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Abstract

Real-time applications such as e-commerce, flight control, chemical and nuclear control, and telecom-
munication are becoming increasingly sophisticated in their data needs, resulting in greater demands for
real-time data services that are provided by real-time databases. Since the workload of real-time databases
cannot be precisely predicted, they can become overloaded and thereby cause temporal violations,
resulting in a damage or even a catastrophe. Imprecise computation techniques address this problem and
allow graceful degradation during overloads. In this paper, we present a framework for QoS specification
and management consisting of a model for expressing QoS requirements, an architecture based on
feedback control scheduling, and a set of algorithms implementing different policies and behaviors. Our
approach gives a robust and controlled behavior of real-time databases, even for transient overloads and
with inaccurate run-time estimates of the transactions. Further, performance experiments show that the

proposed algorithms outperform a set of baseline algorithms that uses feedback control.

Index Terms

M. Amirijoo is with the Department of Computer and Information Science at Linkdping University, Linkdping SE-58183,
Sweden. E-mail: meham@ida.liu.se. J. Hansson is with the Software Engineering Institute at Carnegie Mellon University,
Pittsburgh, PA 15213-3890, USA. E-mail: hansson@sei.cmu.edu. S. H. Son is with the Department of Computer Science at
University of Virginia, 151 Engineer’'s Way, P.O. Box 400740 Charlottesville, VA 22904-4740, USA. E-mail: son@cs.virginia.edu.

This work was performed when J. Hansson’s primary affiliation was Linkdping University.

16th August 2005 DRAFT



IEEE TRANSACTIONS ON COMPUTERS 2

Real-time and embedded systems, Real-time data services, Imprecise computation, Feedback con-

trol, Modeling techniques

. INTRODUCTION

Lately the demand for real-time data services has increased in a number of applications
such as manufacturing, web-servers, and e-commerce. Further, they are becoming increasingly
sophisticated in their real-time data needs [1], [2]. The data normally span from low-level control
data, typically acquired from sensors, to high-level management and business data. In these
applications it is desirable to process user requests within their deadlines using fresh data. In
dynamic systems, such as web servers and sensor networks with non-uniform access patterns, the
workload of real-time databases (RTDB) cannot be precisely predicted and, hence, the RTDBs
can become overloaded. As a result, uncontrolled deadline misses and freshness violations may
occur during the transient overloads. To provide reliable service quality we propose a quality
of service (QoS) sensitive approach that guarantees a set of requirements on the performance
of the database, even in the presence of unpredictable workloads. Further, for some applications
(e.g. web service) it is desirable that the QoS does not vary significantly from one transaction
to another. Here, it is emphasized that the individual QoS needs requested by transactions are
enforced and, hence, any deviations from the QoS needs should be uniformly distributed among
the clients to ensure QoS fairness.

Imprecise computation techniques [3] have been introduced to allow flexibility in operation and
to provide means for achieving graceful degradation during transient overloads. These techniques
make it possible to trade off resource needs for the quality of a requested service. Imprecise
computation has been successfully applied to applications where timeliness is emphasized, but
where a certain degree of imprecision can be tolerated [4]-[7]. In our approach we employ
the notion of imprecise computation on transactions as well as data, i.e., we allow data objects
to deviate, to a certain degree, from their corresponding values in the external environment.
This combined approach of imprecise computation presents a greater challenge but gives better
efficiency in managing QoS and overload management.

In this paper, we present a framework for specification and management of QoS in imprecise
RTDBs. The contributions of this paper are (i) a model for expressing QoS requirements, (ii) an

architecture based on feedback control to satisfy a given QoS specification, (iii) a new scheduling
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algorithm that enhances QoS fairness, and (iv) a model of the controlled system that is used
to synthesize feedback controllers. To the best of our knowledge this is the first paper on QoS
management of RTDBs using imprecise computations and feedback control.

Starting with the QoS specification, the expressive power of our QoS specification model
allows a database operator to specify not only the desired steady-state performance, representing
the nominal system operation, but also the transient-state performance describing the worst-case
system performance and system adaptability in the face of unexpected failures or load variation.
Continuing with the second contribution, we notice that the main challenge with managing
QoS such that the given specification is satisfied is the unpredictability of workload in terms
of unknown arrival patterns and inaccurate execution time estimates. Traditional approaches
for providing performance guarantees [8] rely on known worst-case conditions, e.g., worst-case
execution times and worst-case arrival patterns of tasks; this knowledge is often lacking for
systems operating in highly unpredictable environments. Using feedback control has shown to
be very effective for a large class of real-time systems that exhibit unpredictable workload [9]-
[13]. Therefore, to provide QoS guarantees without a priori knowledge of the workload, we apply
feedback control, where the performance of the RTDB is continuously monitored and compared
to the desired performance as given by the QoS specification.

To tune feedback controllers that are efficient in managing the performance of real-time
systems it is necessary to have a model that accurately describes the behavior of the controlled
system [14]. As the fourth contribution we present a novel model that results in a feedback
loop with a significant improvement in QoS adaptation compared to the performance achieved
using a previously presented model [11]. This result aids a system operator to configure RTDBs
to be highly reactive to changes in applied load and execution time estimation errors, resulting
in increased performance reliability and enhanced QoS adaptation. Finally we present a set of
experimental results where we evaluate the performance of the proposed algorithms. Our studies
show that the presented algorithms ensure robust and insensitive behavior even in the presence
of transient overloads. An equally important feature of this set of algorithms is their ability to
adapt to various workloads and tolerate inaccurate estimates of execution times still conforming
to a given QoS specification.

This paper is organized as follows. The detailed problem formulation is given in Section II.

In Section lll, the assumed database model is given. In Section IV, we present our approach and
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in Section V, the results of performance evaluations are presented. In Section VI, we present

the related work, followed by Section VII, where conclusions and future work are discussed.

Il. PROBLEM FORMULATION

In our model, data objects in a RTDB are updated by update transactions, representing sensor
values, while user transactions represent user requests, e.g. complex read-write operations. As
mentioned previously, the notion of imprecision may be applied at data object and/or user
transaction level. Starting with data imprecision, we observe that although a real-time database
models an external environment that changes continuously, the values of data objects that are
slightly different in age or in precision can be used as consistent read data for user transactions.
This is due to the fact that data objects cannot in general be updated continually to perfectly
track the dynamics of the real-world. The time it takes to update a data object alone introduces a
time delay which means that the value of the data object cannot be the same as the corresponding
real-world value at all times. Hence, for a data object stored in an RTDB and representing a real-
world variable, we can allow a certain degree of deviation compared to the real-world value.
We can then discard an update transaction that holds a value sufficiently close to the stored
value in the RTDB. The more the values of the data objects in the database deviate from the
external environment, as given by the values of the update transactions, the more imprecise the
data objects are. To measure data imprecision we introduce the notion of data error, denoted
de;, which gives an indication of how much the value of a data objedtored in the RTDB
deviates from the corresponding real-world value given by the latest arrived update transaction.
Note that the latest arrived update transaction is discarded if it holds a value that is sufficiently
close to the value already stored in the database. Hehamay hold the value of an earlier
update transaction. We say that quality of data (QoD) increases as the data error of the data
objects decreases.

Imprecision at user transaction level can be expressed in terms of certainty, accuracy, and
specificity [4]. Certainty refers to the probability of a result to be correct, accuracy refers to
the degree of accuracy of a value returned by an algorithm (typically through a bound on the
difference from the exact solution), and specificity reflects the level of detail of the result. For
example, if filters are used in control loops greater accuracy is achieved. Specificity is used to

define user transaction imprecision in the context of image coding or decoding. The imprecision
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of the result of a user transaction increases as the resource available for the user transaction
decreases. For simplicity we refer to the imprecision of the results of the user transactions as
guality of transaction (QoT). We say that QoT increases as the imprecision of the results of the
user transaction decreases.

Usually system developers know how much data imprecision an application can tolerate such
that the end result is within acceptable limits. Therefore, we assume that sufficiently precise
data values stored in the database are regarded to have no effect on the result of a transaction.
Hence, we model QoT and QoD as orthogonal entities. System developers can then focus on
finding appropriate precision requirements and avoid modeling QoT as functions of QoD. This
significantly reduces the complexity of the QoS specification process.

QoT is manipulated by adjusting the admitted user transaction load and the admitted update
transaction load. The CPU resource allocated for each user transaction decreases as the number
of admitted user transactions and the number admitted update transactions increase, resulting
in a decrease in QoT. The update transaction load is reduced by discarding update transactions
according to an upper bound for the data error given by the maximum data error, denbted
Note, discarding update transactions reduces QoD, however, we assume that QoT is not affected
by QoD as they are modeled to be orthogonal. An update transéctlias discarded if the
data error of the data objedt to be updated by is less or equal tonde (i.e. de; < mde).

If mde increases, more update transactions are discarded, degrading the QoD. This results in
more resources available for user transactions and, hence, an increase in QoT. Similatty, if
decreases, fewer update transactions are discarded, resulting in a greater QoD and, consequently,
a lower QoT. The goal of our work consists of two parts. We want to derive: (i) algorithms for
adjusting data error usingde such that QoD and QoT satisfy a given QoS specification, and the
deviation in imprecision of user transaction results is minimized, i.e., QoS fairness is maximized,
and (ii) a feedback loop architecture that is highly reactive and adaptive to changes to workload
characteristics. The second part implies, as argued in Section I, that we need to find accurate
models of the controlled system to provide efficient QoS adaptability and performance reliability

even in the presence of unpredictable workload.
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[11. DATA AND TRANSACTION MODEL

We consider a main memory database model where there is one CPU as the main processing
element. Main memory databases have been increasingly applied to real-time data management
due to their relatively high performance, decreasing main memory cost, fast response time (since
I/O overhead is decreased), and the emergence of embedded systems lacking disks [15], [16].
In our data model, data objects can be classified into two classes, temporal and non-temporal
[17]. For temporal data we only consider base data, i.e., data that hold the view of the real-
world and are updated by sensors. A base data objastconsidered temporally inconsistent or
stale if the current time is later than the timestampiofollowed by the length of the absolute
validity interval of d; (denotedavi,), i.e. currenttime > timestamp; + avi;. For a data object
d;, let data errorde; = ®(cv;,v;) be a non-negative function of the current value of d;
and the valuev; of the latest arrived transaction that updatgdor that was to updaté; but
was discarded. Remember an update transaction may be discarded if its update value is close
enough to the value stored in the RTDB. Our approach does not have any restrictions on the
structure of®. For example, it may be defined as the absolute deviation betweesnd v;,

_ evi—vg]

i.e., de; = |cv; — v;|, or the relative deviation as given hig; = o]

. Update transactions
arrive periodically and may only write to base data objects. User transactions arrive aperiodically
and may read temporal and read/write non-temporal data. User and update transdgtiare (
composed of one mandatory subtransactigrand|O;| > 0 optional subtransactions ;, where

0;; is the j optional subtransaction &f;. For the remainder of the paper, we tetdenote a
subtransaction of;. As updates do not use complex logical or numerical operations, we assume
that each update transaction consists only of a single mandatory subtransactiof;|i-e.J(.

As mentioned earlier there are several ways of implementing imprecise computations, e.g.,
multiple versions, use of sieve functions, and the milestone approach [3]. The focus of this
paper is not on how to apply different imprecise computation techniques in the context of
RTDBSs, since this area has already been explored, as shown in Section VI. Previous work
indicates that iterative and recursive algorithms, generating monotonically improving answers,
can efficiently be used to solve problems in a wide class of applications, such as, numerical
algorithms, e.g., Newton’s method and FFT [18], graph algorithms [4], and also query processing

[6], [7]. Iterative and recursive algorithms can easily be modeled using the milestone approach,

16th August 2005 DRAFT



IEEE TRANSACTIONS ON COMPUTERS 7

where thek first iterations or recursions correspond to the mandatory part and the remaining
are given by the optional part. For this reason we use the milestone approach [3] to transaction
impreciseness. Thus, we divide transactions into subtransactions according to milestones. A
mandatory subtransaction is completed when it is completed in a traditional sense. The mandatory
subtransaction gives an acceptable result and should be computed to completion before the
transaction deadline. The optional subtransactions may be processed if there is enough time or
resources available. While it is assumed that all subtransactions of a transgcéioive at the
same time, the first optional subtransaction (if any) becomes ready for execution when the
mandatory subtransaction; is completed. In general, an optional subtransactionbecomes
ready for execution when, ;_; (where2 < j < |0;|) completes. We set the deadline of every
subtransaction; to the deadline of the transactidn. A subtransaction is terminated if it has
completed or has missed its deadline. A transacfiprs terminated whemw; o, completes or
one of its subtransactions misses its deadline. In the latter case, all subtransactions that are not
completed also miss their deadlines and are therefore terminated as well.

We introduce the notion of transaction error (denatedl, inherited from the imprecise com-
putation model [3], to measure the imprecision of a user transaction r@sult;ansaction error
may be modeled as a function of completed optional subtransactions. This requires knowledge
about the transactions and/or the data sets they read. Although our work does not require
detailed knowledge about the transactions, in many application this knowledge is available to the
designer and transaction error may be derived through experiments [4], analytical expressions,
e.g., accuracy bounds for numerical iterative algorithms [19], or the experience of designers
or engineers. The exact details of above mentioned methods are beyond the scope of this
paper and the reader is referred to appropriate literature. In applications where it is possible
to formally model the preciseness of the answers given by transactions in terms of completed
optional subtransactions, we model transaction error through the use of error functions [20]. For
a transactionl;, we use an error function to approximate its corresponding transaction error
given by, te;(|COS;|) = (1 - 'C[gj"">m, wheren; is the order of the error function af@0.S;|
denotes the number of completed optional subtransactions. By choesing can model and

support multiple classes of transactions showing different error characteristics. For example, it
has been shown that anytime algorithms used in Al exhibit error characteristics whese

greater than one [4].
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We assume the workload model presented by Lu et al. [11], where update transactions have a
period and user transactions have a mean inter-arrival time. The estimated load of a task is the
estimated execution time of the task divided by its relative deadline. The actual load of a task

is the actual execution time of the task divided by its relative deadline.

IV. APPROACH

Next we describe our approach for managing the performance of an RTDB in terms of QoT
and QoD. First, we start by defining performance metrics in Section IV-A. The QoS specification
models are described in Section IV-B. An overview of the feedback control scheduling architec-
ture is given in Section IV-C, followed by the description of QoS controllers in Section IV-D. In
Section IV-E we present the algorithms PC-MPUegsion_ontrol miss percentage tilization),

PC-MP (pecision_ontrol miss percentage), PC-ATir (precision_ontrol average tansaction

error highest _eror first), and PC-ATlgpr (precision_ontrol average tansaction eor highest

error density frst). These algorithms determine how QoD is adjusted, i.e., to what extend the
precision of the data objects are modified based on the current system performance. In Section
IV-F we present two models, describing the dynamics of RTDBs, which are used to tune the

QoS controllers.

A. Performance Metrics

In our approach, the database operatan explicitly specify the required database QoS,
defining the desired behavior of the database. Long-term performance metrics such as average
deadline miss ratio are not sufficient to specify the desired performance of real-time systems
that require stringent QoS enforcement [11]. Therefore, in this work we adapt both long-
term performance metrics, referred to as steady-state performance metrics, and transient-state
performance metrics. We adapt the following notation of describing discrete variables in the
time-domain:a(k) refers to the value of the variabteat the timekT', whereT" is the sampling
period andk is the sampling instarit.

QoT Metrics. We consider the following metrics for measuring QoT of admitted transactions:

!By a database operator we mean an agent, human or computer, that operates the database, including setting the QoS.

2For the rest of this paper, we sometimes dfoprhere the notion of time is not of primary interest.
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 Deadline miss percentage of mandatory user subtransactions is giver/blyy) = 100 x

|deadlmiss™ (k
[termM (k)

that have missed their deadline, ajterm? (k)| is the number of terminated mandatory

(%) where|deadlmiss™ (k)| denotes the number of mandatory subtransactions

subtransactions.

 Deadline miss percentage of optional user subtransactions is given“y) = 100 x

|deadlmiss©
[term© (k)|

that have missed their deadline, aftdrm® (k)| is the number of terminated optional

k"(%) where |deadimiss® (k)| denotes the number of optional subtransactions

subtransactions. Notgjeadlmiss® (k)| and|term© (k)| include the optional subtransactions
that are not completed.

« Average transaction error is defined as

Zieterm(k) tei

te(k) = 1
ate(k) = 100> =m0

(%)

whereterm(k) denotes the set of terminated transactions.
QoD Metric. The maximum data errande(k) gives the maximum data error tolerated for
the data objects (as described in section II).
QoS Fairness Metric For some applications it is desired to measure QoS fairness among
transactions and therefore we introduce the standard deviation of transaction error,

(100 x te; — ate(k 2
el \/ icterme) (k)

[term(k)| — 1

which is a measure of how much the transaction error of terminated transactions deviates from
the average transaction error.

System Utilization. We measure system utilizatiar{k) to acquire a better understanding of
the performance of the algorithms. Using the utilization of the system, we can show whether
our algorithms provide high throughput.

Steady-State and Transient-State Performance MetricsThe desired performance of the
system is given by a set of references specifying the desired level of the controlled vari-
ables, which represent the actual system performance. We consider the following transient-
state performance metrics (see Fig. 1(a)). Overstidpts the worst-case system performance
in the transient system state and it is given in the percentage by which a controlled variable
overshoots its reference. Settling tirig is the time for the transient overshoot to decay and

settle around the steady state performance and it is a measure of system adaptability, i.e.,
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Fig. 1. Performance Specification and System Architecture

how fast the system converges toward the desired performance. Hence, the performance of
the controllers is distinguished by how well they force a controlled varigbkg to follow

or track a desired level given by a referengék), despite presence of disturbances in the
controlled system. It is therefore interesting to measure the difference bepmgenand y (k)

over a period of time, which is obtained using the functiohs= + SV (k) — y(k)| and

Js =+ fozl (y-(k) — y(k))> where N is the number of samples taken. The lowgrand J,

are, the better a controller is able to kegpeary,, and also the fastey converges towarg,.

B. QoS Specification Models

The maximum data error provides a direct measure of the precision of the data objects and,
hence, we express QoD in termsqofle. An increase in QoD refers to a decreaserite, i.e.,
an increase in data precision. In contrast a decrease in QoD refers to an increage We
consider two alternative ways of defining QoS, below referred to as QoS specification type A
and type B, where they differ in the way QoT is expressed.

QoS Specification Type Aln the case when it is not possible to model transaction error using
error functions, we have to express QoT by other means. We know that the more of the optional
subtransactions we complete before the deadline the less the transaction error will be. Therefore,
the deadline miss ratio of optional subtransactions qualifies as an approximate measure of the
true transaction error and, hence, we define QoT in terms®fQoT decreases as® increases

(similarly, QoT increases as® decreases). The database operator can specify steady-state and
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transient-state behavior fon™, m®, u, andmde. The specification for: is given by a lower
boundw; for u. A QoS requirement can be specified as the following’ = 1% (i.e. reference
of mM), m@ = 10%, mde, = 2%, v, = 80%, T, < 60s, andM, < 30%. This gives the following
transient-state performance specifications! < m x (M, + 100%) = 1.3%, m® < 13%, and
mde < 2.6%.

QoS Specification Type B Having error functions to describe the transaction error, we can
directly define QoT in terms of average transaction erao¢)( Q0T decreases age increases
(similarly, QoT increases agle decreases). The database operator can specify steady-state and
transient-state behavior fate andmde. A Q0S requirement can be specified as the following:
ate, = 20% (i.e. reference ofite), mde, = 5%, Ts < 60s, and M, < 30%. This gives the
following transient-state performance specifications: < ate, x (M, + 100%) = 26% and
mde < mde, x (M, + 100) = 6.5%.

C. QoS Management Architecture

The architecture of our QoS management scheme is shown in Fig. 1(b). Admitted transactions
are placed in the ready queue. The transaction handler manages the execution of the transactions.
We choosen™, m?, andu as controlled variables when the QoS is specified according to QoS
specification type A, whileite is the controlled variable when QoS specification type B is used.

At each sampling instant, the controlled variable(s) @2/, m©, andu, or ate), is monitored

and fed into the QoS controller, which compares the performance reference/fi.andm?, or

ate,) with the controlled variable to get the current performance error. Based on the result, the
controller computes a change, denotégr, to the total estimated requested load. We refer to
dlrr as the manipulated variable. Baseddpy, the QoD manager changes the total estimated
requested load by adapting the QoD (i.e. adjustimgr). The precision controller discards an
update transaction writing to a data objégcthaving an error less or equal to the maximum data
error allowed, i.ede; < mde. However, the update transaction is executed if the data error of
d; is greater thannde. In both cases the time-stamp @&f is updated. The portion afizr not
accommodated by the QoD manager, denélgd,, is returned to the admission controller (AC),
which enforces the remaining load adjustment. The transaction handler provides a platform for
managing transactions. It consists of a freshness manager (FM), a unit managing the concurrency

control (CC), and a basic scheduler (BS). The FM checks the freshness before accessing a data

16th August 2005 DRAFT



IEEE TRANSACTIONS ON COMPUTERS 12

object, using the timestamp and the absolute validity interval of the data. We employ two-phase
locking with highest priority (2PL-HP) [21] for concurrency control. 2PL-HP is chosen since it
is free from priority inversion and has well-known behavior. We use three different scheduling
algorithms as basic schedulers:

Earliest Deadline First (EDF): Transactions are processed in the order determined by their
absolute deadlines; the next transaction to run is the one with the earliest deadline (for an
elaborate discussion on EDF see e.g. [8]).

Highest Error First (HEF): Transactions are processed in the order determined by their
transaction error; the next transaction to run is the one with the greatest transaction error.

Highest Error Density First (HEDF): Transactions are scheduled according to their trans-

action error density given byed; = g di—zzirrenttime’ whereat; and rd; denote the arrival
time and relative deadline of the transactifn respectively, and where the transaction with the
highest transaction error density is processed first.

Note that HEF and HEDF cannot be used in the case when error functions for transactions
are not available, as they are error-cognizant and require knowledge. ¢for all three basic
schedulers (EDF, HEF, and HEDF) the mandatory subtransactions have higher priority than the

optional subtransactions and, hence, scheduled before them.

D. QoS Controllers

Depending on the algorithms used, we apply different feedback control loops to control QoT
in the presence of unpredictable workload and inaccurate execution time estimates. PC-MPU
employs one utilization controller and two miss percentage controllers, i.e., one controller to
adjust the utilizationu according to a reference,, and two controllers to adjust™ and
m© according to the references? andm?, respectively. Transactions in RTDBs often make
unpredictable aborts or restarts due to data and resource conflicts. Further, the execution time
of the transactions depends on their data needs which may vary over time. This makes the
deadline miss percentages prone to overshoot. To avoid overshoots greatér thtre load
of the system is constantly changed according to a linear increase/exponential decrease scheme.
Initially, the utilization reference:,. is set tou;. As long as the miss percentages are below their
referencesy, is increased by a certain step. As soon as one of the miss percentages is above its

referencey, is reduced exponentially according @@(k + 1) = W(%) whereu, (k+ 1) is
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the new utilization reference. This way we are certain that the system is not underutilized, while
at the same time great deadline miss ratio overshoots are avoided. This approach is self-adapting
and does not require any knowledge about the underlying run-time estimates. PC-MP uses two
deadline miss percentage control loops, one for each of the controlled variablesnd m°.

The algorithms PC-ATggr and PC-ATEgpr USe a single average transaction error control loop

to control ate (i.e. the controlled variable). Heree is monitored and fed into the controller,
which computes)/gr according toate andate,..

Using several controllers raises the question of integration of the signals from each controller.
In the case PC-MP where miss percentage controllers are used, we need to integrate the signals
from the mandatory and the optional subtransaction miss percentage controllers. Further, in PC-
MPU where a combination of miss percentage and utilization controllers is used, an integrated
signal from both the miss percentage and the utilization controllers is computed and returned.
Let 6, denote the control signal computed by thé! controller,5l, denote the control signal
computed by then® controller, andj/,, denote the control signal computed by theontroller.

The integrated control signal from both miss ratio controliéssr is computed as follows. If both

miss percentage control signals are negative {i.g.< 0 A §lp < 0), we setdlyp = dly + dlo

to the sum of both control signals. This is necessary since both miss percentages are above their
references and both signals must be considered to compensate for miss percentage overshoots.
If the above does not hold, we s®t,p = min(dly,, dlp) to the minimum of the control signals.

If one of the control signals is negative (due to an overshoot), we return the negative one to
reduce the miss percentage of the corresponding subtransaction type. If both are posithe, the
operator provides a smooth transition between low and high miss percentages among mandatory
and optional subtransactions [11]. In the case when only miss percentage controllers are used,
we setdlgy to ol p. HOwever, when a utilization controller is used as well, we dedivg; by

taking the minimum ofél,;p anddl,. This is necessary for the similar reasons as mentioned

above.

E. QoD Management Algorithms

We recall that settingnde(k + 1) greater thanmde(k) results in more discarded update
transactions and, hence, a decrease in update transaction load. Similarly, sdtt{tg+ 1) less

than mde(k) results in fewer discarded update transactions and, hence, an increase in update
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transaction load. To computede(k + 1) given a certainlzz(k), we use a functiorf (6lgr(k))
that returns, based oavigr(k), the correspondingude(k+1). The functionf holds the following
property. Ifélgr(k) is less than zero, themde(k+1) is set such thatde(k+1) is greater than
mde(k), i.e. QoD is degraded. Similarly, flzr (k) is greater than zero, thende(k + 1) is set
such thatmde(k + 1) is less thannde(k), i.e. QoD is improved. We will discuss the function
f in more detail later in this section.

The algorithms PC-MPU and PC-MP control QoT by monitornintf, m©, andu and adjusting
mde such that a given QoS specification according to QoS specification type A is satisfied.
Here, we use EDF as a basic scheduler. The algorithms PGrAT&nd PC-ATExpr are error-
cognizant and control QoT by monitoringe and adjustingnde, such that a QoS specification
in terms of QoS specification type B is satisfied. Furthermore, PCgAfEand PC-ATEgpr
are designed to enhance QoS fairness among transactions (i.e. decrease the deviation in
among admitted transactions). We use the same feedback control policy for RGAdRd PC-
ATEgngepr, but use different basic schedulers, i.e., PC-AfEschedules the transactions using
HEF and PC-ATkgrpr schedules the transactions using HEDF. The details of the algorithms are
given below.

PC-MPU: The system monitors the deadline miss percentages and the CPU utilization. At
each sampling instant, the CPU utilization adjustmehiz(k), is derived. Ifolgr(k) is greater
than zero, upgrade QoD as muchd&sr (k) allows. However, wherigr(k) is less than zero,
degrade QoD, i.e., increasede according tajlz, but not greater than the highest allowede
(i.e. mde, x (M,+100)). Degrading the data further would violate the upper limitafe, given
by the QoS specification. Whelizz (k) is less than zero andhde equalsmde, x (M, + 100),
no QoD adjustment can be issued and, hence, the system has to wait until some of the currently
running transactions terminate. An outline of PC-MPU is given in Fig. 2(a).

PC-MP: In PC-MPU, the miss percentages may stay lower than their references since the
utilization is exponentially decreased every time one of the miss percentages overshoots its
reference. Consequently, the specified miss percentage references{i.and m?) may not
be satisfied. In PC-MP, the utilization controller is removed to keep the miss percentages at the
specified references. One of the characteristics of the miss percentage controller is that as long
asm? is below its reference (i.en® < m?), the controller outputiyy is positive. Due to the

characteristics of (i.e. dlgr(k) > 0 = mde(k+1) < mde(k)), a positivedigr is interpreted as
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Monitor m™ (k), m© (k), andu(k)
Computedlgr (k)
if 8lgr(k) > 0Amde(k) > 0 then
Upgrade QoDjnde(k + 1) := f(dlgr(k))
Subtract utilization lost fromdlgr (k)
else ifdlgr(k) <0 A
mde(k) < mde, x (Mp + 100) then
Downgrade QoDnde(k + 1) := f(dler(k))
Add utilization gained tdlgr (k)

Monitor m™ (k) andm® (k)
Computedlgr (k)

if 0lgr(k) >0 then
mde(k +1) :=

mng(k)
mo

if mde(k) < mde(k + 1) then
Add utilization gained tddlgr(k)
else
Subtract utilization lost fromdigr (k)
end if
else ifdlgr(k) <0 A

mde,, mder X (Mp + 100)

15

end if mde(k) < mde, x (M, + 100) then
Setdlnew to the newdler (k) mde(k + 1) := f(5ler(k))
(a) PC-MPU Add utilization gained tdjlgr(k)
end if
Setdlnew to the newdlgr (k)

(b) PC-MP
Fig. 2. QoD Management Algorithms

a QoD improvement. Consequently, evemif is just below its reference, QoD remains high.

It is desirable to letn®, which corresponds to QoT, increase and decrease together with
QoD given bymde. For this reasonmnde is set considering bothlz; and m®. When §igr
is less than zero (i.em® overshoots),nde is set according tof. However, whendlzy is
greater or equal to zeropde is set according to the moving average of’, computed by
mQ4(k) = amO (k) + (1 — a)m$, 4 (k — 1), wherea (0 < a < 1) is the forgetting factor [22].

The moving average is used to reduce large deviations from one sampling period to another.
Settinga close to 1 results in a fast adaptation, but also captures any high-frequency changes
of m®, whereas settinge close to 0 results in a slow but smooth adaptation. Wheh, is
relatively low compared ten®, mde is set to a low value relative tode,. As m¢,, increases,

mde is increased but to a maximum valueretle, x (M, +100) since a further increase violates

the given QoS specification. The outline of PC-MP is given in Fig. 2(b).

PC-ATEugr and PC-ATEggpr: These algorithms are two variants of PC-MP, but where
QoT is measured in terms afe, instead ofm®. Hence, we replace the miss percentage control
loops for a single average transaction error control loop. Hewé; is adjusted based on the
control signalélzr and the moving average afe denotedate,; 4(k). We do not provide full
algorithm descriptions for PC-ATlr and PC-ATkgepr but refer instead to Fig. 2(b) where
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m§, , is replaced withate,, 4.

The preciseness of the data is controlled by the QoD manager by settinglepending on
the system behavior. Whefis used to computende(k + 1) based onjigr(k) the following
scheme is used. Discarding an update results in a decrease in CPU load, which we refer to as

the gained load. Let
gl(k) = % Z eet;
T;Ediscarded(k)
be the sum of the estimated execution time of the discarded update transactions divided by the
sampling period’, wherediscarded(k) is the set of discarded update transactionsangdis the
estimated execution time of the update transactiomn our approach, we profile the system and

measureyl for varying mde and linearize the relationship between them. During each sampling

mde(k)
gl(k)

Consequently, the relation betweenie and gl is updated to capture the current state of the

period, gl(k) is monitored andu(k) =

and its moving average (k) are computed.

system. Having the relationship betweghandmde, we introduce the help function,
h(0lgr(k)) = min ( para(k) x (gl(k) — Slgr(k)), mde, x (M, + 100) ) :

Sincemde is not allowed to overshoot more thamie, x (M, + 100) we use thenin operator
to enforce this requirement. Further, sinede by definition cannot be less than zero, we apply
the max operator onh and obtainmde(k + 1) = f(dlgr(k)) = max(h(dlgr(k)),0).

F. System Modeling

To tune feedback controllers that are efficient in managing the desired performance and that
react rapidly to changes in workload, it is necessary to have a model that accurately describes
the behavior of the controlled system [14]. The particular form of the models we construct,
i.e. linear models, enables us to use a set of powerful analytical methods that are available
in control theory, e.g. root locus [14]. For analysis purposes, we apply the principl&s of
transform theory [14]. Using-transforms enables us to reduce the complexity of large dynamic
systems into the simpler representationdyransforms. FurtheiZ-transforms are used in many
controller tuning procedures, e.g., root locus [14]. We adopt the following notation whene
denotes theZ-transform of the variable(k). The goal is to derive a transfer function describing

the relation between the manipulated variable, .z (z), and the controlled variables, i.e.
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MM(z), M°(z), ATE(z), andU(z). In this section we first present the STA model, previously
presented [11], where some dynamic relations are approximated by static relations (hence the
name STA referring to stiegs). Then we propose a new model, called DYN, which generalizes the
STA model [11] by capturing additional system dynamics (the name DYN refers tantigs).

1) STA: The estimated requested workload of admitted user transactignsn the next

sampling period is changed through the manipulated vari@big, given by
ler(k +1) = lgr(k) + 6lpr(k). (1)

Hence,lzR is the integration of the control inputzz. Now, the estimated admitted workload

of user transactiong; may differ fromigg, since external load applied on the database may not
be sufficient to satisfyzr, or the admitted workload is decreased due to deadline misses and,
consequently, early termination of transactions. Here, however, we approximate the estimated
load of admitted transactions Byy, i.e., g = [gr (in DYN we take a different approach).

The actual workload, denoteld (k), may differ from (z(k) due to incomplete knowledge
about the controlled system, e.g., unknown execution times of the transactions and data conflicts.
Therefore we geta(k) = ga(k)lg(k), where the workload ratig4 (k) represents the workload
variation in terms of actual total requested workload. For examplé€;) equal to two means
that the actual workload is twice the estimated workload. It is obvious ¢hét) cannot be
deterministically modeled. However, by profiling the controlled system we can comppté:)
for each sampling and form the averagegafk), denotedy 4, which is then used in our model

to describe the relation betweén andi, in the average case, i.e.,
la(k) = galp(k). (2

The relationship between the actual workload and the utilizationu is non-linear due to

saturation as given by the following,

la(k), la(k) <100%
u(k) = 3)
100%, 14(k) > 100%.
Whenli, (k) is less or equal ta00%, i.e., the CPU is underutilized,(k) is outside its saturation
zone and equals, (k). However, whenu(k) is within its saturation zone, i.el, (k) is greater

than 100%, thenwu(k) remains atl00%, despite changes tb,.

3 ga(k) can be deterministically modeled, then we can compute exact execution times given estimated execution times.
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From classical scheduling theory, it is possible to determine whether a set of tasks can be
scheduled such that no deadline misses occur [8]. Turning to the case of the miss percentages,
we define the schedulable threshold for mandatory subtransactions, déljétedand optional
subtransactions, denotdf](k), as the load threshold in the’* sampling period for which
no deadline miss can be observed for the respective type of subtransaction. When the miss
percentages are saturated, i.e. they are inside the saturation zones givgtk)by< 1Y (k)
andi4 (k) <19 (k), no deadline misses are observed. At this condition adjustments; gfand
consequently, (k) will not affect the miss percentages, until the actual load becomes greater than
the threshold and miss percentages start increasing. However, when outside the saturation zones,
i.e.la(k) > IM(k)oria(k) > 19 (k), the miss percentage for either subtransaction increases non-
linearly. Note, since mandatory subtransactions have higher priority than optional subtransactions,
the schedulable threshold for mandatory subtransactions is greater than the threshold for optional
subtransactions, .8 (k) > 19 (k).

Since feedback control relies on linear systems, we linearize the relationship béuwaed
mM by deriving the ratio betweety andm? at the vicinity of the miss ratio reference’.
Similarly we form the linear relationship betweén andm® by deriving the ratio betweety

andm?® at the vicinity of the miss ratio referenee?, giving the equations,

M
gt = M =M (4)
la
@)
=" om0 =mf (5)
la

We model the average transaction error similarly to the miss percentages. The relationship
between 4, andate is non-linear due to saturation. We define the precisely schedulable threshold
IATE(k) as the load threshold in the period for which all admitted subtransactions meet
their deadlines. The average transaction error becomes saturated when it is within its saturation
zone, given byis(k) < I4TE(k). When the average transaction error is saturatedremains
zero despite changes Wz and, hence/,. However, when outside the saturation zones,

i.e. [a(k) > I47E(k), the average transaction error increases non-linearly. We linearize the
relationship between, and ate by taking the ratio betweeh, andate at the vicinity of the
referenceate,, i.€.,

ate
Jate = = ate = ate,. (6)
la
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From (1)-(6), we can derive a transfer function for each of the controlled variables when they
are outside their saturation zones. Hence, under the condjtien100%, there exists a transfer
function Gsra v (2) = 24 from the control inputALzx(z) to CPU utilizationU(z). Similarly,

under the conditiong! (k) < 14, 1S (k) < 14, andi%<(k) < 14, the transfer functions

M (@]
Gg[TA,m(Z) = o — 1 ? G(S)TA,T)’L(Z> = o — 17

relate the control inputALzr(z) to the controlled variables/*(z), M°(z), and ATE(z),

gAYGate
GSTA,ate(Z) - o 1

respectively.

2) DYN: In DYN we extend the model STA to include additional system dynamics. In STA,
we assumed that there are static relations betwegenu, m™, m®, and ate. We here show
that in fact there are dynamic relations between these variables and STA fails to capture them.
Starting from the model inpuiizr(k), we computelzz(k) according to (1). Given a certain

lgr(k), the estimated workload of admitted user transactions,
lp(k) = gr min(lpr(k), lp(k)) (7)

is the product of the requested load factgr and the minimum of the estimated requested
load and the maximum estimated loag k) that can be made available. The upper limit of the
admitted load, given byz(k), makes the relationship betweés (k) andlz (k) non-linear due

to saturationl (k) becomes saturated when it is within its saturation zone, givég by [z (k).
However, when outside the saturation zohgk) increases linearly witligg (k). Furthermore,
even though outside the saturation zone, the estimated admitted worklgdadmay be lower
than the estimated requested workldad(k), due to early termination of the tasks caused by
deadline misses. To capture this difference, we derive the ratio betiwygél) andiz(k) at the
vicinity of iz(k) corresponding ton® or ate,, and we obtain requested load factgr.

Now, under the conditiozz < [z, it can be observed that given a certain increase in
estimated requested workloagdr, it takes some time before the estimated léadand, hence,
the utilizationu reachedgi. The time it takes fol; to reachizy is determined by the amount
of workload submitted to the systely, or more specifically, the arrival rate of the transactions
submitted to the system. The greatgris, the faster we can fill up the workload, reaching
earlier. Similarly, a decrease ipi does not result in an immediate decreasg:irsince currently

running transactions have to terminate. Hence, an increase/decrdagedioes not result in an
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Fig. 3. A change td4 is not noticed immediately when EDF is applied.

immediate increase/decreaseljnand, consequently we have a dynamic relation betwggn
and/g. The relation betweety, and/, is linearized according to (2), i.e., we describe the actual
workload in termsg 4.

Furthermore, we argue that the relation betwéemnd m™, m©, ate is non-static. We give
the rationale only for the case éf and a miss ration, as the dynamics of the relationship
betweenl, andate is described by the same line of argument. Given a ceftaithe time it
takes form to reachg,,l4, shown in (4), depends on the actual basic scheduler used. Under
EDF scheduling, newly admitted transactions are placed further down in the ready queue, since
they are less likely to have earlier deadlines than transactions admitted earlier. This means that
an actual change ta is not noticed until the newly admitted transactions are executing, which
may take a while until the older ones have terminated. Consider the example given in Fig. 3,
where the execution time of the transactions is 2 time units. We want to increase the number
of deadline misses during interv@tT', (k + 1)T] and, hence, at samplingg we increase the
load by raising the admission rate of transactions, which are scheduled to be executed later
than the already admitted transactions, i.e., in intef(lak- 1)T', (k + 2)7T]. As shown in Fig.
3, the number of deadline misses does not increase in the int@¢flalk + 1)7], instead it
increases in the intervalk + 1)T', (k + 2)T], which causes a delay between the issuing of load
increase and the observed increase in number of deadline misses. Under HEF scheduling, newly
arrived transactions are more likely to have higher priority than old transactions (since they have
greater transaction error) and, hence, they are placed at the front of the ready queue. The set of
newly admitted transactions are therefore executed instantaneously and, hence, a charige to
noticed earlier than compared to EDF scheduling. Hence, under HEF scheduling the controlled
variable is more responsive to changes in the manipulated variable cagverges faster toward

gmlA-
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We have now established that given a certain changk;init takes some time before the
controlled variables:, m™, m®, andate reach their final valuess, m%, m¢, andategs in the
steady-state. The speed by which a controlled variable reaches its final values is determined by
the time constant of the system. LEtdenote the sampling period, afid, 7V, T2, and T,
denote the time constants of m™, m®, andate, respectively. To give a concise statement of
the modeling, we only examine the case fiot’ as the dynamics af, m®, andate are modeled
similarly. The difference equation,

T(mg' (k) —m"(k))
™

mM(k+1) = +m (k) (8)

relatesm™ and its final valuen}! such that it takes a number of samplesiol to reachm?’.
Initially, when the difference betweenl’ andm" is large,m™ converges rapidly towarch?’.
However, the speed of convergence decreases as the difference bet{fezmd ™ decreases.
It shows that the speed of convergence is determine@yi.e., an increase iff’ results in

a slower convergence. Th&-transform of (8) is given by,

T 1
— , 9
TMz—1+ 27 ®)

G%I,M(Z)

A step function with amplituden’’ applied on (9) gives the time domain solution,

mM(k) = my [1 - (1 - %)k

Here it is clearly shown that the greafEf! is, the more time it takes fan™ to reach the final

valuem!, i.e., the slowerm? reacts to changes im}'. Let us now examine the step response
of the controlled system frorh; to m* and measure the timg” it takes form (k) to reach

(1 —e Hmd, i.e., approximatel63% of the final value ofm (k). At time 5/ we have that

M M 6%[ -1 M M T T
m™ (k) =m (T):(l—e ymg =mg |1— (1—T—M>
and solving forT™ gives
T
1—e

Hence, we computé™ according to (10) where, given a step bk, 0¥ is the time it takes

for m™ to reach 6% of the final value. We now give the following results, based on (7)-(9).
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Under the conditiongzr < Iz andls < 100%, there exists a transfer function,

grgaTT, !
z2—1)(z—14+TT;1)

from the control inputALgg(2) to U(z), wherelgr andu are dynamically related. Under the

GDYN,u(Z) = (

conditionslpr < lg, IM(k) < 14, 19 (k) < 14, andij7E (k) < 14, the transfer functions

—1
grgaghl T(TM)

GM —
DYN,m(Z) (z—1)(z — 1+T(T'r]r\z/[)_1)
o gLQAggT(Trg)il
GDYN,m(Z) o)~
(Z _ 1)(,2 — 1+ T(Tm) )
ateT Ty,
GpyNate(2) = T /

(z—=1)(z—1+TT,)
relate the control inpu\Lzx(z) to the controlled variables/(z), M©(z), and ATE(z),
respectively.

As presented above, we have extended the STA model and the new model, DYN, captures
additional dynamics of the controlled system, by giving more accurate time-domain relations
between the control inpuflzz and the outputs, m™, m®, andate. We have also described

how to compute the models parameters g, ¢, 99, Gate, Tu, TM, T, and T,

V. PERFORMANCEEVALUATION

In this section a detailed description of the performed experiments is given. The goal and the

background of the experiments are discussed, and finally the results are presented.

A. Performance Evaluation Goals

Considering the goal of our work, stated in Section Il, the two objectives of the performance
evaluation are (i) to determine if the presented algorithms can provide QoS guarantees according
to a QoS specification and, (ii) to determine the suitability of the proposed model DYN for
describing the performance of RTDBs. Considering our first objective, we have studied and
evaluated the behavior of the algorithms under various conditions, where a set of parameters have
been varied. They are: (i) Loadotd) as computational systems may show different behaviors
for different loads, especially when the system is overloaded. For this reason, we measure the
performance when applying different loads to the system. (ii) Execution time estimation error

(esterr) as often exact execution time estimates of transactions are not known. To study how
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runtime error affects the algorithms we measure the performance considering different execution
time estimation errors. The second objective is investigated by comparing the controller tuned
using DYN with the controller tuned using STA with regard to performance reliability and

performance adaptation.

B. Simulation Setup

The simulated workload consists of update and user transactions, which access data and
perform virtual arithmetic/logical operations on the data. We have used a workload based on the
analysis of the NYSE stock trades and commercial databases [23]. Update transactions occupy
approximately 5% of the workload. In our experiments, one simulation run lasts for 10 minutes
of simulated time. For all the performance data, we present the average of 10 simulation runs.
We have derived 95% confidence intervals based on the samples obtained from each run and
using the t-distribution [24]. The workload model of the update and user transactions is described
as follows. We use the following notation where the attributeefers to the transactidh;, and
x;[t;] is associated with the subtransactigrof 7;.

Data and Update Transactions The DB holds 1000 temporal data objec#s) (where each
data object is updated by a streastieam;, 1 < i < 1000).* The period ;) is uniformly
distributed in the range (100ms,50s), i&: (100ms, 50s), and estimated execution timee(;)
is given byU : (1ms,8ms). The actual execution time of an update is given by the normal
distribution N : (eet;, \/eet;). The average update valuevf) of each Stream; is given by
U : (0,100). The actual valueu() of an update is set according 16 : (av;, av; x var factor),
wherevar factor is uniformly distributed in (0,1). The deadline is setda-ivaltime; + p;. We
define data error as the relative deviation betwaerandv; as given byde, = 100 x %(%).

User Transactions Each Source; generates a transactidh), consisting of one mandatory
subtransactionn;, and |O;| (1 < |O;| < 10) optional subtransaction(s; ; (1 < j < |O;]).
|O;] is uniformly distributed between 1 and 10. The estimated (average) executioretityje |}
of the mandatory and the optional subtransactions is givety by5ms, 15ms). The execution

time estimation error factogsterr is used to introduce execution time estimation error in the

“4In current automotive engine control units (ECUs), a typical RTDB consists of approximately 500 data objects with temporal

constraints. Future ECUs with more functionality will increase the data volume further.
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average execution time given lyt;[t;] = (esterr 4+ 1) x eet;[t;]. Further, upon generation of a
transaction Source; associates an actual execution time to each subtransagtishich is given
by N : (aet;[ti], W). The deadline is set tarrivaltime; + eet; x slack factor. The slack
factor is uniformly distributed according G : (20, 40). Transactions are evenly distributed in
four classes representing error function orders of 0.5, 1, 2, and 52(/gof the transactions
have an error order of 1).

We use the QoS specificatio® S SpecA = {mM = 1%, m? = 10%, mde, = 2%, T, < 60s,
M, < 30%} for PC-MPU and PC-MP, an@oSSpecB = {ate, = 20%, mde, = 5%, Ts < 60s,
M, < 30%} for PC-ATEgpr, PC-ATEigr, and PC-ATkgpr.

C. Baselines

To the best of our knowledge, there has been no earlier work on techniques for managing
data impreciseness and transaction impreciseness aiming at satisfying specific QoS or QoD
requirements. For this reason, we have developed two baseline algorithms, Baseline-1 and
Baseline-2, to study the impact of the workload on the system. In our performance evaluation we
also include PC-ATEpr, Which is working as a reference algorithm in addition to the baselines.
We choose EDF since it is optimal in minimizing deadline misses and has well-known behavior.
The algorithm outline of Baseline-1 and Baseline-2 is given below. Depending on the given QoS
specification type, let be eitherm® or ate.

Baseline-1 If v (i.e. m© or ate) is greater than its reference, the utilization is lowered by
discarding more update transactions, i.e. increasinfg. Consequently, the preciseness of the
data is adjusted based onmde is set according tonde(k+1) = min(%)mder, mde, X (M, +
100)). A simple AC is applied, where a transactidfi)(is admitted if the estimated utilization
of admitted subtransactions andt; is less or equal t80%.

Baseline-2 To prevent a potential overshoot, we increas& as soon as is greater than zero.

In Baseline-1, a significant change Wnde may introduce oscillations im. This is avoided in
Baseline-2 by increasing and decreasinge stepwise. Ifu(k) is greater than zero, increase
mde(k) stepwise untilmde, x (M, + 100) is reached (i.emde(k + 1) = min(mde(k) +
mdegtep, mde, x (M, + 100))). If v(k) is equal to zero, decreasede(k) stepwise until zero is

reached (i.emde(k + 1) = max(mde(k) — mdeg.,,0)). The same AC as in Baseline-1 is used.

16th August 2005 DRAFT



IEEE TRANSACTIONS ON COMPUTERS 25

> PC-AT
100 — —<— PC-MPU : — poll<-PC-ATEL |
— PC-MP X g = PC-ATE o
S —+— Baseline-1 L 107 - —- reference
o 50t —©- Baseline-2 © -
< — - reference ol

load (%)

W o
1
|
B
|
N
o
SN
|
|
|
- |
U14N
o
|
|
|
|
N
o
)
sdte (%)
N
o
% ‘

mde (%)

o0& & = ‘ ‘
50 100 150 200 50 100 150 200
load (%) load (%)

(a) PC-MPU and PC-MP (b) PC-ATE

Fig. 4. Experiment 1. average performance when varying load.

D. Experiment 1: Results of Varying Load

We apply loads from 5@ to 200%. The execution time estimation error factor is set to zero
(i.e. esterr = 0). Controllers tuned using STA are used. Fig. 4(a) shows the performance of
PC-MPU and PC-MP, and Fig. 4(b) shows the performance of PGiATEPC-ATE;gpr, and
PC-ATE:pr. Dash-dotted lines indicate references. For clarity of presentation we do not include
the baselines in Fig. 4(b).

m™ has been observed to be Zefor all four algorithms and, therefore, this has not been
included in Fig. 4(a). The specified miss percentage referemgé) (has been set ta% and
this is not reached. This is due to higher priority of mandatory subtransactions compared to
optional subtransactions. According to our investigations, the miss percentage of mandatory
subtransactions starts increasing when the miss percentage of optional subtransactions is over
90%. Consequently, since the miss percentage of optional subtransactions does n@bféach
the miss percentage of mandatory subtransactions remains at zero.

Turning tom?, the95% confidence intervals for all algorithms are less thaf —3.4%, m© +
3.4%). For Baseline-1 and Baseline-2, the miss percentage of optional subtransaetions
increases as the load increases, violating the reference miss percenftag,loads exceeding
150%. In the case of PC-MPUn? is near zero at load$50% and 200%. Even though the

miss percentage is low, it does not fully satisfy the QoS specification. This is in line with our

*We have not observed any deadline misses.
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earlier discussions regarding the behavior of PC-MPU. The low miss percentage is due to the
utilization controller attempting to reduce potential overshoots by reducing the utilization, which
in turn decreases the miss percentage. PC-MP on the other hand shows a better performance.
The averagen® at 150% and200% is 8.5 & 0.1%, which is fairly close tom?.
The 95% confidence intervals ofite are less thanate — 2.1%, ate + 2.1%]. For Baseline-1
and Baseline-2, thete increases as the load increases, violating the refererieg, at loads
exceedingl75%. In the case of PC-ATEr, ate reaches the reference Hi0% of applied load.
For PC-ATE;rr and PC-ATExpr, ate reaches the reference Et5%. All PC-ATE algorithms
provide a robust performance sine&: is kept at the specified reference during overloads.
Considering sdte, the 95% confidence intervals for all algorithms are less tHadte —
1.92%, sdte + 1.92%]. For all algorithms,sdte increases as load ande increase. At 20%
load, the correspondingdte for PC-ATEzpr, PC-ATEirpr, and PC-ATkgr is 34.1%, 25.2%
and 18.2%, respectively. Consequently, deviation of transaction error is minimized when HEF
scheduling is used. It is worth mentioning that under HEF schedulingis less as resources are
allocated with regard to transaction errors, while under EDF scheduling resources are distributed
with regard to deadlines. Under EDF scheduling, two transactions with deadlines near each other
may receive different amounts of resources and, hence, they may terminate with a significant
deviation in transaction error, while in the same case, under HEF scheduling the resources are
divided such that both transactions terminate with transaction errors close to each other.
The 95% confidence intervals ofnde are less tharimde — 0.13%, mde + 0.13%]. Starting
with Fig. 4(a), the average:de for Baseline-1 and Baseline-2 violates the referencg set
to 2%. In contrast, in the case of PC-MPhde is significantly lower thannde,. Since the
miss percentages are kept low at all times, they are not likely to overshoot. Consequently, the
control signal from the miss percentage controllers is likely to be positive, which is interpreted
by the QoD manager as a QoD upgrade and, henck, will not reach the level ofmde,.
This is further explained in Section V-F, where the transient performance of the algorithms is
discussed. PC-MP provides an averagée closer tomde,., given by 1.78 + 0.024% at loads
150% and200%. However,mde does not reackde, sincemde is set according ton® (which
does not reachn?). Turning to Fig. 4(b), thed5% confidence intervals ofnde are less than
[mde—0.5%, mde+0.5%]. The averagende for Baseline-1 and Baseline-2 violates the reference

mde set to5% at applied loads ot 75% and 130%, respectively. In contrast, in the case of PC-
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Fig. 5. Experiment 2: average performance when varying execution time estimation error.

ATEgpr, PC-ATEygr, and PC-ATEkgpr, mde is at the reference during overloads.

The experiments have shown that PC-MPU produces a miss percentage significantly lower than
the specified miss percentages and, hence, it does not fully satisfy the given QoS specification.
PC-MP on the other hand produces miss percentages close to the given references and, conse-
guently, the given QoS specification is satisfied with regard to steady-state performance. We have
also seen that PC-Alfgr, PC-ATEigpr, and PC-ATEpr are robust against varying applied
loads. Moreover, PC-ATfr outperforms the other algorithms with regard to QoS fairness of

admitted transactions.

E. Experiment 2: Results of Varying esterr

We apply 200 load and vary the execution time estimation error accordingsterr = 0.00,

0.25, 0.50, 0.75, and 1.00. Controllers tuned using STA are used. Fig. 5(a) and Fig. 5(b) show
the performance of PC-MPU, PC-MP, PC-Ali, PC-ATEsepr, and PC-ATEpr. Dash-dotted
lines indicate references.

As in Experiment 1,m* is zero for all approaches andterr. Turning tom®, the 95%
confidence intervals for all algorithms are less tHar — 2.7%, m® + 2.7%]. As expected,
Baseline-1 and Baseline-2 do not satisfy the QoS specification, whereas PC-MPU and PC-
MP are insensitive against varyingterr, asm® andmde do not change considerably when
varying esterr. Studyingate we note that Baseline-1 and Baseline-2 do not satisfy the QoS

specification asite reaches>2% when esterr equals to 1. The95% confidence intervals for
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Fig. 6. Experiment 3: Transient performance.

PC-ATE algorithms are less thaate — 0.3%, ate + 0.3%)]. PC-ATEzpr, PC-ATEjgr, and PC-
ATEugpr are insensitive against varyingsterr as ate and mde do not change with varying
esterr. From above we can conclude that PC-MPU, PC-MP, PC:AFE and PC-ATEgrpr

are insensitive to changes to execution time estimation and, hence, they can easily adapt when

accurate run-time estimates are not known.

F. Experiment 3: Transient Performance

Studying the average performance is often not enough when dealing with dynamic systems and
therefore we study the transient performance of PC-MPU, PC-MP, PGATEPC-ATEykpr,
and PC-ATEpr. We setload to 200% andesterr to 1.

1) Results of Controllers Tuned Using STAig. 6(a)-6(c) shows the transient behavior of
PC-MPU, PC-MP, and PC-ATfr with controllers tuned using STA. We refer to Table | for
a summary of the performance of PC-Alik, PC-ATE gpr, and PC-ATEpr with controller
tuned using STA and DYN. The dash-dotted line indicates the reference, while dotted line
indicates maximum overshoot. For all algorithm$ andate overshoots decay faster than 60s,
which are less than the settling time requirement given in the QoS specification. Starting with
PC-MPU, we can note that© is kept low at all times. This is expected since the averade
was shown to be low. The reader may have noticedth&t is greater than zero in the interval
20-150 wherem? is zero. Sincemde is greater than zero, it is clear thétzr; may become
negative during that period. This is due to the behavior of the utilization controller. Initially,

the utilization is below the reference,. As the utilization increases and no miss percentage
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overshoots are observed, increases linearly until a miss percentage is observed (one of the
miss percentage controllers takes over) in which egsis reduced exponentially. In PC-MPU,

u, 1S increased only if the utilization controller has taken over. Our investigations show that the
utilization controller takes over once the utilization overshagtsresulting in a negativélzyr

and, hencey, being increased too late. Consequently, the negafiyg leads to an increase in

mde. PC-MP shows a more satisfying result as bath andmde increase and decrease together.
Both m® and mde are kept aroundn? and mde,, respectively. Although the average® is

close tom?, we can see that® often overshoots its reference. This is due to disturbances in
load due to data conflicts, resulting in restarts or aborts of transactions, and inaccurate execution
time estimations. The highest overshoot for PC-AFE has been noted t¢2.38% at time 15.

For PC-ATE;rr, the highest overshoot was noted3231% at time 15 and finally, the highest
overshoot for PC-ATkrpr Was observed to b&7.11% at time 15. As we can see, the algorithms

do not satisfy the overshoot requirements given in the QoS specificatiom.e 26%). It is

worth mentioning that data conflicts, aborts or restarts of transactions and inaccurate run-time
estimates contribute to disturbances in an RTDB, complicating the contigkdqhote that we

have setsterr to one).

From the discussions in Section IV-F.2 we understood that under HEF scheduling the controlled
variable is more responsive to changes in the manipulated variable. Now, from feedback control
theory we know that delays in systems (low responsiveness of controlled variables) promote
oscillations and may even introduce instability [14]. Given this, we can conclude that under
EDF scheduling we should observe more oscillationstinthan compared with HEF scheduling,
which is consistent with the data presented in Table I. We recall from Section IV-A that a decrease
in J, and J, implies an improvement in control of performance and QoS. As we can see from
Table I, PC-ATEgr produces lesate oscillations aroundite, than PC-ATEpr. Further, PC-
ATEggr IS less prone to overshoot.

2) Results of Controllers Tuned Using DYNor simplicity, we refer to controllers tuned
using the model STA as STA controllers and controller tuned using the model DYN as DYN
controllers. The control signalz of the STA controller varies between13% to 30%, whereas
the control signal of the DYN controller varies between% to 7%. In other words, the STA
controller controls the RTDB more aggressively, resulting in greater deviations betseand

ate,. Since the STA controller computés;z according to a statical relation betwegs, and
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TABLE |
Js AND J, WITH 95% CONFIDENCE INTERVALS

Model STA DYN
Performance Metrig Js Ja Js Ja
PC-ATEepr 139.62 £27.91 | 9.58 +£1.04 | 79.11 £5.51 | 7.12£0.22
PC-ATEarr 77.78 £ 7.68 7.17+£0.38 | 71.31 £6.24 | 6.82+0.36
PC-ATEirDF 105.76 £ 17.14 | 8.46 £ 0.61 | 84.67 +4.15 | 7.58 +0.20

ate, the controller does not consider the dynamics of the controlled system. Hence, it does not
consider that given a certaidizg, it may take a few samples until the corresponditg is
reached. Therefore, the STA controller persists with changing the load until the desired
reached, at which poinite overshoots due to aggressive control. This is handled more efficiently
with the DYN controller as it is tuned according to a dynamic model and, hence, the controller
is more gentle when controlling the system.

Table I gives a summary of the performance of the controllers with respégtatnd./,, which
show how closely the controlled variabtée follows its referenceate,. The performance of
PC-ATE:pr and PC-ATEgpr is significantly improved when using DYN for tuning controllers.
However, the performance improvement for PC-AEE is too small to be considered significant.
From the results and discussions in this Section we learned that the scheduling policy of EDF
induces a certain delay between a change in the loadiandvhereas the delay is less for the
HEF scheduling policy. The delay caused by EDF is compensated for by the DYN controller as
opposed to the STA controller, which does not compensate for delays and, hence, we achieve
almost the same performance as PC-AfEwhere a DYN controller is used. The experiments
show that feedback controllers for PC-All and PC-ATEepr tuned using DYN outperform

controllers tuned using STA.

G. Summary of Results and Discussion

Our experiments show that PC-MPU, PC-MP, PC-AEE and PC-ATkgpr are robust
against inaccurate execution time estimations:&s ate, andmde remain unaffected for varying
execution time estimation errors. PC-MPU keep§ less than its reference and is able to
efficiently suppress deadline miss percentage overshoots. PC-MPU should therefore be applied

to RTDBs where deadline miss percentage overshoots cannot be tolerated. PC-MP provides an
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m? near its reference, but generates overshoots greater than the maximum allowed overshoot.
The experiments show that PC-MP is particularly useful win¢hmust be near its reference, but
where overshoots are accepted. It was observed that PGATEovides a lowekdte compared

to other algorithms, lowering the deviation of transaction error among terminated transactions.
This property is useful in applications where QoS fairness among transactions is emphasized.
Further, we saw that the control performance is greatly enhanced when using DYN as compared
to STA [11]. This aids a system operator to configure RTDBs that are highly reactive to changes
in applied load and execution time estimation errors, providing increased performance reliability

and enhanced QoS adaptation.

VI. RELATED WORK

Liu et al. [3] and Hansson et al. [25] presented algorithms for minimizing the total error
and total weighted error of a set of tasks. Their approaches require the knowledge of accurate
processing times of the tasks, which is often not available in RTDBs. Bestavros and Nagy have
presented approaches for managing the performance of RTDBs, where the execution time of
the transactions are unknown [26]. Each transaction contributes with a profit when completing
successfully. An admission controller is used to maximize the profit of the system. The work by
Liu, Hansson, Bestavros, and Nagy focus on maximizing or minimizing a performance metric
(e.g. profit). These previous approaches cannot be applied to our problem, since in our case we
want to control a set of performance metrics such that they converge toward their references as
given by a QoS specification.

Lu et al. have presented a feedback control scheduling framework where they propose algo-
rithms for managing the miss percentage and/or utilization [11]. In comparison to the proposed
algorithms in this paper, they do not address the problem of maximizing QoS fairness among
admitted tasks. Further, their model statically relates estimated requested load, deadline miss
ratio, and utilization. In this paper, we have extended their model to capture the dynamic
relationships between these variables. Parekh et al. use feedback control scheduling to control
the length of a queue of remote procedure calls (RPCs) arriving at a server [10]. In contrast to
their work we have chosen deadline miss percentage, utilization, and average transaction error
as the controlled variables.

Kang et al. use feedback control scheduling to manage the deadline miss ratio of transactions
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and freshness requirements of data objects [23]. In contrast to the work by Kang et al., we have in
this paper described a set of algorithms for managing QoS based on feedback control scheduling
and imprecise computation, where QoS is defined in terms of transaction and data preciseness.
Further we have introduced QoS fairness, a set of novel QoD management algorithms including
two new scheduling algorithms (HEF and HEDF), and a dynamic model giving a more accurate
description of the controlled system. Kuo et al. have introduced the notion of similarity [27],
where a similarity relation gives whether two transactions produce similar results. However, the
work by Kuo et al. does not address unknown workload characteristics.

Davidson et al. proposed a method for generating monotonically improving answers in RTDBs
and distributed RTDBs [28]. A query processor, APPROXIMATE [7], produces approximate
answer if there is not enough time available. The accuracy of the improved answer increases
monotonically as the computation time increases. The relational database system proposed in
[29], can produce approximate answers to queries within certain deadlines. Lee et al. studied
the performance of real-time transaction processing in broadcast environments [30]. In contrast
to the approaches above, we have introduced preciseness at the transaction level and the data

object level, and manage QoS using feedback control.

VIlI. CONCLUSIONS ANDFUTURE WORK

In this paper we have argued for the need of increased adaptability of applications that
provide real-time data services, while operating in highly unpredictable environments. Typically
transactions cannot be subject to exact schedulability analysis given the lack of a priori knowledge
of the workload, making transient overloads inevitable. Furthermore, these systems are becoming
larger and more complex, and at the same time they are being used in applications where
performance guarantees are needed. To address these issues we have proposed a QoS-sensitive
approach based on imprecise computation [3] applied on transactions and data objects.

The expressive power of our QoS specification model allows a database operator to specify
not only the desired steady-state performance, representing the nominal system operation, but
also the transient-state performance describing the worst-case system performance and system
adaptability in the face of unexpected failures or load variation. To provide QoS guarantees
without a priori knowledge of the workload, we apply feedback control, where the performance

of the RTDB is continuously monitored and modified according to the given QoS specification.

16th August 2005 DRAFT



IEEE TRANSACTIONS ON COMPUTERS 33

The algorithms PC-MPU and PC-MP address QoS specifications given in terms of deadline miss

percentage of optional subtransactions, while PCAfEand PC-ATEgpr address specifica-

tions based on the notion of transaction error. Our performance evaluation shows that given a
QoS specification, the four algorithms PC-MPU, PC-MP, PC-iE and PC-ATEgpr give

a robust and controlled behavior of RTDBs in terms of transaction and data preciseness, even

for transient overloads and with inaccurate run-time estimates of the transactions. The proposed

algorithms outperform the baseline algorithms and PC-Ak&Ewhere transactions are scheduled
with EDF and feedback control.

We will extend our work to manage QoS of derived data and service differentiation. In this

work we have considered the milestone approach to imprecise computation. We plan to apply

other types of imprecise computation techniques.
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