
Cluster Comput (2009) 12: 1–15
DOI 10.1007/s10586-008-0070-y

Power and performance management of virtualized computing
environments via lookahead control

Dara Kusic · Jeffrey O. Kephart · James E. Hanson ·
Nagarajan Kandasamy · Guofei Jiang

Received: 21 September 2008 / Accepted: 9 October 2008 / Published online: 24 October 2008
© Springer Science+Business Media, LLC 2008

Abstract There is growing incentive to reduce the power
consumed by large-scale data centers that host online ser-
vices such as banking, retail commerce, and gaming. Vir-
tualization is a promising approach to consolidating mul-
tiple online services onto a smaller number of computing
resources. A virtualized server environment allows comput-
ing resources to be shared among multiple performance-
isolated platforms called virtual machines. By dynamically
provisioning virtual machines, consolidating the workload,
and turning servers on and off as needed, data center opera-

A preliminary version of this paper appeared in the 2008 IEEE
International Conference on Autonomic Computing.

D. Kusic is supported by NSF grant DGE-0538476 and N. Kandasamy
acknowledges support from NSF grant CNS-0643888.

D. Kusic (�) · N. Kandasamy
Electrical and Computer Engineering Department, Drexel
University, Philadelphia, PA 19104, USA
e-mail: kusic@drexel.edu

D. Kusic
e-mail: dmk25@drexel.edu

N. Kandasamy
e-mail: kandasamy@ece.drexel.edu

J.O. Kephart · J.E. Hanson
Agents and Emergent Phenomena Group, IBM T.J. Watson
Research Center, Hawthorne, NY 10532, USA

J.O. Kephart
e-mail: kephart@us.ibm.com

J.E. Hanson
e-mail: jehanson@us.ibm.com

G. Jiang
Robust and Secure System Group, NEC Laboratories America,
Princeton, NJ 08540, USA
e-mail: gfj@nec-labs.com

tors can maintain the desired quality-of-service (QoS) while
achieving higher server utilization and energy efficiency. We
implement and validate a dynamic resource provisioning
framework for virtualized server environments wherein the
provisioning problem is posed as one of sequential optimiza-
tion under uncertainty and solved using a lookahead control
scheme. The proposed approach accounts for the switching
costs incurred while provisioning virtual machines and ex-
plicitly encodes the corresponding risk in the optimization
problem. Experiments using the Trade6 enterprise applica-
tion show that a server cluster managed by the controller
conserves, on average, 22% of the power required by a sys-
tem without dynamic control while still maintaining QoS
goals. Finally, we use trace-based simulations to analyze
controller performance on server clusters larger than our
testbed, and show how concepts from approximation theory
can be used to further reduce the computational burden of
controlling large systems.

Keywords Power management · Resource provisioning ·
Virtualization · Predictive control

1 Introduction

Web-based services such as online banking and shopping
are enabled by enterprise applications. We broadly define an
enterprise application as any software hosted on a server
which simultaneously provides services to a large number
of users over a computer network [1]. These applications
are typically hosted on distributed computing systems com-
prising heterogeneous and networked servers housed in a
physical facility called a data center. A typical data cen-
ter serves a variety of companies and users, and the com-
puting resources needed to support such a wide range of

mailto:kusic@drexel.edu
mailto:dmk25@drexel.edu
mailto:kandasamy@ece.drexel.edu
mailto:kephart@us.ibm.com
mailto:jehanson@us.ibm.com
mailto:gfj@nec-labs.com

2 Cluster Comput (2009) 12: 1–15

online services leaves server rooms in a state of “sprawl”
with under-utilized resources. Moreover, each new service
to be supported often results in the acquisition of new hard-
ware, leading to server utilization levels at less than 20%
by many estimates. With energy costs rising about 9% last
year [2] and society’s need to reduce energy consump-
tion, it is imprudent to continue server sprawl at its current
pace.

Virtualization provides a promising approach to consol-
idating multiple online services onto fewer computing re-
sources within a data center. This technology allows a sin-
gle server to be shared among multiple performance-isolated
platforms called virtual machines (VMs), where each vir-
tual machine can, in turn, host multiple enterprise appli-
cations. Virtualization also enables on-demand or utility
computing—a just-in-time resource provisioning model in
which computing resources such as CPU, memory, and disk
space are made available to applications only as needed
and not allocated statically based on the peak workload de-
mand [3]. By dynamically provisioning virtual machines,
consolidating the workload, and turning servers on and off
as needed, data center operators can maintain the desired
QoS while achieving higher server utilization and energy
efficiency. These dynamic resource provisioning strategies
complement the more traditional off-line capacity planning
process [4].

This paper develops a dynamic resource provisioning
framework for a virtualized computing environment and
experimentally validates it on a small server cluster. The
resource-provisioning problem of interest is posed as one of
sequential optimization under uncertainty and solved using
limited lookahead control (LLC). This approach allows for
multi-objective optimization under explicit operating con-
straints and is applicable to computing systems with non-
linear dynamics where control inputs must be chosen from
a finite set.

Our experimental setup is a cluster of heterogenous Dell
PowerEdge servers supporting two online services in which
incoming requests for each service are dispatched to a dedi-
cated cluster of VMs. The revenue generated by each service
is specified via a pricing scheme or service-level agreement
(SLA) that relates the achieved response time to a dollar
value that the client is willing to pay. The control objective
is to maximize the profit generated by this system by min-
imizing both the power consumption and SLA violations.
To achieve this objective, the online controller decides the
number of physical and virtual machines to allocate to each
service where the VMs and their hosts are turned on or off
according to workload demand, and the CPU share to al-
locate to each VM. This control problem may need to be
re-solved periodically when the incoming workload is time
varying.

This paper makes the following specific contributions.

• The LLC formulation models the cost of control, i.e., the
switching costs associated with turning machines on or
off. For example, profits may be lost while waiting for a
VM and its host to be turned on, which is usually three
to four minutes. Other switching costs include the power
consumed while a machine is being powered up or down,
and not performing any useful work.

• Excessive switching of VMs may occur in an uncertain
operating environment where the incoming workload is
highly variable. This may actually reduce profits, espe-
cially in the presence of the switching costs described
above. Thus, each provisioning decision made by the con-
troller is risky and we explicitly encode the notion of risk
in the LLC problem formulation using preference func-
tions.

• Since workload intensity can change quite quickly in en-
terprise systems [5], the controller must adapt to such
variations and provision resources over short time scales,
usually on the order of 10s of seconds to a few minutes.
Therefore, to achieve fast operation, we develop a hierar-
chical LLC structure wherein the control problem is de-
composed into a set of smaller sub-problems and solved
in cooperative fashion by multiple controllers.

Experimental results using IBM’s Trade6 application,
driven by a time-varying workload, show that the cluster,
when managed using the proposed LLC approach saves, on
average, 22% in power-consumption costs over a twenty-
four hour period when compared to a system operating with-
out dynamic control. These power savings are achieved with
very few SLA violations, 1.6% of the total number of ser-
vice requests. The execution-time overhead of the controller
is quite low, making it practical for online performance man-
agement. We also characterize the effects of different risk-
preference functions on control performance, finding that a
risk-aware controller reduces the number of SLA violations
by an average of 35% compared to the baseline risk-neutral
controller. A risk-aware controller also reduces both the VM
and host switching activity—a beneficial result when exces-
sive power-cycling of the host machines is a concern. The
performance results also include a discussion on optimality
issues.

The paper is organized as follows. Section 2 discusses re-
lated work on resource provisioning and Sect. 3 describes
our experimental setup. Section 4 formulates the control
problem and Sect. 5 describes the controller implementa-
tion. Section 6 presents experimental results evaluating the
control performance. Section 7 addresses controller scala-
bility using trace-based simulations. Section 8 concludes the
paper.

Cluster Comput (2009) 12: 1–15 3

2 Related work

We now briefly review recent research on resource pro-
visioning in virtualized computing environments. Our ap-
proach differs from the prior work in [6–11] in that it is a
proactive control technique that encodes the risk involved in
making provisioning decisions in a dynamic operating envi-
ronment and accounts for the corresponding switching costs.

The authors of [12] propose an online method to select a
VM configuration while minimizing the number of physical
hosts needed to support this configuration. Their algorithm
is reactive, and is triggered by events such as CPU utilization
and memory availability to revise the placement of VMs.
The authors consider VM migration costs in terms of the
additional CPU cycles and memory needed to stop a VM,
store its execution context, and restart it on another machine.
In contrast, the cost of control in our work accounts for the
time delays and opportunity costs incurred when switching
hosts and VMs on/off. The placement algorithm in [12] also
does not save power by switching off unneeded hosts.

The capacity planning technique proposed in [13] uses
server consolidation to reduce the energy consumed by a
computing cluster hosting web applications. The approach
is similar to ours in that it estimates the CPU process-
ing capacity needed to serve the incoming workload, but
considers only a single application hosted on homogenous
servers. The authors of [14] propose to dynamically resched-
ule/collocate VMs processing heterogeneous workloads.
The problem is one of scheduling a combination of inter-
active and batch tasks across a cluster of physical hosts and
VMs to meet deadlines. The VMs are migrated, as needed,
between host machines as new tasks arrive. While the place-
ment approach in [14] consolidates workloads, it does not
save power by switching off unneeded machines, and does
not consider the cost of the control incurred when migrating
the VMs.

In [15], the authors propose a two-level optimization
scheme to allocate CPU shares to VMs processing two enter-
prise applications on a single host. Controllers, local to each
VM, use fuzzy-logic models to estimate CPU shares for the
current workload intensity, and make CPU-share requests to
a global controller. Acting as an arbitrator, the global con-
troller affects a trade-off between the requests to maximize
the profits generated by the host. The authors of [16] com-
bine both power and performance management within a sin-
gle framework, and apply it to a server environment without
virtualization. Using dynamic voltage scaling on the oper-
ating hosts, they demonstrate a 10% savings in power con-
sumption with a small sacrifice in performance.

Finally, reducing power consumption in server clusters
has been a well-studied problem recently; for example, see
[17–19]. The overall idea is to combine CPU-clock throt-
tling and dynamic voltage scaling with switching entire

servers on/off as needed, based on the incoming workload.
In the presence of switching costs, however, two crucial
issues must be addressed. First, turning servers off in a
dynamic environment is somewhat risky in QoS terms—
what if a server were just powered off in anticipation of a
lighter workload, and the workload increases? Also, exces-
sive power cycling of a server could reduce its reliability.
The risk-aware controller presented here is a step towards
addressing these issues.

3 Experimental setup

This section describes our experimental setup, including the
system architecture, the enterprise applications used for the
two online services, and workload generation.

3.1 The testbed

The computing cluster in Fig. 1(a) consists of the six servers
detailed in Fig. 1(b), networked via a gigabit switch. Vir-
tualization of this cluster is enabled by VMWare’s ESX
Server 3.0 Enterprise Edition running a Linux RedHat 2.4
kernel. The operating system on each VM is the SUSE En-
terprise Linux Server Edition 10. The ESX server controls
the disk space, memory, and CPU share (in MHz) allotted
to the VMs, and also provides an application programming
interface (API) to support the remote management of virtual
machines using the simple object access protocol (SOAP).
Our controller uses this API to dynamically instantiate or
de-instantiate VMs on the hosts and to assign CPU shares to
the virtual machines.

To turn off a virtual machine, we use a standard Linux
shutdown command, and to physically turn off the host ma-
chine, we follow the shutdown command with an Intelligent
Platform Management Interface (IPMI) command to power
down the chassis. Hosts are remotely powered on using the
wake-on-LAN protocol.

3.2 The enterprise applications and workload generation

The testbed hosts two web-based services, labeled Gold and
Silver, comprising front-end application servers and back-
end database servers. The applications perform dynamic
content retrieval (customer browsing) as well as transaction
commitments (customer purchases) requiring database reads
and writes.

We use IBM’s Trade6 benchmark—a multi-threaded
stock-trading application that allows users to browse, buy,
and sell stocks—to enable the Silver service. Trade6 is
a transaction-based application integrated within the IBM
WebSphere Application Server V6.0 and uses DB2 Enter-
prise Server Edition V9.2 as the database component. This

4 Cluster Comput (2009) 12: 1–15

Fig. 1 (a) The system
architecture supporting the Gold
and Silver services. The
controller sets N(k), the number
of active hosts, ni(k), the
number of VMs to serve the ith
application, and fij (k) and
γij (k), the CPU share and the
fraction of workload to
distribute to the j th VM,
respectively. A Sleep cluster
holds machines in a powered-off
state. (b) The host machines
comprising the testbed

execution environment is then distributed across multiple
servers comprising the application and database tiers, as
shown in Fig. 1(a). Virtual machines processing Silver re-
quests are loaded with identical copies of the Trade6 execu-
tion environment, and a fraction of the incoming workload
is distributed to each VM.

The Gold service is also enabled by Trade6, but the ap-
plication is modified to perform some additional processing
on the CPU for each Gold request. The amount of additional
processing occurs with some variation, distributed about a
mean value that is passed as a parameter by the request.

The Gold and Silver applications generate revenue as per
the non-linear pricing graph shown in Fig. 2(a) that relates
the average response time achieved per transaction to a dol-
lar value that clients are willing to pay. Response times be-

low a threshold value result in a reward paid to the service
provider, while response times violating the SLA result in
the provider paying a penalty to the client.

We use Httperf [20], an open-loop workload generator,
to send requests to browse, buy, or sell shares to the Gold
and Silver applications. As shown by an example trace in
Fig. 2(b), request-arrivals exhibit time-of-day variations typ-
ical of many enterprise workloads, and the number of ar-
rivals changes quite significantly within a very short time
period. The workload used in our experiments was synthe-
sized, in part, using log files from the Soccer World Cup
1998 Web site [21].

Finally, the results presented in this paper assume a
session-less workload, that is, there is no state information
to be maintained for multiple requests belonging to one user

Cluster Comput (2009) 12: 1–15 5

Fig. 2 (a) A pricing strategy that differentiates the Gold and Silver services. (b) Transaction requests to the Gold and Silver applications, plotted
at 150-second intervals

session, and requests are assumed to be independent of each
other.

3.3 The two-tier system architecture

Figure 1(a) shows the virtualized server environment host-
ing the Gold and Silver services that are, in turn, distrib-
uted over the application and database tiers. The applica-
tion (or database) and its operating system (OS) are encap-
sulated within a VM, and one or more VMs are supported
on each physical host. A dispatcher balances the incom-
ing workload, with arrival rates λ1 and λ2 for the Gold and
Silver services, respectively, across those VMs running the
designated application. Hosts not needed during periods of
slow workload arrivals are powered down and placed in the
Sleep cluster to reduce power consumption. Also, note that
some machines, such as Eros, are shared between the two
tiers.

The controller, executed on the host Bacchus, aims to
meet the SLA requirements of the Gold and Silver ser-
vices while minimizing the corresponding use of comput-
ing resources—the number of hosts and VMs, and the CPU
share per VM—at the application tier. A VM’s CPU share is
specified in terms of an operating frequency. For example,
Chronos, with eight CPU cores, each operating at 1.6 GHz,
has 8 × 1.6 = 12.8 GHz of processing capacity that can be
dynamically distributed among its VMs. The ESX server
limits the maximum number of cores that a VM can use
on a host to four, setting an upper bound of 6 GHz for a
VM’s CPU share, and reserves a total of 800 MHz of CPU
share for system management processes. So, on a machine
with eight CPU cores, we can, for example, host a 6 GHz

Gold VM that uses four cores, a 3 GHz Gold VM that
uses two cores, and a 3 GHz Silver VM that also uses two
cores.

At the database tier, the DB2 databases for the Gold (Sil-
ver) service are executed on two 6 GHz VMs, hosted on
Apollo and Poseidon, and one 3 GHz VM hosted on Eros.
A limited form of resource provisioning is performed at this
tier in that physical machines are switched off during periods
of light workload. However, the CPU share of an executing
VM is not tuned dynamically.

Given the configuration in Fig. 1(a), we can determine the
worst-case workload intensity in terms of Gold and Silver
request arrivals that can be handled by our system without
SLA violations, and therefore, establish an admission pol-
icy to cap the maximum request arrival rate. This policy en-
sures that the system is able to meet target QoS goals given
an initial cluster configuration under peak workload. It also
prevents against monetary losses and ensures a fair compar-
ison between the controlled and uncontrolled systems. The
bottleneck is the database tier, and experiments using Trade6
indicate that a Silver database can process a workload of 190
requests/sec. before becoming the bottleneck resource. This
can be inferred from Fig. 5(b), showing the timing behavior
of Trade6 when using a 6 GHz VM for the application as
well as the database. We see that approximately 190 Silver
requests can be processed per second before queueing insta-
bility occurs. A simple analysis indicates that the maximum
Silver arrival rate tolerated by two 6 GHz VMs and a 3 GHz
VM is 190 + 190 + 90 = 470 requests per second. A similar
calculation for the Gold service indicates that the maximum
arrival rate tolerated by two 6 GHz VMs and a 3 GHz VM
is 33 + 33 + 24 = 90 requests per second.

6 Cluster Comput (2009) 12: 1–15

4 Problem formulation

Given the system model in Fig. 1(a) and the SLA functions
in Fig. 2(a), the control objective is to maximize the profit
generated by the Gold and Silver services under a time-
varying workload by dynamically tuning the following pa-
rameters: (1) the number of virtual machines to provision to
each application; (2) the number of hosts on which to collo-
cate the virtual machines; (3) the CPU share to be given to
each VM; and (4) the number of host machines to power on.

We solve the above problem using limited lookahead
control (LLC), a predictive control approach previously in-
troduced in [22]. This method is quite useful when control
actions have dead times, such as switching on a server and
waiting for the bootstrap routine, and for control actions that
must be chosen from a discrete set, such as the number of
hosts and VMs to switch on. Figure 3(a) shows the basic
concept where the environment input λ is estimated over the
prediction horizon h and used by the system model to fore-
cast future system states x̂.

At each time step k, the controller finds a feasible se-
quence {u∗(l)|l ∈ [k + 1, k + h]} of control actions to guide
the predicted system state {x̂(l)|l ∈ [k + 1, k + h]} within
the prediction horizon. The controller identifies the actions
that maximize the profit generated by the cluster, as shown
by the shaded trajectory in Fig. 3(b). Then, only the first
control action in the chosen sequence, u(k + 1), is applied
to the system and the rest are discarded. The entire process
is repeated at time k + 1 when the controller can adjust the
trajectory, given new state information and an updated work-
load forecast.

The LLC method accommodates control problems posed
as set-point regulation or utility optimization under dynamic
operating constraints. In set-point regulation, key operating
parameters must be maintained at a specified level (e.g., an
average response time in web servers), and in utility opti-
mization, the system aims to maximize its utility (e.g., the
profit-maximization problem considered in this paper). The
LLC method is conceptually similar to model predictive

control (MPC) [23], with some key differences. MPC usu-
ally deals with systems operating in a continuous input and
output domain whereas LLC can work in a discrete domain.
Also, MPC problems are usually computationally expensive
and suited for slow-changing processes (e.g., chemical reac-
tions), whereas LLC problems must be solved quickly, given
the dynamics of an enterprise workload.

4.1 System dynamics

A virtual computing cluster is a group of VMs distributed
across one or more physical machines, cooperating to host
one online service, and the dynamics of a virtual computing
cluster for the Gold and Silver applications is described by
the discrete-time state-space equation1

xi(k + 1) = φ(xi(k), ui(k), λi(k)) (1)

where xi(k) is the state of the cluster, λi(k) denotes the envi-
ronment input, and ui(k) is the control input. The behavioral
model φ captures the relationship between the system state,
the control inputs that adjust the state parameters, and the
environment input.

The operating state of the ith virtual cluster is denoted as
xi(k) = (ri(k), qi(k)) where ri(k) is the average response
time achieved by the cluster and qi(k) is the number of
queued requests. The control input to the ith virtual clus-
ter is denoted as ui(k) = (N(k), ni(k), {fij (k)}, {γij (k)})
where N(k) is the system-wide control variable indicating
the number of active host machines, ni(k) is the number of
VMs for the ith service, fij (k) is the CPU share, and γij (k)

is workload fraction directed to the j th virtual machine. The
environmental input λi(k) is the workload arrival-rate.

An estimate for the environment input λi is required for
each step along the prediction horizon. We use a Kalman
filter [24] to estimate the number of future arrivals because

1We use the subscript i to denote the ith service class; i ∈ {1,2} de-
notes the Gold and Silver services, respectively.

Fig. 3 (a) The schematic of a
limited lookahead controller.
(b) The state-space trajectory
explored by a limited lookahead
controller within a horizon of
length h. The shaded area
shows the best predicted state
trajectory
{x̂(l)|l ∈ [k + 1, k + h]} for a
feasible control sequence

Cluster Comput (2009) 12: 1–15 7

the time-varying nature of the workload makes it impossible
to assume an a priori distribution.

Since the actual values for the environment input cannot
be measured until the next sampling instant, the correspond-
ing system state for time k + 1 can only be estimated as

x̂i (k + 1) = φ(xi(k), ui(k), λ̂i(k)) (2)

We develop φ as a difference model for each virtual clus-
ter i using the symbols in Fig. 4 in the following equations.

q̂i (k) = max{qi(k) + (λi(k) − μi(k)) · Ts,0}, (3)

λ̂i (k) = λ̂K
i (k) + q̂i (k)

Ts

, (4)

μi(k) =
ni(k)∑

j=1

(
μij (k)

)
, μij (k) = p(fij (k)), (5)

r̂i (k) = g
(
μi(k), λ̂i(k)

)
(6)

Symbol Description

Observable variables
qi(k) Queue length of the ith virtual cluster
λi(k) Arrival rate to the ith virtual cluster
μi(k) Processing rate of the ith virtual cluster
ri (k) Average response time of the ith virtual cluster
Ts Controller sampling time

Control variables
ni(k) Size of the ith virtual cluster
N(k) Number of operational host machines
fij (k) CPU share of the j th VM in the ith virtual cluster
γij (k) Fraction of the ith workload to the j th VM

Fig. 4 Explanation of the symbols used in (3)–(6)

Equations (3)–(6) capture the system dynamics over Ts ,
the controller sampling time. The estimated queue length
q̂i (k) ≥ 0 is obtained using the current queue length, the in-
coming workload λi(k) dispatched to the cluster, and the
processing rate μi(k). The estimated workload λ̂i (k) to be
processed by a VM is now given by the Kalman estimate
λ̂K

i (k) plus the estimated queue length (converted to a rate
value).

The processing rate μi(k) of the cluster in (5) is deter-
mined by the number of VMs and the CPU share given to
each VM. Each VM is given a share of the host machine’s
CPU, memory, and network I/O, and (5) uses the function
p(·) to map the CPU share of the j th VM in the cluster to a
corresponding processing rate. This function is obtained via
simulation-based learning, specifically by measuring the av-
erage response times achieved by a VM, when provided with
different CPU shares. The estimated response time, r̂i (k),
output by the function g(·) in (6), maps request processing
and arrival rates to an average response time as shown in
Fig. 5.

The function p(·) in (5) is obtained by measuring the
average response time achieved by a VM, provided with
different CPU shares, for 2,000 requests having roughly a
50/50 mix of browsing and purchasing. Figure 5 shows the
average response times achieved by VMs processing Gold
and Silver requests.2 The response time increases slowly
up to a particular arrival rate, and then suddenly increases
exponentially. The arrival rate at the “knee” of the graph
then determines the VM’s maximum processing rate, given
that CPU share and memory. For example, Fig. 5(b) shows

2Recall that VMs in the database tier are always provided with the
maximum CPU share.

Fig. 5 The measured average response times for the Gold and Silver applications as a function of a VM’s CPU share. Each VM is allocated 1 GB
of memory

8 Cluster Comput (2009) 12: 1–15

Fig. 6 (a) The power consumed by two models of Dell servers when loaded with VMs hosting an application server; the line is fit from experi-
mentally collected data. (b) The power model used by the controller

that a 6 GHz VM with 1 GB of memory can process ap-
proximately 190 Silver requests per second before queue-
ing instability occurs. Therefore, we conclude that the VM
for the Silver service achieves a maximum processing rate
of 190 requests per second when provided a CPU share
of 6 GHz. If the CPU share is further constrained, say to
3 GHz, the VM’s maximum processing rate decreases and
the knee occurs much earlier, at about 90 requests per sec-
ond.

The power consumption of the host machine is also pro-
filed off-line by placing it in the different operating states
shown in Fig. 6(a). Using a clamp-style ammeter, we mea-
sured the current drawn by the servers as we instantiated
VMs, and loaded each one with an increasing workload in-
tensity before booting the next one. We then multiplied the
measured current by the rated wall-supply voltage to com-
pute the power consumption in Watts.

We also computed the power consumed by our servers
when booting up, powering down, and in a standby state,
during which only the network card is powered on; the
power consumption during these two states is included in
Fig. 6(b). The Dell PowerEdge 1950 and 2950 servers con-
sume 218 and 228 Watts, respectively, when booting up, and
213 and 228 Watts, respectively, when powering down. The
same machines consume 18 and 20 Watts in a standby state.
To determine the cost of operating the host machine during
each controller sampling interval Ts , the server’s power con-
sumption is multiplied by a dollar cost per kilo-Watt hour
over Ts .

Inspecting the data in Fig. 6, we make the following
observations regarding the power consumption of the Dell
servers.

• An idle machine consumes 70% or more of the power
consumed by a machine running at full CPU utiliza-
tion. Therefore, to achieve maximum power savings on
a lightly loaded machine, it is best to redirect the in-
coming workload and power down the machine. Other
power-saving techniques, such as dynamic voltage scal-
ing (DVS), that allow processors to vary their supply
voltages and operating frequencies from within a lim-
ited set of values [25], have been shown to achieve
only about a 10-20% reduction in energy consumption
[16, 17].

• The intensity of the workload directed at the VMs does
not affect the power consumption and CPU utilization
of the host machine. The host machine draws the same
amount of current regardless of the arrival rate expe-
rienced by the VMs; only the number of VMs run-
ning on the host machine affects its power consump-
tion.

• The power consumed by a server is simply a function of
the number of VMs instantiated on it at any time instance.
Figure 6(b) shows the simplified power model used by the
controller, derived from Fig. 6, which shows power con-
sumption as a function of the number of VMs running on
the Dell 1950 and 2950 servers.

The vector ui(k) to be decided by the controller at sam-
pling time k for each virtual cluster includes ni(k) ∈ Z+, the
number of VMs to provision, fij (k) ∈ {3,4,5,6} GHz, the
CPU share, and γij (k) ∈ �, the workload fraction to give to
the j th VM of the cluster, and N(k) ∈ Z+, the number of
active hosts.

Cluster Comput (2009) 12: 1–15 9

4.2 The profit maximization problem

If xi(k) denotes the operating state of the ith cluster and
ui(k) = (N(k), ni(k), {fij (k)}, {γij (k)}) is the decision vec-
tor, the profit generated at time k is given by

R(x(k),u(k))

=
(

2∑

i=1

Hi(ri(k))

)
− O(u(k)) − S(�N(k),�n(k)) (7)

where the revenue Hi(ri(k)) is obtained from the corre-
sponding SLA function Hi that classifies the average re-
sponse time achieved per transaction into one of two cate-
gories, “satisfies SLA” or “violates SLA”, and maps it to a
reward or refund, respectively. The power-consumption cost
incurred in operating N(k) machines is given by O(k) =∑N(k)

j=1 (O(Nj (k))) that sums the power-consumption costs
incurred by the host machines in their current operational
states, O(Nj). S(�N(k),�n(k)) denotes the switching cost
incurred by the system due to the provisioning decision.
This cost accounts for transient power-consumption costs
incurred when powering up/down VMs and their hosts, es-
timated via the power model shown in Fig. 6, as well as
for the opportunity cost that accumulates during the time a
server is being turned on but is unavailable to perform any
useful service.

Due to the energy and opportunity costs incurred when
switching hosts and VMs on/off, excessive switching caused
by workload variability may actually reduce profits. There-
fore, we convert the profit generation function in (7) to a
risk-aware utility function that quantifies a controller’s pref-
erence between different provisioning decisions. Using such
utility functions to aid decision making under uncertainty
has been well studied in the context of investment and port-
folio management [26].

We augment the estimated environment input λ̂(k) with
an uncertainty band λ̂(k) ± ε(k), in which ε(k) denotes the
past observed error between the actual and forecasted arrival
rates, averaged over a window. For each control input, the
next state equation in (2) must now consider three possible
arrival-rate estimates, λ̂(k) − ε(k), λ̂(k), and, λ̂(k) + ε(k)

to form a set of possible future states X(k) that the system
may enter. Given X(k), we obtain the corresponding set of
profits generated by these states as R

(
X(k), u(k)

)
and define

the quadratic utility function

U(R(·)) = A · ū(R(·)) − β · (ν(
R(·)) + ū(R(·))2) (8)

where ū(R(·)) is the algebraic mean of the estimated profits,
ū(R(·)) is the corresponding variance, A > 2 · |ū(R(·))| and
β ∈ � is a risk preference factor that can be tuned by the data
center operator to achieve the desired controller behavior,
from being risk averse (β > 0), to risk neutral (β = 0), to

risk seeking (β < 0). Given a choice between two operating
states with equal mean profits but with different variances,
a risk-averse controller will choose to transition to the state
having the smaller variance. The magnitude of β indicates
the degree of risk preference.

Given the utility function in (8), we formulate the re-
source provisioning problem as one of utility maximization.

Compute: max
u

k+h∑

l=k+1

U(R(X(l), u(l)), u(l))

Subject to: N(l) ≤ 5, ni(l) ≥ Kmin, i = 1,2

(9)ni (l)∑

j=1

γij (l) = 1, i = 1,2 and

2∑

i=1

ni (l)∑

j=1

eijz(l) · fij (l) ≤ Fz
max, z = 1 . . .5

where h denotes the prediction-horizon length. As an oper-
ating constraint, N(l) ≤ 5 ensures that the number of oper-
ating servers never exceed the total number of servers in the
testbed, and ni(l) ≥ Kmin forces the controller to conserva-
tively operate at least Kmin VMs at all times in the cluster
to accommodate a sudden spike in request arrivals. In our
experiments, Kmin is set to 1. We also introduce a decision
variable eijz(l) ∈ {0,1} to indicate whether the j th VM of
the ith application is allocated to host z ∈ [1,5], and the fi-
nal constraint ensures that the cumulative CPU share given
to the VMs does not exceed Fz

max, the maximum capacity
available on host z.

5 Controller design

The optimization problem in (9) will show an exponential
increase in worst-case complexity with an increasing num-
ber of control options and longer prediction horizons—the
so-called “curse of dimensionality”. To tackle this problem,
we decompose (9) into smaller sub-problems that can be
solved using a distributed control hierarchy. We have de-
veloped a two-level control hierarchy, and individual con-
trollers within the hierarchy have the following responsibil-
ities:

• The L0 Control Layer. At the lowest level, an L0 con-
troller for each service class decides the CPU share fij (·)
to assign to VMs in the cluster. The small set of dis-
cretized choices for possible CPU shares and the small
number of components under its control allows each
L0 controller to have low execution-time overhead, and
therefore, operate frequently, on the order of seconds with
a lookahead horizon of h = 1.

10 Cluster Comput (2009) 12: 1–15

• The L1 Control Layer: An L1 controller with a global
view of the system decides {ni(·)}, the size of the vir-
tual cluster for the ith application, and N(·), the num-
ber of hosts over which to collocate the virtual machines.
The L1 controller also determines γij (·), the workload-
distribution factor for each new configuration. The con-
trol cost at this level includes the time needed to switch
hosts/VMs on or off, and the transient power consump-
tion costs. The lookahead horizon for the L1 controller is
determined by the maximum time needed to bring a ma-
chine online—two control steps to turn on a host, and one
control step to turn on a virtual machine. So the lookahead
horizon h is greater than two control steps.

We further reduce the computational overhead of the L1
controller using local-search techniques. For example, to de-
cide ni(k), the L1 controller searches a bounded neighbor-
hood around an initial “seed” value ñi (k). To obtain this
value, the L1 controller divides the estimated arrival rate
by the processing rate achieved by a virtual machine when
given the maximum CPU share on a host, thereby provid-
ing a lower bound on the number of VMs needed to process
the incoming workload. The controller then evaluates pos-
sible values between [ñi (k), ñi(k) + b], where b is a user-
specified value, for the best decision.

Finally, controllers at different levels in the hierarchy can
operate at different time scales. Since the L1 controller has
larger execution-time overhead, it operates on a longer time
scale with sampling times on the order of few minutes. The
L0 controllers operate on smaller time scales, on the order
of seconds, while reacting quickly to short-term fluctuations
in the environment inputs.

6 Experimental results

Figure 7 shows the system and controller parameters used in
our experiments. The prediction horizons are set to the min-
imum lengths possible at each level of the control hierarchy.
The sampling period for the L0 controller is set to 30 sec-
onds, while the L1 controller sampling period of 2.5 minutes
is determined by the maximum time needed to boot a VM

as well as the execution-time overhead of the controller it-
self, which is about 10 seconds. The L1 controller must look
ahead at least three time steps to account for the total time
to boot a host machine and VM, while the L0 controller can
suffice with one step.

The Kalman filter used to estimate the number of request
arrivals is first trained using a small portion of the work-
load (the first 40 time steps) and then used to forecast the
remainder of the load during controller execution, as shown
in Fig. 8. Once properly trained, the filter provides effective
estimates—the absolute error between the predicted and ac-
tual values is about 5% for the workloads used in the paper.

Figure 10 summarizes the performance of a non-risk
aware controller with a 3-step lookahead horizon, in terms
of energy savings over an uncontrolled system where all
available host machines remain powered on, and the num-
ber of SLA violations as a percent of the total workload,
over a 24-hour period for five different workloads.3 The en-
ergy costs for the controlled and uncontrolled system are es-
timated at each sampling instance using the model shown
in Fig. 6, converting units of power to units of energy
over each sampling period. An uncontrolled system incurs
some SLA violations due to normal variability in application
performance–about 1% to 5% of the total requests made to
the system.

The uncontrolled system allocates a fixed number of
VMs as noted in Fig. 7 to each application such that SLA
goals can be met under the worst-case workload arrival rate.
Figure 9 shows the average measured response times for the
Gold and Silver applications under a sample workload. Fig-
ures 13 and 12 show the average CPU share and number of
VMs, respectively, allocated by the controller at each time
instance for the same workload. Average resource alloca-
tions for five workloads are summarized in Fig. 11.

6.1 Effects of risk-aware parameter tuning

The execution-time overhead of a risk-aware controller is
slightly higher than the non-risk aware controller due to the

3All workloads have similar characteristics to that shown in Fig. 2(b),
generated by superimposing two 24-hour traces of the WC’98 work-
load to serve as the Gold and Silver workloads.

Fig. 7 The simulation
parameters Parameter Value

Cost per kW hour $ 0.3
Time delay to power on a VM 1 min. 45 sec
Time delay to power on a host 2 min. 55 sec
Prediction horizon L1: 3 step, L0: 1 step
Control sampling period, non-risk aware L1: 150 sec., L0: 30 sec.
Control sampling period, risk-aware L1: 180 sec., L0: 30 sec.
Initial configuration for Gold service 3 VMs
Initial configuration for Silver service 3 VMs

Cluster Comput (2009) 12: 1–15 11

Fig. 8 Workload 1 for the
Silver application and the
corresponding predictions
provided by the Kalman filter

Fig. 9 The measured average response times for the Gold and Silver applications for Workload 1

Workload Total % SLA % SLA
energy violations violations
savings (Gold) (Silver)

Workload 1 19% 3.1% 2.5%
Workload 2 19% 1.3% 1.2%
Workload 3 14% 1.9% 0.5%
Workload 4 26% 1.2% 0.3%
Workload 5 30% 1.4% 0.6%

Fig. 10 Control performance of a non-risk aware controller, in terms
of the average energy savings and SLA violations, for five different
workloads

increased complexity of the control problem. Therefore, the
sampling period of the L1 controller increases to 180 sec-

Workload #VMs #VMs Total CPU Total CPU
(Gold) (Silver) (Gold) (Silver)

Workload 1 1.9 2.0 8.1 GHz 8.2 GHz
Workload 2 2.0 2.0 8.4 GHz 8.6 GHz
Workload 3 1.5 2.3 5.7 GHz 9.7 GHz
Workload 4 1.8 1.3 6.0 GHz 6.3 GHz
Workload 5 1.5 1.8 5.6 GHz 6.7 GHz

Fig. 11 Average resource allocations (number of virtual machines and
total CPU cycles per second) per time instance for five different work-
loads

onds while that of the L0 controller stays at 30 seconds. Note
that only the L1 controller is risk aware in our design due to
the switching costs incurred at that level.

12 Cluster Comput (2009) 12: 1–15

Fig. 12 The number of virtual machines assigned to the Gold and Silver applications processing Workload 1

Fig. 13 CPU cycles assigned to the Gold and Silver applications under Workload 1

Workload Total Total
energy savings energy savings
(risk neutral) (risk averse)

Workload 6 41% 38%
Workload 7 19% 16%

Fig. 14 Energy savings achieved by risk-neutral and risk-averse con-
trollers for two different workloads

Figure 14 summarizes the performance of risk-averse
(β = 2) and risk-neutral (β = 0) controllers, in terms of the
energy savings achieved over an uncontrolled system, over

a 24-hour period.4 Figure 15 summarizes the SLA viola-
tions, both the total number and as a percentage of the Gold
and Silver requests. Although the energy savings decrease
slightly from the risk-neutral to the risk-averse controller,
averaging 30% and 27%, respectively, the number of SLA
violations drops significantly in the case of the risk-averse
controller, reducing violations by an average of 52% when
compared to the risk-neutral case. This is due to the conser-
vative manner in which the risk-averse controller switches

4Risk-averse values of β = 1 to β = 5 were tested during experimen-
tation; a value of β = 2 produced the best results under all workloads
in terms of energy savings and SLA violations.

Cluster Comput (2009) 12: 1–15 13

Workload Total SLA Total SLA % Reduction
violations violations in violations
(risk neutral) (risk averse)

Workload 6 17,753 (1.4%) 8,879 (0.7%) 50%
Workload 7 36,906 (2.8%) 17,135 (1.3%) 54%

Fig. 15 SLA violations incurred by risk-neutral and risk-averse con-
trollers for two different workloads

Workload Num. times Num. times % Reduction
hosts switched hosts switched in switching
(risk neutral) (risk averse) activity

Workload 6 40 16 60%
Workload 7 39 12 69%

Fig. 16 Host machine switching activity induced by risk-neutral and
risk-averse controllers for two different workloads

machines. Figure 16 shows that the risk-averse L1 controller
reduces the switching of hosts by an average of 65% over
its risk-neutral counterpart. This reduced switching activ-
ity has the following benefits to system performance. First,
conservative switching will typically result in extra capac-
ity, should the actual number of request arrivals exceed the
Kalman filter estimates. This effect is evident from the re-
duced number of SLA violations incurred by the risk-averse
controller. Second, reduced switching activity mitigates the
detrimental effects of repeated power cycling that reduce
the reliability of the host machine in the form of disk fail-
ures [27, 28].

After testing risk-averse controllers having β values of
integers between 1 and 5, we conclude that a value of β = 2
results in the best control performance in terms of energy
savings and SLA violations. Energy savings and SLA vio-
lations improve from β = 1 to β = 2. Increasing β above 2
simply maintains or even slightly reduces the energy savings
while resulting in a greater number of SLA violations.

6.2 Optimality considerations

In an uncertain operating environment, control decisions
cannot be shown to be optimal since the controller does
not have perfect knowledge of future environment inputs.
Furthermore, control decisions are made from a discrete
set of inputs chosen from a localized search area explored
within a limited prediction horizon. The final series of tests
compare our sub-optimal controller against an “oracle” con-
troller with perfect knowledge of future environment distur-
bances, representing the most feasible approximation of an
optimal controller.

Figure 17 compares the performance of an oracle con-
troller against a risk-neutral controller (β = 0) and our best-
performing risk-averse controller with β = 2. The oracle

Controller Total energy Total SLA Num. times
savings violations hosts switched

Risk-neutral 19% 36,906 (2.8%) 40
Risk-averse 16% 17,135 (1.3%) 16
Oracle 16% 13,181(1.0%) 13

Fig. 17 Energy savings and SLA violations of the oracle, risk-neutral,
and risk-averse controllers

Controllable Control Avg. LLC Avg. NN
system size options Exe. Time Exe. Time

5 Hosts 1 × 103 < 10 sec. –
10 Hosts 1 × 106 2 min. 30 sec. 30 sec.
15 Hosts 1 × 109 30 min. –

Fig. 18 Execution times incurred by the controller for larger clusters

consumes about 3% more power than a risk-neutral con-
troller, but incurs 64% fewer SLA violations. It equals the
power consumption of the risk-neutral controller, but in-
curs 23% fewer SLA violations. The oracle also reduces
the switching of hosts by an average of 19% from the risk-
averse controller. The results indicate that the performance
of the lookahead controller depends on the accuracy of the
workload predictions, but a properly tuned risk-aware con-
troller can reduce the number of SLA violations and exces-
sive power cycling within the virtualized system.

7 Controller scalability

When control inputs must be chosen from discrete values,
the LLC problem in (9) will show an exponential increase in
worst-case complexity with increasing system size, in terms
of hosts and VMs, and longer prediction horizons. Our cur-
rent testbed with 1,024 possible control options for VM as-
signments to servers requires about 10 seconds of controller
execution time. The number of options increases exponen-
tially with each server added to the system.5 Figure 18 sum-
marizes the number of control options as the system grows
from 5 to 15 servers, and the execution time of a risk-aware
controller managing the system.

For larger clusters, we use a neural network (NN) to learn
the tendencies of the controller, in terms of its decision mak-
ing, via offline simulations. At run time, given the current
state and environment inputs, the NN provides an approxi-
mate solution, which is used as a starting point around which
to perform a local search of ± 1 VM per host to obtain the

5The size of the search space can be estimated via vN , where v = 4 is
the maximum number of VMs per host, and N = 5 is the number of
controllable host machines.

14 Cluster Comput (2009) 12: 1–15

final control decision. Such a method of improving perfor-
mance obtained from a neural network can be found in pre-
vious work [29]. Initial results using a back-propagation,
feed-forward NN, implemented using the Matlab Neural
Net Toolbox, reduce the execution time of a 4-step looka-
head controller for 10 host machines to about 30 seconds,
as shown in Fig. 18.6 The network is trained using a set
of 1,000 training points collected over two workloads sim-
ilar to that shown in Fig. 2(b). While the energy savings of
the neural network controller decrease slightly, from 29%
to 27%, as compared to the exploratory LLC controller, the
number of SLA violations improves, from 5,116 to 4,502.

8 Conclusion

We have implemented and validated a LLC framework for
dynamic resource provisioning in a virtualized computing
environment. The problem formulation includes switching
costs and explicitly encodes the notion of risk in the op-
timization problem. Experiments using time-varying work-
load traces and the Trade6 enterprise application show that
a system managed using LLC saves, on average, 22% in
power consumption costs over a 24-hour period, when com-
pared to a system without dynamic control while still main-
taining QoS goals. When the incoming workload is noisy,
we conclude that a risk-aware controller with β = 2 provides
superior performance compared to a risk-neutral controller
by reducing both SLA violations and host switching activ-
ity. Finally, we use concepts from approximation theory to
further reduce the computational burden of controlling large
systems, and show that a NN-based scheme achieves energy
savings comparable to the baseline controller while incur-
ring significantly less computational overhead.

References

1. Li, Q., Bauer, M.: Understanding the performance of enterprise
applications. In: Proc. of IEEE Conference on Systems, Man and
Cybernetics, June 2005, pp. 2825–2829

2. Smith, R.: Power companies consider options for energy sources.
The Wall Street J. A. 10, Oct. 29 (2007)

3. Darema, F.: Grid computing and beyond: The context of dy-
namic data driven applications systems. Proc. IEEE 93(3), 692–
697 (2005)

4. Menascé, D.A., Almeida, V.A.F.: Capacity Planning for Web Ser-
vices. Prentice Hall, Upper Saddle River (2002)

5. Welsh, M., Culler, D.: Adaptive overload control for busy internet
servers. In: Proc. of USENIX Symp. on Internet Technologies and
Systems (USITS), March 2003

6. Grit, L., Irwin, D., Yumerefendi, A., Chase, J.: Virtual machine
hosting for networked clusters: Building the foundations for “au-
tonomic” orchestration. In: Proc. of the IEEE Wkshp. on Virtual-
ization Technology in Dist. Sys., p. 7, Nov. 2006

6Neural net results are pending for a system size of 15 hosts.

7. Garbacki, P., Naik, V.: Efficient resource virtualization and sharing
strategies for heterogeneous grid environments. In: Proc. of the
IEEE Symp. on Integrated Network Management, pp. 40–49, May
2007

8. Nathuji, R., Isci, C., Gorbatov, E.: Exploiting platform heterogene-
ity for power efficient data centers. In: Proc. IEEE Intl. Conf. on
Autonomic Computing (ICAC), p. 5, Jun. 2007

9. Lin, B., Dinda, P.: Vsched: Mixing batch and interactive virtual
machines using periodic real-time scheduling. In: Proc. of the
IEEE/ACM Conf. on Supercomputing, p. 8, Nov. 2005

10. Nathuji, R., Schwan, K.: Virtualpower: coordinated power man-
agement in virtualized enterprise systems. In: Proc. of the ACM
SIGOPS Symp. on Op. Sys. Principles, pp. 265–278, Oct. 2005

11. Govindan, S., Nath, A., Das, A., Urgaonkar, B., Sivasubramaniam,
A.: I/o scheduling and xen and co.: communication-aware cpu
scheduling for consolidated xen-based hosting platforms. In: Proc.
of the ACM SIGOPS Symp. on Op. Sys. Principles, pp. 126–136,
Jun. 2007

12. Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application perfor-
mance management in virtualized server environments. In: Proc.
of the IEEE Network Ops. and Mgmt. Symp., pp. 373–381, Apr.
2006

13. Tsai, C., Shin, K., Reumann, J., Singhal, S.: Online web cluster ca-
pacity estimation and its application to energy conservation. IEEE
Trans. Parallel Distrib. Syst. 18(7), 932–945 (2007)

14. Steinder, M., Whalley, I., Carrera, D., Gaweda, I., Chess, D.:
Server virtualization in autonomic management of heterogeneous
workloads. In: Proc. of the IEEE Symp. on Integrated Network
Management, pp. 139–148, May 2007

15. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: On the use
of fuzzy modeling in virtualized data center management. In: Proc.
IEEE Intl. Conf. on Autonomic Computing (ICAC), pp. 25–35,
Jun. 2007

16. Kephart, J., Chan, H., Levine, D., Tesauro, G., Rawson, F., Le-
furgy, C.: Coordinating multiple autonomic managers to achieve
specified power-performance tradeoffs. In: Proc. IEEE Intl. Conf.
on Autonomic Computing (ICAC), pp. 145–154, Jun. 2007

17. Ranganathan, P., Leech, P., Irwin, D., Chase, J.: Ensemble-level
power management for dense blade servers. In: Proc. of the IEEE
Symp. on Computer Architecture, pp. 66–77, Jun. 2006

18. Lefurgy, C., Wang, X., Ware, M.: Server-level power control. In:
Proc. IEEE Conf. on Autonomic Computing, p. 4, Jun. 2007

19. Pinheiro, E., Bianchini, R., Heath, T.: Dynamic Cluster Reconfig-
uration for Power and Performance. Kluwer Academic Publishers,
Dordrecht (2003)

20. Mosberger, D., Jin, T.: httperf: A tool for measuring web server
performance. Perf. Eval. Rev. 26, 31–37 (1998)

21. Arlitt, M., Jin, T.: Workload characterization of the 1998 world
cup web site. Hewlett-Packard Labs, Technical Report HPL-99-
35R1, Tech. Rep., Sept. (1999)

22. Abdelwahed, S., Kandasamy, N., Neema, S.: Online control for
self-management in computing systems. In: Proc. IEEE Real-
Time & Embedded Technology & Application Symp. (RTAS),
pp. 368–376 (2004)

23. Maciejowski, J.M.: Predictive Control with Constraints. Prentice
Hall, London (2002)

24. Harvey, A.C.: Forecasting, Structural Time Series Models and the
Kalman Filter. Cambridge University Press, Cambridge (2001)

25. Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor, Intel Corp. (2004)

26. Copeland, T., Weston, J.: Financial Theory and Corporate Policy,
3rd, edn. Addison-Wesley, Reading (1988)

27. Weddle, C., Oldham, M., Qian, J., Wang, A., Reiher, P., Kuenning,
G.: Paraid: A gear-shifting power-aware raid. ACM Trans. Storage
3, 13 (2007)

Cluster Comput (2009) 12: 1–15 15

28. Hughes, G., Murray, J.: Reliability and security of raid storage sys-
tems and d2d archives using sata disk drives. ACM Trans. Storage
1, 95–107 (2005)

29. Kusic, D., Kandasamy, N.: Approximation modeling for the on-
line performance management of distributed computing systems.
In: Proc. of IEEE Intl. Conf. on Autonomic Computing (ICAC),
p. 23, June 2007

Dara Kusic is currently a Ph.D.
candidate in the Electrical and Com-
puter Engineering Department with
a research focus on the develop-
ment of self-managing computing
systems. She holds a Masters and
Bachelors degree in Computer En-
gineering from the University of
Pittsburgh, where her thesis focused
on reconfigurable and application-
driven processor design. She also
holds a Bachelors of Arts degree
from the University of Pennsylva-
nia. Dara is a 2006–2008 Fellow of
the National Science Foundation in

the GK-12 program, working to enliven math and science study for
West Philadelphia middle school students through the vehicle of engi-
neering.

Jeffrey O. Kephart manages the
Agents and Emergent Phenomena
group at the IBM Thomas J. Watson
Research Center and chairs IBM’s
Autonomic Computing Advisory
Board. His research focuses on the
application of analogies from bi-
ology and economics to massively
distributed computing systems, par-
ticularly in the domains of auto-
nomic computing, e-commerce and
antivirus technology. His research
efforts on the design of a digital im-
mune system and on economic soft-

ware agents have been publicized in publications such as The Wall
Street Journal, The New York Times, Forbes, Wired, Harvard Business
Review, IEEE Spectrum and Scientific American.
Kephart received a B.S. from Princeton University and a Ph.D. from
Stanford University, both in electrical engineering with a concentration
in physics.

James E. Hanson received a B.S. in
Physics from the University of Illi-
nois at Urbana-Champaign in 1985
and a Ph.D. in Physics from the
University of California at Berkeley
in 1993. His dissertation work with
James P. Crutchfield was on com-
putational mechanics of cellular au-
tomata. From 1993 to 1996 he held a
fellowship at the Santa Fe Institute.
He joined the IBM T.J. Watson Re-
search Center in 1996.

Nagarajan Kandasamy is an As-
sistant Professor in the Electrical
and Computer Engineering Depart-
ment at Drexel University where he
teaches and conducts research in the
area of computer engineering, with
specific interests in embedded sys-
tems, self-managing systems, reli-
able and fault-tolerant computing,
distributed systems, computer archi-
tecture, and testing and verification
of digital systems. He received his
Ph.D. in 2003 from the University of
Michigan under the supervision of
Professor John Hayes. Prior to join-

ing Drexel, he was a research scientist at the Institute for Software
Integrated Systems, Vanderbilt University, from 2003–2004.

Guofei Jiang is currently a Depart-
ment Head with the Robust and Se-
cure Systems Group in NEC Labo-
ratories America at Princeton, NJ.
He leads a dozen of researchers
working in the areas of distributed
system and networks, autonomic
system management, system and in-
formation theory. He has published
over 60 technical papers in these
areas. Dr. Jiang is an associate ed-
itor of IEEE Security and Privacy
magazine and has also served in the
program committees of many pres-
tigious conferences. Before joining

NEC Labs, he was a postdoctoral fellow and senior research scien-
tist at Dartmouth College, NH. He has both B.S. and Ph.D. degrees in
Electrical and Computing Engineering.

	Power and performance management of virtualized computing environments via lookahead control
	Abstract
	Introduction
	Related work
	Experimental setup
	The testbed
	The enterprise applications and workload generation
	The two-tier system architecture

	Problem formulation
	System dynamics
	The profit maximization problem

	Controller design
	Experimental results
	Effects of risk-aware parameter tuning
	Optimality considerations

	Controller scalability
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

