
ω2

n

RCp
−

(
1

RCb
+ 2ζωn

)
ω2

]

+ jω

[
ω2

n(1 + k2
31) +

2ζωn

RCb
− ω2

]}−1

. (45)

If the further simplifying assumption is made that the
resonance frequency, ωn, matches the driving frequency, ω,
equation (45) reduces to

V = jω 2cpd31tc
aε

jω
(
ω2k2

31 + 2ζω

RCb

) − 2ζω3

Ain

k2
. (46)

The rms power transferred to the resistive load is simply
|V |2/2R. Therefore, using the expression in equation (46),
the resulting analytical term for the rms power transferred to
the load is

P = 1

2ω2

RC2
b

( 2cpd31tc
k2aε

)2
A2

in

(4ζ 2 + k4
31)(RCbω)2 + 4ζk2

31(RCbω) + 4ζ 2
. (47)

The optimal load resistance can then be found by
differentiating equation (47) with respect to R, setting the result
equal to zero, and solving for R. The resulting optimal load
resistance is shown in equation (48).

Ropt = 1

ωCb

2ζ√
4ζ 2 + k4

31

. (48)

5. Model with capacitive load

The above analysis, based on a simple resistive load, is useful,
but it is not a very realistic approximation of the actual
electrical load. In reality, the electrical system would look
something like the circuit shown in figure 6. The equivalent
mechanical side of the circuit is not shown in figure 6, but is
exactly the same as in figures 2 and 5. Of course, a rechargeable
battery could be used in place of the storage capacitor, Cst .

In wireless sensor systems, the radio IC will typically
turn on for a short period of time, receive and transmit data,
and then turn back off or go into a sleep mode. Typical

Figure 7. A simplified circuit representation used to analyze the
charging of the storage capacitor.

Figure 8. Equivalent circuit representation for state 1, diodes D1
and D4 conducting.

duty cycles are estimated at around 1% [1]. Therefore, about
99% of the time, the radio IC is in sleep mode and drawing
very little current; the DC–DC converter may be shut down
during sleep mode as well. Therefore, the vibration converter
is just charging up the storage capacitor 99% of the time.
A simplified circuit representation for this case is shown in
figure 7. The development of a model for this case is useful in
that it represents a more realistic operating condition.

There are three possible states in which the circuit shown
in figure 7 can operate. State 1 will refer to the state in which
diodes D1 and D4 are conducting. State 2 will refer to the state
in which diodes D2 and D3 are conducting. And state 3 will
refer to the state in which all four rectification diodes are not
conducting. An ideal diode model is used in order to simplify
the analysis.

In any of the three states, the first system equation, shown
above as equation (36), is unchanged. In state 3 (no diodes
conducting), the equivalent circuit is the same as that shown
in figure 2, and so the second of the two system equations is
as shown above in equation (37). The voltage Vst is constant
in state 3. The equivalent circuit representation for state 1 is
shown in figure 8. The second of the two system equations for
state 1 is given as equation (49). Note that the storage voltage
Vst is equal to the voltage across the piezoelectric element, V ,
in state 1. The second system equation for state 2 is the same
as for state 1, equation (49). However, Vst = −V in state 2.
So, the system model is given by equations (36) and (49) for
states 1 and 2, and equations (36) and (37) for state 3.

V̇ = acpd31lew

Cb + Cst
Ṡ. (49)

6. Model for different beam configurations

The utility of developing the constants k1 and k2 above is
readily evident when considering different beam mounting
configurations. The basic model does not change; only the
expressions relating average stress to input force (k1) and
average strain to vertical displacement (k2) are different.
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Figure 9. A clamped beam modeled with pin–pin mounting.

Therefore, the models presented as equations (38), (41),
and (49) are generally valid for a bender mounted in most
beam configurations. However, for each mounting situation,
the expressions for k1 and k2 will be different. An illustrative
example is briefly discussed below.

The model assumes that the mounting structure for the
beam is perfectly rigid. In reality, the mounting structure will
have some compliance. In practice the benders have been
clamped. It was found that, especially for very small (short)
designs, a more accurate model for the beam was the pin–pin
mounting as shown in figure 9. The length lc represents the
length of the beam under the clamp. It will be further assumed
that the length of the electrode, le, is equal to the total length of
the beam up to the proof mass, lb. Expressions for k1 and k2 are
derived in a similar manner to that shown above. The resulting
expressions for the pin–pin model are shown as equations (50)
and (51). The same models as were derived previously for no
load, a resistive load, or a capacitive load can now be applied
by simply inserting the new expressions for the constants k1

and k2:

k1 = b(4lb + 3lm)

4I
(50)

k2 = lb(lc + lb)

3b
. (51)

7. Experimental procedure

Experiments were performed to validate the model. Once
the model was validated, it was used as the basis for design
optimization. Designs were optimized within an overall size
constraint of 1 cm3. Devices with optimized dimensions were
then built and tested. Finally, a generator of 1 cm3 was used
to power a custom designed wireless transceiver.

In order to validate the model, both the effective coupling
coefficient and mechanical damping ratio were experimentally
determined. A prototype generator was made from a two-
layer sheet of PZT-5A with a steel center shim. The bimorph,
with attached mass (made from a relatively dense alloy of
tin and bismuth), is shown in figure 10. The damping
ratio was measured by applying an impulse to the system,
and then measuring the open circuit voltage output. The
resulting damped harmonic oscillation was used to calculate
the damping ratio [21]. Several measurements were taken
on the device shown in figure 10. The mean value of these
measurements was 0.014. This procedure was repeated for
each of the devices tested. All of the devices exhibited damping
ratios near 0.015.

Figure 10. A generator prototype made from PZT-5A.

Figure 11. The piezoelectric generator mounted into a vibrometer
used for testing.

The system coupling coefficient was determined by
measuring the resonance frequency under open circuit
(ωoc) and closed circuit (ωsc) conditions, and applying
equation (52) [22]. The coupling coefficient (ksys) of the
prototype generator was measured as 0.14.

k2
sys = ω2

oc − ω2
sc

ω2
oc

. (52)

The generator prototype was tested by exciting it with
vibrations of 2.5 m s−2 at 120 Hz. (The generator was
designed to resonate at 120 Hz.) The structure was mounted
on a vibrometer (Labworks ET-126) as shown in figure 11.
The generator prototype was then terminated with a variable
resistor, and the voltage across that resistor was measured at
various resistances to get voltage magnitude and power transfer
versus load resistance data.

Once the model was sufficiently validated, it was used as
the basis for optimally selecting dimensions. The output of
a dynamic simulation was used as the objective function in
conjunction with Matlab’s built-in optimization routines. Two
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Figure 12. Simulated and measured voltage magnitudes versus load
resistance for the prototype device.

Figure 13. Simulated and measured powers to the resistive load
versus resistance for the prototype device.

optimized designs were built and tested with both resistive and
capacitive loads. One of these generators was then used to
power a custom designed wireless transceiver.

8. Results

The prototype generator shown in figure 10 was excited by
vibrations of 2.5 m s−2 at 120 Hz. The simulated and measured
magnitudes of the voltage across the load resistor as a function
of resistance are shown in figure 12. The power transferred
to the load resistor is shown in figure 13. Although there is
some variability in the measured data, the agreement between
experiment and theory was deemed sufficient for using the
model as a basis for design optimization.

As mentioned previously, the model was used as a basis
for optimizing the design dimensions within an overall size
constraint of 1 cm3. Two designs were built from PZT-5H with
a brass center shim purchased from Piezo Systems Inc. The
first design, shown in figure 14, had an overall length constraint
of 1.5 cm placed on it in addition to the total volume constraint.

Figure 14. The optimized piezoelectric generator with a 1.5 cm
length constraint (design 1).

Figure 15. The optimized piezoelectric generator with a 3 cm
length constraint (design 2).

Table 2. Dimensions of optimized designs. All dimensions are
in mm.

lm hm wm l le w tp tsh

Design 1 8.5 7.7 6.7 6.5 6.5 3.2 0.14 0.1
Design 2 17 7.7 3.6 11 11 3.2 0.28 0.1

The length constraint was relaxed to 3 cm for the second design,
which is shown in figure 15. The dimensions of each design
are shown in table 2. The damping ratios and system coupling
coefficients of these structures were also measured. As with
the prototype device, the damping ratios were approximately
0.015 and the system coupling coefficients were 0.14. The
capacitance of design 1 was 9.2 nF, and the capacitance of
design 2 was 8.3 nF. Measured and simulated powers and
voltages versus load resistance are shown in figure 16 for the
first design and 17 for the second design.

The two designs were also tested with a capacitive load
as shown above in figure 7. The devices were driven with
baseline vibrations of 2.5 m s−2 and the voltage across the
storage capacitor was measured as it charged up. The results
of these tests are shown in figures 18 and 19. Figure 18
simply shows the voltage across the storage capacitor versus
time. The voltage versus time data were used in conjunction
with the storage capacitance to calculate the power transfer.
Figure 19 shows the power transfer to the storage capacitor
versus the ratio of the capacitor voltage to the open circuit
voltage of the piezoelectric generator—in other words, the ratio
of the instantaneous voltage across the storage capacitor to the
maximum voltage to which it will charge in the absence of a

1138



A piezoelectric vibration based generator for wireless electronics

Figure 16. Simulated and measured powers and voltages versus
load resistance for design 1.

Figure 17. Simulated and measured powers and voltages versus
load resistance for design 2.

Figure 18. Measured voltage across a 3.3 µF capacitor versus time
for the two optimized designs.

load. Because the power transfer is a function of this voltage
ratio, this view of the data is more general than viewing the
power transfer versus time.

Finally, design 2 was used to power a custom designed
radio transmitter [23] from the same baseline input vibrations.

Figure 19. Power transfer to a 3.3 µF storage capacitor versus ratio
of capacitor voltage to the open circuit voltage of the piezoelectric
generator.
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Figure 20. A schematic diagram of the power generation circuit.

A schematic diagram of the entire circuit is shown in figure 20
and a photograph of the physical circuit is shown in figure 21.
This power circuit uses a storage capacitor rather than a
rechargeable battery. When the storage capacitor charges to a
pre-specified energy level, the supply rails to the RF circuitry
are activated and energy is consumed. The custom designed
radio consumes 10 mA of current at a voltage of 1.2 V when
transmitting. The transmit power of the radio is 0 dBm, which
gives it an approximate range of 10 m. Because the transmitter
dissipates power faster than the piezoelectric bender generates
it, the voltage across the storage capacitor falls when the radio
is on. Once the energy has been depleted to a level specified
by the ‘shutdown control’ block, the supply rails are disabled
and the capacitor is recharged.

Figure 22 shows three measured output voltages from the
complete system shown in figures 20 and 21. The top trace
shows the voltage across the 47 µF storage capacitor, which
discharges as the radio turns on and charges up when it is
off. The second trace shows the voltage signal sent out the
antennae. Note that the radio is transmitting at 1.9 GHz,
which is much faster than the sampling rate for the graph
in figure 11. Therefore, some aliasing on the transmission
signal has occurred. The bottom trace is the output of the
voltage regulator. The regulator also shuts off when the radio
is not transmitting. As can be seen in the figure, the storage
capacitor discharges much more rapidly than it charges. Using
the generator shown above in figure 15 driven by vibrations
of 2.5 m s−2 in magnitude, the supportable duty cycle was
measured as 1.6%.
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Figure 21. The power circuit and custom designed radio.

9. Discussion

A few important considerations for the designer of a vibration
based piezoelectric generator of the type described here
should be made clear. First, in the development of the
analytical expression for power shown above as equation (47),
the assumption that the frequency of the driving vibrations
matched the resonance frequency of the system was made.
Furthermore, in testing, the driving frequency matched the
resonance frequency of the system. Because this resonant
system has low damping (ζ ∼ 0.015 or Q ∼ 33), it is essential
that the driving frequency match the resonance frequency in
order maximize power output. Under many circumstances, the
appropriate resonance frequency could be designed. However,
in other cases the dominant frequency of the driving vibrations
is either unknown, or changing. In these cases, an adaptive
structure that can tune its own resonance frequency may be
beneficial.

Although it is not exactly clear from the expression for
power in equation (47), both experiments and theory show that
the power output for a given resonance frequency is linearly
proportional to the proof mass attached to the end of the
beam. For a given frequency, if the mass is increased, the
amount of piezoelectric material will need to increase in order
to maintain the resonance frequency. Increasing the amount
of material will increase the total strain energy. As it is the
total strain energy in the piezoelectric material that is being
converted to electrical energy, the electrical power output will
also increase. Conversely, if mass is added and the stiffness
(or amount of piezoelectric material) is held constant, the
resonance frequency will decrease. Assuming that the input
vibrations are at this new frequency, the average stress (and
strain) in the material, given by equations (9)–(11) above, will
increase. Again, the total strain energy increases, and so does
the power output. Thus, increasing the mass will always have
the effect of increasing the average strain energy, and power
output, as long as the assumption of resonance is maintained.
Therefore, the designer should try to maximize the mass of the
system within size and maximum allowable strain constraints.

Equation (47) shows that power output is inversely related
to frequency if the acceleration magnitude of the input

Vstorage capacitor 

Vregulator 

Vrf_transmitted 

0V  

1.2V  

Figure 22. Measured waveforms from the custom radio operating
on energy scavenged from vibrations.

vibrations is constant with changing frequency. Therefore,
designing the system to resonate at the lower frequency peaks
in the vibration spectrum is preferred as long as they have
equivalent or higher acceleration magnitude than the higher
frequency peaks. Intuitively, if the same level of strain
in the piezoelectric material could be maintained at higher
frequencies, the power output would increase with frequency.
However, this situation would require that the acceleration
magnitude of the input vibrations increase with frequency.
Equation (47) assumes that the acceleration magnitude is
constant with changing frequency. Under this assumption, as
the frequency of the design decreases, with the mass constant,
the necessary decrease in stiffness will be accompanied by
an increase in the level of strain. The converse is also
true: the strain level will decrease with increasing frequency,
because of the increased stiffness necessary. In practice,
the lowest frequency vibration modes from a given source
usually have the highest acceleration magnitude. Further data
and discussion supporting this statement have been published
previously [17].

The electrical load removes energy from the oscillating
system, and thus looks like damping to the mechanical system.
If a simple resistive load is assumed, this effective damping
is related to the resistance of the system. The optimal load
resistance shown in equation (48) in effect represents the
optimal level of damping for the system. This optimal load
resistance is also evident in figures 13, 16, and 17. This concept
can be extended to more realistic loads. As shown in figure 18,
the power transferred to a capacitive load is maximized when
the voltage across the storage capacitor is roughly half the open
circuit voltage. This conclusion can be shown by both theory
and experimentation, and is in agreement with the findings of
Ottman et al [15]. For a more detailed description of damping
effects in piezoelectric energy scavenging applications, the
reader is referred to [24].

Of the two optimized designs presented, the second,
longer design exhibits significantly greater output. When the
length constraint is relaxed, the optimization routine naturally
selects a longer, narrower design. The intuitive explanation for
this is that at a given natural frequency, the longer, narrower
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design results in a thicker bender with higher average strain
from a given input. The power output is closely related to
strain and, therefore, the longer narrow design has a higher
power output. It will also be noted however, that the long
narrow design also results in higher voltage outputs, which
may not be desirable in some applications.

The optimization was limited to only a discrete set of
bender thicknesses based on what was commercially available.
If the optimization routine is allowed to choose an arbitrary
thickness, considerable improvement (perhaps up to 2×) in
power output can be achieved with the same piezoelectric
material. This has been verified by simulation, but not by
experiment.

It will be noted that the power transfer to a capacitive load
was only about half the power transfer to a resistive load under
the same excitation. Some of the explanation lies in the fact
that the diodes used are not ideal, and do contribute to some
power loss. However, the diodes alone cannot account for the
entire difference. Work on optimizing the generators for power
transfer to capacitive loads is ongoing.

Finally, the design configuration presented in this paper,
a two-layer bender mounted as a cantilever beam, has been
selected in order to maximize power output from low level
vibrations. However, under different circumstances other
design configurations may be preferred. For example, if higher
level vibrations are present, other design configurations would
be more robust while providing only slightly less power for a
given volume.

10. Conclusions

As wireless electronics continue to decrease in size and
power consumption, the viability of wireless electronic devices
powered by ambient vibrations improves. A model for a
piezoelectric vibration based generator has been developed.
The model has been validated and used not only to estimate
power output under a given set of conditions, but also as the
basis for generator design optimization. Furthermore, the
model provides some design intuition, which is summarized
as follows:

(1) The system should be designed to resonate at the dominant
driving frequency of the target vibrations if possible.

(2) Power output is proportional to the proof mass attached
to the system. Therefore, the proof mass should be
maximized while maintaining other constraints such as
resonance frequency and strain limits.

(3) Power output is inversely related to the driving and
resonance frequency. Therefore, designing for lower
frequency peaks in the vibration spectrum is preferred
as long as they have equivalent or higher acceleration
magnitude than higher frequency peaks.

(4) The energy removed by the electrical load looks like
damping to the mechanical system. The load can be
designed such that the level of effective electrically
induced damping maximizes power transfer to the load.

Two designs have been optimized within an overall space
constraint of 1 cm3. These designs have been built and
tested with both resistive and capacitive loads. Experimental
results have demonstrated power transfer to a resistive load of

375 µW cm−3 from driving vibrations of 2.5 m s−2 at 120 Hz.
Power transfer to a capacitive load of 190 µW cm−3 from the
same vibration source has also been demonstrated. Finally,
a custom designed radio transceiver that consumes 12 mW
when transmitting has been powered at a duty cycle of 1.6%
by a 1 cm3 generator.
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