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Abstract—Driven by flexibility, performance and cost con-
straints of demanding modern applications, heterogeneous
System-on-Chip (SoC) is the dominant design paradigm in the
embedded system computing domain. SoC architecture and
heterogeneity clearly provide a wider power/performance scal-
ing, combining high performance and power efficient general-
purpose cores along with massively parallel many-core-based
accelerators. Besides the complex hardware, generally these
kinds of platforms host also an advanced software ecosystem,
composed by an operating system, several communication
protocol stacks, and various computational demanding user
applications. The necessity to efficiently cope with the huge
HW/SW design space provided by this scenario makes clearly
full-system simulator one of the most important design tools.
We present in this paper a new emulation framework, called
VirtualSoC, targeting the full-system simulation of massively
parallel heterogeneous SoCs.

I. INTRODUCTION

Performance modeling plays a critical role in the design,
evaluation, and development of computing architecture of
any segment, ranging from embedded to high performance
processors. Simulation has historically been the primary
vehicle to carry out performance modeling, since it allows
for easily creating and testing new designs several months
before a physical prototype exists. Performance modeling
and analysis are now integral to the design flow of mod-
ern computing systems, as it provides many significant
advantages: i) accelerates time-to-market, by allowing the
development of software before the actual hardware exists;
ii) reduces development costs and risks, by allowing for
testing new technology earlier in the design process; iii)
allows for exhaustive design space exploration, by evaluating
hundreds of simultaneous simulations in parallel.

High-end embedded processor vendors have definitely
embraced the heterogeneous architecture template for their
designs as it represents the most flexible and efficient de-
sign paradigm in the embedded computing domain. Parallel
architecture and heterogeneity clearly provide a wider pow-
er/performance scaling, combining high performance and
power efficient general-purpose cores along with massively
parallel many-core-based accelerators. Examples and results
of this evolution are AMD Fusion [1], NVidia Tegra [2] and
Qualcomm Snapdragon [3]. Besides the complex hardware,
generally these kinds of platforms host also an advanced
software eco-system, composed by an operating system,
several communication protocol stacks, and various com-
putational demanding user applications.

Unfortunately, as processor architectures get more hetero-
geneous and complex, it becomes more and more difficult
to develop simulators that are both fast and accurate. Cycle-
accurate simulation tools can reach an accuracy error below
1-2%, but they typically run at a few millions of instructions

per hour. The necessity to efficiently cope with the huge
HW/SW design space provided by this target architecture
makes clearly full-system simulator one of the most im-
portant design tools. Clearly, the use of slow simulation
techniques is challenging especially in the context of full-
system simulation. In order to perform an affordable pro-
cessor design space exploration or software development
for the target platform, trade-off accuracy for speed is thus
necessary by implementing new virtual platforms that allow
for faster simulation speed at the expense of modeling fewer
micro-architecture details of not-critical hardware compo-
nents (like the host processor domain), while keeping high-
level of accuracy for the most critical hardware components
(like the manycore accelerator domain).

We present in this paper VirtualSoC, a new virtual plat-
form prototyping framework targeting the full-system sim-
ulation of massively parallel heterogeneous system-on-chip
composed by a general purpose processor (i.e. intended as
platform coordinator and in charge of running an operating
system) and a many-core hardware accelerator (i.e. used to
speed-up the execution of computing intensive applications
or parts of them). VirtualSoC exploits the speed and flexibil-
ity of QEMU, allowing the execution of a full-fledged Linux
operating system, and the accuracy of a SystemC model for
many-core-based accelerators.

The specific features of VirtualSoC are:

• Since it exploits QEMU for the host processor em-
ulation, unmodified operating systems can be booted
on VirtualSoC and the execution of unmodified ARM
binaries of applications and existing libraries can be
simulated on VirtualSoC.

• VirtualSoC enables accurate manycore-based acceler-
ator simulation. We designed a full software stack
allowing the programmer to exploit the hardware accel-
erator model implemented in SystemC, from within a
user-space application running on top of QEMU. This
software stack comprise a Linux device driver and a
user-level programming API.

• The host processor (emulated by QEMU) and the
SystemC accelerator model can run in an asynchronous
way, where a non-blocking communication interface
has been implemented enabling parallel execution be-
tween QEMU and SystemC environments.

• Beside the interface between QEMU and the SystemC
model, we also implemented a synchronization protocol
able to provide a good approximation of the global
system time.

• VirtualSoC can be also used in stand-alone mode,
where only the hardware accelerator is simulated, thus
enabling accurate design space explorations.
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To the best of our knowledge, we are not aware of
any existing public domain, open source simulator that
rivals the characteristics of VirtualSoC. This paper focuses
on the implementation details of VirtualSoC and evaluates
the performance of various benchmarks and presents some
example case studies using VirtualSoC.

The rest of the paper is structured as follows: in Section
II we provide an overview of related work, in Section III we
present the target architecture, focusing on the many-core ac-
celerator in Section IV. The implementation of the proposed
platform is discussed in Section V. Software simulation
support is described in Section VI, finally experimental
results and conclusions are presented in Sections VII and
VIII.

II. RELATED WORK

The importance of full-system emulation is confirmed by
the considerable amount of effort committed by both indus-
try and research communities in developing such designing
tools as more efficient as possible. We can cite several
examples, like Bochs [4], Simics [5], Mambo [6], Parallel
Embra [7], PTLsim [8], AMD SimNow [9], OVPSim [10]
and SocLib [11].

QEMU [12] is one of the most widely used open-
source emulation platform. QEMU supports cross-platform
emulation and exploits binary translation for emulating the
target system. Taking advantage of the benefits of binary
translation, QEMU is very efficient and functionally correct,
however it does not to provide any accurate information
about hardware execution time. In [13] authors have im-
plemented program instrumentation capabilities to QEMU
for user application program analysis. This work has only
been done for the user mode of QEMU and it cannot
be exploited for system performance measurements (e.g.
device driver). Moreover, profiling based on program in-
strumentation can heavily change the execution flow of the
program itself, leading to behaviors which will never happen
when executing the program in the native fashion. Authors
in [14] have instead presented pQEMU, which simulates
the timing of instruction executions and memory latencies.
Instruction execution timings are simulated using instruction
classification and weight coefficients, while memory latency
is simulated using a set-associative cache and TLB simulator.
This kind of approach can lead to a significant overhead due
to the different simulation stages (i.e. cache simulation, TLB
simulation), and even in this case the proposed framework
can only run user-level applications without the support of
an operating system.

QEMU lacks also of any accurate co-processors simu-
lation capabilities. Authors in [15] interfaced QEMU with
a many-core co-processor simulator running on an nVidia
GPGPU [16]. Despite the co-processor simulator described
in [16] is able to simulate thousands of computing units
connected through a NoC, it runs at a high level of abstrac-
tion and does not provide precise measurements from the
simulated architecture. Moreover authors do not address the
problem of timing synchronization between QEMU and the
co-processor simulation.

Other works have been mainly concentrated on enabling
either cycle accurate instruction set simulators for the
general purpose processor part or SystemC-based simple
peripherals, without considering complex many-core-based
accelerators [17].

When interfacing QEMU with the SystemC framework,
several implementation aspects and decisions need to be
accurately taken into account, since development choices
can limit and constraint the performance of the overall
emulation environment. The optimal implementation should
not possibly affect efficiency, flexibility and scalability.

Establishing the communication between QEMU and Sys-
temC simulator through inter-process communication socket
is another approach. Authors in [18] use such facility be-
tween a new component of QEMU, named QEMU-SystemC
Wrapper, and a modified version of the SystemC simulation
kernel. The exchanged messages have the purpose not only
to transmit data and interrupt signals but also to keep
the simulation time synchronized between the simulation
kernels. However using heavy processes does not allow fast
and efficient memory sharing, which in this case can be
achieved only using shared memory segments. Moreover,
Unix Domain Sockets are less efficient, in terms of perfor-
mance and flexibility, than direct communication between
threads.

QEMU-SystemC [19] allows devices to be inserted into
specific addresses of QEMU and communicates by means
of the PCI/AMBA bus interface. However, QEMU-SystemC
does not provide the accurate synchronization information
that can be valuable to the hardware designers. [20] inte-
grates QEMU with a SystemC-based simulation develop-
ment environment, to provide a system-level development
framework for high performance system accelerators. How-
ever, this approach is based on socket communication, which
strongly limits its performance and flexibility. Authors in
[21] suggested an approach based on threads since context
switches between threads are generally much faster than
between processes. However, communication among QEMU
and SystemC uses a unidirectional FIFO, limiting the inter-
action between QEMU and the SystemC model.

We present in this paper a new emulation framework
based on QEMU and SystemC which overcomes these
issues. We chose QEMU amongst all simulators cited (e.g.
OVPSim [10], Soclib [10]) because it is fast, open-source
and also very flexible enabling its extension with a moderate
effort. Our approach is based on thread parallelization and
memory sharing to obtain a complete heterogeneous SoC
emulation platform. In our implementation the target pro-
cessor and the SystemC model can run in an asynchronous
way, where non-blocking communication is implemented
through the use of shared memory between threads. Beside
the interface between QEMU and a SystemC model, we also
present a lightweight implementation of a synchronization
protocol able to provide a good approximation of a global
system time. Moreover, we designed a full SW stack allow-
ing the programmer to exploit the HW model implemented
in SystemC, from within a user-space application running on
top of QEMU. This software stack comprise a Linux device
driver and a user-level programming API.

III. TARGET ARCHITECTURE

Modern embedded SoCs are moving toward systems
composed by a general purpose multi-core processor ac-
companied by a more energy efficient and powerful many-
core accelerator (e.g. GPU). In these kinds of systems the
general purpose processor is intended as a coordinator and
is in charge of running an operating system, while the
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many-core accelerator is used to speed up the execution of
computing intensive applications or parts of them. Despite
their great computing power, accelerators are not able to
run an operating system due to the lack of all needed
surrounding devices and to the simplicity of their micro-
architectural design. The architecture targeted by this work
(shown in Figure 1) is representative of the above mentioned
platforms and composed by a many-core accelerator and an
ARM-based processor.
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Figure 1: Target simulated architecture

The ARM processor is emulated by QEMU which models
an ARM926 processor, featuring an ARMv5 ISA, and inter-
faced with a group of peripherals needed to run a full-fledged
operating system (ARM Versatile Express baseboard). The
many-core accelerator is a SystemC cycle-accurate MPSoC
simulator. The ARM processor and the accelerator share the
main memory, used as communication medium between the
two. The accelerator target architecture features a config-
urable number of simple RISC cores, with private or shared
I-cache architecture, all sharing a Tightly Coupled Data
Memory (TCDM) accessible via a local interconnection. The
state-of-the-art programming model for this kind of systems
is very similar to the one proposed by OpenCL [22]: a
master application is running on the host processor which,
when encounters a data or task parallel section, offloads the
computation to the accelerator. The master processor is in
charge also of transferring input and output data.

IV. MANY-CORE ACCELERATOR

The proposed target many-core accelerator template can
be seen as a cluster of cores connected via a local and fast
interconnect to the memory subsystem. The following sub-
sections describe the building blocks of such cluster, shown
in Figure 2.
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Figure 2: Many-core accelerator

Processing Elements: the accelerator consists of a con-
figurable number of 32-bit RISC processor. In the specific
platform instance that we consider in this paper we use

ARMv6 processor models, specifically the ISS in [23]. To
obtain timing accuracy we modified its internal behavior to
model a Harvard architecture and we wrapped the ISS in a
SystemC [24] module.

Local interconnect: the local interconnection has been
modeled, from a behavioral point of view, as a parametric
Mesh-of-Trees (MoT) interconnection network (logarithmic
interconnect) to support high-performance communication
between processors and memories resembling the hardware
module described in [25], shown in Figure 3. The module is
intended to connect processing elements to a multi-banked
memory on both data and instruction side. Data routing
is based on address decoding: a first-stage checks if the
requested address falls within the local memory address
range or has to be directed to the main memory. To increase
module flexibility this stage is optional, enabling explicit L3
data access on the data side while, on the instruction side,
can be bypassed letting the cache controller take care of L3
memory accesses for lines refill. The interconnect provides
fine-grained address interleaving on the memory banks to
reduce banking conflicts in case of multiple accesses to
logically contiguous data structures. The crossing latency
consists of one clock cycle. In case of multiple conflicting
requests, for fair access to memory banks, a round-robin
scheduler arbitrates access and a higher number of cycles
is needed depending on the number of conflicting requests,
with no latency in between. In case of no banking conflicts
data routing is done in parallel for each core, thus enabling a
sustainable full bandwidth for processors-memories commu-
nication. To reduce memory access time and increase shared
memory throughput, read broadcast has been implemented
and no extra cycles are needed when broadcast occurs.
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Figure 3: Mesh of trees 4x8 (banking factor of 2)

TCDM: On the data side, a L1 multi-ported, multi-
banked, Tightly Coupled Data Memory (TCDM) is directly
connected to the logarithmic interconnect. The number of
memory ports is equal to the number of banks to have
concurrent access to different memory locations. Once a read
or write request is brought to the memory interface, the data
is available on the negative edge of the same clock cycle,
leading to two clock cycles latency for conflict-free TCDM
access. As already mentioned above, if conflicts occur there
is no extra latency between pending requests, once a given
bank is active, it responds with no wait cycles.
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Synchronization: To coordinate and synchronize cores
execution the architecture exploits HW semaphores mapped
in a small subset of the TCDM address range. They consist
of a series of registers, accessible through the data loga-
rithmic interconnect as a generic slave, associating a single
register to a shared data structure in TCDM. By using a
mechanism such as a hardware test&set, we are able to
coordinate access: if reading returns ’0’, the resource is
free and the semaphore automatically locks it, if it returns
a different value, typically ’1’, access is not granted. This
module enables both single and two-phases synchronization
barriers, easily written at the software level.

Instruction Cache Architecture: the L1 Instruction Cache
basic block has a core-side interface for instruction fetches
and an external memory interface for refill. The inner struc-
ture consists of the actual memory and the cache controller
logic managing the requests. The module is configurable in
its total size, associativity, line size and replacement policy
(FIFO, LRU, random). The basic block can be used to build
different Instruction Cache architectures:

• Private Instruction Cache: every processing element
has its private I-cache, each one with a separate cache
line refill path to main memory leading to high con-
tention on external L3 memory.

• Shared Instruction Cache: there is no difference be-
tween the private architecture in the data side except
for the reduced contention L3 memory (line refill
path is unique in this architecture). Shared cache in-
ner structure is made of a configurable number of
banks, a centralized logic to manage requests and a
slightly modified version of the logarithmic intercon-
nect described above: it connects processors to the
shared memory banks operating line interleaving (1
line consists of 4 words). A round robin scheduling
guarantees fair access to the banks. In case of two or
more processors requesting the same instruction, they
are served in broadcast not affecting hit latency. In case
of concurrent instruction miss from two or more banks,
a simple bus handles line refills in round robin towards
the L3 bus.

V. HOST-ACCELERATOR INTERFACE

In this section we describe the QEMU-based host side of
VirtualSoC (VSoC-Host), as well as the many-core acceler-
ator side (VSoC-Acc).

Parallel Execution: In a real heterogeneous SoC host
processor and accelerator can execute in an asynchronous
parallel fashion, and exchange data using non-blocking
communication primitives. Usually the host processor, while
running an application, offloads asynchronously a parallel
job to the accelerator and goes ahead with its execution (Fig-
ure 4). Only when needed the host processor synchronizes
with the execution of the accelerator, to check the results of
the computation.

In our virtual platform the host processor system and the
accelerator can run in parallel, with VSoC-Host and VSoC-
Acc running on different threads: when the thread of VSoC-
Acc starts its execution triggers the SystemC simulation.
It is important to highlight that the VSoC-Acc SystemC
simulation starts immediately during VSoC-Host startup,
and the accelerator starts executing the binary of a firmware
(until the shutdown) in which all cores are waiting for a job
to execute.
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Figure 4: Execution model

Time Synchronization Mechanism: To manage the time
synchronization between the two environments, it is nec-
essary that both VSoC-Host and VSoC-Acc have a time
measurement system. VSoC-Host does not natively provide
this kind of mechanisms, so we instrumented it to implement
a clock cycle count, based on instructions executed and
memory accesses performed. On the contrary for VSoC-Acc
there is no need for modifications because it is possible to
exploit the SystemC time. The synchronization mechanism
used in our platform is based on a threshold protocol
acting on simulated time: at fixed synchronization points the
simulated time of VSoC-Host and VSoC-Acc is compared.
If the difference is bigger than the threshold, the entity
with the biggest simulated time is stopped until the gap is
filled. It is intuitive to note that the proposed mechanism
slows down the simulation speed, due to synchronization
points and depending on the difference of simulation speed
between the two ecosystems. To avoid unnecessary slow-
down, we provide an interface to activate and de-activate the
time synchronization when it is not needed (e.g. functional
simulation).

VI. SIMULATION SOFTWARE SUPPORT

In this section we provide a description of the software
stack provided with the simulator to allow the programmer
to fully exploit the accelerator from within the host Linux
system, and to write parallel code to be accelerated.

Linux Driver: In order to build a full system simulation
environment we mapped VSoC-Acc as a device in the device
file system of the guest Linux environment running on top of
VSoC-Host. A device node /dev/vsoc has been created,
and as all Linux devices it is interfaced to the operating
system using a Linux driver. The driver is in charge of
mapping the shared memory region into the kernel I/O space.
This region is not managed under virtual memory because
the accelerator can deal only with physical addresses, as
a consequence all buffers must be allocated contiguously
(done by the Linux driver). The driver provides all basic
functions to interact with the device.

Host Side User-Space Library: To simplify the job of the
programmer we have designed a user level library, which
provides a set of APIs that rely on the Linux driver functions.
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Through this library the programmer is able to fully control
the accelerator from the host Linux system. It is possible
for example to offload a binary, or to check the status of the
current executing job (e.g. checking if it has finished).

Accelerator Side Software Support: The basic manner
we provide to write applications for the accelerator is to
directly call from the program a set of low-level functions
implemented as a user library, called appsupport. appsupport
provides basic services for memory management, core ID
resolution, synchronization. To further simplify program-
ming and raise the level of abstraction we also support
a fully-compliant OpenMP v3.0 programming model, with
associated compiler and runtime library.

VII. EVALUATION

In this section two use cases of the simulation platform
object of this work are presented. We will show how the
proposed virtual platform can be exploited for both software
verification or design space exploration.

A. Experimental Setup
Table I summarizes the experimental setup of the virtual

platform used for all benchmarks discussed.

Table I: Experimental Setup

PARAMETER VALUE
PLATFORM

L3 latency 200 ns
L3 size 256 MB

ACCELERATOR

PE 16
frequency 250 MHz
L1 I$ size 16 KB

thit = 1 cycle
tmiss ≥ 50 cycles

TCDM banks 16
TCDM size 256 KB

HOST

ARM Core clock frequency 1GHz
Guest OS Debian for ARM (Linux 2.6.32)

We chose as ARM core clock frequency of 1GHz, even
if the ARM modeled by QEMU works at up to 500MHz,
to resemble a state of the art ARM processor performance.
The frequency would only affect results in terms of global
values, all considerations done in this section remain valid
even if the ARM core clock frequency is changed.

B. VirtualSoC Use Cases
Full System Simulation: As first use case of the simulator

we propose the profiling of an application involving both the
ARM host and the many-core accelerator. In this example we
want to measure the speedup achievable when accelerating
a set of algorithms onto the many-core accelerator. The
algorithms chosen are: Matrix Multiplication, RGBtoHPG
color conversion, and image rotation algorithm. All the
benchmarks follow a common scheme: the computation
starts from the ARM host which in turn will offload a
parallel task, one of the algorithms, to the accelerator. Then
we compare simulated time obtained varying the number
of cores present in the accelerator, with the time taken to
run each benchmark on the ARM processor only (i.e. no
acceleration).
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Figure 5: Speedup due to accelerator exploitation

Figure 5 shows the results of this experiment. Using the
accelerator with 8 cores we can see a speedup of ≈ 3× times
for the matrix multiplication, ≈ 3× for the rotate benchmark
and ≈ 5× for the RGBtoHPG benchmark. When running
with 16 cores we can appreciate an almost double execution
speedup for all the proposed benchmarks.

Standlone Accelerator Simulation: In this section we
show an example of stand-alone accelerator analysis by
using two real applications, namely a JPEG decoder and a
Scale Invariant Feature Transform (SIFT), a widely adopted
algorithm in the domain of image recognition. Our analysis
will as first evaluate the effects of L3 latency over the
execution time of each benchmark. In a second experiment
we evaluate the instruction cache usage made by each
application in terms of hit rate and average hit time. Fig. 6
shows the execution time when varying the L3 latency, and
as expected the time increases when increasing the external
memory access latency. The instruction cache utilization is
shown in Fig. 7, depending on the application parallelization
scheme the hit rate changes as well as the average hit time.
The JPEG benchmark has been implemented in two different
schemes: a data parallel implementation and a pipelined
implementation. Results show that the data parallel version
is more efficient in terms of cache hit rate and globally in
terms of execution time. A deeper analysis has already been
conducted on the aforementioned benchmarks, for further
informations refer to [26].

VIII. CONCLUSIONS

VirtualSoC leverages QEMU to model a ARMv6 host
processor, capable of running a full-fledged Linux operating
system. The many-core accelerator is modeled with higher
accuracy using SystemC. We extended this combined simu-
lation technology with a mechanism to allow for gathering
timing information that is kept consistent over the two com-
putational sub-blocks. A set of experiments over a number
of representative benchmarks demonstrate the functionality,
flexibility and efficiency of the proposed approach.
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