
IEEE TRANSACTIONS ON COMPUTERS 1

Specification and Management of QoS in

Real-Time Databases Supporting Imprecise

Computations

Mehdi Amirijoo, Jörgen Hansson,Member, IEEE

and Sang H. Son,Senior Member, IEEE

Abstract

Real-time applications such as e-commerce, flight control, chemical and nuclear control, and telecom-

munication are becoming increasingly sophisticated in their data needs, resulting in greater demands for

real-time data services that are provided by real-time databases. Since the workload of real-time databases

cannot be precisely predicted, they can become overloaded and thereby cause temporal violations,

resulting in a damage or even a catastrophe. Imprecise computation techniques address this problem and

allow graceful degradation during overloads. In this paper, we present a framework for QoS specification

and management consisting of a model for expressing QoS requirements, an architecture based on

feedback control scheduling, and a set of algorithms implementing different policies and behaviors. Our

approach gives a robust and controlled behavior of real-time databases, even for transient overloads and

with inaccurate run-time estimates of the transactions. Further, performance experiments show that the

proposed algorithms outperform a set of baseline algorithms that uses feedback control.

Index Terms

M. Amirijoo is with the Department of Computer and Information Science at Linköping University, Linköping SE-58183,

Sweden. E-mail: meham@ida.liu.se. J. Hansson is with the Software Engineering Institute at Carnegie Mellon University,

Pittsburgh, PA 15213-3890, USA. E-mail: hansson@sei.cmu.edu. S. H. Son is with the Department of Computer Science at

University of Virginia, 151 Engineer’s Way, P.O. Box 400740 Charlottesville, VA 22904-4740, USA. E-mail: son@cs.virginia.edu.

This work was performed when J. Hansson’s primary affiliation was Linköping University.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 2

Real-time and embedded systems, Real-time data services, Imprecise computation, Feedback con-

trol, Modeling techniques

I. I NTRODUCTION

Lately the demand for real-time data services has increased in a number of applications

such as manufacturing, web-servers, and e-commerce. Further, they are becoming increasingly

sophisticated in their real-time data needs [1], [2]. The data normally span from low-level control

data, typically acquired from sensors, to high-level management and business data. In these

applications it is desirable to process user requests within their deadlines using fresh data. In

dynamic systems, such as web servers and sensor networks with non-uniform access patterns, the

workload of real-time databases (RTDB) cannot be precisely predicted and, hence, the RTDBs

can become overloaded. As a result, uncontrolled deadline misses and freshness violations may

occur during the transient overloads. To provide reliable service quality we propose a quality

of service (QoS) sensitive approach that guarantees a set of requirements on the performance

of the database, even in the presence of unpredictable workloads. Further, for some applications

(e.g. web service) it is desirable that the QoS does not vary significantly from one transaction

to another. Here, it is emphasized that the individual QoS needs requested by transactions are

enforced and, hence, any deviations from the QoS needs should be uniformly distributed among

the clients to ensure QoS fairness.

Imprecise computation techniques [3] have been introduced to allow flexibility in operation and

to provide means for achieving graceful degradation during transient overloads. These techniques

make it possible to trade off resource needs for the quality of a requested service. Imprecise

computation has been successfully applied to applications where timeliness is emphasized, but

where a certain degree of imprecision can be tolerated [4]–[7]. In our approach we employ

the notion of imprecise computation on transactions as well as data, i.e., we allow data objects

to deviate, to a certain degree, from their corresponding values in the external environment.

This combined approach of imprecise computation presents a greater challenge but gives better

efficiency in managing QoS and overload management.

In this paper, we present a framework for specification and management of QoS in imprecise

RTDBs. The contributions of this paper are (i) a model for expressing QoS requirements, (ii) an

architecture based on feedback control to satisfy a given QoS specification, (iii) a new scheduling

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 3

algorithm that enhances QoS fairness, and (iv) a model of the controlled system that is used

to synthesize feedback controllers. To the best of our knowledge this is the first paper on QoS

management of RTDBs using imprecise computations and feedback control.

Starting with the QoS specification, the expressive power of our QoS specification model

allows a database operator to specify not only the desired steady-state performance, representing

the nominal system operation, but also the transient-state performance describing the worst-case

system performance and system adaptability in the face of unexpected failures or load variation.

Continuing with the second contribution, we notice that the main challenge with managing

QoS such that the given specification is satisfied is the unpredictability of workload in terms

of unknown arrival patterns and inaccurate execution time estimates. Traditional approaches

for providing performance guarantees [8] rely on known worst-case conditions, e.g., worst-case

execution times and worst-case arrival patterns of tasks; this knowledge is often lacking for

systems operating in highly unpredictable environments. Using feedback control has shown to

be very effective for a large class of real-time systems that exhibit unpredictable workload [9]–

[13]. Therefore, to provide QoS guarantees without a priori knowledge of the workload, we apply

feedback control, where the performance of the RTDB is continuously monitored and compared

to the desired performance as given by the QoS specification.

To tune feedback controllers that are efficient in managing the performance of real-time

systems it is necessary to have a model that accurately describes the behavior of the controlled

system [14]. As the fourth contribution we present a novel model that results in a feedback

loop with a significant improvement in QoS adaptation compared to the performance achieved

using a previously presented model [11]. This result aids a system operator to configure RTDBs

to be highly reactive to changes in applied load and execution time estimation errors, resulting

in increased performance reliability and enhanced QoS adaptation. Finally we present a set of

experimental results where we evaluate the performance of the proposed algorithms. Our studies

show that the presented algorithms ensure robust and insensitive behavior even in the presence

of transient overloads. An equally important feature of this set of algorithms is their ability to

adapt to various workloads and tolerate inaccurate estimates of execution times still conforming

to a given QoS specification.

This paper is organized as follows. The detailed problem formulation is given in Section II.

In Section III, the assumed database model is given. In Section IV, we present our approach and

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 4

in Section V, the results of performance evaluations are presented. In Section VI, we present

the related work, followed by Section VII, where conclusions and future work are discussed.

II. PROBLEM FORMULATION

In our model, data objects in a RTDB are updated by update transactions, representing sensor

values, while user transactions represent user requests, e.g. complex read-write operations. As

mentioned previously, the notion of imprecision may be applied at data object and/or user

transaction level. Starting with data imprecision, we observe that although a real-time database

models an external environment that changes continuously, the values of data objects that are

slightly different in age or in precision can be used as consistent read data for user transactions.

This is due to the fact that data objects cannot in general be updated continually to perfectly

track the dynamics of the real-world. The time it takes to update a data object alone introduces a

time delay which means that the value of the data object cannot be the same as the corresponding

real-world value at all times. Hence, for a data object stored in an RTDB and representing a real-

world variable, we can allow a certain degree of deviation compared to the real-world value.

We can then discard an update transaction that holds a value sufficiently close to the stored

value in the RTDB. The more the values of the data objects in the database deviate from the

external environment, as given by the values of the update transactions, the more imprecise the

data objects are. To measure data imprecision we introduce the notion of data error, denoted

dei, which gives an indication of how much the value of a data objectdi stored in the RTDB

deviates from the corresponding real-world value given by the latest arrived update transaction.

Note that the latest arrived update transaction is discarded if it holds a value that is sufficiently

close to the value already stored in the database. Hence,di may hold the value of an earlier

update transaction. We say that quality of data (QoD) increases as the data error of the data

objects decreases.

Imprecision at user transaction level can be expressed in terms of certainty, accuracy, and

specificity [4]. Certainty refers to the probability of a result to be correct, accuracy refers to

the degree of accuracy of a value returned by an algorithm (typically through a bound on the

difference from the exact solution), and specificity reflects the level of detail of the result. For

example, if filters are used in control loops greater accuracy is achieved. Specificity is used to

define user transaction imprecision in the context of image coding or decoding. The imprecision

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 5

of the result of a user transaction increases as the resource available for the user transaction

decreases. For simplicity we refer to the imprecision of the results of the user transactions as

quality of transaction (QoT). We say that QoT increases as the imprecision of the results of the

user transaction decreases.

Usually system developers know how much data imprecision an application can tolerate such

that the end result is within acceptable limits. Therefore, we assume that sufficiently precise

data values stored in the database are regarded to have no effect on the result of a transaction.

Hence, we model QoT and QoD as orthogonal entities. System developers can then focus on

finding appropriate precision requirements and avoid modeling QoT as functions of QoD. This

significantly reduces the complexity of the QoS specification process.

QoT is manipulated by adjusting the admitted user transaction load and the admitted update

transaction load. The CPU resource allocated for each user transaction decreases as the number

of admitted user transactions and the number admitted update transactions increase, resulting

in a decrease in QoT. The update transaction load is reduced by discarding update transactions

according to an upper bound for the data error given by the maximum data error, denotedmde.

Note, discarding update transactions reduces QoD, however, we assume that QoT is not affected

by QoD as they are modeled to be orthogonal. An update transactionTj is discarded if the

data error of the data objectdi to be updated byTj is less or equal tomde (i.e. dei ≤ mde).

If mde increases, more update transactions are discarded, degrading the QoD. This results in

more resources available for user transactions and, hence, an increase in QoT. Similarly, ifmde

decreases, fewer update transactions are discarded, resulting in a greater QoD and, consequently,

a lower QoT. The goal of our work consists of two parts. We want to derive: (i) algorithms for

adjusting data error usingmde such that QoD and QoT satisfy a given QoS specification, and the

deviation in imprecision of user transaction results is minimized, i.e., QoS fairness is maximized,

and (ii) a feedback loop architecture that is highly reactive and adaptive to changes to workload

characteristics. The second part implies, as argued in Section I, that we need to find accurate

models of the controlled system to provide efficient QoS adaptability and performance reliability

even in the presence of unpredictable workload.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 6

III. D ATA AND TRANSACTION MODEL

We consider a main memory database model where there is one CPU as the main processing

element. Main memory databases have been increasingly applied to real-time data management

due to their relatively high performance, decreasing main memory cost, fast response time (since

I/O overhead is decreased), and the emergence of embedded systems lacking disks [15], [16].

In our data model, data objects can be classified into two classes, temporal and non-temporal

[17]. For temporal data we only consider base data, i.e., data that hold the view of the real-

world and are updated by sensors. A base data objectdi is considered temporally inconsistent or

stale if the current time is later than the timestamp ofdi followed by the length of the absolute

validity interval of di (denotedavii), i.e. currenttime > timestampi + avii. For a data object

di, let data errordei = Φ(cvi, vi) be a non-negative function of the current valuecvi of di

and the valuevi of the latest arrived transaction that updateddi or that was to updatedi but

was discarded. Remember an update transaction may be discarded if its update value is close

enough to the value stored in the RTDB. Our approach does not have any restrictions on the

structure ofΦ. For example, it may be defined as the absolute deviation betweencvi and vi,

i.e., dei = |cvi − vi|, or the relative deviation as given bydei = |cvi−vi|
|cvi| . Update transactions

arrive periodically and may only write to base data objects. User transactions arrive aperiodically

and may read temporal and read/write non-temporal data. User and update transactions (Ti) are

composed of one mandatory subtransactionmi and|Oi| ≥ 0 optional subtransactionsoi,j, where

oi,j is the jth optional subtransaction ofTi. For the remainder of the paper, we letti denote a

subtransaction ofTi. As updates do not use complex logical or numerical operations, we assume

that each update transaction consists only of a single mandatory subtransaction, i.e.,|Oi| = 0.

As mentioned earlier there are several ways of implementing imprecise computations, e.g.,

multiple versions, use of sieve functions, and the milestone approach [3]. The focus of this

paper is not on how to apply different imprecise computation techniques in the context of

RTDBs, since this area has already been explored, as shown in Section VI. Previous work

indicates that iterative and recursive algorithms, generating monotonically improving answers,

can efficiently be used to solve problems in a wide class of applications, such as, numerical

algorithms, e.g., Newton’s method and FFT [18], graph algorithms [4], and also query processing

[6], [7]. Iterative and recursive algorithms can easily be modeled using the milestone approach,

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 7

where thek first iterations or recursions correspond to the mandatory part and the remaining

are given by the optional part. For this reason we use the milestone approach [3] to transaction

impreciseness. Thus, we divide transactions into subtransactions according to milestones. A

mandatory subtransaction is completed when it is completed in a traditional sense. The mandatory

subtransaction gives an acceptable result and should be computed to completion before the

transaction deadline. The optional subtransactions may be processed if there is enough time or

resources available. While it is assumed that all subtransactions of a transactionTi arrive at the

same time, the first optional subtransaction (if any)oi,1 becomes ready for execution when the

mandatory subtransactionmi is completed. In general, an optional subtransactionoi,j becomes

ready for execution whenoi,j−1 (where2 ≤ j ≤ |Oi|) completes. We set the deadline of every

subtransactionti to the deadline of the transactionTi. A subtransaction is terminated if it has

completed or has missed its deadline. A transactionTi is terminated whenoi,|Oi| completes or

one of its subtransactions misses its deadline. In the latter case, all subtransactions that are not

completed also miss their deadlines and are therefore terminated as well.

We introduce the notion of transaction error (denotedtei), inherited from the imprecise com-

putation model [3], to measure the imprecision of a user transaction result,Ti. Transaction error

may be modeled as a function of completed optional subtransactions. This requires knowledge

about the transactions and/or the data sets they read. Although our work does not require

detailed knowledge about the transactions, in many application this knowledge is available to the

designer and transaction error may be derived through experiments [4], analytical expressions,

e.g., accuracy bounds for numerical iterative algorithms [19], or the experience of designers

or engineers. The exact details of above mentioned methods are beyond the scope of this

paper and the reader is referred to appropriate literature. In applications where it is possible

to formally model the preciseness of the answers given by transactions in terms of completed

optional subtransactions, we model transaction error through the use of error functions [20]. For

a transactionTi, we use an error function to approximate its corresponding transaction error

given by,tei(|COSi|) =
(
1− |COSi|

|Oi|

)ni

, whereni is the order of the error function and|COSi|
denotes the number of completed optional subtransactions. By choosingni we can model and

support multiple classes of transactions showing different error characteristics. For example, it

has been shown that anytime algorithms used in AI exhibit error characteristics whereni is

greater than one [4].

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 8

We assume the workload model presented by Lu et al. [11], where update transactions have a

period and user transactions have a mean inter-arrival time. The estimated load of a task is the

estimated execution time of the task divided by its relative deadline. The actual load of a task

is the actual execution time of the task divided by its relative deadline.

IV. A PPROACH

Next we describe our approach for managing the performance of an RTDB in terms of QoT

and QoD. First, we start by defining performance metrics in Section IV-A. The QoS specification

models are described in Section IV-B. An overview of the feedback control scheduling architec-

ture is given in Section IV-C, followed by the description of QoS controllers in Section IV-D. In

Section IV-E we present the algorithms PC-MPU (precision control miss percentage utilization),

PC-MP (precision control miss percentage), PC-ATEHEF (precision control average transaction

error highest error first), and PC-ATEHEDF (precision control average transaction error highest

error density first). These algorithms determine how QoD is adjusted, i.e., to what extend the

precision of the data objects are modified based on the current system performance. In Section

IV-F we present two models, describing the dynamics of RTDBs, which are used to tune the

QoS controllers.

A. Performance Metrics

In our approach, the database operator1 can explicitly specify the required database QoS,

defining the desired behavior of the database. Long-term performance metrics such as average

deadline miss ratio are not sufficient to specify the desired performance of real-time systems

that require stringent QoS enforcement [11]. Therefore, in this work we adapt both long-

term performance metrics, referred to as steady-state performance metrics, and transient-state

performance metrics. We adapt the following notation of describing discrete variables in the

time-domain:a(k) refers to the value of the variablea at the timekT , whereT is the sampling

period andk is the sampling instant.2

QoT Metrics. We consider the following metrics for measuring QoT of admitted transactions:

1By a database operator we mean an agent, human or computer, that operates the database, including setting the QoS.

2For the rest of this paper, we sometimes dropk where the notion of time is not of primary interest.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 9

• Deadline miss percentage of mandatory user subtransactions is given bymM(k) = 100 ×
|deadlmissM (k)|
|termM (k)| (%) where|deadlmissM(k)| denotes the number of mandatory subtransactions

that have missed their deadline, and|termM(k)| is the number of terminated mandatory

subtransactions.

• Deadline miss percentage of optional user subtransactions is given bymO(k) = 100 ×
|deadlmissO(k)|
|termO(k)| (%) where |deadlmissO(k)| denotes the number of optional subtransactions

that have missed their deadline, and|termO(k)| is the number of terminated optional

subtransactions. Note,|deadlmissO(k)| and|termO(k)| include the optional subtransactions

that are not completed.

• Average transaction error is defined as

ate(k) = 100×
∑

i∈term(k) tei

|term(k)| (%)

whereterm(k) denotes the set of terminated transactions.

QoD Metric . The maximum data errormde(k) gives the maximum data error tolerated for

the data objects (as described in section II).

QoS Fairness Metric. For some applications it is desired to measure QoS fairness among

transactions and therefore we introduce the standard deviation of transaction error,

sdte(k) =

√∑
i∈term(k) (100× tei − ate(k))2

|term(k)| − 1

which is a measure of how much the transaction error of terminated transactions deviates from

the average transaction error.

System Utilization. We measure system utilizationu(k) to acquire a better understanding of

the performance of the algorithms. Using the utilization of the system, we can show whether

our algorithms provide high throughput.

Steady-State and Transient-State Performance Metrics. The desired performance of the

system is given by a set of references specifying the desired level of the controlled vari-

ables, which represent the actual system performance. We consider the following transient-

state performance metrics (see Fig. 1(a)). OvershootMp is the worst-case system performance

in the transient system state and it is given in the percentage by which a controlled variable

overshoots its reference. Settling timeTs is the time for the transient overshoot to decay and

settle around the steady state performance and it is a measure of system adaptability, i.e.,

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 10

reference

value

sT 2%+
-

p
M

time

(a) Settling Time and Overshoot

Control
Precision

Control
Admission

Manager
QoD

m , m , u /OM

ate

Ready Queue

Dispatch

Monitor

Transaction Handler

FM CC BS

Block Queue

Source

Source
....

User Transactions mde

Update Transactions
Stream

Stream

....

QoS Controller

δ
δ

m , m /
ate

OM

mde
l

newl

Abort / Restart /
Preempt

Block
n

1

m

1

Admitted Workload

Su
bm

itt
ed

 W
or

kl
oa

d

ER

(b) Feedback Control Scheduling Architecture

Fig. 1. Performance Specification and System Architecture

how fast the system converges toward the desired performance. Hence, the performance of

the controllers is distinguished by how well they force a controlled variabley(k) to follow

or track a desired level given by a referenceyr(k), despite presence of disturbances in the

controlled system. It is therefore interesting to measure the difference betweenyr(k) and y(k)

over a period of time, which is obtained using the functionsJa = 1
N

∑N
k=1 |yr(k) − y(k)| and

Js = 1
N

∑N
k=1 (yr(k)− y(k))2 whereN is the number of samples taken. The lowerJs and Ja

are, the better a controller is able to keepy nearyr, and also the fastery converges towardyr.

B. QoS Specification Models

The maximum data error provides a direct measure of the precision of the data objects and,

hence, we express QoD in terms ofmde. An increase in QoD refers to a decrease inmde, i.e.,

an increase in data precision. In contrast a decrease in QoD refers to an increase inmde. We

consider two alternative ways of defining QoS, below referred to as QoS specification type A

and type B, where they differ in the way QoT is expressed.

QoS Specification Type A. In the case when it is not possible to model transaction error using

error functions, we have to express QoT by other means. We know that the more of the optional

subtransactions we complete before the deadline the less the transaction error will be. Therefore,

the deadline miss ratio of optional subtransactions qualifies as an approximate measure of the

true transaction error and, hence, we define QoT in terms ofmO. QoT decreases asmO increases

(similarly, QoT increases asmO decreases). The database operator can specify steady-state and

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 11

transient-state behavior formM , mO, u, andmde. The specification foru is given by a lower

boundul for u. A QoS requirement can be specified as the following:mM
r = 1% (i.e. reference

of mM), mO
r = 10%, mder = 2%, ul = 80%, Ts ≤ 60s, andMp ≤ 30%. This gives the following

transient-state performance specifications:mM ≤ mM
r × (Mp + 100%) = 1.3%, mO ≤ 13%, and

mde ≤ 2.6%.

QoS Specification Type B. Having error functions to describe the transaction error, we can

directly define QoT in terms of average transaction error (ate). QoT decreases asate increases

(similarly, QoT increases asate decreases). The database operator can specify steady-state and

transient-state behavior forate andmde. A QoS requirement can be specified as the following:

ater = 20% (i.e. reference ofate), mder = 5%, Ts ≤ 60s, and Mp ≤ 30%. This gives the

following transient-state performance specifications:ate ≤ ater × (Mp + 100%) = 26% and

mde ≤ mder × (Mp + 100) = 6.5%.

C. QoS Management Architecture

The architecture of our QoS management scheme is shown in Fig. 1(b). Admitted transactions

are placed in the ready queue. The transaction handler manages the execution of the transactions.

We choosemM , mO, andu as controlled variables when the QoS is specified according to QoS

specification type A, whileate is the controlled variable when QoS specification type B is used.

At each sampling instant, the controlled variable(s) (i.e.mM , mO, andu, or ate), is monitored

and fed into the QoS controller, which compares the performance reference (i.e.mM
r andmO

r , or

ater) with the controlled variable to get the current performance error. Based on the result, the

controller computes a change, denotedδlER, to the total estimated requested load. We refer to

δlER as the manipulated variable. Based onδlER, the QoD manager changes the total estimated

requested load by adapting the QoD (i.e. adjustingmde). The precision controller discards an

update transaction writing to a data objectdi having an error less or equal to the maximum data

error allowed, i.e.dei ≤ mde. However, the update transaction is executed if the data error of

di is greater thanmde. In both cases the time-stamp ofdi is updated. The portion ofδlER not

accommodated by the QoD manager, denotedδlnew, is returned to the admission controller (AC),

which enforces the remaining load adjustment. The transaction handler provides a platform for

managing transactions. It consists of a freshness manager (FM), a unit managing the concurrency

control (CC), and a basic scheduler (BS). The FM checks the freshness before accessing a data

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 12

object, using the timestamp and the absolute validity interval of the data. We employ two-phase

locking with highest priority (2PL-HP) [21] for concurrency control. 2PL-HP is chosen since it

is free from priority inversion and has well-known behavior. We use three different scheduling

algorithms as basic schedulers:

Earliest Deadline First (EDF): Transactions are processed in the order determined by their

absolute deadlines; the next transaction to run is the one with the earliest deadline (for an

elaborate discussion on EDF see e.g. [8]).

Highest Error First (HEF): Transactions are processed in the order determined by their

transaction error; the next transaction to run is the one with the greatest transaction error.

Highest Error Density First (HEDF): Transactions are scheduled according to their trans-

action error density given by,tedi = tei

ati+rdi−currenttime
, whereati and rdi denote the arrival

time and relative deadline of the transactionTi, respectively, and where the transaction with the

highest transaction error density is processed first.

Note that HEF and HEDF cannot be used in the case when error functions for transactions

are not available, as they are error-cognizant and require knowledge oftei. For all three basic

schedulers (EDF, HEF, and HEDF) the mandatory subtransactions have higher priority than the

optional subtransactions and, hence, scheduled before them.

D. QoS Controllers

Depending on the algorithms used, we apply different feedback control loops to control QoT

in the presence of unpredictable workload and inaccurate execution time estimates. PC-MPU

employs one utilization controller and two miss percentage controllers, i.e., one controller to

adjust the utilizationu according to a referenceur, and two controllers to adjustmM and

mO according to the referencesmM
r andmO

r , respectively. Transactions in RTDBs often make

unpredictable aborts or restarts due to data and resource conflicts. Further, the execution time

of the transactions depends on their data needs which may vary over time. This makes the

deadline miss percentages prone to overshoot. To avoid overshoots greater thanMp, the load

of the system is constantly changed according to a linear increase/exponential decrease scheme.

Initially, the utilization referenceur is set toul. As long as the miss percentages are below their

references,ur is increased by a certain step. As soon as one of the miss percentages is above its

reference,ur is reduced exponentially according tour(k + 1) = ur(k)+ul

2
(%) whereur(k + 1) is

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 13

the new utilization reference. This way we are certain that the system is not underutilized, while

at the same time great deadline miss ratio overshoots are avoided. This approach is self-adapting

and does not require any knowledge about the underlying run-time estimates. PC-MP uses two

deadline miss percentage control loops, one for each of the controlled variablesmM and mO.

The algorithms PC-ATEHEF and PC-ATEHEDF use a single average transaction error control loop

to control ate (i.e. the controlled variable). Hereate is monitored and fed into the controller,

which computesδlER according toate andater.

Using several controllers raises the question of integration of the signals from each controller.

In the case PC-MP where miss percentage controllers are used, we need to integrate the signals

from the mandatory and the optional subtransaction miss percentage controllers. Further, in PC-

MPU where a combination of miss percentage and utilization controllers is used, an integrated

signal from both the miss percentage and the utilization controllers is computed and returned.

Let δlM denote the control signal computed by themM controller,δlO denote the control signal

computed by themO controller, andδlu denote the control signal computed by theu controller.

The integrated control signal from both miss ratio controllersδlMP is computed as follows. If both

miss percentage control signals are negative (i.e.δlM < 0∧ δlO < 0), we setδlMP = δlM + δlO

to the sum of both control signals. This is necessary since both miss percentages are above their

references and both signals must be considered to compensate for miss percentage overshoots.

If the above does not hold, we setδlMP = min(δlM , δlO) to the minimum of the control signals.

If one of the control signals is negative (due to an overshoot), we return the negative one to

reduce the miss percentage of the corresponding subtransaction type. If both are positive, themin

operator provides a smooth transition between low and high miss percentages among mandatory

and optional subtransactions [11]. In the case when only miss percentage controllers are used,

we setδlER to δlMP . However, when a utilization controller is used as well, we deriveδlER by

taking the minimum ofδlMP and δlu. This is necessary for the similar reasons as mentioned

above.

E. QoD Management Algorithms

We recall that settingmde(k + 1) greater thanmde(k) results in more discarded update

transactions and, hence, a decrease in update transaction load. Similarly, settingmde(k +1) less

than mde(k) results in fewer discarded update transactions and, hence, an increase in update

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 14

transaction load. To computemde(k +1) given a certainδlER(k), we use a functionf(δlER(k))

that returns, based onδlER(k), the correspondingmde(k+1). The functionf holds the following

property. IfδlER(k) is less than zero, thenmde(k+1) is set such thatmde(k+1) is greater than

mde(k), i.e. QoD is degraded. Similarly, ifδlER(k) is greater than zero, thenmde(k + 1) is set

such thatmde(k + 1) is less thanmde(k), i.e. QoD is improved. We will discuss the function

f in more detail later in this section.

The algorithms PC-MPU and PC-MP control QoT by monitoringmM , mO, andu and adjusting

mde such that a given QoS specification according to QoS specification type A is satisfied.

Here, we use EDF as a basic scheduler. The algorithms PC-ATEHEF and PC-ATEHEDF are error-

cognizant and control QoT by monitoringate and adjustingmde, such that a QoS specification

in terms of QoS specification type B is satisfied. Furthermore, PC-ATEHEF and PC-ATEHEDF

are designed to enhance QoS fairness among transactions (i.e. decrease the deviation intei

among admitted transactions). We use the same feedback control policy for PC-ATEHEF and PC-

ATEHEDF, but use different basic schedulers, i.e., PC-ATEHEF schedules the transactions using

HEF and PC-ATEHEDF schedules the transactions using HEDF. The details of the algorithms are

given below.

PC-MPU: The system monitors the deadline miss percentages and the CPU utilization. At

each sampling instant, the CPU utilization adjustment,δlER(k), is derived. IfδlER(k) is greater

than zero, upgrade QoD as much asδlER(k) allows. However, whenδlER(k) is less than zero,

degrade QoD, i.e., increasemde according toδlER, but not greater than the highest allowedmde

(i.e. mder×(Mp +100)). Degrading the data further would violate the upper limit ofmde, given

by the QoS specification. WhenδlER(k) is less than zero andmde equalsmder × (Mp + 100),

no QoD adjustment can be issued and, hence, the system has to wait until some of the currently

running transactions terminate. An outline of PC-MPU is given in Fig. 2(a).

PC-MP: In PC-MPU, the miss percentages may stay lower than their references since the

utilization is exponentially decreased every time one of the miss percentages overshoots its

reference. Consequently, the specified miss percentage references (i.e.mM
r and mO

r) may not

be satisfied. In PC-MP, the utilization controller is removed to keep the miss percentages at the

specified references. One of the characteristics of the miss percentage controller is that as long

asmO is below its reference (i.e.mO ≤ mO
r), the controller outputδlER is positive. Due to the

characteristics off (i.e. δlER(k) > 0 ⇒ mde(k+1) < mde(k)), a positiveδlER is interpreted as

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 15

Monitor mM (k), mO(k), andu(k)

ComputeδlER(k)

if δlER(k) > 0 ∧mde(k) > 0 then
Upgrade QoD,mde(k + 1) := f(δlER(k))

Subtract utilization lost fromδlER(k)

else if δlER(k) < 0 ∧
mde(k) < mder × (Mp + 100) then

Downgrade QoD,mde(k + 1) := f(δlER(k))

Add utilization gained toδlER(k)

end if
Setδlnew to the newδlER(k)

(a) PC-MPU

Monitor mM (k) andmO(k)

ComputeδlER(k)

if δlER(k) ≥ 0 then
mde(k + 1) :=

min

�
mO

MA(k)

mO
r

mder, mder × (Mp + 100)

�

if mde(k) < mde(k + 1) then
Add utilization gained toδlER(k)

else
Subtract utilization lost fromδlER(k)

end if
else if δlER(k) < 0 ∧

mde(k) < mder × (Mp + 100) then
mde(k + 1) := f(δlER(k))

Add utilization gained toδlER(k)

end if
Setδlnew to the newδlER(k)

(b) PC-MP
Fig. 2. QoD Management Algorithms

a QoD improvement. Consequently, even ifmO is just below its reference, QoD remains high.

It is desirable to letmO, which corresponds to QoT, increase and decrease together with

QoD given bymde. For this reason,mde is set considering bothδlER and mO. When δlER

is less than zero (i.e.mO overshoots),mde is set according tof . However, whenδlER is

greater or equal to zero,mde is set according to the moving average ofmO, computed by

mO
MA(k) = αmO(k) + (1 − α)mO

MA(k − 1), whereα (0 ≤ α ≤ 1) is the forgetting factor [22].

The moving average is used to reduce large deviations from one sampling period to another.

Settingα close to 1 results in a fast adaptation, but also captures any high-frequency changes

of mO, whereas settingα close to 0 results in a slow but smooth adaptation. WhenmO
MA is

relatively low compared tomO
r , mde is set to a low value relative tomder. As mO

MA increases,

mde is increased but to a maximum value ofmder×(Mp +100) since a further increase violates

the given QoS specification. The outline of PC-MP is given in Fig. 2(b).

PC-ATEHEF and PC-ATEHEDF: These algorithms are two variants of PC-MP, but where

QoT is measured in terms ofate, instead ofmO. Hence, we replace the miss percentage control

loops for a single average transaction error control loop. Here,mde is adjusted based on the

control signalδlER and the moving average ofate denotedateMA(k). We do not provide full

algorithm descriptions for PC-ATEHEF and PC-ATEHEDF but refer instead to Fig. 2(b) where

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 16

mO
MA is replaced withateMA.

The preciseness of the data is controlled by the QoD manager by settingmde depending on

the system behavior. Whenf is used to computemde(k + 1) based onδlER(k) the following

scheme is used. Discarding an update results in a decrease in CPU load, which we refer to as

the gained load. Let

gl(k) =
1

T

∑

Ti∈discarded(k)

eeti

be the sum of the estimated execution time of the discarded update transactions divided by the

sampling periodT , wherediscarded(k) is the set of discarded update transactions andeeti is the

estimated execution time of the update transactionTi. In our approach, we profile the system and

measuregl for varying mde and linearize the relationship between them. During each sampling

period, gl(k) is monitored andµ(k) = mde(k)
gl(k)

and its moving averageµMA(k) are computed.

Consequently, the relation betweenmde and gl is updated to capture the current state of the

system. Having the relationship betweengl andmde, we introduce the help function,

h(δlER(k)) = min
(

µMA(k)× (gl(k)− δlER(k)), mder × (Mp + 100)
)

.

Sincemde is not allowed to overshoot more thanmder × (Mp + 100) we use themin operator

to enforce this requirement. Further, sincemde by definition cannot be less than zero, we apply

the max operator onh and obtainmde(k + 1) = f(δlER(k)) = max(h(δlER(k)), 0).

F. System Modeling

To tune feedback controllers that are efficient in managing the desired performance and that

react rapidly to changes in workload, it is necessary to have a model that accurately describes

the behavior of the controlled system [14]. The particular form of the models we construct,

i.e. linear models, enables us to use a set of powerful analytical methods that are available

in control theory, e.g. root locus [14]. For analysis purposes, we apply the principles ofZ-

transform theory [14]. UsingZ-transforms enables us to reduce the complexity of large dynamic

systems into the simpler representation byZ-transforms. Further,Z-transforms are used in many

controller tuning procedures, e.g., root locus [14]. We adopt the following notation whereA(z)

denotes theZ-transform of the variablea(k). The goal is to derive a transfer function describing

the relation between the manipulated variable, i.e.∆LER(z), and the controlled variables, i.e.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 17

MM(z), MO(z), ATE(z), andU(z). In this section we first present the STA model, previously

presented [11], where some dynamic relations are approximated by static relations (hence the

name STA referring to statics). Then we propose a new model, called DYN, which generalizes the

STA model [11] by capturing additional system dynamics (the name DYN refers to dynamics).

1) STA: The estimated requested workload of admitted user transactionslER in the next

sampling period is changed through the manipulated variableδlER, given by

lER(k + 1) = lER(k) + δlER(k). (1)

Hence,lER is the integration of the control inputδlER. Now, the estimated admitted workload

of user transactionslE may differ fromlER, since external load applied on the database may not

be sufficient to satisfylER, or the admitted workload is decreased due to deadline misses and,

consequently, early termination of transactions. Here, however, we approximate the estimated

load of admitted transactions bylER, i.e., lE = lER (in DYN we take a different approach).

The actual workload, denotedlA(k), may differ from lE(k) due to incomplete knowledge

about the controlled system, e.g., unknown execution times of the transactions and data conflicts.

Therefore we getlA(k) = gA(k)lE(k), where the workload ratiogA(k) represents the workload

variation in terms of actual total requested workload. For example,gA(k) equal to two means

that the actual workload is twice the estimated workload. It is obvious thatgA(k) cannot be

deterministically modeled.3 However, by profiling the controlled system we can computegA(k)

for each sampling and form the average ofgA(k), denotedgA, which is then used in our model

to describe the relation betweenlE and lA in the average case, i.e.,

lA(k) = gAlE(k). (2)

The relationship between the actual workloadlA and the utilizationu is non-linear due to

saturation as given by the following,

u(k) =

lA(k), lA(k) ≤ 100%

100%, lA(k) > 100%.
(3)

WhenlA(k) is less or equal to100%, i.e., the CPU is underutilized,u(k) is outside its saturation

zone and equalslA(k). However, whenu(k) is within its saturation zone, i.e.,lA(k) is greater

than100%, thenu(k) remains at100%, despite changes tolA.

3If gA(k) can be deterministically modeled, then we can compute exact execution times given estimated execution times.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 18

From classical scheduling theory, it is possible to determine whether a set of tasks can be

scheduled such that no deadline misses occur [8]. Turning to the case of the miss percentages,

we define the schedulable threshold for mandatory subtransactions, denotedlMth (k), and optional

subtransactions, denotedlOth(k), as the load threshold in thekth sampling period for which

no deadline miss can be observed for the respective type of subtransaction. When the miss

percentages are saturated, i.e. they are inside the saturation zones given bylA(k) ≤ lMth (k)

and lA(k) ≤ lOth(k), no deadline misses are observed. At this condition adjustments ofδlER and

consequentlylA(k) will not affect the miss percentages, until the actual load becomes greater than

the threshold and miss percentages start increasing. However, when outside the saturation zones,

i.e. lA(k) > lMth (k) or lA(k) > lOth(k), the miss percentage for either subtransaction increases non-

linearly. Note, since mandatory subtransactions have higher priority than optional subtransactions,

the schedulable threshold for mandatory subtransactions is greater than the threshold for optional

subtransactions, i.e.lMth (k) > lOth(k).

Since feedback control relies on linear systems, we linearize the relationship betweenlA and

mM by deriving the ratio betweenlA and mM at the vicinity of the miss ratio referencemM
r .

Similarly we form the linear relationship betweenlA andmO by deriving the ratio betweenlA

andmO at the vicinity of the miss ratio referencemO
r , giving the equations,

gM
m =

mM

lA
, mM = mM

r , (4)

gO
m =

mO

lA
, mO = mO

r . (5)

We model the average transaction error similarly to the miss percentages. The relationship

betweenlA andate is non-linear due to saturation. We define the precisely schedulable threshold

lATE
th (k) as the load threshold in thekth period for which all admitted subtransactions meet

their deadlines. The average transaction error becomes saturated when it is within its saturation

zone, given bylA(k) ≤ lATE
th (k). When the average transaction error is saturatedate remains

zero despite changes toδlER and, hence,lA. However, when outside the saturation zones,

i.e. lA(k) > lATE
th (k), the average transaction error increases non-linearly. We linearize the

relationship betweenlA and ate by taking the ratio betweenlA and ate at the vicinity of the

referenceater, i.e.,

gate =
ate

lA
, ate = ater. (6)

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 19

From (1)-(6), we can derive a transfer function for each of the controlled variables when they

are outside their saturation zones. Hence, under the conditionlA ≤ 100%, there exists a transfer

function GSTA,U(z) = gA

z−1
from the control input∆LER(z) to CPU utilizationU(z). Similarly,

under the conditionslMth (k) < lA, lOth(k) < lA, and late
th (k) < lA, the transfer functions

GM
STA,m(z) =

gAgM
m

z − 1
, GO

STA,m(z) =
gAgO

m

z − 1
, GSTA,ate(z) =

gAgate

z − 1

relate the control input∆LER(z) to the controlled variablesMM(z), MO(z), and ATE(z),

respectively.

2) DYN: In DYN we extend the model STA to include additional system dynamics. In STA,

we assumed that there are static relations betweenlER, u, mM , mO, and ate. We here show

that in fact there are dynamic relations between these variables and STA fails to capture them.

Starting from the model inputδlER(k), we computelER(k) according to (1). Given a certain

lER(k), the estimated workload of admitted user transactions,

lE(k) = gL min(lER(k), l̄E(k)) (7)

is the product of the requested load factorgL and the minimum of the estimated requested

load and the maximum estimated loadl̄E(k) that can be made available. The upper limit of the

admitted load, given bȳlE(k), makes the relationship betweenlER(k) and lE(k) non-linear due

to saturation.lE(k) becomes saturated when it is within its saturation zone, given bylER > l̄E(k).

However, when outside the saturation zone,lE(k) increases linearly withlER(k). Furthermore,

even though outside the saturation zone, the estimated admitted workloadlE(k) may be lower

than the estimated requested workloadlER(k), due to early termination of the tasks caused by

deadline misses. To capture this difference, we derive the ratio betweenlER(k) and lE(k) at the

vicinity of lE(k) corresponding tomO
r or ater, and we obtain requested load factorgL.

Now, under the conditionlER < l̄E, it can be observed that given a certain increase in

estimated requested workloadlER, it takes some time before the estimated loadlE and, hence,

the utilizationu reacheslER. The time it takes forlE to reachlER is determined by the amount

of workload submitted to the system̄lE, or more specifically, the arrival rate of the transactions

submitted to the system. The greaterl̄E is, the faster we can fill up the workload, reachinglER

earlier. Similarly, a decrease inlER does not result in an immediate decrease inlE, since currently

running transactions have to terminate. Hence, an increase/decrease inlER does not result in an

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 20

samplek k+1 k+2

T
1

T
2

d
1

d
2

d
3

d
4

d
5

d
6

time

Increase l
A

T
3

1 deadline miss

T
4

T
5

T
6

6 deadline misses

T
7

T
8

d
7

d
8

Fig. 3. A change tolA is not noticed immediately when EDF is applied.

immediate increase/decrease inlE and, consequently we have a dynamic relation betweenlER

andlE. The relation betweenlE andlA is linearized according to (2), i.e., we describe the actual

workload in termsgA.

Furthermore, we argue that the relation betweenlA andmM , mO, ate is non-static. We give

the rationale only for the case oflA and a miss ratiom, as the dynamics of the relationship

betweenlA and ate is described by the same line of argument. Given a certainlA, the time it

takes form to reachgmlA, shown in (4), depends on the actual basic scheduler used. Under

EDF scheduling, newly admitted transactions are placed further down in the ready queue, since

they are less likely to have earlier deadlines than transactions admitted earlier. This means that

an actual change tom is not noticed until the newly admitted transactions are executing, which

may take a while until the older ones have terminated. Consider the example given in Fig. 3,

where the execution time of the transactions is 2 time units. We want to increase the number

of deadline misses during interval[kT, (k + 1)T] and, hence, at samplingk we increase the

load by raising the admission rate of transactions, which are scheduled to be executed later

than the already admitted transactions, i.e., in interval[(k + 1)T, (k + 2)T]. As shown in Fig.

3, the number of deadline misses does not increase in the interval[kT, (k + 1)T], instead it

increases in the interval[(k + 1)T, (k + 2)T], which causes a delay between the issuing of load

increase and the observed increase in number of deadline misses. Under HEF scheduling, newly

arrived transactions are more likely to have higher priority than old transactions (since they have

greater transaction error) and, hence, they are placed at the front of the ready queue. The set of

newly admitted transactions are therefore executed instantaneously and, hence, a change tom, is

noticed earlier than compared to EDF scheduling. Hence, under HEF scheduling the controlled

variable is more responsive to changes in the manipulated variable, asm converges faster toward

gmlA.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 21

We have now established that given a certain change inlER it takes some time before the

controlled variablesu, mM , mO, andate reach their final valuesuS, mM
S , mO

S , andateS in the

steady-state. The speed by which a controlled variable reaches its final values is determined by

the time constant of the system. LetT denote the sampling period, andTu, TM
m , TO

m , andTate

denote the time constants ofu, mM , mO, andate, respectively. To give a concise statement of

the modeling, we only examine the case formM as the dynamics ofu, mO, andate are modeled

similarly. The difference equation,

mM(k + 1) =
T (mM

S (k)−mM(k))

TM
m

+ mM(k) (8)

relatesmM and its final valuemM
S such that it takes a number of samples formM to reachmM

S .

Initially, when the difference betweenmM
S andmM is large,mM converges rapidly towardmM

S .

However, the speed of convergence decreases as the difference betweenmM
S andmM decreases.

It shows that the speed of convergence is determined byTM
m , i.e., an increase inTM

m results in

a slower convergence. TheZ-transform of (8) is given by,

GM
D,M(z) =

T

TM
m

1

z − 1 + T
T M

m

. (9)

A step function with amplitudemM
S applied on (9) gives the time domain solution,

mM(k) = mM
S

[
1−

(
1− T

TM
m

)k
]

.

Here it is clearly shown that the greaterTM
m is, the more time it takes formM to reach the final

valuemM
S , i.e., the slowermM reacts to changes inmM

S . Let us now examine the step response

of the controlled system fromlER to mM and measure the timeδM
m it takes formM(k) to reach

(1− e−1)mM
S , i.e., approximately63% of the final value ofmM(k). At time δM

m we have that

mM(k) = mM(
δM
m

T
) = (1− e−1)mM

S = mM
S

1−

(
1− T

TM
m

) δM
m
T

and solving forTM
m gives

TM
m =

T

1− e
− T

δM
m

. (10)

Hence, we computeTM
m according to (10) where, given a step onlER, δM

m is the time it takes

for mM to reach 63% of the final value. We now give the following results, based on (7)-(9).

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 22

Under the conditionslER ≤ l̄E and lA ≤ 100%, there exists a transfer function,

GDY N,u(z) =
gLgATT−1

u

(z − 1)(z − 1 + TT−1
u)

from the control input∆LER(z) to U(z), wherelER andu are dynamically related. Under the

conditionslER ≤ l̄E, lMth (k) < lA, lOth(k) < lA, and lATE
th (k) < lA, the transfer functions

GM
DY N,m(z) =

gLgAgM
m T (TM

m)
−1

(z − 1)(z − 1 + T (TM
m)−1)

GO
DY N,m(z) =

gLgAgO
mT (TO

m)
−1

(z − 1)(z − 1 + T (TO
m)−1)

GDY N,ate(z) =
gLgAgateTT−1

ate

(z − 1)(z − 1 + TT−1
ate)

relate the control input∆LER(z) to the controlled variablesMM(z), MO(z), and ATE(z),

respectively.

As presented above, we have extended the STA model and the new model, DYN, captures

additional dynamics of the controlled system, by giving more accurate time-domain relations

between the control inputδlER and the outputsu, mM , mO, andate. We have also described

how to compute the models parametersgL, gA, gM
m , gO

m, gate, Tu, TM
m , TO

m , andTate.

V. PERFORMANCEEVALUATION

In this section a detailed description of the performed experiments is given. The goal and the

background of the experiments are discussed, and finally the results are presented.

A. Performance Evaluation Goals

Considering the goal of our work, stated in Section II, the two objectives of the performance

evaluation are (i) to determine if the presented algorithms can provide QoS guarantees according

to a QoS specification and, (ii) to determine the suitability of the proposed model DYN for

describing the performance of RTDBs. Considering our first objective, we have studied and

evaluated the behavior of the algorithms under various conditions, where a set of parameters have

been varied. They are: (i) Load (load) as computational systems may show different behaviors

for different loads, especially when the system is overloaded. For this reason, we measure the

performance when applying different loads to the system. (ii) Execution time estimation error

(esterr) as often exact execution time estimates of transactions are not known. To study how

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 23

runtime error affects the algorithms we measure the performance considering different execution

time estimation errors. The second objective is investigated by comparing the controller tuned

using DYN with the controller tuned using STA with regard to performance reliability and

performance adaptation.

B. Simulation Setup

The simulated workload consists of update and user transactions, which access data and

perform virtual arithmetic/logical operations on the data. We have used a workload based on the

analysis of the NYSE stock trades and commercial databases [23]. Update transactions occupy

approximately 50% of the workload. In our experiments, one simulation run lasts for 10 minutes

of simulated time. For all the performance data, we present the average of 10 simulation runs.

We have derived 95% confidence intervals based on the samples obtained from each run and

using the t-distribution [24]. The workload model of the update and user transactions is described

as follows. We use the following notation where the attributexi refers to the transactionTi, and

xi[ti] is associated with the subtransactionti of Ti.

Data and Update Transactions. The DB holds 1000 temporal data objects (di) where each

data object is updated by a stream (Streami, 1 ≤ i ≤ 1000).4 The period (pi) is uniformly

distributed in the range (100ms,50s), i.e.U : (100ms, 50s), and estimated execution time (eeti)

is given byU : (1ms, 8ms). The actual execution time of an update is given by the normal

distribution N : (eeti,
√

eeti). The average update value (avi) of eachStreami is given by

U : (0, 100). The actual value (vi) of an update is set according toN : (avi, avi × varfactor),

wherevarfactor is uniformly distributed in (0,1). The deadline is set toarrivaltimei + pi. We

define data error as the relative deviation betweencvi andvi as given bydei = 100× |cvi−vi|
|cvi| (%).

User Transactions. EachSourcei generates a transactionTi, consisting of one mandatory

subtransaction,mi, and |Oi| (1 ≤ |Oi| ≤ 10) optional subtransaction(s),oi,j (1 ≤ j ≤ |Oi|).
|Oi| is uniformly distributed between 1 and 10. The estimated (average) execution time (eeti[ti])

of the mandatory and the optional subtransactions is given byU : (5ms, 15ms). The execution

time estimation error factoresterr is used to introduce execution time estimation error in the

4In current automotive engine control units (ECUs), a typical RTDB consists of approximately 500 data objects with temporal

constraints. Future ECUs with more functionality will increase the data volume further.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 24

average execution time given byaeti[ti] = (esterr + 1)× eeti[ti]. Further, upon generation of a

transaction,Sourcei associates an actual execution time to each subtransactionti, which is given

by N : (aeti[ti],
√

aeti[ti]). The deadline is set toarrivaltimei + eeti× slackfactor. The slack

factor is uniformly distributed according toU : (20, 40). Transactions are evenly distributed in

four classes representing error function orders of 0.5, 1, 2, and 5 (e.g.25% of the transactions

have an error order of 1).

We use the QoS specificationsQoSSpecA = {mM
r = 1%,mO

r = 10%, mder = 2%, Ts ≤ 60s,

Mp ≤ 30%} for PC-MPU and PC-MP, andQoSSpecB = {ater = 20%, mder = 5%, Ts ≤ 60s,

Mp ≤ 30%} for PC-ATEEDF, PC-ATEHEF, and PC-ATEHEDF.

C. Baselines

To the best of our knowledge, there has been no earlier work on techniques for managing

data impreciseness and transaction impreciseness aiming at satisfying specific QoS or QoD

requirements. For this reason, we have developed two baseline algorithms, Baseline-1 and

Baseline-2, to study the impact of the workload on the system. In our performance evaluation we

also include PC-ATEEDF, which is working as a reference algorithm in addition to the baselines.

We choose EDF since it is optimal in minimizing deadline misses and has well-known behavior.

The algorithm outline of Baseline-1 and Baseline-2 is given below. Depending on the given QoS

specification type, letυ be eithermO or ate.

Baseline-1. If υ (i.e. mO or ate) is greater than its reference, the utilization is lowered by

discarding more update transactions, i.e. increasingmde. Consequently, the preciseness of the

data is adjusted based onυ. mde is set according tomde(k+1) = min(υ(k)
υr

mder,mder×(Mp +

100)). A simple AC is applied, where a transaction (Ti) is admitted if the estimated utilization

of admitted subtransactions andeeti is less or equal to80%.

Baseline-2. To prevent a potential overshoot, we increasemde as soon asυ is greater than zero.

In Baseline-1, a significant change inmde may introduce oscillations inυ. This is avoided in

Baseline-2 by increasing and decreasingmde stepwise. Ifυ(k) is greater than zero, increase

mde(k) stepwise untilmder × (Mp + 100) is reached (i.e.mde(k + 1) = min(mde(k) +

mdestep,mder × (Mp + 100))). If υ(k) is equal to zero, decreasemde(k) stepwise until zero is

reached (i.e.mde(k + 1) = max(mde(k)−mdestep, 0)). The same AC as in Baseline-1 is used.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 25

50 100 150 200
0

50

100

load (%)

m
O

 (
%

)

50 100 150 200
0

1

2

3

load (%)

m
de

 (
%

)

PC−MPU
PC−MP
Baseline−1
Baseline−2
reference

(a) PC-MPU and PC-MP

50 100 150 200
0

10

20

load (%)

at
e

(%
)

50 100 150 200
0

20

load (%)

sd
te

 (
%

)

50 100 150 200
0

5

load (%)

m
de

 (
%

)

PC−ATE
EDF

PC−ATE
HEF

PC−ATE
HEDF

reference

(b) PC-ATE

Fig. 4. Experiment 1: average performance when varying load.

D. Experiment 1: Results of Varying Load

We apply loads from 50% to 200%. The execution time estimation error factor is set to zero

(i.e. esterr = 0). Controllers tuned using STA are used. Fig. 4(a) shows the performance of

PC-MPU and PC-MP, and Fig. 4(b) shows the performance of PC-ATEHEF, PC-ATEHEDF, and

PC-ATEEDF. Dash-dotted lines indicate references. For clarity of presentation we do not include

the baselines in Fig. 4(b).

mM has been observed to be zero5 for all four algorithms and, therefore, this has not been

included in Fig. 4(a). The specified miss percentage reference (mM
r) has been set to1% and

this is not reached. This is due to higher priority of mandatory subtransactions compared to

optional subtransactions. According to our investigations, the miss percentage of mandatory

subtransactions starts increasing when the miss percentage of optional subtransactions is over

90%. Consequently, since the miss percentage of optional subtransactions does not reach90%,

the miss percentage of mandatory subtransactions remains at zero.

Turning tomO, the95% confidence intervals for all algorithms are less than[mO−3.4%,mO+

3.4%]. For Baseline-1 and Baseline-2, the miss percentage of optional subtransactionsmO

increases as the load increases, violating the reference miss percentage,mO
r , at loads exceeding

150%. In the case of PC-MPU,mO is near zero at loads150% and 200%. Even though the

miss percentage is low, it does not fully satisfy the QoS specification. This is in line with our

5We have not observed any deadline misses.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 26

earlier discussions regarding the behavior of PC-MPU. The low miss percentage is due to the

utilization controller attempting to reduce potential overshoots by reducing the utilization, which

in turn decreases the miss percentage. PC-MP on the other hand shows a better performance.

The averagemO at 150% and200% is 8.5± 0.1%, which is fairly close tomO
r .

The 95% confidence intervals ofate are less than[ate − 2.1%, ate + 2.1%]. For Baseline-1

and Baseline-2, theate increases as the load increases, violating the reference,ater, at loads

exceeding175%. In the case of PC-ATEEDF, ate reaches the reference at150% of applied load.

For PC-ATEHEF and PC-ATEHEDF, ate reaches the reference at175%. All PC-ATE algorithms

provide a robust performance sinceate is kept at the specified reference during overloads.

Consideringsdte, the 95% confidence intervals for all algorithms are less than[sdte −
1.92%, sdte + 1.92%]. For all algorithms,sdte increases as load andate increase. At 200%

load, the correspondingsdte for PC-ATEEDF, PC-ATEHEDF, and PC-ATEHEF is 34.1%, 25.2%

and 18.2%, respectively. Consequently, deviation of transaction error is minimized when HEF

scheduling is used. It is worth mentioning that under HEF schedulingsdte is less as resources are

allocated with regard to transaction errors, while under EDF scheduling resources are distributed

with regard to deadlines. Under EDF scheduling, two transactions with deadlines near each other

may receive different amounts of resources and, hence, they may terminate with a significant

deviation in transaction error, while in the same case, under HEF scheduling the resources are

divided such that both transactions terminate with transaction errors close to each other.

The 95% confidence intervals ofmde are less than[mde − 0.13%,mde + 0.13%]. Starting

with Fig. 4(a), the averagemde for Baseline-1 and Baseline-2 violates the referencemde set

to 2%. In contrast, in the case of PC-MPU,mde is significantly lower thanmder. Since the

miss percentages are kept low at all times, they are not likely to overshoot. Consequently, the

control signal from the miss percentage controllers is likely to be positive, which is interpreted

by the QoD manager as a QoD upgrade and, hence,mde will not reach the level ofmder.

This is further explained in Section V-F, where the transient performance of the algorithms is

discussed. PC-MP provides an averagemde closer tomder, given by1.78 ± 0.024% at loads

150% and200%. However,mde does not reachmder sincemde is set according tomO (which

does not reachmO
r). Turning to Fig. 4(b), the95% confidence intervals ofmde are less than

[mde−0.5%,mde+0.5%]. The averagemde for Baseline-1 and Baseline-2 violates the reference

mde set to5% at applied loads of175% and130%, respectively. In contrast, in the case of PC-

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 27

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

esterr

m
O

 (
%

)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

esterr

m
de

 (
%

)

PC−MPU
PC−MP
Baseline−1
Baseline−2
reference

(a) PC-MPU and PC-MP

0 0.2 0.4 0.6 0.8 1
0

50

100

esterr

at
e

(%
)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

esterr

m
de

 (
%

)

PC−ATE
EDF

PC−ATE
HEF

PC−ATE
HEDF

reference

(b) PC-ATE

Fig. 5. Experiment 2: average performance when varying execution time estimation error.

ATEEDF, PC-ATEHEF, and PC-ATEHEDF, mde is at the reference during overloads.

The experiments have shown that PC-MPU produces a miss percentage significantly lower than

the specified miss percentages and, hence, it does not fully satisfy the given QoS specification.

PC-MP on the other hand produces miss percentages close to the given references and, conse-

quently, the given QoS specification is satisfied with regard to steady-state performance. We have

also seen that PC-ATEHEF, PC-ATEHEDF, and PC-ATEEDF are robust against varying applied

loads. Moreover, PC-ATEHEF outperforms the other algorithms with regard to QoS fairness of

admitted transactions.

E. Experiment 2: Results of Varying esterr

We apply 200% load and vary the execution time estimation error according toesterr = 0.00,

0.25, 0.50, 0.75, and 1.00. Controllers tuned using STA are used. Fig. 5(a) and Fig. 5(b) show

the performance of PC-MPU, PC-MP, PC-ATEHEF, PC-ATEHEDF, and PC-ATEEDF. Dash-dotted

lines indicate references.

As in Experiment 1,mM is zero for all approaches andesterr. Turning to mO, the 95%

confidence intervals for all algorithms are less than[mO − 2.7%,mO + 2.7%]. As expected,

Baseline-1 and Baseline-2 do not satisfy the QoS specification, whereas PC-MPU and PC-

MP are insensitive against varyingesterr, asmO and mde do not change considerably when

varying esterr. Studyingate we note that Baseline-1 and Baseline-2 do not satisfy the QoS

specification asate reaches52% when esterr equals to 1. The95% confidence intervals for

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 28

0 100 200 300 400 500
0

50

100

time

m
O

 a
nd

 u
 (

%
)

mO

mO
r

max mO overshoot
u

0 100 200 300 400 500
0

1

2

3

time

m
de

 (
%

)

mde
mde

r
max mde overshoot

(a) PC-MPU

0 100 200 300 400 500
0

50

100

time

m
O

 a
nd

 u
 (

%
)

mO

mO
r

max mO overshoot
u

0 100 200 300 400 500
0

1

2

3

time

m
de

 (
%

)

mde
mde

r
max mde overshoot

(b) PC-MP

0 100 200 300 400 500
0

50

100

time

at
e

an
d

u
(%

) ate
ate

r
max ate overshoot
u

0 100 200 300 400 500
0

50

time

sd
te

 (
%

)

sdte

0 100 200 300 400 500
0

5

time

m
de

 (
%

)

mde
mde

r
max mde overshoot

(c) PC-ATEEDF

Fig. 6. Experiment 3: Transient performance.

PC-ATE algorithms are less than[ate− 0.3%, ate + 0.3%]. PC-ATEEDF, PC-ATEHEF, and PC-

ATEHEDF are insensitive against varyingesterr as ate and mde do not change with varying

esterr. From above we can conclude that PC-MPU, PC-MP, PC-ATEHEF, and PC-ATEHEDF

are insensitive to changes to execution time estimation and, hence, they can easily adapt when

accurate run-time estimates are not known.

F. Experiment 3: Transient Performance

Studying the average performance is often not enough when dealing with dynamic systems and

therefore we study the transient performance of PC-MPU, PC-MP, PC-ATEHEF, PC-ATEHEDF,

and PC-ATEEDF. We setload to 200% andesterr to 1.

1) Results of Controllers Tuned Using STA:Fig. 6(a)-6(c) shows the transient behavior of

PC-MPU, PC-MP, and PC-ATEEDF with controllers tuned using STA. We refer to Table I for

a summary of the performance of PC-ATEHEF, PC-ATEHEDF, and PC-ATEEDF with controller

tuned using STA and DYN. The dash-dotted line indicates the reference, while dotted line

indicates maximum overshoot. For all algorithmsmO andate overshoots decay faster than 60s,

which are less than the settling time requirement given in the QoS specification. Starting with

PC-MPU, we can note thatmO is kept low at all times. This is expected since the averagemO

was shown to be low. The reader may have noticed thatmde is greater than zero in the interval

20-150 wheremO is zero. Sincemde is greater than zero, it is clear thatδlER may become

negative during that period. This is due to the behavior of the utilization controller. Initially,

the utilization is below the reference (ur). As the utilization increases and no miss percentage

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 29

overshoots are observed,ur increases linearly until a miss percentage is observed (one of the

miss percentage controllers takes over) in which caseur is reduced exponentially. In PC-MPU,

ur is increased only if the utilization controller has taken over. Our investigations show that the

utilization controller takes over once the utilization overshootsur, resulting in a negativeδlER

and, hence,ur being increased too late. Consequently, the negativeδlER leads to an increase in

mde. PC-MP shows a more satisfying result as bothmO andmde increase and decrease together.

Both mO and mde are kept aroundmO
r and mder, respectively. Although the averagemO is

close tomO
r , we can see thatmO often overshoots its reference. This is due to disturbances in

load due to data conflicts, resulting in restarts or aborts of transactions, and inaccurate execution

time estimations. The highest overshoot for PC-ATEEDF has been noted to42.38% at time 15.

For PC-ATEHEF, the highest overshoot was noted to32.31% at time 15 and finally, the highest

overshoot for PC-ATEHEDF was observed to be37.11% at time 15. As we can see, the algorithms

do not satisfy the overshoot requirements given in the QoS specification (i.e.ate ≤ 26%). It is

worth mentioning that data conflicts, aborts or restarts of transactions and inaccurate run-time

estimates contribute to disturbances in an RTDB, complicating the control ofate (note that we

have setesterr to one).

From the discussions in Section IV-F.2 we understood that under HEF scheduling the controlled

variable is more responsive to changes in the manipulated variable. Now, from feedback control

theory we know that delays in systems (low responsiveness of controlled variables) promote

oscillations and may even introduce instability [14]. Given this, we can conclude that under

EDF scheduling we should observe more oscillations inate than compared with HEF scheduling,

which is consistent with the data presented in Table I. We recall from Section IV-A that a decrease

in Js andJa implies an improvement in control of performance and QoS. As we can see from

Table I, PC-ATEHEF produces lessate oscillations aroundater than PC-ATEEDF. Further, PC-

ATEHEF is less prone to overshoot.

2) Results of Controllers Tuned Using DYN:For simplicity, we refer to controllers tuned

using the model STA as STA controllers and controller tuned using the model DYN as DYN

controllers. The control signalδlER of the STA controller varies between−13% to 30%, whereas

the control signal of the DYN controller varies between−1% to 7%. In other words, the STA

controller controls the RTDB more aggressively, resulting in greater deviations betweenate and

ater. Since the STA controller computesδlER according to a statical relation betweenlER and

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 30

TABLE I

Js AND Ja WITH 95% CONFIDENCE INTERVALS

Model STA DYN
Performance Metric Js Ja Js Ja

PC-ATEEDF 139.62± 27.91 9.58± 1.04 79.11± 5.51 7.12± 0.22

PC-ATEHEF 77.78± 7.68 7.17± 0.38 71.31± 6.24 6.82± 0.36

PC-ATEHEDF 105.76± 17.14 8.46± 0.61 84.67± 4.15 7.58± 0.20

ate, the controller does not consider the dynamics of the controlled system. Hence, it does not

consider that given a certainδlER, it may take a few samples until the correspondingate is

reached. Therefore, the STA controller persists with changing the load until the desiredater is

reached, at which pointate overshoots due to aggressive control. This is handled more efficiently

with the DYN controller as it is tuned according to a dynamic model and, hence, the controller

is more gentle when controlling the system.

Table I gives a summary of the performance of the controllers with respect toJs andJa, which

show how closely the controlled variableate follows its referenceater. The performance of

PC-ATEEDF and PC-ATEHEDF is significantly improved when using DYN for tuning controllers.

However, the performance improvement for PC-ATEHEF is too small to be considered significant.

From the results and discussions in this Section we learned that the scheduling policy of EDF

induces a certain delay between a change in the load andate, whereas the delay is less for the

HEF scheduling policy. The delay caused by EDF is compensated for by the DYN controller as

opposed to the STA controller, which does not compensate for delays and, hence, we achieve

almost the same performance as PC-ATEHEF where a DYN controller is used. The experiments

show that feedback controllers for PC-ATEEDF and PC-ATEHEDF tuned using DYN outperform

controllers tuned using STA.

G. Summary of Results and Discussion

Our experiments show that PC-MPU, PC-MP, PC-ATEHEF, and PC-ATEHEDF are robust

against inaccurate execution time estimations asmO, ate, andmde remain unaffected for varying

execution time estimation errors. PC-MPU keepsmO less than its reference and is able to

efficiently suppress deadline miss percentage overshoots. PC-MPU should therefore be applied

to RTDBs where deadline miss percentage overshoots cannot be tolerated. PC-MP provides an

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 31

mO near its reference, but generates overshoots greater than the maximum allowed overshoot.

The experiments show that PC-MP is particularly useful whenmO must be near its reference, but

where overshoots are accepted. It was observed that PC-ATEHEF provides a lowersdte compared

to other algorithms, lowering the deviation of transaction error among terminated transactions.

This property is useful in applications where QoS fairness among transactions is emphasized.

Further, we saw that the control performance is greatly enhanced when using DYN as compared

to STA [11]. This aids a system operator to configure RTDBs that are highly reactive to changes

in applied load and execution time estimation errors, providing increased performance reliability

and enhanced QoS adaptation.

VI. RELATED WORK

Liu et al. [3] and Hansson et al. [25] presented algorithms for minimizing the total error

and total weighted error of a set of tasks. Their approaches require the knowledge of accurate

processing times of the tasks, which is often not available in RTDBs. Bestavros and Nagy have

presented approaches for managing the performance of RTDBs, where the execution time of

the transactions are unknown [26]. Each transaction contributes with a profit when completing

successfully. An admission controller is used to maximize the profit of the system. The work by

Liu, Hansson, Bestavros, and Nagy focus on maximizing or minimizing a performance metric

(e.g. profit). These previous approaches cannot be applied to our problem, since in our case we

want to control a set of performance metrics such that they converge toward their references as

given by a QoS specification.

Lu et al. have presented a feedback control scheduling framework where they propose algo-

rithms for managing the miss percentage and/or utilization [11]. In comparison to the proposed

algorithms in this paper, they do not address the problem of maximizing QoS fairness among

admitted tasks. Further, their model statically relates estimated requested load, deadline miss

ratio, and utilization. In this paper, we have extended their model to capture the dynamic

relationships between these variables. Parekh et al. use feedback control scheduling to control

the length of a queue of remote procedure calls (RPCs) arriving at a server [10]. In contrast to

their work we have chosen deadline miss percentage, utilization, and average transaction error

as the controlled variables.

Kang et al. use feedback control scheduling to manage the deadline miss ratio of transactions

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 32

and freshness requirements of data objects [23]. In contrast to the work by Kang et al., we have in

this paper described a set of algorithms for managing QoS based on feedback control scheduling

and imprecise computation, where QoS is defined in terms of transaction and data preciseness.

Further we have introduced QoS fairness, a set of novel QoD management algorithms including

two new scheduling algorithms (HEF and HEDF), and a dynamic model giving a more accurate

description of the controlled system. Kuo et al. have introduced the notion of similarity [27],

where a similarity relation gives whether two transactions produce similar results. However, the

work by Kuo et al. does not address unknown workload characteristics.

Davidson et al. proposed a method for generating monotonically improving answers in RTDBs

and distributed RTDBs [28]. A query processor, APPROXIMATE [7], produces approximate

answer if there is not enough time available. The accuracy of the improved answer increases

monotonically as the computation time increases. The relational database system proposed in

[29], can produce approximate answers to queries within certain deadlines. Lee et al. studied

the performance of real-time transaction processing in broadcast environments [30]. In contrast

to the approaches above, we have introduced preciseness at the transaction level and the data

object level, and manage QoS using feedback control.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we have argued for the need of increased adaptability of applications that

provide real-time data services, while operating in highly unpredictable environments. Typically

transactions cannot be subject to exact schedulability analysis given the lack of a priori knowledge

of the workload, making transient overloads inevitable. Furthermore, these systems are becoming

larger and more complex, and at the same time they are being used in applications where

performance guarantees are needed. To address these issues we have proposed a QoS-sensitive

approach based on imprecise computation [3] applied on transactions and data objects.

The expressive power of our QoS specification model allows a database operator to specify

not only the desired steady-state performance, representing the nominal system operation, but

also the transient-state performance describing the worst-case system performance and system

adaptability in the face of unexpected failures or load variation. To provide QoS guarantees

without a priori knowledge of the workload, we apply feedback control, where the performance

of the RTDB is continuously monitored and modified according to the given QoS specification.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 33

The algorithms PC-MPU and PC-MP address QoS specifications given in terms of deadline miss

percentage of optional subtransactions, while PC-ATEHEF and PC-ATEHEDF address specifica-

tions based on the notion of transaction error. Our performance evaluation shows that given a

QoS specification, the four algorithms PC-MPU, PC-MP, PC-ATEHEF, and PC-ATEHEDF give

a robust and controlled behavior of RTDBs in terms of transaction and data preciseness, even

for transient overloads and with inaccurate run-time estimates of the transactions. The proposed

algorithms outperform the baseline algorithms and PC-ATEEDF, where transactions are scheduled

with EDF and feedback control.

We will extend our work to manage QoS of derived data and service differentiation. In this

work we have considered the milestone approach to imprecise computation. We plan to apply

other types of imprecise computation techniques.

ACKNOWLEDGMENT

This work was funded, in part by CUGS (the National Graduate School in Computer Science,

Sweden), CENIIT (Center for Industrial Information Technology) under contract 01.07, and NSF

grants IIS-0208578 and CCR-0329609.

REFERENCES

[1] D. Wu, Y. T. Hou, W. Z. Y.-Q. Zhang, and J. M. Peha, “Streaming video over the Internet: approaches and directions,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 282–300, March 2001.

[2] S.-Y. Choi and A. B. Whinston, “The future of e-commerce: integrate and customize,”Computer, vol. 32, no. 1, pp.

133–134, Januari 1999.

[3] J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise computations,”Proceedings of the IEEE,

vol. 82, Jan 1994.

[4] S. Zilberstein and S. J. Russell, “Optimal composition of real-time systems,”Artificial Intelligence, vol. 82, no. 1–2, pp.

181–213, 1996.

[5] X. Chen and A. M. K. Cheng, “An imprecise algorithm for real-time compressed image and video transmission,” in

Proceedings of the International Conference on Computer Communications and Networks (ICCCN), 1997.

[6] M. Yannakakis, “Perspectives on database theory,” inProceedings of the Annual Symposium on Foundations of Computer

Science, 1995.

[7] S. V. Vrbsky and J. W. S. Liu, “APPROXIMATE - a query processor that produces monotonically improving approximate

answers,”IEEE Transactions on Knowledge and Data Engineering, vol. 5, no. 6, pp. 1056–1068, December 1993.

[8] G. C. Buttazzo,Hard Real-Time Computing Systems. Kluwer Academic Publishers, 1997.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 34

[9] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,Feedback Control of Computing Systems. Wiley-IEEE Press,

2004.

[10] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus, “Using control theory to achieve service level

objectives in performance managment,”Real-time Systems, vol. 23, no. 1/2, July/September 2002.

[11] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Feedback control real-time scheduling: Framework, modeling and

algorithms,”Real-time Systems, vol. 23, no. 1/2, July/September 2002.

[12] M. Amirijoo, J. Hansson, and S. H. Son, “Algorithms for managing QoS for real-time data services using imprecise

computation,” in Proceedings of the Conference on Real-Time and Embedded Computing Systems and Applications

(RTCSA), 2003.

[13] ——, “Error-driven QoS management in imprecise real-time databases,” inProceedings of the Euromicro Conference on

Real-Time Systems (ECRTS), 2003.

[14] G. F. Franklin, J. D. Powell, and M. Workman,Digital Control of Dynamic Systems, 3rd ed. Addison-Wesley, 1998.

[15] S. H. Son, Ed.,Advances in Real-Time Systems. Prentice Hall, 1995, pp. 463–486.

[16] T. Gustafsson and J. Hansson, “Data management in real-time systems: a case of on-demand updates in vehicle control

systems,” inProceedings of Real-time Applications symposium (RTAS), 2004.

[17] K. Ramamritham, “Real-time databases,”International Journal of Distributed and Parallel Databases, no. 1, 1993.

[18] L. V. Fausett,Numerical Methods: Algorithms and Applications. Prentice Hall, 2003.

[19] N. J. Higham,Accuracy and Stability od Numerical Algorithms. SIAM, 1996.

[20] J. Chung and J. W. S. Liu, “Algorithms for scheduling periodic jobs to minimize average error,” inProceedings of the

Real-Time Systems Symposium (RTSS), 1988.

[21] R. Abbott and H. Garcia-Molina, “Scheduling real-time transactions: A performance evaluation,”ACM Transactions on

Database System, vol. 17, pp. 513–560, 1992.

[22] K. J. Åström and B. Wittenmark,Adaptive Control, 2nd ed. Addison-Wesley, 1995.

[23] K.-D. Kang, S. H. Son, and J. A. Stankovic, “Managing deadline miss ratio and sensor data freshness in real-time databases,”

IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 10, pp. 1200–1216, October 2004.

[24] M. H. DeGroot and M. J. Schervish,Probability and Statistics, 3rd ed. Addison-Wesley, 2002.

[25] J. Hansson, M. Thuresson, and S. H. Son, “Imprecise task scheduling and overload managment using OR-ULD,” in

Proceedings of the Conference in Real-Time Computing Systems and Applications (RTCSA), 2000.

[26] A. Bestavros and S. Nagy, “Value-cognizant admission control for RTDB systems,” inProceedings of the Real-Time

Systems Symposium (RTSS), 1996, pp. 230–239.

[27] T.-W. Kuo and S.-J. Ho, “Similarity-based load adjustment for static real-time transaction systems,”IEEE Transactions on

Computers, vol. 49, pp. 112–126, 2000.

[28] S. Davidson and A. Watters, “Partial computation in real-time database systems,” inProceedings of the Workshop on

Real-Time Software and Operating Systems, 1988.

[29] W. Hou, G. Ozsoyoglu, and B. K. Taneja, “Processing aggregate relational queries with hard time constraints,” in

Proceedings of the ACM SIGMOD International Conference on Management of Data, 1989.

[30] V. Lee, K. Lam, S. H. Son, and E. Chan, “On transaction processing with partial validation and timestamps ordering in

mobile broadcast environments,”IEEE Transactions on Computers, vol. 51, no. 10, pp. 1196–1211, 2002.

16th August 2005 DRAFT

IEEE TRANSACTIONS ON COMPUTERS 35

Mehdi Amirijoo is a Ph.D. student at the Department of Computer and Information Science in Linköping

University, Sweden. He received his M.Sc. degree in computer science and engineering from Linköping

University in 2002. His interests include real-time data services, scheduling, real-time databases, QoS

management, automatic control, imprecise computation techniques, and sensor networks. He received

the 2003 best M.Sc. thesis award issued by SNART (the Swedish National Real-Time Association). He

served as a member of the local organization committee for the International Conference on Real-Time

and Embedded Computing Systems and Applications in 2004.

Jörgen Hanssonis a senior member of the technical staff at the Software Engineering Institute at Carnegie

Mellon University. He received the B.Sc. and M.Sc. degree from University of Skövde, Sweden, in 1992

and 1993 respectively. He received his Ph.D. degree in 1999 from Linköping University, Sweden, with

which he is also affiliated as an associate professor. His current research interests include real-time systems

and real-time database systems and he has written 40 papers and edited two books in these areas. His

research has focused on techniques and algorithms for ensuring robustness and timeliness in real-time

applications that are prone to transient overloads, mechanisms and architectures for handling increasing amounts of data in

real-time systems, and algorithms to ensure data quality in real-time systems. His current research interests include resource

management, techniques and methodologies for data repositories functioning in real-time and embedded computing systems,

adaptive overload management, and component-based software architectures for embedded and real-time systems.

Sang Hyuk Son is a Professor at the Department of Computer Science of University of Virginia. He

received the B.Sc. degree in electronics engineering from Seoul National University, M.Sc. degree from

Korea Advanced Institute of Science and Technology (KAIST), and the Ph.D. in computer science from

University of Maryland, College Park in 1986. He has been a Visiting Professor at KAIST, City University

of Hong Kong, Ecole Centrale de Lille in France, and Linköping University in Sweden. His current

research interests include real-time computing, data services, QoS management, wireless sensor networks,

and information security. Dr. Son has served as an Associate Editor of IEEE Transactions on Parallel and Distributed Systems for

1998-2001, and is currently serving as an Associate Editor for Real-Time Systems Journal and Journal of Business Performance

Management. He has served as the guest editor for the ACM SIGMOD Record, IEEE Transactions on Software Engineering,

Control Engineering Practice, Journal of Integrated Computer-Aided Engineering, and NETNOMICS, on special issues covering

real-time systems, real-time databases, and e-commerce. He has been on the executive board of the IEEE TC on Real-Time

Systems since 2003. He has published over 200 technical papers and served as the Program Chair or General Chair of several real-

time and database conferences, including IEEE Real-Time Systems Symposium, IEEE Conference on Parallel and Distributed

Systems, International Workshop on Real-Time Database Systems, and IEEE Conference on Electronic Commerce. He received

the Outstanding Contribution Award from IEEE Conference on Real-Time and Embedded Computing Systems and Applications

in 2004.

16th August 2005 DRAFT

