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tions, in particular, the skew normal and skew t-mixture models, are emerging
as promising extensions to the traditional normal and t-mixture models. Most
of these parametric families of skew distributions are closely related, and can
be classified into four forms under a recently proposed scheme, namely, the re-
stricted, unrestricted, extended, and generalised forms. In this paper, we con-
sider some of these existing proposals of multivariate non-normal mixture mod-
els and illustrate their practical use in several real applications. We first discuss
the characterizations along with a brief account of some distributions belonging
to the above classification scheme, then references for software implementation
of EM-type algorithms for the estimation of the model parameters are given.
We then compare the relative performance of restricted and unrestricted skew
mixture models in clustering, discriminant analysis, and density estimation on
six real datasets from flow cytometry, finance, and image analysis. We also
compare the performance of mixtures of skew normal and t-component distri-
butions with other non-normal component distributions, including mixtures
with multivariate normal-inverse-Gaussian distributions, shifted asymmetric
Laplace distributions and generalized hyperbolic distributions.
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1 Introduction

Finite mixtures of symmetric distributions, in particular normal mixtures,
are an important tool in statistical modelling and analysis. In recent years,
mixtures of asymmetric distributions have emerged as a powerful alternative
to the traditional normal and ¢-mixture models. For a comprehensive survey
of mixture models and their applications, the reader is referred to the mono-
graphs by Everitt and Hand (1981), Titterington et al. (1985), McLachlan and
Basford (1988), Lindsay (1995), Bohning (1999), McLachlan and Peel (2000),
Frithwirth-Schnatter (2006), and the edited volume of Mengersen et al. (2011);
see also the papers by Banfield and Raftery (1993) and Fraley and Raftery
(1999).

The past few years have seen an increasing use of skew mixture distribu-
tions to provide improved modelling and clustering of data that consists of
asymmetric clusters with outliers. They have been widely applied to datasets
from a variety of fields, including biostatistics, bioinformatics, finance, im-
age analysis, and medical science, among others. Some recent examples are
given in Pyne et al. (2009a), Soltyk and Gupta (2011), Contreras-Reyes and
Arellano-Valle (2012), and Riggi and Ingrassia (2013).

Recent advances in the mixture model-based clustering literature has fo-
cused on the development of mixture distributions with more flexible para-
metric component densities that can better accommodate data exhibiting
non-normal features, including asymmetry, multimodality, heavy-tails, and the
presence of outliers. Some notable examples include the skew normal mixture
model (Lin, 2009, Cabral et al., 2012), the skew t-mixture model (Lin, 2010,
Lee and McLachlan, 2011, Vrbik and McNicholas, 2012), the skew t-normal
mixture model (Lin et al., 2013), and some other non-elliptical approaches
(Karlis and Xekalaki, 2003, Franczak et al., 2012, Browne and McNicholas,
2013).

In this paper, the aforementioned non-normal mixture distributions are
discussed. Particular attention is paid to the two most popular skew symmet-
ric models, namely, the skew normal and skew ¢-mixture distributions, which
have received increasing attention in the past few years. Following Lee and
McLachlan (2013c), these component distributions can be systematically clas-
sified as the restricted, unrestricted, extended, and generalized versions based
on their characterizations. This aids in the understanding of the link between
various algorithms applied to the fitting of these distributions and mixtures of
them.

Lee and McLachlan (2013c) showed that the same scheme can be extended
directly to study other families of multivariate skew symmetric distributions.

One of the major uses of finite mixture models is in clustering and super-
vised classification (discriminant analysis). In cluster analysis applications, the
usual goal is to provide a partition of the data into several groups or clusters,
based on the assumption of cluster homogeneity; that is, observations from
the same cluster are more similar to each other than those from a different
cluster. Under this setting, each observation is assumed to come from one of



Model-based clustering and classification with non-normal mixture distributions 3

the components of the mixture model, and the probabilistic clustering of the
data is based on their estimated posterior probabilities of component member-
ship in the mixture model. Clustering is an unsupervised approach, where no
information of group memberships are given, even if the existence of groups
were known a priori. In contrast, in supervised classification, the group mem-
berships for some observations are known for each group. We illustrate the
usefulness of these skew mixture models in both situations in handling data
with non-normal features.

The remainder of the paper is organized as follows. In Section 2, we give
an overview of various multivariate skew symmetric distributions. In Section
3, we discuss several recently proposed mixtures of multivariate skew distribu-
tions, and the availability of software for these fitting in practice. In Section 4,
we briefly outline several other flexible multivariate mixture models which are
not elliptically-contoured. The non-normal mixture models are illustrated on
a flow cytometric dataset in Section 5.1, where the four-component skew mix-
ture models compare favourably with other state-of-the-art automated gating
algorithms. Section 5 presents some further applications to real datasets, in-
cluding the clustering of health and finance related data, estimation of the
Value-at-Risk from a portfolio of Australian stock returns, discriminant anal-
ysis of wheat kernels, and natural colour image segmentation. Finally, we con-
clude with some remarks on the performance of restricted and unrestricted
skew symmetric models in Section 6.

2 Multivariate skew symmetric distributions

We begin with a brief discussion of multivariate skew symmetric distributions,
in particular, the skew normal and skew ¢-distributions. In Lee and McLachlan
(2013c), the existing multivariate skew normal and skew t-distributions have
been classified into four forms according to their characterizations, namely, the
restricted, unrestricted, extended, and generalized forms. The same scheme
can be applied to classify the broader class of multivariate skew symmetric
distributions.

An asymmetric density can be generated by perturbing a symmetric den-
sity, yielding a so-called multivariate skew symmetric (MSS) density (Azzalini
and Capitanio, 2003). Typically, a MSS density can be expressed as a product
of a (multivariate) symmetric function f,(-) and a perturbation (or skewing)
function hg(-), where hgy(-) is a function that maps a ¢g-dimensional parameter
into the scalar unit interval; that is,

fo(ys i) hy(-), (1)

where f,(-) is symmetric around p. Based on this formulation, a MSS density
can be classified into different forms according to the value of ¢ and the func-
tional form of hy(-). For example, when ¢ = 1 and h(-) = 2F;(-), where F;(-)
denotes the (univariate) distribution function corresponding to f,(-), we ob-
tain a restricted characterization. Assuming f,(-) is a p-dimensional symmetric
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density, if ¢ = p and hy(-) = 2PF,(-), where F},(-) denotes the p-dimensional
distribution function corresponding to fp(-), then the MSS density is said to
have an unrestricted form. We shall discuss now some of the important skew
symmetric distributions using the four forms introduced in Lee and McLachlan
(2013c).

2.1 Restricted multivariate skew distributions

The study of skew distributions was pioneered by the work on the (univariate)
skew-normal distribution of Azzalini (1985) and its extension to the multivari-
ate case by Azzalini and Dalla Valle (1996). This and some of the first few
skew distributions appearing in the literature belong to the restricted form.
To establish notation, a random vector Y has a (restricted) multivariate skew
normal (rMSN) distribution if its density is given by

flyip, 2,8) =2¢,(y; p, X) &1 (6T2’1(y —p);0,1— 5T2’15) , (2

where p is a location vector, X' is a scale matrix, and & is a skewness vector.
Here, we let ¢, (.; g1, X') be the density of the p-variate normal distribution with
mean vector p and covariance matrix X, and @,(.; p, X') be the corresponding
distribution function. The rMSN distribution admits a convenient stochastic
representation, as given in Pyne et al. (2009a),

Y = p+0|Us| + Uy, (3)

where Uy and U; are independent normal random variables. More specifically,
Up is a standard (scalar) normal variable, or equivalently, |Up| ~ HN(0,1),
where HN(0,1) denotes the standard (univariate) half-normal distribution,
and U has a centered p-variate normal distribution with covariance matrix
¥ = ¥ — 88", Alternatively, (2) can be formulated via a conditioning ap-
proach, given by

Y=p+1|Y,>0), (4)

where Y1 ~ N,(0, %), Yy ~ N(0,1) and cov(Y'1,Y) = 4. Following Azzalini
and Dalla Valle (1996), the notation (Y1 | Yy > 0) implies the vector Y if
Yy > 0 and —Y ; otherwise.

The (restricted) multivariate skew ¢-distribution is a natural extension of
(3), in which the random variables Uy and U; now follow a corresponding
t-distribution. Following Pyne et al. (2009a), the p-variate (restricted) multi-
variate skew ¢ (rMST) distribution is given by

fysm, X,6,v) = 2t,(y; p, X, v)Th <5T2‘1(y — k) #d(py); 0,A\v +p) )

(5)
where A =1 — 67 X715, d(y) = (y — p)" X" (y — p) is the squared Maha-
lanobis distance between y and p with respect to X'. Here, we let ¢,(.; p, ¥, v)
denote the p-dimensional t-distribution with location vector p, scale matrix
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X, and degrees of freedom v. Also, we let T),(.; i, X, v) be the corresponding
distribution function. Similar to the rMSN distribution, the rMST distribution
can be obtained via two stochastic mechanisms, the convolution of multivariate
t- and truncated t-variables, and the conditioning of ¢-variables. There exists
various definitions and/or variants of the multivariate skew t-distributions in
the literature. It was pointed out in Arellano-Valle and Azzalini (2006) and
Lee and McLachlan (2013c) that some of these formulations are equivalent
after appropriate reparameterizations. In particular, it was noted in Lee and
McLachlan (2013c) that the versions considered by Branco and Dey (2001),
Azzalini and Capitanio (2003), Gupta (2003), and Lachos et al. (2010) are
equivalent to the rMST distribution (5).

The MSN and MST distributions are only two important special cases of a
broader class of skew distributions. The skewing mechanism can be applied di-
rectly to other parametric densities to produce a broader family of asymmetric
distributions, such as the extensively studied class of skew-elliptical distribu-
tions; see, for example, Azzalini and Capitanio (1999), Branco and Dey (2001),
and Azzalini and Capitanio (2003). This more general family originates from
the elliptically-contoured (EC) distributions, whose densities are constant on
ellipsoids (Fang et al., 1990); hence its name. The p-dimensional EC density,
denoted by EC(u, X, f), takes the form

folyim, ) =c|Z| 3 f (y— )2 (y—n), (6)

where f is any suitable parametric function from R* to R*, known as the
density generator of f, and c is a normalizing constant. Then the density of
the (restricted) multivariate skew-elliptical (rMSE) class takes the form

F(ys 1, X,6) =2 [ (y; 1, X) Fyeyy (w3 0, M), (7)

where f,,(.) is the density of an elliptically-contoured random variable as de-
fined in (6), w = 0T Xy — m), Fayy(;p, X) is the distribution function
corresponding to EC(u, X7, fd(y)), and

; flw+d(y))
g () = T2 W), 0
fd(y))
This class can be obtained by (3) and (4), with Y; and Y following EC
distributions and U; and Uy have a joint EC distribution.

2.2 Unrestricted multivariate skew distributions

As mentioned previously, the unrestricted form corresponds to (1) with ¢ = p.
This corresponds to replacing the latent variable Uy in (3) and Yp in (4) with
a p-dimensional version, U, and Y g, respectively. In this case, the constraint
Y > 0 is taken as a set of component-wise inequalities, that is, Yy; > 0 for
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¢t =1,...,p. This family of (unrestricted) multivariate skew-elliptical (uMSE)
class was studied in Sahu et al. (2003), the density of which is given by

s, 2,8) =2 f,(y; p, X) Fyy) (AX ™ (y — p); 0, A), 9)

where A is a diagonal matrix with elements given by 8, and A = I p—A.Q_lA.
It should be stressed that the rMSE family and uMSE family match only in
the univariate case, and one cannot obtain (7) from (9) when p > 1.

For the sake of completeness, we include the density of the unrestricted
skew normal (uMSN) distribution and the unrestricted skew ¢ (uMST) distri-
bution here, given by

flys p, 2,8) = 2P, (y; p, X)P, (A" (y — p); 0, A), (10)
and
. — 9P . -1 _ v+p .
fly;p, X,6,v) 2tp(y7“727V)Tp<A2 (y—n) V+d(y),0,/l,v+p>,

(11)
respectively, where A = I,—AXY 1 A. The convolution- and conditioning-type
stochastic representations for the unrestricted case extend from (3) and (4)
directly, given by Y = pu+d8|Uo|+U; and Y = pu+(Y1 | Yo > 0), respectively,

1

where, for the uMSN case, Uy and X2U; are independent N,(0,I,) random
vectors, Yo ~ N,(0,1,), Y1 ~ N,(0,X), and cov(Y1,Y ) = A. Here we let
Y= A%

2.3 Extended multivariate skew distributions

A more general extension of the rMSE and uMSE class is to consider a set of
q constraints simultaneously on the latent variable of the form Yo+ 7 > 0,
which implies Yy; + 7; > 0 for ¢ = 1,...,q. The random vector 7 € R can
be interpreted as the mean vector of Y. The density of this class can be
easily computed via a well-known general relationship (see Theorem 5.1 of
Arellano-Valle et al. (2002)), which can be written as

Fay) (T + ATy — p);0,A)

fysp, X, A4) = fo(y; pu, X) Fro.T) ; (12)

where A and I' are positive-definite matrices and F'(.; p, X) is the distribution
function corresponding to EC(u, X; f). We shall refer to this as the extended
MSE (eMSE) family. Observe that when 7 = 0, the normalizing constant in
the denominator of (12) reduces to 279, which corresponds to the coefficient
of 2 and 2? in the rMSE and uMSE density, respectively.

This form incorporates the restricted and unrestricted class with appro-
priate restrictions on the parameters. The eMSE class, or the unified skew-
elliptical (SUE) family, has been studied by various authors, although with
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a slightly different parameterization, including Arellano-Valle and Azzalini
(2006) and Arellano-Valle and Genton (2010b).

An important case of the extended form of skew normal distribution was
studied by Arnold et al. (1993) and Azzalini and Capitanio (1999), with at-
tention restricted to the case ¢ = 1. The general case with an arbitrary ¢
was subsequently studied by Liseo and Loperfido (2003), Gonzalez-Faras et al.
(2004), and Gupta et al. (2004), among others, in different contexts. A sum-
mary of these distributions is given in Arellano-Valle and Azzalini (2006).

The equivalent of SUN for the ¢-distribution, known as the unified skew ¢
(SUT) distribution, is briefly sketched in Arellano-Valle and Genton (2010a)
in a study of a restricted version of the SUT distribution.

Besides the flexibility in terms of both skewness and heavy tails, the mem-
bers (with non-zero extension parameter) of the SUE family have desirable
properties such as closure under conditioning and, also, the ability to model
lighter tails than the normal distribution as well. It also enjoys parallel stochas-
tic representations and various other properties.

2.4 Generalized multivariate skew distributions

When we further relax the distributional assumption of the latent variable
Y o, allowing it to have a different distribution to Y1, we obtain a ‘generalized
form’ of the multivariate skew distribution. Some notable examples of this class
include the fundamental skew-elliptical (FUSE) family (Arellano-Valle and
Genton, 2005) and the selection (SLCT) distributions (Arellano-Valle et al.,
2006). In general, the density of this class takes the form

fym, X) = fp(y; 1, ) Q(w(y)), (13)

where Q(.) is a distribution function (not necessarily related to f,), and w(y)
is some odd function of y.

An intuitive example of a generalized form of a skew distribution is the
family of skew normal symmetric and skew t-symmetric distributions. In the
univariate case, Nadarajah and Kotz (2003) considered a family of distribu-
tions, where f(y) in (13) is the normal density, but the skewing function Q(.)
is taken to be the distribution function of other elliptical (or symmetric) distri-
butions, for example, the ¢, Cauchy, logistic, Laplace and uniform distribution.
The same approach was applied to a t-density in Nadarajah (2008) to construct
a skew-t-symmetric family, which includes the skew ¢-normal, skew ¢-Cauchy,
skew t-Laplace, skew t-logistic and skew ¢-uniform distribution. One interest-
ing case of this family is the skew #-normal (STN) distribution, which takes
the same set of parameters as the MST distribution, but model fitting is more
computationally feasible than the MST distribution. The STN distribution,
which was recently extended to the multivariate case in Lin et al. (2013), and
is discussed further in Section 4.3.
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3 Finite mixtures of skew normal and skew t-distributions

In the context of finite mixture models, the population density is assumed
to be a convex linear combination of component densities. A p-dimensional
random vector Y has a multivariate mixture distribution with g components
if its density can be written as

Fy; @) = 7 f(y; 0n), (14)
h=1

where f(y;0),) are the parametric component densities, 8}, is a vector con-
taining the unknown parameters in the hth component density, the 7, are the
nonnegative mixing proportions which sum to one, and ¥ is the vector of all
unknown parameters in the mixture model.

3.1 Mixtures of normal and ¢-distributions

One of the first and most frequently used mixture models is the normal mixture
model. It has become one of the most popular modelling tools due to its
wide applicability and ease of fitting via the EM algorithm (McLachlan and
Peel, 2000); see also Ganesalingam and McLachlan (1978) and McLachlan and
Basford (1988). As a more robust alternative to the normal mixtures, finite
mixture of ¢-distributions have also been widely applied to a variety of data
(McLachlan and Peel, 1998). We shall denote these two models by FM-MN
and FM-MT, respectively. Their densities are given by

) = mndp(ys iy, Zn), (15)
h=1
and .
) = wutp(y; by, X, vi). (16)
h=1

Estimation of the model parameters of the FM-MN and FM-MT models
are typically carried out by applying the expectation-maximization (EM) al-
gorithm (Dempster et al., 1977); see also McLachlan and Krishnan (2008).
Implementations are available in most mathematical and/or statistical soft-
ware, including R (R Development Team, 2011) and MATLAB.

3.2 Mixtures of skew normal distributions

One of the first attempts at using skew component densities in a mixture
model is the finite mixture of restricted skew normal distributions adopted
in Pyne et al. (2009a). Three different variants of the restricted MSN mix-
ture model were studied by Pyne et al. (2009a), Cabral et al. (2012), and
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Frihwirth-Schnatter and Pyne (2010), the latter from a Bayesian perspec-
tive. A discussion of these models and the EM algorithm for fitting them can
be found in Lee and McLachlan (2013c). For our purpose, the density of a
g-component restricted multivariate skew normal mixture model is given by

f(y,W):ZWh erSN(y;NhaEhaéh)7 (17)
h=1

where f.prsn denotes the p-dimensional restricted MSN density (2); that is,
we adopt the characterization as used in Pyne et al. (2009a). We refer to
(17) as the finite mixture of restricted multivariate skew normal (FM-rMSN)
distributions.

Similarly, for the unrestricted case, we shall use the notation FM-uMSN
for the finite mixture of unrestricted multivariate skew normal distribution.
This model was studied by Lin (2009), who gave an exact implementation of
the EM algorithm. The density of the FM-uMSN distribution is given by

f(y,w) - Zﬂh fuMSN(y;Nha Ehaéh)a (18)
h=1

where f,arsn refers to the density (10). To date, mixtures of more general
versions of skew normal distributions have not been studied, although the
non-mixture or single-component version of some extended skew normal distri-
butions have been considered in several application; for example, in Rodrigues
(2006).

3.3 Mixtures of skew t¢-distributions

Being a natural extension of the skew normal and ¢-mixture models, the skew ¢-
mixture model has recently received much attention. It is more robust against
outliers than the skew normal mixture, and retains reasonable tractability.
Several versions of restricted skew normal and skew t-mixtures have been
studied by a number of authors, including Pyne et al. (2009a), Frithwirth-
Schnatter and Pyne (2010), Basso et al. (2010), and Vrbik and McNicholas
(2012). It was shown in Lee and McLachlan (2013c) that they are essentially
adopting the same distribution, although using different parameterizations. In
the examples to follow, we refer to the characterization adopted in Pyne et al.
(2009a) as the restricted skew ¢ (FM-rMST) model, the density of which is
given by

g
;@) = frarsr(Ys g, T, On,vn), (19)
h=1

where frars7(.) refers to (5).



10 Sharon X. Lee, Geoffrey J. McLachlan

The unrestricted case has received much less attention, partly due to the
density involving a p-dimensional skewing function, making it difficult to han-
dle analytically. The unrestricted skew t-mixture, hereafter FM-uMST, has

density
g

F@®) =" 7n funast(Ys iy, Zns On, i), (20)
h=1
where fuars7 is the unrestricted MST density given by (11). This mixture
model was first studied by Lin (2010), and subsequently by Lee and McLachlan
(2011, 2013a).

3.4 Software for fitting mixtures of skew distributions

Algorithms for fitting the restricted and unrestricted multivariate skew nor-
mal and skew ¢-distributions are given in a number of contributions mentioned
above. Explicit expressions for the implementation of the EM algorithm for
the FM-rMSN model can be found in Pyne et al. (2009a), Frithwirth-Schnatter
and Pyne (2010), and Cabral et al. (2012), and software implementation in R
for the versions considered in Pyne et al. (2009a) and Cabral et al. (2012) are
available publicly from EMMIX-skew (Wang et al., 2009) and mixsmsn (Prates
et al., 2011), respectively. The EM algorithm for fitting their corresponding
FM-rMST distributions are also implemented in their packages. An alterna-
tive implementation of the FM-rMST model is presented in Vrbik and Mc-
Nicholas (2012), where the conditional expectations involved in the E-step
are expressed in terms of hypergeometric functions. For a discussion of the
connections between these implementations, the reader is referred to Lee and
McLachlan (2013c). For the unrestricted case, software implementation of the
FM-uMSN and FM-uMST models is given in the R package EMMIX-uskew (Lee
and McLachlan, 2013b).

4 Other non-normal mixture models

While the skew symmetric distributions plays a central role in the develop-
ment of non-normal models, there are other alternative asymmetric models
that have received some attention, in particular, the normal-inverse-Gaussian
distribution and the recently proposed shifted asymmetric Laplace distribu-
tion.

4.1 Multivariate normal-inverse-Gaussian distribution

The multivariate normal inverse Gaussian (MNIG) distribution belongs to the
generalized hyperbolic (GH) class (Barndorff-Nielsen, 1977). It can be obtained
as a mean-variance mixture of normal distributions with an inverse Gaussian
mixing distribution. As a parametric family with five parameters, the MNIG
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distribution can take a range of shapes with arbitrary degrees of skewness and
heaviness of tails. Let Y be a p-dimensional random vector. Then Y has a
MNIG distribution if, conditional on a scalar inverse Gaussian variable W, Y
has a multivariate normal distribution. More formally, we can write,

Y |w~ Ny(pp+wAX wX),

W~ IG(E, 0),

where IG(€,0) denotes the inverse Gaussian distribution with parameters &
and o, and X is p x 1 skewness parameter. It follows that the density of the
MNIG distribution is given by

p+1

2 T :
by [VEHA ZA o+ A (Y-p)

funra(y;m, X, 6,0) = 2= (5o ’/T\/CW
Kep (VE NN W) @)

where d(y) is defined as in (5), and K,.(.) denotes the modified Bessel func-
tion of the third kind of order r. The parameters g and X' have their usual
meanings, ¢ is a scalar parameter that affects the tails of the distribution, and
o affects the scale of the distribution. Note that when £ and ¢ tend to infinity,
the MNIG distribution approaches the multivariate normal distribution.

The finite mixture of MNIG distributions, studied by Karlis and Santourian
(2009), has density given by

g
) =" wnfunic(y; iy, Zn, Ay En, on), (22)
h=1

where the 7, are the mixing proportions as defined previously, and ¥ contains
all the unknown parameters of the model. The ML estimates of the parameters
of the model (22) can be obtained via the EM algorithm, with closed-form E-
and M-steps involving modified Bessel functions.

4.2 Multivariate shifted asymmetric Laplace distribution

Mixtures of shifted asymmetric Laplace (SAL) distributions were recently in-
troduced as another alternative to mixtures of skew elliptical distributions.
The SAL distribution is a generalization of the Laplace distribution, and a
limiting case of the generalized hyperbolic (GH) distribution (Kotz et al.,
2001). Its density is given by

200" X (y—p) ( d(y) ) =2
2m:|Xz \2+aTX 'a

K2y <\/(2 + aTzla)d(y)> , (23)

fusac(y;p, ¥, o) =
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where p is p-dimensional location vector, X' is a p X p covariance matrix, and
a is a p-dimensional vector controlling the skewness of the MSAL distribution
(Franczak et al., 2012). A finite mixture of MSAL (FM-MSAL) distributions
has density

g
F;®) =Y mnfarsan (y; iy, Zn, o), (24)
h=1

where ¥ is the vector containing all the unknown parameters of the model.
One advantage of employing the MSAL density as component distributions
of the finite mixture model is that ML estimation of the parameters of (23)
can be obtained in a straightforward manner via the EM algorithm, involving
relatively simple expressions for the E- and M-steps.

4.3 Mixtures of skew t-normal distributions

The fitting of an (unrestricted) multivariate -mixture model can become quite
slow when p is large, due to the computation time involved in calculating the
multivariate ¢-distribution function. In view of this, Lin et al. (2013) proposed
a computational more feasible alternative, the (restricted) multivariate skew
t-normal (rMSTN) distribution, where the skewing function in (11) is replaced
by a (univariate) normal distribution function. Its density is given by

1

erSTN(y; M, 27 )‘7 l/) = 2tp(y7 M, 27 V)él (ATZ'*z (y - IJ‘))’ (25)

and the corresponding mixture model is given by

g
F;®) = wnfarson (U s Zno An, vn), (26)
h=1

where p, X', and v have the same meaning as in the MST distribution, and A
is p-dimensional parameter controlling the skewness of the distribution. With
this formulation, considerable time is saved in the implementation of the E-step
of the EM algorithm for fitting mixtures of rMSTN distributions. Similar to
the EM algorithm for fitting FM-rMST distributions, closed-form expressions
can be obtained for the E- and M-step, involving evaluation of distribution
functions in one-dimension only.

The rMSTN distribution shares the same set of parameters as the rMST
and uMST distributions (note that A can be expressed in terms of §), and
was shown in Lin et al. (2013) to have competitive performance to the MST
mixture model.
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4.4 Mixtures of generalized hyperbolic distributions

The generalized hyperbolic (GH) distribution has become a popular model
for describing financial data. It has also been used widely in modeling mass-
size particle data; see, for example, Jones and McLachlan (1989) and the ref-
erences therein. This family of GH distributions was originally introduced
by Barndorff-Nielsen (1977) as a normal variance-mean mixture distribution
with a mixing distribution given by a generalized inverse Gaussian (GIG) dis-
tribution. The GH family encompasses a number of non-normal distributions
as special or limiting cases, including the aforementioned MING and MSAL
distributions, the hyperbolic distribution, and another variant of the skew ¢-
distribution known as the generalized hyperbolic skew ¢t (GHST) distribution.
Note that the GHST distribution is not equivalent to the rMST distribution,
although it can be considered as a restricted form of skew distribution in the
sense that the latent skewing variable is univariate.

The traditional characterization of the six-parameters multivariate general-
ized hyperbolic distribution (McNeil et al., 2005) suffers from an identifiability
issue. To work around this, Browne and McNicholas (2013) considered an al-
ternative parameterization by setting the scale parameter to a fixed value,
resulting in a four-parameter density given by

"I L dy) G
(2m)%| 3|2 <w + aT2—1a>
Ky p (\/(w +al2 " a) (w+ d(y)))
Ky (w) ’

flyip, X, a,\w) =

(27)

where d(y) = (y — u)" X' (y — ). We shall refer to this by the multivari-
ate generalized hyperbolic (MGH) distribution. The corresponding mixture
density is given by

)
f(y7!p) = Zﬂ-thGH(y;l"L}u Eh,ah,Wh,Ah)- (28)
h=1

The EM algorithm for the FM-MGH model presented in Browne and McNi-
cholas (2013) does not exist in closed form.

4.5 Hierarchical mixtures of multivariate ¢-distributions

In a hierarchical mixture distribution, or mixture of mixture distributions,
each component density is modelled by a mixture model, thus allowing it
to capture asymmetric shapes; see, for example, the hierarchical mixtures of
experts (HME) proposed by Jordan and Jacobs (1992) and the two-level model
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by Cald et al. (2013). The density of a hierarchical (two-level) mixture of ¢
(HMT) distributions (Nguyen and Wu, 2013) takes the form

g
fly;¥) = Z Thfrv—mr(Y; Ph),

h=1
9 9i

= Zﬂh Zﬂhitp(yQuhmZhiyVhi)v (29)
h—1 i=1

where 7}, is the mixing proportion of the higher-level mixture model, and 7y; is
the conditional probability of an observation y belonging to the ith component
of the lower-level mixture model given that it belongs to the hth higher-level
component. In (29), each higher-level component density is modelled by mul-
tiple multivariate t-distributions. Note that the number of lower-level compo-
nents g; can vary across the higher-level components, but for the example in
Section 5.6, we fix g; = 2 as used in Nguyen and Wu (2013). It should be also
noted that fitting a FM-HMT is intrinsically different to fitting a traditional
t-mixture model with ¢* > g components and then performing some merging
procedure. The hierarchical structure of the FM-HMT model automatically
registers each observation to a higher-level component.

For ease of reference, we include a summary of the above-mentioned non-
normal distributions in Table 1.

5 Applications
5.1 Clustering flow cytometric data

We consider the clustering of a quadvariate dataset derived from a hematopoi-
etic stem cell transplant (HSCT) experiment, collected by the British Columbia
Cancer Agency. These data contain close to 10,000 samples, each stained with
four fluorescent markers. Pairwise plots of the markers for this dataset are
displayed in the left lower panels of Figure 1, where cells are displayed in four
different colours according to manual expert clustering.

We compared the performance of four multivariate mixture models, namely,
FM-uMST, FM-rMST, FM-MNIG, and FM-MSAL in assigning cells to the
expert’s clusters. Manual gating identified four clusters in this sample case.
We therefore applied the algorithm for fitting each model with the number
of components g predefined as 4. For the skew symmetric mixture models,
the algorithms were initialized with a number of different initial labels given
by k-means clustering, and the set of parameters associated with the high-
est relative (initial) log-likelihood is selected to start the EM iterations. For
the FM-MSAL and FM-MNIG models, the initialization strategy described
by their authors were used. The algorithms were terminated according to the
stopping criteria described by their authors; see Table 1 for references.
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To assess the performance of these three algorithms, we calculated the rate
of misclassification against the benchmark expert clustering, which is taking
as being the ‘true’ class membership. This is measured by choosing among
the possible permutations of the cluster labels the one that gives the lowest
value. A lower misclassification rate indicates a closer match between the ‘true’
labels and the cluster labels given by the candidate algorithm. We also report
here another popular measure of clustering agreement between two clusters,
namely, the adjusted rank index (ARI) (Hubert and Arabie, 1985). An ARI
equal to 1 corresponds to an exact match between the two set of labels, while
an ARI value of 0 indicates non-agreement between each pair of points. Note
that in the calculation of misclassification rate and the ARI, dead cells were
removed before computing these measures.
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Table 1 Summary of the non-normal mixture distributions in Section 3 and 4.

9T

UR[UORTOIN [ £oIfoor) ‘9o 'YX uoIreys



Model-based clustering and classification with non-normal mixture distributions 17

Model FM-uMST FM-rMST FM-MNIG FM-MSAL
misclassification rate 0.0034 0.0042 0.3204 0.0052
ARI 0.9781 0.9782 0.5469 0.9751

Table 2 Clustering performance of various multivariate mixture models on the HSCT
dataset. Cells identified as dead cells were not included in the calculation of the error rate.

Algorithm flowKoh  flowClust flowMeans FLOCK  ADICyt
misclassification rate 0.2218 0.0445 0.0086 0.0138 0.0111
ARI 0.7177 0.9581 0.9695 0.9549 0.9592

Table 3 Clustering performance of various other automated gating algorithms on the HSCT
dataset. Cells identified as dead cells were not included in the calculation of the error rate.

The summary of clustering results of the algorithms are listed in Table
2. The upper right panels of Figure 1 show the classification results of FM-
uMST, with different colours indicating different clusters. The ‘true’ clustering
is shown in the lower left panels of Figure 1. We observe from Table 2 that
the skew t-mixture models achieved the lowest misclassification rate and the
highest ARI, indicating a close match to the true clustering. The FM-rMST
and FM-MSAL models also gave reasonable clustering results, achieving only
slightly higher misclassification rate and lower ARI than the FM-uMST model.

For comparison, we applied various automated gating algorithms to the
HSCT dataset, including flowkoh (Nikolic, 2010), flowClust (Lo et al., 2009,
2008), flowMeans (Pyne et al., 2009b), FLOCK (Qian et al., 2010), and ADI-
Cyt (Aghaeepour et al., 2013). The procedure flowKoh, developed by the
British Columbia Institute of technology, employs the self-organizing map
(SOM) to cluster and visualize high-dimensional data. The procedure flow-
Clust performs the fitting of multivariate ¢t-mixture model after Box-Cox trans-
formation. The procedure flowMeans adopts the traditional k-means algorithm
to perform clustering, and applies a change-point detection algorithm to de-
termine the number of populations. The procedure FLOCK, short for Flow
Clustering without K, uses a grid-based partitioning and merging scheme for
the identification of cell clusters, and determines the number of clusters by
examing the density gap between the partitioned data regions. The last pro-
cedure considered, ADICyt, is a commercial software designed for fast and
effective analysis of flow cytometric data. The algorithm mimics manual gat-
ing by hierarchically splitting the data in a sequence of optimally selected
2D-projections, then applies an entropy-based merging scheme to obtain a
clustering of the data. The misclassification rate and ARI values are listed
in Table 3. It can be observed that mixtures of skew-elliptical distributions
achieve the highest ARI and the lowest misclassification error. A plot of the
fitted contours of the multivariate skew mixture models also show that these
models can capture the shape of the data very well.
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FL4.H

Fig. 1 HSCT dataset: Scatter plot of F11.H to FL4.H in four colours, corresponding to four
clusters. Lower left panels: clustering given by FM-uMST; Upper right panels: clustering
given by manual experts.

5.2 Australian Institute of Sports data

Our second example on real data concerns the Australian Institute of Sport
(AIS) data, a dataset analyzed by Cook and Weisberg (1994) that has since
been used extensively in the literature. These data contain 11 biomedical mea-
surements on 202 Australian athletes (100 female and 102 male), of which we
shall consider three variables here, namely, the body mass index (BMI), lean
body mass (LBM), and the percentage of body fat (Bfat).

We fitted two-component mixtures of MN, MT, rMSN, rMSTN, rMST,
uMST, MSAL, MNIG, MGH distributions to the data. The initial values were
generated according to the strategy described by their authors. Table 4 lists
the number of misclassified units against the true clustering (male and female)
for each model. Figure 2 shows the contours of the fitted density of each
model in two of the variables, LBM and Bfat. It can be observed from Table
4 that both the FM-uMST and the FM-MNIG models have misallocated four
samples, the least number of misallocations in this case, with the other models
yielding around double this number. However, the fitted contours depicted
in Figure 2 reveal that the fitted contours of the FM-uMST model would
appear to be more reasonable than the density estimated by the FM-MNIG
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Model number of misclassified units
FM-MN 8
FM-MT 9
FM-rMSN 9
FM-rMSTN 7
FM-rMST 7
FM-uMST 4
FM-MSAL 13
FM-MNIG 4
FM-MGH 8

Table 4 Clustering performance of various multivariate skew mixture models on the AIS
dataset.

FM-MN FM-MT FM-rMSN FM.rMSTN

s

@ ®) © @

FM-MST FM-uMST FM-MNIG FM-MSAL
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© ) E) ®

Fig. 2 AIS dataset: Contour plots of the fitted two-component mixture models on the
trivariate data. Scatter plot of LBM and Bfat is given in two colours, red dots for male
and blue triangles for female; (a) the fitted mixture contour of FM-MN; (b) contour plot
of the fitted FM-MT model; (c) the density contours of the fitted FM-rMSN model; (d)
the contours of the densities of the fitted FM-rMSTN model; (e) the fitted contours of the
FM-rMST model; (f) the density contours of the fitted FM-uMST model; (g) the contours of
the densities of the fitted FM-MNIG model (h) contour plot of the fitted FM-MSAL model.

model, although both achieve the same misclassification rate. The restricted
asymmetric distributions (FM-rMST, FM-rMSTN, FM-MGH) yields similar
results, with 7 or 8 misclassified observations.

5.3 Bankruptcy data

We consider a subset of the bankruptcy data studied by Altman in 1968 (Alt-
man, 1968). The original sample consists of annual financial data of 66 Ameri-
can firms recorded in the form of ratios. Half of the selected firms had filed for
bankruptcy. The data were collected approximately two years prior to their
bankruptcy, and the other 33 samples were randomly chosen from those that
were financially sound. Altman selected five financial variables from a list of 22
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Model number of misclassified firms BIC
FM-rMSN 16 1340.51
FM-uMSN 13 1352.47
FM-rMST 14 1335.00
FM-uMST 2 1336.08

Table 5 Clustering performance of various restricted and unrestricted multivariate mixture
models on the bankruptcy dataset.

ratios that are potentially significant in predicting bankruptcy. For this illus-
tration, we consider two of these ratios, namely, the ratio of retained earnings
(RE) to total assets, and the ratio of earnings before interests and taxes (EBIT)
to total assets. The goal here is to predict whether a firm went bankrupt based
on the two variables. This bivariate sample (Figure 3a) is apparently bimodal
and appears to be asymmetric; hence we fit a two-component skew mixture
model to the data. To compare the performance of restricted and unrestricted
skew mixture models, we fitted finite mixtures of restricted multivariate skew
normal (FM-rMSN) distributions, finite mixtures of (restricted) multivariate
skew normal (FM-uMSN) distributions, finite mixture of restricted multivari-
ate skew t (FM-rMST) model, and finite mixtures of unrestricted multivariate
t (FM-uMST) distributions.

The results for the multivariate mixture models are presented in Table
5. Also reported are the BIC values of the fitted models. The contours of the
fitted mixture densities FM-rMSN, FM-uMSN, FM-rMST, and FM-uMST are
depicted in Figures 3b to 3f, respectively. To better demonstrate the shape of
the fitted models, the estimated densities of each component are displayed
rather than the mixture contours. It can be observed that heavy-tailed models
have a lower number of misclassified firms compared to their respective skew
normal mixture models. It can also be observed from Table 5 that improved
clustering can be achieved with the unrestricted model. This is also evident
in Figure 3 where they adapt much more closely the shape of the clusters,
especially the cluster corresponding to the solvent firms (blue cluster) for which
the restricted skew mixture distributions find difficult to model. It is interesting
to observe that the unrestricted skew ¢t-mixture model performs much better
than the other three models for this case, with the number of incorrectly
classified firms is lowered to two. We report that the other models with non-
normal components did not achieve a comparable result to the FM-uMST
model in this example (having 24 or more misclassified firms), the results of
which are omitted here.

5.4 Estimation of Value-at-Risk

The Value-at-risk (VaR) is frequently used in financial risk management as a
measure of the risks of investment loss. It is given by the predicted maximum
loss over a specified holding period given a specified confidence level. More
formally, consider a portfolio of p assets returns Yi, ..., Y, and let Yp =
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Fig. 3 Bankruptcy dataset: Contour plots of the fitted two-component mixture models on
RE and EBIT. (a) Scatter plot of RE and EBIT in two colours, red dots for bankrupted firms
and blue triangles for solvent firms; (b) the fitted component contours of the FM-MN model;
(c) the contours of the component densities of the fitted FM-MT model; (d) the component
density contours of the fitted FM-MSN model; (e) contour plot of the component densities
of the fitted FM-uMST model.

‘;-’:1 Y; be the (aggregate) return. Then the VaR is defined to be the negative
of the largest value of y, satisfying

pr{Yr < ya} <, (30)

where « is the significance level. Thus the VaR can be interpreted as the
negative of the quantile of order a of the portfolio’s (hypothetical) return
distribution F'g; that is, VaR can be expressed as

~Fpl(a). (31)

Note that the negative sign preceding F'p 1(cu) ensures the VaR is a positive
value, that is, a positive amount of ‘losses’. For example, if « is 1% and the
time period is one day, then a VaR of one million dollars can be interpreted as
meaning that the probability of incurring a loss in excess of one million dollars
for this portfoilio over this day is bounded by 0.01.

Current analytical calculations of VaR typically assume the distribution
of the portfolio return to be a normal or log-normal distribution, which is
rarely true in reality. It is well known that the historical return data exhibits
heavy tails and skewness, which results in underestimation and overestimation
of the VaR at high and low confidence levels, respectively, when a normal
distribution is assumed. It is thus natural to speculate that fitting mixtures
of skew distributions can potentially improve the accuracy of VaR estimation,
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as shown by the promising results in an example given by Soltyk and Gupta
(2011).

In this example, we consider a portfolio of three shares listed on the Aus-
tralian Stock exchange (ASX). The data contain monthly returns for the
shares Woolworths Limited (WOW), Woodside Petroleum Limited (WPL),
and Westfield Group (WDC) for the period 1st January 2000 to 23rd Novem-
ber 2012. The return of each share is based on the adjusted closing price, and
results are recorded as a percentage. The summary statistics of the stock re-
turns suggest that the data do not satisfy normality assumption, and skewness
and excess kurtosis are present in all three returns.

We fitted mixtures of normal, skew normal, skew ¢, skew ¢-normal, and
shifted asymmetric Laplace distributions to this trivariate dataset. For this
illustration, the mixture models are fitted with ¢ = 1 to 4 components, and
the model with the lowest BIC is selected. To estimate the VaR based on the
fitted models, the simulation approach is used (see Soltyk and Gupta (2011) for
an example using the FM-uMSN model). In brief, a large sample is generated
from the fitted model, and an estimate of the VaR is given by the appropriate
quantile of the total assets return of the simulated sample. The first row of
Table 7 gives the estimated 1% VaR value given by the five models. Given
that the empirical or historical VaR calculated from the data is $26.92, it
can be observed that the FM-uMST model gives the closest estimate. Both
the normal and skew normal mixture models underestimated the VaR, while
the other models overestimated it. Table 7 supports the results in Soltyk and
Gupta (2011), which presented an example to show that the incorporation of
a skewness parameter can provide a more accurate fit to stock returns. We
observe here that further improvements can be made by fitting mixtures with
asymmetric heavy-tailed component distributions.

There are various techniques proposed for evaluating the accuracy of a VaR
measure. We shall consider two of the most common statistical tests available,
namely the unconditional coverage test (or backtesting) and the (Markov)
independence test. The backtest developed by Kupiec (1995) is one of the
earliest and most widely used tests for VaR, focusing on the unconditional
coverage property of the VaR estimate model. This test is concerned with
whether or not the observed violation rate is statistically equal to the expected
rate. Specifically, the test examines the proportion of violations, given by r =
v/n, where v denotes the number of violations in the data and n is the number
of observations, and determine whether it is statistically different from the
expected rate of a x 100% of the sample. A violation occurs if the actual loss
exceeds the VAR as implied by the model for the given level of significance.
Under the null hypothesis that the model is adequate, v follows a binomial
distribution, leading to a likelihood ratio (LR) test statistic of the form

LRy = 2log [(11:;)" (;w (32)
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which has a chi-squared distribution with one degree of freedom. Hence the
test would reject a VaR model if it generates too many or too few violations.
The backtest, however, cannot detect whether a VaR model satisfies the inde-
pendence property.

In view of this, Christoffersen (1998) proposed a more elaborate test, which
examines whether or not a VaR violation process is serially dependent. The
underlying assumption is that, for a good and accurate VaR model, the prob-
ability of observing a VaR violation should not depend on whether or not a
violation has occurred the previous observation, that is, the sequence of vi-
olations should be independently distributed. The LR test statistic for the
Independence test can be expressed as

)N1+N2 N3+Ny

(1—-gq q
(1—q)Mg* (1 - 3?)g3"

where N7 denotes the number of observations with no violation followed by
no violation, Ny denotes the number of observations with violation followed
by no violation, N3 denotes the number of observations with no violation fol-
lowed by a violation, and N4 denotes the number of observations in which a
violation has occurred followed by another violation. The proportions ¢, ¢,
and ¢o are defined, respectively, as the proportion of observations in which a
violation has occurred, the proportion of observing a violation given no viola-
tion has occurred in the previous observation, and the proportion of observing
a violation given a violation had occurred in the previous observation. More
formally, they are given by ¢ = N1+%2i%§+N4’ Q= N1ﬁ3N3, and g = ﬁ
The null hypothesis of ¢ = ¢ is tested against the alternative of first-order
Markov independence, and the LR statistic (33) again has a x? distribution.

The backtest and the independence test can be combined to give a joint
test of the adequacy of the VaR forecast in terms of the unconditional coverage
and independence properties. The relevant test statistic is simply the sum of
the two test statistics (32) and (33) which, under the null hypothesis, has a
chi-squared distribution with two degrees of freedom.

In addition, we consider the exceeding ratio (ER) (Choi and Min, 2011),
defined as the ratio of the estimated number of violations over the expected
number of violations. An ER value greater than one indicates the model is
under-forecasting the VaR, and an ER value less than one indicates an over-
forecast VaR estimate. The results from Table 7 suggest that all the models
considered in this example did not fail the backtesting and independence test,
but the FM-uMST, FM-MSTN and FM-MSAL models predict the risk more
accurately. The exceeding ratio ranks the FM-uMST model best, followed by
the FM-rMSTN and FM-MSAL models which performed equally well.

LR;4p = —2log

(33)

5.5 Seeds data

We now consider a discriminant analysis application. The seeds data contains
seven geometric measurements taken on X-ray images of 210 wheat kernels
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WOW WPL WDC
minimum -16.58 -22.70 -14.63
maximum 12.22 22.29 19.91

mean 0.97 0.92 0.68
std. dev. 5.37 7.65 5.50
skewness -0.49 -0.29 0.25
kurtosis 3.04 3.90 3.94

Table 6 Summary statistics of the monthly returns of three Australian stocks for year 2000
to 2012.

FM-MN  FM-rMSN  FM-uMST FM-MSTN FM-MSAL FM-MGH
VaR 26.08 26.00 27.10 27.78 28.91 29.96
exceeding ratio 1.93 1.93 1.29 0.65 0.65 0.65
backtesting 0.30 0.30 0.72 0.63 0.63 0.63
independence 1.00 1.00 1.00 0.96 0.96 0.96

Table 7 Performance of various skew mixture models on estimating the 1% VaR of three
Australian stocks. The backtesting and independence values refers to the p-value of the
respective tests. The empirical VaR is $26.92.

Model MCR ARI

FM-MN 0.1904  0.5536
FM-rMSN 0.2222  0.5103
FM-rMST 0.1904  0.5488
FM-rMSTN | 0.1746  0.6005
FM-uMST | 0.1587 0.6328
FM-MNIG | 0.1904 0.5488
FM-MSAL | 0.2381 0.5371
FM-HMT 0.2698  0.4493
FM-MGH 0.1904  0.5488

Table 8 Comparison of various mixture models on the classification of the seeds data.

(Charytanowicz et al., 2010). Each of the seeds belongs to one of three differ-
ent varieties of wheat, namely, Kama, Rosa, and Canadian. For this analysis,
we perform model-based classification of the data with g = 3 based on the two
measurements perimeter and asymmetry. The algorithms were trained on 147
samples (70%) randomly selected from the dataset. The classification perfor-
mance (MCR and ARI) of the FM-MN, FM-rMSN, FM-rMST, FM-rMSTN,
FM-uMST, FM-MNIG, FM-MSAL, FM-MHT, and FM-MGH models are re-
ported in Table 8. The cross-tabulations of the true and predicted classifica-
tions for the best two model (FM-uMST and FM-rMSTN) and their scatter
plots are given in Figure 4. These results indicates that unrestricted mixture
model outperforms the restricted model and other models in this example.

5.6 Image Segmentation
In this example, we consider the segmentation of real-world natural images

from the Berkeley’s image segmentation dataset (Meignen and Meignen, 2006).
The original image is shown in Figure 5(a), and the hand segmented image
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Fig. 4 Classification results of the best two models on the seeds data. Upper panels: scatter
plot of the clustering results, where the colors represents the predicted class. Lower panels:
cross-tabulation of true and predicted class memberships.

by human is given in Figure 5(e) which is taken as the ground truth. For this
example, the objective is to segment each pixel of the image into two labels —
‘background’ and ‘foreground’. A visual comparison of the segmentation results
of the FM-MN, FM-rMSN, FM-rMST, FM-HMT, FM-MNIG and FM-MGH
models (shown in Fig 5(b)-(d), (f)-(h) respectively) shows that the FM-rMST
and FM-MGH models are quite good. Observe that this two models produced
relatively sharp edges between the ‘background’ and ‘foreground’, and the
‘noise’ around each corner of the image had a lower impact on the segmentation
result. To provide a quantitative comparison of the segmentation result given
by the various mixture model, we report the miscalssification rate (MCR)
(Zhang et al., 2001), Rand Index (RI) (Rand, 1971), Variation of Information
(VI) (Meild, 2005), and Global Consistency Error (GCE) (Martin et al., 2001)
for each algorithm in Table 9. Note that for MCR, VI and GCE, a lower value
indicates a closer match between the ground truth and the segmented image
by an algorithm. For RI, a higher value is preferred. As can be observed in
table 9, the result of the FM-rMST model has the highest RI and lowest MCR,
VI and GCE. The segmentation accuracy of the FM-MGH model is quite close
to that given by the FM-rMST model. A closer inspection of the ‘branches’
area on the far right of the segmented images reveal that the FM-rMST model
is slightly better at distinguishing noises in this region.



26 Sharon X. Lee, Geoffrey J. McLachlan

Model ‘ MCR RI VI GCE
FM-MN 0.1274  0.7787  0.1535 0.8247
FM-rMSN | 0.0748 0.8615 0.1089 0.6061
FM-rMST | 0.0116 0.9699  0.0295 0.2153
FM-MNIG | 0.2177 0.6606 0.2044  1.0892
FM-HMT | 0.0619 0.8851 0.0933 0.5232
FM-MGH | 0.0148 0.9648 0.0340 0.2407

Table 9 Comparison of image segmentation result on a natural colour image
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Fig. 5 Segmentation of natural colour image from the Berkeley’s image segmentation data
set (42049). Segmented image using various mixture model. (a) Original image; (b) segmen-
tation result using the multivariate normal mixture model; (c) segmentation result using
the multivariate skew normal mixture model; (d) segmentation result using the multivariate
skew t-mixture model; (e¢) human segmentation; (f) segmentation result using the multivari-
ate normal-inverse-Gaussian mixture model; (g) segmentation result using the multivariate
hierarchical (two-level) mixture of ¢t-distributions; (h) segmentation result using the multi-
variate generalized hyperbolic distribution.

6 Concluding Remarks

In this paper, we have discussed some of the more popular non-normal mixture
models, and compared their performance on four real datasets. It has been
observed from the examples considered here that, in general, the unrestricted
models can improve the clustering results in comparison to their respective
restricted models. They can also adapt to some unusual asymmetric shapes
better than their restricted counterparts, for example, the shape of the cluster
of solvent firms in the Bankruptcy data. We note that the restricted models
do not seem to be able to produce this type of shape, which may be due to
the way the skewness parameter is characterized in these models.

However, there is a higher computational cost involved in fitting the un-
restricted mixture models. With the more general form of skew distributions,
the conditional expectations involved in the E-step of the EM algorithm may
not be able to be expressed in closed form. Numerical procedures for multi-
dimensional integration can be computationally expensive, rendering some of
the unrestricted models prohibitive in applications involving high-dimensional
datasets. For example, consider the bivariate bankruptcy dataset example in
Section 5.3, the average CPU time per iteration for the unrestricted skew-
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normal mixture model is approximately double that of the restricted model,
and the FM-uMST model is 1.5 times slower than the FM-rMST model in
this example. In the trivariate AIS dataset example, the ratio between the
computation time of the unrestricted and restricted models increase to 10 and
27 times, respectively, for the MSN and MST case. Future research is needed
to look at developing faster algorithms for the fitting of mixtures of general
skew distributions, or strategies for making them more practically affordable
in higher dimensional applications.

Some researchers have considered mixtures of less well-known asymmetric
distributions, such as the MSAL and MNIG distributions discussed in Section
4. These distribution can have a closed-form EM algorithm for model fitting,
as in the case of FM-MSAL and FM-MNIG, where the EM-steps involve rel-
atively simpler expressions. They thus have the potential to provide feasible
alternatives to skew symmetric mixture models. In particular, they can be used
to provide possible initial partitions of the data for the subsequent application
of more computationally intensive models.
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