
1

Clustered Multimedia Servers: Architectures and Storage Systems

Hai Jin, Guang Tan and Song Wu

Internet and Cluster Computing Center
Huazhong University of Science and Technology, Wuhan, 430074, China
Email: hjin@hust.edu.cn

Abstract

This paper presents an overview of the recent advances on the design of clustered multimedia
servers. It is focused on the following aspects: server architecture, media data organization,
real-time stream scheduling and admission control algorithms. For the architecture, we give a
taxonomy regarding the various structures of cluster components, and survey over 20 existing
server systems, either from the laboratories or the industry. We then examine the data
organization methods employed in multimedia servers, which shape the system behavior in
many aspects. To reveal the essentials of multimedia service, we take a closer look at the
real-time scheduling techniques for streaming data. The admission control issue is finally
discussed as an indispensable component for both efficient resource utilization and
guaranteed QoS for clients.

1. Introduction

The recent past years have witnessed surprisingly rapid advances in optical
communication, high-speed packet switching, data compression, and processor and memory
design technologies, which have made it feasible and economically viable to provide a variety
of on-line media services for network clients. Multimedia mail, orchestrated presentations,
high quality video-on-demand, and virtual reality environments are a few examples of such
applications. An application in this environment will typically use one or more media streams,
such as audio, graphics, video, images and text. Due to the data intensive nature of the
component media streams, these applications impose stringent demands on the multimedia
server system.

The primary requirements of a large-scale multimedia server are:
1. Large storage system and network bandwidth: The data intensive and periodic

nature of multimedia streams demands large amounts of network and storage system
throughput. For example, a video-on-demand server that supports one thousand users with
HDTV quality movies will require network and storage bandwidth in excess of 20 Gbps.
Storage throughput of this level is two orders of magnitude more than that observed today

2

with the state-of-the-art storage technologies such as Redundant Arrays of Inexpensive Disks
(RAID).

2. Real-time service: The periodic nature of the multimedia data necessitates QoS
guarantees in the form of guaranteed throughput and bounded latency for all active streams.
This requirement presents challenges for the operating system and application software design.
A general-purpose operating system may not efficiently exploit the available resource without
special consideration for the characteristics of multimedia services. Moreover, a multimedia
server should take into account mixed workload in service as the consumers’ media services
requirement become more and more diversified. For example, an interactive electronic
meeting application may simultaneously generate video, audio requests which exhibit
periodic characteristic, text and image requests which require a large throughput service, and
interactive requests which require a best-effort service for as prompt responses as possible.
These different requirements demand different resource scheduling, which must be
considered in a uniform framework.

3. Large storage capacity: Given the storage intensive nature of multimedia data, the
collective storage requirements for thousands of multimedia documents may exceed tens of
terabytes. For example, a movie server with two hundred HDTV quality (20 Mbps, 2 hour
long) movies will require roughly 3.6 terabytes of storage. Similarly, a multimedia storage
server that stores a large number of multimedia documents each composed of multiple media
streams will require a comparable storage capacity.

The problems of designing large capacity, scalable multimedia servers and providing
guaranteed bandwidth with desired QoS have been researched widely and the outcomes of
this research are being commercialized steadily. Currently, there are two major types server
system architectures:

1. Shared memory multiprocessors In a multiprocessor system, a set of storage
nodes and a set of computing nodes are connected to a shared memory. The data to be
retrieved is sent to memory buffers through a high-speed network or bus, and then to clients.
A mass storage system has presented the capacity of supporting hundreds of media streams.

2. Distributed memory clustered architectures A clustered server consists of a set of
server nodes interconnected by a high-speed network. Each node has independent storage
system and separate physical memory address. These nodes are also divided into several
classes, for example, a set of storage nodes responsible for data storage and retrieval and a set
of delivery nodes responsible for data collecting and transmitting.

Compared with the first solution, the cluster-based architecture is relatively more
scalable due to the loosely coupled architecture. In practice, it’s easy to scale up such a
system to hundreds or thousands of server nodes. What’s more, the off-the-shelf commodity
components present great price advantage over the shared memory architecture. Hence the
cluster-based architecture is more economically viable. For these reasons a lot of researchers
have contributed their efforts on the study of cluster-based multimedia server over the past
years. These researches focus on different aspects of the server design including server
architecture, storage sub-system, network sub-system, streaming protocols, etc. In this paper,

3

we’ll concentrate on several most important issues of the server design: server architecture,
storage system, disk scheduling algorithms and admission control algorithms.

The server architecture determines how different components of the cluster are assigned
with different roles, and hence how the data is flowing through the server; the storage system
is a major concern when considering the sub-systems of the server. It involves several design
issues such as load balancing, fault tolerance, etc., which together shape the system behavior
in many aspects. The disk scheduling algorithms and admission control algorithms determine
how data requests are performed over the disks and how to accommodating as more clients as
possible with limited resource, while not violating the real-time requirements of admitted
clients. So far as we know, there have been quite a few literature documenting the
development of storage system design [36][29][71], either for a single machine or a
distributed server, but few comprehensive discussion of clustered multimedia server
architecture can be found. This paper survey over twenty server systems and develop a
taxonomy for the server architecture. For the storage system issues, we intend to give an
overview over the most recent advances in this area.

The remainder of this paper is organized as follows: section 2 gives a detailed overview
on the server architectures; section 3 discusses various techniques involved in storage system
design; to address the real-time requirements of multimedia service, we describe some disk
scheduling algorithms in section 4, specially we present some recent research on the mixed
media workload scheduling. In section 5 we examine a set of admission control algorithms.
Finally we conclude in section 6.

2. Clustered Multimedia Server Architecture

In a clustered multimedia server consisting of multiple server nodes, there are two basic
kinds of nodes. One is called access servers, which serve as the contact points for the clients.
Any client intending to open a media stream should always firstly contact with the access
server, which will handle the admission control and provide the client with necessary
information for successive streaming operations. The other kind of nodes composes the
storage sub-system, the data container of media data. They can be PCs or workstations
equipped with multiple disks, or storage devices directly attached to the internal network, for
example, FC disks connecting to the FC switch using SCSI protocol. The requested media
data is retrieved from the storage sub-system and sent out over the network. They may or may
not be returned through the access server.

Whether the requested media data route via the access servers or not plays an important
role in the data flow of the server system, and hence have significant influence upon the
system behavior. From this prospective, a clustered multimedia server can have two data flow
modes: (1) Proxy-based Mode and (2) Direct Access Mode (See Fig.2.1 and Fig. 2.2,
respectively). In proxy-based mode, the access servers work like proxies located between the
clients and the media data, taking responsibility of fetching data from the storage sub-system

4

and then forwarding them to the clients. The storage sub-system is hidden behind the access
servers. By contrast, in direct access mode the requested data is directly sent to the clients
from the storage sub-system without an intermediate forwarding by the access servers.
However, the clients may need to contact with individual storage node to retrieve data by
themselves.

Clients

Access
Servers

Storage
Sub-System

Clients

Access
Servers

Storage
Sub-System

Fig. 2.1 Proxy-based mode Fig.2.2 Direct Access mode

For the Proxy-base working mode, there are two possible organizations of the server
components, and they result in two server architectures: two-tier architecture and flat
architecture. Also, server systems with Direct Access mode can be further divided into two
categories: multiple-access-point (MAP) architecture and single-access-point (SAP)
architecture. This classification can be described in a hierarchy structure as shown in Fig. 2.3.

Clustered
Multimedia

Servers

Proxy-based
Mode

Direct Access
Mode

Flat Architecture

Two-tier Architecture

Multiple-access-point Architecture

Single-access-point Architecture
Fig. 2.3 Classification of Clustered Multimedia Server Architectures

2.1 Proxy-base Mode

In a proxy-based system, there exists a Proxy Server (PS) in addition to the Access
Server (AS) and Storage Server (SS). The Proxy Server serves as stream combiner in a server
with distributed storage system. In such a system, the data is striped across multiple storage
nodes, and a client stream may be divided into multiple concurrent sub-streams from several
storage nodes. These sub-streams should be synchronized so as to form a coherent stream
playable for the clients. Depending on the storage policy, the Proxy Server can be a software
module coexisting with other system components, an independently running server or a
special-purpose device. Proxy Server is logically an interface between the storage sub-system
and the applications-specific software.

5

Client Client

PS PS

ASAS

SSSS

Server System

Client Client

PS

SS

AS

PS

SS

AS

Server System

Fig. 2.4 Two-tier Architecture Fig.2.5 Flat Architecture

Fig. 2.4 presents the Two-tier Architecture. In this architecture, the Access Server and
Proxy Server reside on the same host, which is separated from the Storage Server. The
multiple storage nodes are hidden behind the access servers and only take care of data storage
and retrieval. With this organization, the logic functionalities of various nodes are clear and
the implementation can therefore be simplified. For example, the parallel file systems such as
Tiger Shark File System [43], Symphony [71], etc. can be easily imported to the server to
obtain specially optimized real-time storage and retrieval. By virtue of the Proxy Server, the
Access Server needs not be aware of the storage system’s distributed nature, and can focus on
the interaction with clients according to the standardized protocols such as RTSP [70],
RTP/RTCP [69], etc.

One characteristic of this architecture is the requested data generally make two trips on
their way to clients: from the storage nodes to the proxy servers, and then from the proxy
servers to the clients. So the actual transmission for every N Bytes is 2N bytes inside the
server system.

In Flat Architecture, as shown in Fig.2.5, the Access Server, Proxy Server and Storage
Server all exist on each server node, which result in a symmetric structure. Having essentially
the same data flow, this architecture shares many characteristics with the two-tier architecture.
One exception is that the actual transmission for N bytes of requested data. Assuming there
are M nodes in the system and they evenly service the data requests, then (2M-1)N/M bytes of
data transmission is needed for every N bytes of data. As in the two-tier architecture, there
exists heavy extra data traffic for a requested stream, and thus forms a potential bottleneck for
the internal network and server processing capability.

In practice, both architectures need some mechanism to direct client requests to different
Access Servers in order to obtain load balancing, this can be realized by a special front-end
machine [56], or by using Round Robin DNS [13] or some Layer 4 switching techniques [23].

6

2.2 Direct Access Mode

The Multiple-access-point (MAP) Architecture and Single-access-point (SAP)
Architecture are described in Fig.2.6 and Fig.2.7 respectively. In MAP architecture, the clients
can access the Storage Server directly. The Access Server here is often a meta-data server
providing the clients with the data distribution information.

Server System

SS SSAS

Client Client

Server System

SS SSAS

Client Client

Fig.2.6 Multiple-access-point Fig.2.7 Single-access-point

The exposal of the Storage Servers brings some differences as compared to the previous

two architectures. On the one hand, this architecture requires only half the amount of data
transfer, since the requested data does not require an extra collect-and-forward process at the
server side. On the other hand, as it need to contact with individual Storage Server separately,
the client can’t get a single system image of the distributed server system, which may affect
the interoperability of the service, that is, a client can’t request the data without knowing the
server internals, even though it is conforming to widely accepted standard protocols.

The proposal of SAP architecture overcomes the drawback of MAP’s lacking client
transparency. As shown in Fig. 2.7, this architecture also hides all the Storage Servers and
gives the clients a single contact point, the Access Server. The client connects to the Access
Server to request a stream service, and then receive data from the same address, just like
interacting with a single machine. This client transparency is achieved through the strict
control of concurrent data streams by the access server. In a push-based servicing mode, the
data for a client stream can be pushed concurrently from multiple Storage Servers, so the
synchronization problem presents a challenge for the implementation. When a pull-based
servicing mode is adopted, the Access Server can help to relay the clients’ separate data
requests to appropriate storage nodes, which will accordingly retrieve the requested data and
transmit them to the clients directly.

One weakness of this architecture is that a part of application software is required to be
bounded with the Storage Servers in addition to their responsibility of data storage and
retrieval. For some storage architectures like SAN (Storage Area Network) [29]or NAS
(Network Attached Storage) [38], in which the storage nodes are composed of a variety of
heterogeneous storage devices such as disk arrays, tape libraries and optical storage arrays,

7

this is sometimes unfeasible due to the limited software supports by these devices.
It should be noted that the high scalability achieved by the SAP architecture is often

limited to its outbound data throughput. As for the inbound throughput, the scalability is
restricted by the Access Server, the single entry point of the system. As in the Proxy-based
mode, this problem can be solved by a Round Robin DNS [13]or some other load balancing
mechanisms [23][25].

2.3 Examples of Existing Systems and Projects

2.3.1 Two-tier Architecture

The Multimedia Servers based on IBM’s Tiger Shark file system [43] are typical
examples of two-tier architecture. As shown in Fig. 2.8, the server nodes are divided into file
system nodes and storage nodes. The file system nodes here represent the Access Servers of
the Proxy-based mode. The whole system is constructed based on the Tiger Shark, a parallel
file system designed to support interactive multimedia on IBM’s AIX operating system. Note
that the file system nodes and storage nodes are not necessary distinct nodes since it’s very
simple to combine the two roles on one node, and with that design the server is turned to a flat
architecture.

Fig.2.8 Multimedia Server based on Tiger Shark file system

Some other multimedia servers, for instance, the NASD-based VoD system [8], adopt
similar architecture. Instead of using workstation or PC, the system employs NASD (Network
Attached Secure Disk) as its storage elements in an attempt to reduce the cost. In the proposed
system, the function of the Access Servers is accomplished by the so-called Merging Servers.

[22] proposed a FC-based cluster media server. It differs from the above systems in that
its FC-based system, rather than connecting storage devices to the storage server (often a
full-fledged machine), directly connects storage devices to the switch, thus eliminating the
storage nodes all together. This is because Fiber Channel devices, including FC disks, FC
switches, and FC host interface cards, can communicate directly using the SCSI protocol,
which enables the “true” direct attachment of storage devices to the interconnect. The

8

elimination of storage nodes reduces the system cost. However, the FC switch-based system
has several weaknesses: first, the per port cost of an FC switch is much higher than the
general purpose interconnect such as Ethernet; second, the FC-based scheme can not support
heterogeneous server nodes, which is easy for the traditional interconnect based system, and
the scalability of the such systems is severely restricted by the FC-switch.

VoDKA project [89] aims to build a Linux cluster-based Video-on-Demand server using a
hierarchical structure. The three-level hierarchical structure is composed of: (1) the storage
level consisting of mass storage devices; (2) the cache level responsible for data retrieval and
scheduling; (3) the streaming level in charge of buffering and protocol adaptation. The cache
level consists of a set of cluster nodes with local storage; and the streaming level is composed
of a set of nodes called cluster heads. In fact, the cache level is corresponding to the storage
nodes and the streaming level corresponds to the access nodes.

2.3.2 Flat Architecture

The Elvira video server [68] is built on a cluster of standard UNIX workstations
interconnected by an ATM switch, as Fig 2.9 shows. There is an integrator process on each
workstation responsible for stream integration. When the Integrator process gets a stream
request, it contacts the Video Pump processes on all the machines which have to participate to
fulfill the request, and instructs them to set up connections for video delivery1.

Fig.2.9 Elvira Architecture Fig. 2.10 Yima-1 Architecture

Yima-1 [74] has adopted nearly the same architecture as Elvira. As shown in Fig. 2.10,
the Yima-1 software consists of two components: Yima-1 distributed file system and Yima-1
media-streaming server. The distributed file system consists of multiple file I/O modules
located on each node, and provides a complete view of all the data on every node. The
media-streaming server itself is composed of a scheduler, a real-time streaming protocol
(RTSP) module, and a real-time protocol (RTP) module. The multiple media-streaming

1 In Elvira, the video can also be stored in a non-striping style. This storage policy obviates the need of data
assembling but leads to another data flow mode, as will be discussed latter in section 2.3.3.

9

servers share the clients’ requests with a RR-DNS load balancing mechanism. For a specific
client session, only one node runs the media-streaming server while all nodes run the file I/O
module, forming a master-slave structure. With this design, an application running on a
specific node operates on all local and remote files.

With the Yima-1 architecture, several major performance problems offset the ease of
using clustered storage, such as a single point of failure at the master node and heavy
inter-node traffic.

The SESAME-KB [12] parallel video sever shares many characteristics with the Elvira
system. The responsibilities of the Access Server and Storage Server are assumed by GOM
(Global Object Manager) and LOM (Local Object Manager) respectively. The GOM receives
the queries and performs the admission control. If a query is admitted, the GOM will choose
one of the nodes involved to execute the query. Also this node’s function is similar to the
Integrator in Elsvira.

Some researches particularly address the storage system design. In [11], multiple PCs
with local storage units are interconnected with Myrinet network. Each cluster node can at the
same time serve clients and handle part of the storage. The cluster file system, which relies on
a Cluster Communication Library, provides the upper layer RTSP daemons with a global view
of the distributed file system. In contrast to its kernel-level implementation, the CrownFS [63]
realizes the similar file-related functions at user-level. Both file system fall into the category
of flat architecture.

2.3.3 Multiple-access-point (MAP) Architecture
The MAP architecture is first proposed as Server Array architecture in 1995 [6]. In the

proposed system, as shown in Fig. 2.11, a set of symmetric servers is servicing the clients’
request in parallel, just like a disk array in a traditional machine. A single stream is distributed
over several server nodes of the server array. Each server node only stores a sub-stream of the
original stream. The clients are responsible to split a stream into sub-streams for storage and
to re-combine the sub-streams during the retrieval of a stream. When retrieving media data,
the client must set-up a data connection to each of the server nodes and synchronizes the
streams using a specific protocol.

Fig. 2.11. Server Array Configuration

10

Calliope [44] is a MAP system with non-striping storage policy. It uses the Coordinator

as the access server and Multimedia Storage Unit (MSU) as the storage server. The
Coordinator is in charge of request authentication, resource allocation, etc. Upon receiving a
read request, the Coordinator finds a MSU with enough resource to serve the request. The
request may be queued if not enough resource is available. The authors adopt the non-striping
storage instead of more prevalent striping policy because they believe the striped environment
will introduces undesirable latency and complexity of management.

Autonomous Network Attached Disks [1][2] is designed to be building blocks for a
multimedia file systems. Like CMU-NASD [37], it also achieves direct transfer between
client and storage elements in a networked environment. The storage nodes have specific
modules called AD-DFS in their operating system kernels, and the storage nodes send the
requested data via their own network interfaces. The client needs particular module in its OS
kernel to understand the block-based object interface exported by AD-DFS. This mechanism
is exactly like the idea adopted by MAP architecture.

The same working mechanism of MAP architecture can also be found in some
implementations like SPIFFI [30] and CANDID [78], etc. Other systems like [34], Viola [90]
and the researches by Jack Lee et al. [53][54] consider the same architecture, too. In [34], the
issues of scheduling of a large number of video objects as well as the reliability aspects are
addressed. Jack Lee et al. particularly analyze the synchronization and scheduling problems
of the MAP architecture in both client-pull and server-push modes.

2.3.4 Single-access-point (SAP) Architecture
The single-access-point architecture differs from the MAP architecture in its possible

single system image (SSI) provided for the clients. While the single system image seems to be
just a functional extension from the MAP architecture, we believe it is an important and
promising feature for an Internet-oriented service. With this feature, client software
conforming to the open standard protocols interacts with the multimedia servers anywhere on
any platform, despite of the various server implementations. This is like the relationship
between the Web browser and the Web servers. Moreover, this functional requirement does
present several challenges for the server design and implementation, such as inter-server
synchronization, fault masking and QoS control.

The design of Yima-2 [74] (See Fig. 2.12) is directly motivated by the drawbacks of
Yima-1, which has unsatisfactory scalability due to the heavy inter-node traffic. The Yima-2
system eliminates the overhead by making the RTP servers send their local data through their
own network interfaces. From the viewpoint of a client, there is only one RTSP server, and
the data flow from multiple RTP servers is controlled by a PAUSE/RESUME mechanism. As
quality control functionality, selective packets retransmission is realized by extending the
standard RTP protocol. But the retransmission mechanism requires the client to contact with
the individual node separately, which may make it invisible by those clients without RTP

11

extension.

Storage
Node

Control
Node

Clients

Control
Node

Storage
Node

Storage
Node

Clients

1 2 1

2

Fig.2.12 Yima-2 architecture Fig. 2.13 WanLan architecture

WanLan video server [80] is another example of this architecture, as illustrated by

Fig.2.13. In WanLan system, a movie is partitioned into multiple segments across the storage
nodes, each segment being a playable section. When playing a movie for a client, the server
instructs the stream to move from node to node according to the playing order. Here a client
stream is not divided into multiple parallel sub-streams as in the Yima-2 server. Instead it is
transferred as an integral stream. The system load balancing is achieved by overlapping many
such streams and with a dynamic streaming scheduling algorithm. Though the system adopts
a coarse-grain parallelism, the performance is proved to be fairly good, and the
synchronization problem is greatly simplified. In WanLan, the media packets encapsulated in
RTP protocol are sent out from the storage nodes, while the incoming request and feedback
(in RTCP protocol) are taken over by the control node. There can be multiple control nodes
sharing the client connections under the scheduling of Linux Virtual Server 1.1.1[56].

DAVID [15] achieves a fine-grain parallelism. A client’s data is concurrently pushed out
from multiple storage nodes. The synchronization is controlled by the access server, which
sends a command message to one storage node for each data block to be transmitted. Though
the load balancing effect is good, the message traffic inside the cluster system brings
non-trivial overhead for the internal network, therefore restricting the scalability of the
system.

MARS [14] is a system more tightly coupled compared to WanLan and DAVID server.
One key component in MARS is an ASIC (Application Specific Integrated Circuit) called
APIC (ATM Port Interconnect Controller), which provides a direct interface for the host
(workstations as well as servers) and a variety of I/O devices. The storage nodes put the
requested data in its dual ported RAM, and the APICs fetch the data and transfer it to clients
in a synchronized manner. The connection maintenance and flow control are also performed
by the APICs.

Microsoft’s Tiger [10] is a special-purpose file system for video servers distributing data
over ATM networks. It consists of a number of nodes (called Cubs) acting under a
central-controller node’s direction. Files are striped across all disks of all the nodes. To play a

12

video stream, Tiger establishes a multipoint-to-point ATM switched virtual circuit between
every node and the user. The data synchronization is realized by a distributed scheduling
mechanism. One major disadvantage of Tiger is its reliance on ATM’s multipoint-to-point
characteristic. In a non-ATM environment, extra processors may be needed to combine the
ATM packets into stream.

2.4 Comparison

In this section we present a comprehensive comparison of the various architectures (See
Fig.2.14). We compare them from several aspects: scalability, adaptability and client
transparency. For each architecture, we list the corresponding projects/systems introduced
before.

Note the scalability we discuss here is in term of the ultimate number of supported clients
by the server, but not the storage system bandwidth alone, as done by most existing literatures.
In fact, how the data is delivered from the server to a large number of clients or vice versa
over the Internet in a scalable manner must be considered, in addition to the scale-up of
storage system. To do this, all the architectures except MAP architecture need some
mechanism to balance the network load among multiple front-end machines (the Access
Servers). Some systems simply assume a RR-DNS used to accomplish this task [74], while
others may balance the load inside the server through dynamic scheduling. However, the load
balancing capability of RR-DNS is proved to be quite limited [28][61], and the server-internal
scheduling usually cannot work with the inbound traffic, because the server cannot determine
for which node the data should be destined. Therefore, we take into account the load
balancing effect on the AS’s when discussing the system scalability. For all the architectures
we list the potential factors that are most likely to affecting the system performance and hence
the system scalability.

13

Factors affecting system scalability2

Features
Categories

Network
transfer per

byte1
Outbound
bandwidth

Inbound bandwidth

Suitable
Environment

Client
Trans-

parency
Example Projects/ Systems

Two-tie
r

2

Internal net
bandwidth

AS load balancing
SS load-balancing

Internal net
bandwidth

AS load balancing
SS load-balancing

LAN
WAN

Internet
Yes

Tiger Shark based system[43]
NASD-based system[8]
FC-based system[22]
VoDKA[89] Proxy-base

d Mode

Flat
M

M 12 −

Internal net
bandwidth

AS load balancing
SS load-balancing

Internal net
bandwidth

AS load balancing
SS load-balancing

LAN
WAN

Internet
Yes

Elvira[66]; Yima-1[74]
SESAME-KB [12]; [11]
CrownFS [63]

MAP 1 SS load-balancing SS load-balancing LAN No

Server Array[6]; Calliope[44]
Autonomous NAS [1][2]
CMU-NASD[36]; SPIFFI[29]
CANDID[78];[34]; Viola[89] Direct-Acc

ess Mode

SAP 1 SS load-balancing
AS load balancing
SS load-balancing

LAN
WAN

Internet
Yes

Yima-2[74]; WanLan [80]
DAVID [15]; MARS [14]
Microsoft’s Tiger [10]

Fig.2.14 Comparison of Clustered Multimedia Server Architectures

1 M refers to the number of storage nodes.
2 AS: Access Server; SS: Storage Server

15

3. Storage System and Media Data Organization

In multimedia servers, the storage subsystem is one of the most important components
since it provides the content and I/O bandwidth for data retrieval [36]. To support hundreds or
thousands of simultaneous sessions or streams, the storage subsystem often consists of a large
number of storage nodes and disks, which together meet the requests for great amount of data.
Data layout in the storage subsystem has significant influence on system availability and load
balancing because it determines how the storage nodes share the load and how to response to
node failures. In this section we fist discuss several designing issues of the storage subsystem
and then focus on media data placement schemes of the clustered multimedia server.

3.1 Considerations in Storage System Design

High throughput, large capacity, fault-tolerance and load-balancing are four major
challenges for the storage systems of clustered multimedia servers. In what follows, we will
discuss the storage system configuration from these aspects.

3.1.1 High Throughput

Storing an entire media file on one node limits the number of concurrent accesses to that
object. The throughput of that node dictates the number of clients retrieving the same file. To
overcome this limitation, data striping techniques was proposed. A media file, under data
striping schemes, is divided into many segments and scattered the set of nodes in a clustered
multimedia server. For example, in Fig. 3.1, 12 segments of a continuous media file are
placed on the 6 nodes (labeled as S[i]) in a round robin manner and Segment 0-5 of this file
can be accessed in parallel. Besides increasing throughput, an important issue in design of a
data-striping scheme is to balance the load of most heavily loaded nodes while keeping
latency small. Data striping evenly distributes the service load to all the nodes in the clustered
multimedia server to avoid overload situations. The load-balancing issues will be discussed in
detail in Section 3.1.4.

With data striping techniques, there are two possible methods of data retrieval. One
method is, for each stream, to access each node in a service round. This retrieval method
expects to ensure a perfectly balanced load for the nodes. However, it requires more buffer
space per stream and has to face the synchronization problem among the nodes. In the other
retrieval method, for a given stream, in each round, data is extracted from one of the nodes.
Hence, the data retrieval for the stream cycles through the set of nodes. In order to maximize
the system throughput, it is necessary to ensure that in each round the retrieval load is
balanced across the nodes. Given that each stream cycles through the node set, this load
balancing can be achieved by staggering the streams. With staggering, each steam considers
the round to begin at a different time.

16

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
6 7 8 9 10 11

Fig. 3.1. Data Striping and Layout in a Round Robin Manner

3.1.2 Large Storage Capacity

The cost for large media files is prohibitively high if a large number of disks are used for
storage. To keep the storage cut down, tertiary storage must be added such as automated tape
libraries and optical jukebox. Hierarchical storage architecture can be used to reduce the
overall cost. Under this architecture, only a fraction of the total storage is kept on disks while
the major remaining portion is kept on a tertiary system. Frequently requested media files are
kept on disks for quick access and the remainder resides in the tape library.

To deploy multimedia services at a very large scale, a storage-area-network (SAN)
architecture was proposed [29][42]. An SAN can provide high-speed data pipes between
storage devices and hosts at far greater distances than conventional host-attached
small-computer-systems-interface (SCSI). The connections in an SAN can be direct links
between specific storage devices and individual hosts, through fiber-channel arbitrated loop
(FC-AL) connections; or the connections in an SAN can form a matrix through a fiber
channel switch. With these high-speed connections, an SAN is able to provide a
many-to-many relationship between heterogeneous storage devices (e.g., disk arrays, tape
libraries, and optical storage arrays), and multiple nodes in the clustered multimedia server.

Another approach to deploy large-scale storage is network-attached storage (NAS) [38].
Different from SAN, NAS equipment can attach to a local area network (LAN) or a wide area
network (WAN) directly. This is because NAS equipment includes a file system such as
network file system (NFS) and can run on Ethernet, asynchronous transfer mode (ATM), and
fiber distributed data interface (FDDI). The protocols that NAS uses include hypertext
transfer protocol (HTTP), NFS, TCP, UDP, and IP. On the other hand, both NAS and SAN
achieve data separation from the application server so that storage management can be
simplified. Specifically, both NAS and SAN can obtain high scalability.

3.1.3 Fault Tolerance

To build a scalable multimedia server, fault tolerance issues must be considered because
with the increase of components, the probability of node failures may increase beyond an
unacceptable level. In order to ensure uninterrupted service even in the presence of node
failures, a server must be able to reconstruct lost information. This can be achieved by using
redundant information. The redundant information could be either parity data generated by
error-correcting codes like FEC or duplicate data on separate nodes. That is, there are two
kinds of fault-tolerant techniques: parity-based and replica-based schemes. Parity-based
schemes add a small storage overhead but require synchronization of reads and additional
processing time to decode lost information. In contrast, replica-based schemes do not require

17

synchronization of reads or additional processing time to decode lost information, which
significantly simplifies design and implementation of multimedia servers. However,
replicating incurs at least twice as much storage volume as in the non-fault-tolerant case. As a
result, there is a tradeoff between availability and complexity. A study in [81] shows that, for
the same degree of availability, replica-based schemes always outperform parity-based
schemes in terms of per-stream cost, as well as restart latency after node failure.

Though replica-based schemes have a higher storage overhead than parity-based ones,
they can offer better performance in term of throughput, response time and availability,
especially in the fault mode. Moreover, the trend of disk improvement is that the storage
space capacity improves much faster than the effective I/O bandwidth of disks due to the
advancement of recording density. Note that many multimedia applications such as video
service may be I/O bandwidth bounded instead of storage capacity bounded because there are
a large number of concurrent accesses to a few popular object. Therefore, it is feasible to trade
in more data redundancy in order to achieve more availability and better performance. In this
research we only focus on the replica-based schemes rather than the parity-based ones.

3.1.4 Load Balancing

The load balancing issue stems from different object popularities among the movie library,
which is a nontrivial issue when modeling and designing large-scale multimedia servers.
Because some media objects are more popular than others, the retrieval of media objects is
highly skewed in many multimedia applications such as video-on-demand [16][41][57][62]. A
multimedia server with large amount of video objects has to take video popularity into
account. There are two kinds of video popularity, inter- and intra- movie skewness [92]. The
former is the popularity among different video objects and the latter describes the popularity
among different parts in the video object.

3.1.4.1 Inter-movie skewness

In a multimedia server, the demand for the video objects is usually skewed. For example,
newly released movies are likely to attract most of the viewers while older movies receive
very few requests. It has been shown that this inter-movie skewness can be characterized by a
Zipf distribution. The Zipf [5] distribution is frequently used to express the probability of
selection of a particular object from a fixed number of objects where there is a skewness
toward some of the objects. It is defined as

α−= 1)(
i
CiZ , ∑

=
−=

m

i i
C

1
1

11 α (1)

In this formula, m is the number of available video objects and i is the index of a video
object in the list of m objects that are sorted in the order of decreasing popularity. α is the
parameter specifying the skewness. A uniform distribution corresponds to its value of 1, and a
value of 0 represents a highly skewed distribution. The value of α for 92 video objects is

18

about 0.271 [27] and in this case the most popular 10 video objects receive about 50% of the
total viewing requests.

The large discrepancy among the retrieval rates of video objects caused by the
inter-movie skewness probably leads to load imbalance and hot spot problem. It is obvious
that a node with too many hot video objects is a potential bottleneck of the whole server
system. There are two common ways to reduce the load imbalance caused by this skewness.
One is data replicating and the other is data striping. Replication strategies [9][33][85]
replicate the popular video objects and balance the workload by distributing user requests to
several replicas. However, replication algorithms likely cost lots of system resources such as
storage capacity, disk and network bandwidth. With data striping techniques as shown in
Section 3.1.1, the video objects are striped into segments and stored across multiple nodes, so
the service load can be evenly distributed and the utilization of system servicing capacity can
be maximized. Data striping and data replicating techniques can be combined in a large-scale
clustered multimedia server. Although striping of media data can balance the utilization
among the nodes, such technique across a large number of nodes may exhibit additional
complexity, for instance, in data management. Therefore, it is more practical to limit the
extent of data striping. The nodes can be arranged in groups and only intra-group data striping
is allowed, while popular media objects are replicated among the groups [55].

3.1.4.2 Intra-movie skewness

When viewing a video object, not all of clients view it all the way to the end. It is
possible that some clients stop watching halfway and have different viewing time. A familiar
example is that the beginning segment of a video object is more popular than others because
of sequential access pattern of video applications. We call this instance the intra-movie
skewness. In the clustered multimedia servers, because video objects are striped into many
segments stored on multiple nodes, the intra-movie skewness may have considerable
influence on the media data placement.

Fig.3.2. Viewing Time of Different Users

19

Fig. 3.2 shows the users’ viewing time of a video object. The statistic data in the Fig. is
extracted from the log files of a multimedia server [92]. From the Fig. we can see that only
some of users completed viewing the whole video object, and others stopped halfway.
Moreover, most of those who had canceled watching stopped at the beginning of the video
object. Hence, in Fig. 3.1, the 12 segments of the video object (hence the 6 nodes) probably
have different opportunities to service the users’ requests. Segment 0 likely has higher
retrieval rate than Segment 11, so S[0] may take on more workload than S[5]. The segments
have uniform retrieval rate only if the users have the same stop probabilities on the segments,
and in the extreme case, all the users have viewed the whole video object.

For instance, Fig. 3.3 and 3.4 show the segment retrieval rate and users’ stop probability
of several video objects [92]. In Fig. 3.3 we can see that segment retrieval frequency
decreases rapidly and nearly linearly at the head of movies. At other parts it declines tenderly
and continuously. Fig. 3.4 indicates lots of users stop watching before the end and most of
them halt at the movie’s beginning. These two Fig.s show us the existence of the intra-movie
skewness that leads to large gap between the retrieval rates of different video segments.

Fig. 3.3. Retrieval Rate of Video Segments Fig. 3.4. Users’ Stop Probability

The intra-movie skewness has two main reasons. Firstly, before a client view a video
object, it is hard to estimate whether he or she will watch it throughout or stop halfway.
Secondly, users have to wait during buffering time before viewing a video object. If the
buffering time is prolonged because of some reasons such as network congestion, users will
probably lose their patience. It is likely that most of multimedia applications with sequential
access pattern have similar skewness.

Because video segments have different retrieval frequency, the intra-movie skewness
probably causes the nonuniform distribution of workload on the nodes of clustered servers
with data striping techniques. That is to say, while data striping reduces the negative impact of
the inter-movie skewness, it may introduce new problems caused by the intra-movie skewness
if data is not suitably laid out. An analysis in [93] proves that data layout in the traditional
round robin way will result in obvious load imbalance among the cluster nodes and hence
lead to system performance degradation.

20

There are two common ways to eliminate the load imbalance caused by the intra-movie
skewness. One is to replicate the hottest parts (usually the beginning segments) of video
objects and store them on all the nodes. The other is to buffer the hottest parts of video objects.
The first method distributes the user retrieval requests for the most popular segments to their
replicas, which balances the workload effectively. The second one can be combined with
batching techniques. These two methods solve the load imbalance problem caused by the
intra-movie skewness and improve the system throughput. However, they may cost lots of
system resources. For example, assuming that node number equals to N and average playing
time of video objects equals to T minutes, storing the first minute of video objects on all the
nodes will result in a redundant ratio of (N-1)/(N+T-1). If there are many nodes and short
video objects such as MTV and news in the clustered multimedia server, this redundant ratio
may be unacceptable.

3.2 Data Striping and Placement Techniques

In the clustered multimedia server, data placement strategy determines how the storage
nodes share the load and how to response to node failures. Especially, in presence of the
sequential access pattern that has similar characteristics with the intra-movie skewness, data
layout has important effect on system performance. In this part, we analyze the data
placement scheme from several aspects. They are fault tolerance, load balancing in both fault
free and fault modes, and suitability to different access pattern. Data striping across the nodes
provides the potential node-level fault tolerance for the clustered multimedia server. An ideal
data placement strategy should provide protection against the data unavailability due to node
failures, implement load balancing across the nodes in both fault free and fault modes, and
still function gracefully in the event of failures. As mentioned in Section 3.1.3, we only focus
on the replica-based schemes.

3.2.1 Mirrored Declustering

Mirrored Declustering (MD), or RAID-10, is a widely used technique for duplication in
many applications including multimedia service to provide high data availability. In MD, the
data is interleaved across a set of nodes and is mirrored over another set of nodes, as shown in
Fig. 3.5, where i’ is a backup copy of i. When a node fails, say S[1], the corresponding node
S[4] will take over all the load of the failed node while other nodes experience no load
increase. For multimedia streaming service, if the load is simply shifted to the node that
contains a backup copy during a node failure, the load on the backup node will be doubled.
Clearly, it would be better if all surviving nodes experienced a 20 % increase in load.
Therefore, while MD offers high level of fault tolerance, it does a poor job of distributing the
load of a failure node. With the increase of nodes involved in the clustered multimedia server,
the possibility of two failures rendering data unavailable increases because of the imbalance
in workloads among the operational nodes in the event of a failure.

21

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2
3 5 5'4'

2'1'0'

6 7 8
9 10 11 11'10'9'

8'7'6'
4 3'

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2
3 5 5'4'

2'1'0'

6 7 8
9 10 11 11'10'9'

8'7'6'
4 3'

Fig.3.5 Mirrored Declustering

3.2.2 Chained Declustering

Another widely used scheme is called Chained Declustering (CD) [39], as shown in Fig.
3.6. With CD scheme, data will be unavailable only if two logically adjacent nodes fail. Note
that S[0]’s copy of Segment 0 is on S[1], S[1]’s copy of Segment 1 is on S[2], and so on. If
S[1] fails, S[0] and S[2] share S[1]’s load but other nodes experiences no load increase
without dynamic load balancing. Therefore, CD probably still suffer load imbalance because
the load of the failed node is completely shifted to its adjacent two nodes, though it is much
better than having a single node bear the entire load of the failed node.

By performing dynamic load balancing, CD can obtain better performance. For example,
since S[3] and S[5] have copies of some data from S[2] and S[0] respectively, S[2] and S[0]
can offload some of their normal load on S[3] and S[5]. Similarly, S[4] has copies of some
data from S[3] and S[5], so S[3] and S[5] can also offload some of their normal load on S[4].
In this way the system achieves uniform load balancing. Chaining the data placement allows
each node to offload some of its load to either the node immediately following or preceding
the given node. By cascading the offloading across multiple nodes, a uniform load can be
maintained across all surviving nodes.

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2
6 8 1110

543

5' 0' 1'
11' 6' 7' 10'9'8'

4'3'2'
7 9

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2
6 8 1110

543

5' 0' 1'
11' 6' 7' 10'9'8'

4'3'2'
7 9

Fig.3.6. Chained Declustering

3.2.3 Interleaved Declustering

Interleaved Declustering (ID), or Segmented Information Dispersal (SID) [24] is a
method to achieve load balancing in the fault mode. With ID, a backup copy is subdivided
into sub-segments each of which is stored on a different node except the one containing the
primary copy, as shown in Fig. 3.7. For example, the backup copy of Segment 1 is striped into
5 sub-segments denoted as 1.0, 1.1, 1.2, 1.3 and 1.4 where i.j represents the j-th sub-segment
of the backup copy of Segment i. When a node failure occurs, ID is able to do a better job of
balancing the load than MD and CD, since the workload of the failed node will be distributed
among operational nodes. Fig. 3.7 shows the sub-segments of Segment 1 share the load of the
primary copy when it is unavailable due to node failure. However, ID only can tolerate one
node failure and may suffer performance degradation due to small block size of sub-segment

22

when the number of nodes is large. For this scheme, a tradeoff exists between load balancing
in face of failure and the data availability of the system.

0 1 2 3 4 5

6 7 8 9 10 11

0.0 0.1 0.2 0.3 0.41.0
1.1 1.2 1.3 1.42.0 2.1

2.2 2.3 2.43.0 3.1 3.2
3.3 3.44.0 4.1 4.2 4.3

4.45.0 5.1 5.2 5.3 5.4

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5

6 7 8 9 10 11

0.0 0.1 0.2 0.3 0.41.0
1.1 1.2 1.3 1.42.0 2.1

2.2 2.3 2.43.0 3.1 3.2
3.3 3.44.0 4.1 4.2 4.3

4.45.0 5.1 5.2 5.3 5.4

S[0] S[1] S[2] S[3] S[4] S[5]

Fig.3.7. Interleaved Declustering

3.2.4 Rotational Mirrored Declustering

Rotational Mirrored Declustering (RMD) [21] combines the merits of CD and MD, so it
can remedy some of the drawbacks in both schemes. In RMD, the nodes are divided into
some node sets and replicas are stored in different node sets, which is similar to MD scheme.
RMD is different from MD in that the replica placements in different node sets are rotated to
increase the load balancing performance in the event of node failure. Fig. 3.8 shows the basic
idea of the RMD scheme with two node sets. If node failure occurs in one node set, the load
of failed node is uniformly shifted to all the nodes in other node sets as shown in Fig. 3.8,
which is much better than MD. Moreover, because RMD chains the data placement like CD
scheme, with dynamic load balancing, it can distribute the load of the failed node to the rest
of surviving nodes.

In the clustered multimedia server with abundant storage capacity, RMD can be used to
support high data availability and increase the supportable throughput in video applications.

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2
3 5 4'3'

2'1'0'

6 7 8
9 10 11 11'10'9'

6'8'7'
4 5'

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2
3 5 4'3'

2'1'0'

6 7 8
9 10 11 11'10'9'

6'8'7'
4 5'

Node set 1 Node set 2 Node set 1 Node set 2
Fig. 3.8. Rotational Mirrored Declustering

3.2.5 Multi-Chained Declustering

Fig. 3.9 illustrates a variation on the CD data placement called multi-chained
declustering (MCD) [51]. Instead of having a single chain of stride one, multiple chains of
varying strides are used. The system illustrated in Fig. 3.9 uses chains of both strides one and
strides two. If dynamic load balancing is not used, this scheme provides better load balancing
than CD scheme. For example, if S[1] fails, other nodes each experience a 20 % increase in
the load compared to 50 % with CD. In large configurations, MCD has an additional benefit

23

over CD. With CD, multiple failures can prevent uniform load balancing by breaking the
chain in more than one place. This effect is most pronounced if the two failures occur close
together in the chain. With MCD, there is no problem since the chain of stride two can be
used to skip over the failed servers. As expected, however, MCD is less reliable than CD. If,
for example, S[1] fails the failure of any other node results in data unavailability. As this
example illustrates, in the absence of dynamic load balancing, MCD trades data availability of
the system for load balancing in the face of node failure.

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2
6 8 1110

543

5' 0' 1'
10' 11' 6' 9'8'7'

4'3'2'
7 9

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2
6 8 1110

543

5' 0' 1'
10' 11' 6' 9'8'7'

4'3'2'
7 9

Fig.3.9. Multi-Chained Declustering

3.2.6 Orthogonal Striping and Mirroring

Orthogonal Striping and Mirroring (OSM), or RAID-x [45], is a special data placement
for the purpose of improving write performance. The orthogonal placement of data segments
and their replicas in OSM is illustrated in Fig. 3.10. The primary copies of data segments are
striped across the nodes horizontally and their corresponding backup copies are stored on a
single node vertically. For example, Segment 0, 1, 2, 3, 4 are stored on S[0], S[1], S[2], S[3],
S[4] respectively, which is called horizontal striping. Their copies are stored on S[5], which is
called vertical mirroring. Note that no segment and its copy are placed on the same node. This
horizontal striping and vertical mirroring constitute the orthogonal property.

In the event of node failure, OSM distributes the load of the failed node to the other
operational ones as shown in Fig. 3.10. However it is not able to tolerate any multiple-node
failures. One of the major advantages of OSM is its superior write performance. It can be
applied to the write-intensive multimedia applications such as video recording, interactive
video editing, etc., which generally generate large numbers of write requests.

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
6 7 8 9 10 11

12 13 14 15 16 17
18 19 20 21 22 23

0'
1'
2'
3'
4'

5'
6'
7'
8'
9'

10'
11'
12'
13'
14'

15'
16'
17'
18'
19'

20'
21'
22'
23'
24'

25'
26'
27'
28'
29'

24 25 26 27 28 29

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
6 7 8 9 10 11

12 13 14 15 16 17
18 19 20 21 22 23

0'
1'
2'
3'
4'

5'
6'
7'
8'
9'

10'
11'
12'
13'
14'

15'
16'
17'
18'
19'

20'
21'
22'
23'
24'

25'
26'
27'
28'
29'

24 25 26 27 28 29

Fig.3.10. Orthogonal Striping and Mirroring

24

3.2.7 Random Declustering
Random Declustering (RD) store the data blocks randomly, while most of data

placement schemes store the segments and their copies in a regular way. There are two kinds
of Random Declustering (RD). Semi-Random Declustering (SRD) [84][81] randomly
distributes backup copies onto the nodes except the one containing the corresponding primary
copies, while primary copies are still striped in a round robin style. Fig. 3.11 is an example of
SRD placement. In face of node failure, the load of the failed node can be evenly distributed
to all active nodes due to the random assignment of backup copies. Full-Random Declustering
(FRD) [76] randomly distributes both primary and backup copies to the nodes, as shown in
Fig. 3.12. FRD has better adaptability to different user access patterns and can support more
generic workloads than above schemes. However, RD only provide probabilistic guarantee of
load balancing in the fault mode and cannot tolerate multiple node failures. And, it has the
drawback of maintaining a huge video index of the striping data blocks in practice.

S[0] S[1] S[2] S[3] S[4] S[5]

3 2 1 0 4 5
6 7 11 9 8 10
1' 3' 0' 4' 5' 2'
8' 11' 10' 7' 6' 9'

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
6 7 8 9 10 11
1' 3' 0' 4' 5' 2'
8' 11' 10' 7' 6' 9'

Fig.3.11. Semi-Random Declustering Fig.3.12. Full-Random Declustering

3.2.8 Symmetrical Declustering

Clustered multimedia servers provide many services with sequential access pattern such
as VoD. As discussed in Section 3.1.4.2, there is probably skew reference pattern (the
intra-movie skewness) in the sequential access application. A uniform division of the data
does not correspond to a uniform division of the load because of this access skewness.
Therefore, the load is likely not uniformly divided among the nodes if data placement scheme
is not suitable. However, most of the data placement strategies, including MD, CD, ID, RMD,
MCD, OSM and SRD, are primarily employed to support random access applications and not
suitable for sequential access applications. The intra-movie skewness may cause load
imbalance and performance degradation in the clustered multimedia server with these
schemes. Because of the random assignment of data segment, FRD is not sensitive to access
patterns and supports more generic workloads. But, due to its poor fault tolerance ability and
huge data index, FRD is less desirable for clustered multimedia server with high availability.

Symmetrical Declustering (SD) is a data placement style suitable for both random and
sequential access pattern. The basic idea of SD is to organize primary and backup copy of
data segments in a symmetrical way, which can balance the workload of the nodes in the
presence of the intra-movie skewness. There are three kinds of SD placement. Mirrored
Symmetrical Declustering (MSD) and Shifted Symmetrical Declustering (SSD) respectively
emphasize high availability and load balancing in the event of a failure. Chained Symmetrical
Declustering (CSD) is a compromise between them.

Fig. 3.13 illustrates the data placement layout of MSD that has high level of availability.

25

MSD has the similar characteristics as MD except that this method has good load balancing in
the normal mode for both sequential and random access pattern. It is suitable for the clustered
multimedia server demanding high availability.

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
5' 4' 3' 2' 1' 0'
6 7 8 9 10 11

11' 10' 9' 8' 7' 6'

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
5' 4' 3' 2' 1' 0'
6 7 8 9 10 11

11' 10' 9' 8' 7' 6'
Fig.3.13. Mirrored Symmetrical Declustering

SSD is shown in Fig. 3.14. In order to obtain high performance in the fault mode, SSD

scheme trades availability for load balancing. With SSD, the load of the failure node can be
distributed over other active nodes without dynamic load balancing. As illustrated in Fig. 3.14,
if S[1] fails, its load can be reassigned to other five nodes.

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
5' 4' 3' 2' 1' 0'
6 11 7 8 9 10

11' 6' 10' 9' 8' 7'
12 16 17 13 14 15
17' 13' 12' 16' 15' 14'
18 21 22 23 19 20
23' 20' 19' 18' 22' 21'
24 26 27 28 29 25
29' 27' 26' 25' 24' 28'

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
5' 4' 3' 2' 1' 0'
6 11 7 8 9 10

11' 6' 10' 9' 8' 7'
12 16 17 13 14 15
17' 13' 12' 16' 15' 14'
18 21 22 23 19 20
23' 20' 19' 18' 22' 21'
24 26 27 28 29 25
29' 27' 26' 25' 24' 28'

Fig.3.14. Shifted Symmetrical Declustering

Fig. 3.15 is the data placement of CSD scheme. It has the similar characteristics as CD
except that this scheme is suitable for not only random access pattern but also sequential
access pattern. The figure shows load distribution of CSD in the event of node failure without
dynamic load balancing. If S[1] fails, its load are distributed to it two logically adjacent nodes,
S[0] and S[4]. With dynamic load balancing, the load of the failed node can be uniformly
distributed to other operational nodes.

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
5' 4' 3' 2' 1' 0'
11 6 7 8 9 10
6' 11' 10' 9' 8' 7'
12 13 14 15 16 17
17' 16' 15' 14' 13' 12'
23 18 19 20 21 22
18' 23' 22' 21' 20' 19'

S[0] S[1] S[2] S[3] S[4] S[5]

0 1 2 3 4 5
5' 4' 3' 2' 1' 0'
11 6 7 8 9 10
6' 11' 10' 9' 8' 7'
12 13 14 15 16 17
17' 16' 15' 14' 13' 12'
23 18 19 20 21 22
18' 23' 22' 21' 20' 19'

Fig.3.15. Chained Symmetrical Declustering

26

3.3 Summary

suitability fault tolerance load redistribution in fault mode
for

random
access
pattern

for
sequential

access
pattern

tolerate
single
node

failure

tolerate
multiple

node
failure

to single
active
node

to some
active
nodes

to all
active
nodes

MD √ √ √
CD √ √ √

CD* √ √ √
ID √ √ √

RMD √ √ √
RMD* √ √ √
MCD √ √ √
OSM √ √ √
SRD √ √ √
FRD √ √ √ √
MSD √ √ √ √
SSD √ √ √ √
CSD √ √ √ √

CSD* √ √ √ √

√ means that a scheme has the corresponding characteristic shown at the top of the table.
* means a scheme with dynamic load balancing in the fault mode.

4. Real-time Stream Scheduling

The Overall goal of stream scheduling in multimedia systems is to meet the deadlines of
all time-critical tasks. Closely related is the goal of keeping the necessary buffer space
requirements low. At the same time, the server should ensure that aperiodic requests be
scheduled without delaying an infinite amount of time. The scheduling algorithm must find a
balance between time constraints and efficiency.

4.1 Real-time Disk Scheduling

Traditionally, disk scheduling algorithms (e.g., first come first served (FCFS), shortest
seek time first (SSTF), SCAN, etc.) have been employed by servers to reduce the seek time
and rotational latency, to achieve a high throughput, and to provide fair access to each client.
The addition of real-time constraints, however, makes direct application of traditional disk

27

scheduling algorithms inappropriate for multimedia servers.
Techniques for scheduling real-time tasks have also been extensively studied in the

literature. The best known algorithm for real-time scheduling of tasks with deadlines is the
Earliest Deadline First (EDF) [58] algorithm. In this algorithm, after accessing a media block
from disk, the media block with the earliest deadline is scheduled for retrieval. Scheduling of
the disk head based solely on the EDF policy, however, may yield excessive seek time and
rotational latency, and hence, may lead to poor utilization of the server resources.

In the context of multimedia applications, SCAN-EDF [65], a hybrid of SCAN and EDF
algorithm, is proposed to address the real time and efficiency requirements. In this algorithm,
the requests are served in EDF order, but when several requests have the same deadline, they
are served using SCAN. Since the optimization only applies for requests with the same
deadline, the following technique [79] can be used to improve the efficiency: all requests have
release times that are multiples of the period p, so that all the deadlines are also multiples of
the period p. Therefore, the requests can be grouped together and be served accordingly.

4.2 Real-time Data Scheduling

The disk scheduling algorithms generally deal with the optimization of disk heads
movement among the disk cylinders for a given set of requests with deadlines. But these
algorithms themselves don’t specify which data needs to be retrieved by when, nor the order
in which units of data are read into the memory. These tasks are accomplished by the data
scheduling algorithms, which determine how the data for a continuous stream is driven off the
disk and apart from the memory. It is responsible for generating requests deadlines and
submits them to the disk driver, guaranteeing there will be no consumer starvation or buffer
overflow. In an environment of multiple streams, it should also strive to maximize the
resource utilization to support as more streams as possible. In the scheduling, the tradeoff
between different types of resource like disk bandwidth, memory should always be
considered.

There are two classes of data scheduling policies: round-based scheduling [7][36] and
deadline-based scheduling [75][94].

4.2.1 Round-based Data Scheduling

In round-based scheduling, time is divided into round of length p. While users are
consuming data over the network during round i, the storage server is inserting data into
memory with the data needed for round i +1. During each round, all media streams are
serviced.

The round length represents an upper bound on the time in which the storage server must
retrieve from disk the next figments for all active continuous displays, or some displays will
suffer a glitch. Within a round, it is possible to employ either a round-robin or a SCAN
algorithm. The latter performs seek optimization, resulting in better disk throughput. However,
this is achieved at the expense of higher start-up latency; the display cannot be started

28

immediately after the retrieval of its block but only after the end of the round. This is done to
avoid glitches since the service order differs from round to round. This situation is not present
when using round-robin scheduling which also has lower RAM buffer requirements since it
does not require the double-buffering scheme required by SCAN between successive rounds.
A compromise was achieved with the Group Sweeping Scheduling (GSS) algorithm [20].
GSS groups streams and employs round-robin scheduling for the different groups and SCAN
scheduling for the streams’ block in a group. Thus, when there is only one group GSS reduces
to SCAN and when each stream is in its own group GSS degenerates to round-robin.

The round length is a crucial parameter in the data scheduling. To service all clients
without a hiccup, sufficient data must be put in the buffer to be sent in any period. As the
service period becomes longer, each stream must read more data from the disk into the buffer.
However, due to the limited size of the buffer, the period can’t be longer than an upper bound,
say, Tmax. On the other hand, reading all the necessary data in a short period requires relative
high disk bandwidth. Due to the limit of disk bandwidth, the period cannot be shorter than
some minimum value Tmin. The upper/lower bound can be calculated according to the
allowable overflow/starvation probability which is given as the QoS parameter. A lot of
researches address this problem. For example, Chen et al. [19] proposed a scheme to find
lower and upper bound of the period. [67] studied the smoothing effect on the data retrieval
brought out by varying the round length. [65] studied the effect of extended deadline, which is
essentially equal to the increased round length regarding the buffer requirement, on the disk
performance.

4.2.1 Deadline-driven Data Scheduling

The deadline-driven data scheduling policy is usually combined with a random data
placement strategy. Compared with the round-based approach which retrieves blocks in
advance by employing optimized disk scheduling, the deadline-driven scheduling allows
fewer optimizations to be applied, potentially resulting in more wasted bandwidth and less
throughput. However, the startup latency is generally shorter compared to round-based
scheduling, because with round-based scheduling the initial startup latency for an object
might be large under heavy load. This makes it more suitable for interactive applications.

Sahu Sambit et al. [67] examined the round-based scheduling combined with a CTL data
access policy (termed CTL-Round) and the deadline-based scheduling combined with a CDL
data access policy (termed CDL-EDF) in the context of VBR media streaming. From the
simulation, it is observed that CDL-EDF is able support the retrieval of the same number of
streams with lower resource (disk rate, buffer size) requirements. The reason is attributed to
the data rate variability within and across the CTL rounds. Although smoothing is achieved
within a CTL round, round-based retrieval does not help reduce the variability that is present
across the CTL rounds. In contrast, CDL-EDF reduces the inter-round variability by
workahead, i.e., prefetching data ahead in time. Based on this observation, the authors further
developed an extension to CTL-Round policy that integrates the advantage of workahead of a

29

deadline-based retrieval policy into a periodic data access policy.

4.3 Disk Scheduling for Mixed-Media Workloads

A digital library application may consist of both continuous media and traditional data
(termed non-real-time) such as text, still images and ASCII text. Non-real-time object requests
do not have deadlines and are given a lower priority than video and audio objects. However,
these requests must be served in a manner that prevents starvation.

Not all real-time object requests have identical priorities. Some are more important than
others. For example, with MPEG encoded video, a video clip is represented as a sequence of I,
P, and B frames. Losing an I frame is more disruptive than losing either P or B frames. A disk
scheduling algorithm that gives a higher priority to the retrieval of I frames results in a better
Quality of Service (QoS). As another example, it is well known that humans are more
sensitive to faults in audio than in video. If it is inevitable to discard data packets, it might be
better to discard video packets in favor of delivering audio packets.

As a final example from video on demand applications, the service providers may offer a
range of services with higher quality service provided at higher prices. For example, there
might be two levels of services: high-quality and best-effort. Customers ordering high-quality
services are expected to be charged more than those ordering best-effort streams. One way to
honor the high-quality services is to assign different priorities to object requests and
implement scheduling techniques that service them in a manner that maximizes profits.

In all examples, scheduling of real time requests alone or real time requests with the same
priority will not satisfy the application requirements. The desired disk scheduling algorithms
should meet these goals:

 The requests with the highest priority should be scheduled without deadline
violations.

 The non-real-time requests should have small average response times and small
response time variance.

 If it is inevitable to discard some of the data requests at peak system loads, it
desirable to discard those with lowest priority.

The work in 1.1.1[65] studied the scheduling of aperiodic requests mixed in real-time
stream requests with some classic disk scheduling algorithms, including EDF, CSCAN, and
SCAN-EDF. The affect of aperiodic requests on the real-time service capacity and the
response time of the aperiodic requests are analyzed through simulation.

[66] overviewed the performance goals for mixed workload scheduling in the context of
continuous media stream and discrete requests. The disk scheduling algorithms for
mixed-media workloads are classified by: (1) Number of separate scheduling phases per
round. One-phase algorithms produce mixed schedules, containing both discrete and
continuous data requests. Two-phase algorithms have two, not timely overlapping, scheduling
phases serving discrete and continuous data requests isolated in the corresponding phases. (2)
Number of scheduling levels. Hierarchical scheduling algorithms for discrete data requests are

30

based on defining clusters. The higher levels of the algorithms are concerned with the
efficient scheduling of clusters of discrete requests. The lower levels are efficiently
scheduling the requests within a cluster. The most important task to solve in this context is
how to schedule discrete data requests within the rounds of continuous data requests, which
are mostly served by SCAN variations.

Cello [72] uses a two level disk scheduling architecture. It combines a class independent
scheduler with a set of class-specific schedulers. Two time scales are considered in the two
levels of the framework to allocate disk bandwidth: (1) coarse-grain allocation of bandwidth
to application classes is performed by the class-independent scheduler; and (2) the fine-grain
interleaving of requests is managed by the class-specific schedulers. This separation enables
the co-existence of multiple disk scheduling mechanisms at a time depending on the
application requirements. Cello defines 3 service classes: (1) interactive best-effort
applications; (2) throughput-intensive applications and (3) real-time applications with
periodic consumption. The cello mechanism has been implemented in the project Qlinux [40].

The similar service classes were adopted in Prism [90]. It realized an resource allocation
and scheduling mode that differentiates among 3 types of streams: periodic streams, aperiodic
streams and interactive streams, as shown in Fig. 4.1. The disk I/O scheduler schedules I/O
requests in two time frames: namely main period and sub period. There are several sub
periods per main period. In every main period the list of periodic requests and available
aperiodic requests are combined in SCAN order. But in the sub periods this order can be
adjusted to consider the interactive requests, which are maintained in FIFO queue. This
mechanism allows for faster response times for interactive requests at the cost of increased
seek times. An interactive request is scheduled only if there is sufficient slack to schedule
periodic requests for the current main period, and an aperiodic request is scheduled only if
there is sufficient slack time for both periodic and interactive requests. Service class specific
admission controllers limit the resource consumption of specific class to assigned levels.

Pool of requests

1 432

1 432

Network

Device

Device Queues

Disk I/O scheduler

Periodic
Queue

Interactive
Queue

Aperiodic
Queue

Fig. 4.1 Prism resource allocation and scheduling framework

The quick response requirement of interactive requests in multimedia service also

motivated BubbleUp [17], a disk scheduling algorithm proposed to minimize initial latency

31

for interactive requests. With this technique, all periodic requests are served in SCAN order,
however, when the first request of a new stream arrives, it is inserted at the head of the queue
for immediate service.

[46] proposed a deadline driven disk scheduling algorithm in support of real time requests
with multiple priorities, e.g., those for different object classes in digital library applications.
Instead of maintaining separate queue for each priority level as in traditional schemes, it
maintains one queue for all requests to enhance utilization of disk bandwidth. By this way the
disk optimization can be performed globally. The simulation experiments exhibits significant
increase in the number of serviced low priority requests with the proposed scheme when
compared with the multi-queue scheme. But under some conditions the proposed algorithm
might violate the deadline of a few high priority requests.

While a lot of literatures have concentrated on data retrievals in support of a continuous
display, scant attention has been paid to the write scheduling. In [3], a method is proposed to
address this problem. It tries to minimize the occurrences where the writing requests violate
the deadlines of a few block reads during peak system load. The scheduler achieves it in two
ways. First, it schedules the reading and writing of blocks to maximize the utilization of disk
bandwidth (by minimizing the impact of disk seek and latency using algorithms such as
SCAN-EDF). Second, it delays the writing of blocks when the amount of available buffers is
abundant. This is achieved by developing a methodology for associating an artificial deadline
with each write request to the disk. This deadline is a function of the arrival rate of block
write requests and the amount of available buffers. Simulation studies demonstrates that the
proposed scheme is superior to an alternative that maintains different queues for the read and
write requests.

5. Admission Control

Given the real-time performance requirements of each client, a multimedia server must
employ admission control algorithms to determine whether a new client can be admitted
without violating the performance requirements of the already admitted clients. In the
simplest case, the scheduler can make decision based on the worst assumptions regarding
various resource requirements of the new request. This scheme can give deterministic Qos
guarantee to the new client. However, it is overly conservative and may result in very poor
resource utilization because the resource consumption may be much less than the worst case
in normal state. A lot of researchers have exploited the variability of different resource
consumption to improve the number of concurrently supported clients with available
resources.

The variable factors in a multimedia service are manifold. For example, the seek time and
rotational latency of disks, the encoded bit rate of the media file, the congestion condition of
communication network, etc., all brings some unpredictable affects upon the servicing. Some
researchers proposed schemes to predict the possibility of accommodating a new client by

32

observing the system behavior in a past time window; while other researchers employ
statistics models to characterize the behavior of disks and bit rate of existing media files, so as
to conduct probabilistic analysis regarding the admission of the new client.

Typically, admission control policies are divided into three classes:
 Deterministic policy guarantees specified QoS requirements of existing clients and

admits a new client only if its service demand does not affect the present clients.
 Statistical-based policy handles admission control based on the probabilistic

distributions of various factors, such as the bit rate and frame size of stored media
files, the file block access time, etc. The admission control results are given in a
probabilistic form.

 Measurement-based policy monitors the resource utilization over a time window, and
estimate the new client’s resource requirement based on this observation. The
observed utilization will determine if the server can meet the requirements of the new
client.

The deterministic policy ensures an uninterruptible service for a client once it is admitted,
while a statistical-based policy and measurement-based policy only provide probabilistic
guarantee for the requests’ real-time requirement. The latter two policies are justifiable
because of the fact that some applications may be able to tolerate some missed deadlines. For
example, a few lost video frames, or the occasional pop in the audio may be tolerable in some
cases - especially if such tolerance is rewarded with a reduced cost of service.

In what follows, we will discuss the admission control algorithms focusing on the disk
aspect. Since the CBR (Const Bit Rate) stream can be regarded as a special example of VBR
(Variable Bit Rate) streams, we restrict our discussion in the VBR admission control, and for
simplicity, we will refer to the disk admission control algorithms for VBR streams as
admission control algorithms.

5.1 Deterministic Policy

The simplest method to provide deterministic QoS for clients is to employ the maximum
data rate of a stream and the worst-case data rate of the disk as the decision parameters
[35][64]. With this scheme, the admission decision can be performed very simply. However,
this is an extremely conservative scheme that significantly under-utilizes the disk resource.
Often it is used as baseline for the system performance optimization.

An intuitive improvement for the above algorithms is to use a vector that records the
maximum data rates in successive rounds, rather than a single maximum value of the whole
stream, to describe the requirement of the stream [59][18]. The server maintains a scheduling
table recording the amounts of data to be retrieved in each time round, and when a steam
request arrives, it adds the data rate vector to the scheduling table, checking if there exists any
round in which the aggregate data rate exceeds the lower bound of disk rate (termed minRead).
If so, the request is rejected, otherwise the stream is admitted. Though superior to the first
algorithm, this algorithm is also overly conservative. One major advantage of both algorithms

33

is that neither of them require any additional buffer space for read ahead at the server, since
all the disk requirements for every round can be met by the disk reads performed during that
round.

The deterministic policy does not necessarily leads to poor disk utilization. VbrSim [60]
solves the problem of being too conservative in admissions, but still gives deterministic
guarantees to the clients. This algorithm builds on the second algorithm mentioned above by
making better use of the scheduling table. It enforces the server read minRead blocks in each
round, hoping that the bandwidth peaks can be smoothed by the data read ahead in rounds
with lower data rate. This rate of reading, of course, is only possible when there are enough
buffers to hold the data read early. To cope with the possible buffer overflow, the server also
maintains a buffer allocation table to manage the buffer utilization. The buffer space storing
data of a round will be reclaimed at the start of next round, and in some cases the allocated
buffer needed furthest in the future can be “stolen” for current buffer allocation.

5.2 Statistical-based Policy

In Vin et al.[87], a statistical admission control algorithm is presented, which considers
not only average bit rates, but the distributions of frame sizes, and probability distributions of
the number of disk blocks needed during any particular service round. In rounds (referred to
as overflow rounds) the disk is over subscribed (with a certain probability which can be
controlled by the algorithm), the system attempts to judiciously distribute the effective frame
loss among the subscribed clients. A greedy disk algorithm attempts to reduce the actual
occurrence of overflow rounds. This algorithm requires some knowledge of the syntax of the
data stream, such as where display unit (i.e. video frame) boundaries exist and which display
units are more important than others (i.e. MPEG I Frames vs. MPEG B Frames).

When caching is employed in multimedia servers, the disk workload may exhibit
different characteristics. Kang et al. [47] studied this problem on the basis of interval caching
[26]. They take into account the effect of caching by expressing it as load reduction imposed
on the disk. Hence, the ultimate disk load can be calculated through subtracting the load
reduction by caching from the disk load without caching. The calculating also adopts a
probability-based method and the service guarantee is given in a probabilistic fashion.

The RSAC (Reliable Statistical Admission Control) [48] method also exploits cache when
performing admission control. It attempts to optimize the server utilization and minimize jitter
by reserving a certain amount of disk bandwidth for those streams which are evicted from the
cache, and are likely to cause jitter. The amount of reserved bandwidth is estimated as a
function of the average number of cached streams, which in turn indicates improvement in
server capacity with interval caching.

5.3 Measurement-based Policy

Measurement-based policy is based on the assumption that the amount of time spent in
servicing each of the already admitted clients will continue to exhibit the same behavior, even

34

after a new client is added into the system. A multimedia server that employs such an
observation-based approach is referred to as providing predictive service guarantees to clients.

In Vin’s work [88], such an algorithm is presented. It uses the predicted extrapolation
from the status quo measurements of the disk utilization to decide if the new client can be
added without violating the service requirements of all existing clients. A greedy disk
scheduling algorithm is used in conjunction with it to achieve high disk utilization. The
technique for minimizing and distributing the discarded media blocks are also presented to
improve the QoS for playback.

The new client’s requirement can be estimated using either a Worst-Case or Average-Case
extrapolation [86]. The Worst-Case algorithm uses the maximum service time in the recent
past to estimate the new client’s requirement, while the Average-Case algorithm estimates the
new requirement based on the average service time of existing streams. The experiment
results show minor different between these two algorithms regarding the maximum supported
streams, but the Worst-Case algorithm is more reliable in meeting the real-time requirements
of requests.

6. Conclusions

This paper has sought to bring together the ideas and work in the area of clustered
multimedia servers generated in the past decade. While the involved researches issues are
many, we focus on two aspects, namely architecture and storage system, which plays central
roles in a multimedia server and have received a great deal of attention from the academia.
For the architecture, we survey over 20 projects/systems and give taxonomy for their system
structures. Then we examine the media data organization schemes and the stream scheduling
issues, including the techniques of real-time stream scheduling and admission control
algorithms. The intention of this paper has been to present a suitable framework for
comparing past work on these topics, and, if possible, provide some guidance for the design
and strategy choosing in building a clustered multimedia server.

As in the case in any survey, there are many pieces of work to be considered. It is hoped
that the examples presented fairly represent the main efforts made on the practice of
architecture and storage system design of clustered multimedia servers. Most of these systems
are from the laboratories since few published materials about the detailed design of
commercial products can be found. The exclusion of any particular results has not been
intentional. Decisions as to which papers to use as examples were made purely on the basis of
their applicability to the context of the discussion in which they appear.

References

[1] C. Akinlar and S. Mukherjee. “A Scalable Distributed Multimedia File System Using
Network Attached Autonomous Disks”. Proc. of 8th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp.

35

180-187. 2000.

[2] C. Akinlar and S. Mukherjee. “Bandwidth Guarantee in a Distributed Multimedia File
System Using Network Attached Autonomous Disks”. Proceedings of Sixth IEEE
Real-Time Technology and Application 2000 Symposium. RTAS 2000. Page(s):
237 –246

[3] W. G. Aref, I. Kamel and S. Ghandeharizadeh, “Disk Scheduling in Video Editing
Systems,” In IEEE Transactions on Knowledge and Data Engineering, Volume 13,
Number 6, 933-950, December 2001

[4] K. Argy, “Scalable multimedia servers,” IEEE Concurrency, Volume 6， Issue 4
Oct.-Dec. 1998. Page(s) 8 –10

[5] R. L. Axtell, “Zipf Distribution of U.S. Firm Sizes,” Science. Sept. 7，2001，Vol. 293. pp.
1818-1820

[6] Christoph Bernhardt and Ernst Biersack, “A Scalable Video Server: Architecture,
Design, and Implementation,” Real-time Systems Conference, Paris, France, January
1995, pp.63-72

[7] S. Berson, S. Ghandeharizadeh, R.R. Muntz and X.Ju, “Staggered Striping in Multimedia
Information Systems”, Proc. of the International Conference on Management of Data
(SIGMOD), Minneapolis, Minnesota, pp.79-90, 1994.

[8] Miklos Berzsenyi， Istvan Vajk，Hui Zhang. “Design and implementation of a
video-on-demand system,” Computer Networks and ISDN Systems 30 (1998) 1467-1473

[9] C. C. Bisdikian and B. V. Patel, “Issues on Movie Allocation in Distributed
Video-on-Demand Systems,” Proc. ICC95, IEEE Press, Piscataway, N.J., 1995,
pp.250-255.

[10] William J. Bolosky, Robert P. Fitzgerald, and John R. Douceur. “Distributed Schedule
Management in the Tiger Video Fileserver,” In Proceedings of SOSP-16, St.-Malo,
France, Oct. 1997. Pages 212-223

[11] Alice Bonhomme and Loic Prylli, “A Distributed Storage System for a
Video-on-Demand Server,” Lecture Notes in Computer Science, vol.1900, pp.1100-1110,
2001

[12] Klaus Breidler, “Communication Infrastructure for the Parallel Video Server SESAME,”
Master Thesis, Institute of Information Technology at University Klagenfurt, Austria.
February 2000.

[13] T. Brisco ， “DNS Support for Load Balancing,” RFC 1794 ， [Online]
http://www.ietf.org/rfc/rfc1794.html.

[14] Milind Buddhikot and Gurudatta, Parulkar, “Efficient Data Layout, Scheduling and
Playout Control in MARS,” in Proceedings of the 5th International Workshop on
Network and Operating System Support for Digital Audio and Video (NOSSDAV), April
1995

[15] A. Calvagna，A. Puliafito and L. Vita. “Design and implementation of a low-cost/

36

high-performance Video on Demand server,” Microprocessors and Microsystems.
24(2000) 299-305

[16] C. K. Chang，C. C. Shih，T. T. Nguyen and P. Mongkolwat，“A Popularity-based Data
Allocation Scheme for a Cluster-based VOD Server,” Proc. of COMPSAC'96，Seoul，
Korea，August 1996， pp. 62-67

[17] E. Chang and H. Carcia-Molina, “BubbleUp: Low Latency Fast-Scan for Media
Servers,” Proc. of the 5th ACM Conference on Multimedia, June 1997

[18] E. Chang and A. Zakhor, “Cost Analyses for VBR Video Servers,” in IST/SPIE
Multimedia Computing and Networking, (San Jose, CA), pp. 381--397, Jan. 1996

[19] Huagn-Jen Chen and T.D.C. Little, “Storage allocation policies for time-dependent
multimedia data,” IEEE Transaction On Knowledge and Data Engineering.
8(5):855-864, October, 1996.

[20] M. S. Chen, D.D. Kandlur, and P.S. Yu, “Optimization of the Grouped Sweeping
Scheduling (GSS) with Heterogenous Multimedia Streams”, Proc. ACM Multimedia 93,
Anaheim, CA, Aug. 1993, pp. 235—242

[21] M. S. Chen et al., “Using Rotational Mirrored Declustering for Replica Placement in a
Disk-Array-Based Video Server,” Multimedia System, Vol. 5, pp. 371-379, December
1997.

[22] Shenze Chen and Manu Thapar, “A Fibre Channel-based Architecture for Internet
Multimedia server Clusters”. Proc. of 3rd International Conference on Algorithms and
Architectures for Parallel Processing, 1997. pp. 437-450

[23] Cisco Local Director，Cisco Systems， Inc.， http://www.cisco.com/univercd/cc/td
/doc/pcat/ld.htm

[24] Ariel Cohen and Walter A. Burkhard，“Segmented Information Dispersal (SID) Data
Layouts for Digital Video Servers,” IEEE Transactions on knowledge and data
engineering，Vol. 13， No.4，August 2001. pp. 593-606

[25] Damani et al. “ONE-IP: Techniques for Hosting a Service on a Cluster of Machines”, in
Proc. of Sixth International WWW Conference, April 1997.

[26] A. Dan and D. Sitaram, “Buffer management policy for an on-demand video server,”
IBM Research Report RC 19347.

[27] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling Policies for an On-Demand Video
Server with Batching,” in Proc. of ACM Multimedia 94 Conference, pp. 15-21, October,
1994.

[28] Daniel M. Dias, William Kish, Rajat Mukherjee, and Renu Tewari, “A Scalable and
Highly Available Web Server,” in Proceedings of IEEE COMPCON’96.

[29] D. H. C. Du and Y. J. Lee, “Scalable server and storage architectures for video
streaming,” Proc. IEEE Int. Conf. Multimedia Computing and Systems, pp. 62–67, June
1999.

[30] C. S. Freedman and D. J. DeWitt, “The SPIFFI scalable video-on-demand system,” in

37

Proc. ACM SIGMOD'95, San Jose, CA, May 1995, pp. 352-363

[31] J. Friedrich， T. Grun， and J. Keller, “Video-on-Demand on the SB-PRAM,” In Proc. of
the 6th International Workshop on Network and Operating System Support for Digital
Audio and Video，NOSSDAV’96，Zushi，Japan. April 1996，pages 105-111

[32] J. Gafsi， E. Biersack， “Data striping and reliability aspects in distributed video
servers,” Cluster Computing 2(1), 1999. pp. 75-91

[33] J. Gafsi and E. Biersack, “A Novel Replication Placement Strategy for Video Servers,”
6th International Workshop on Interactive and Distributed Multimedia Systems,
Toulouse, France, October 12-15 1999.

[34] J. Gafsi, Ulrich Walther, Ernst W.Biersack. “Design and Implementation of a Scalable,
Reliable, and Distributed VOD-Server”. In Proceedings of the 5th joint IFIP and ICCC
Conference on Computer Communications, AFRICOM-CCDC, Tunis, 1998

[35] J. Gemmell and Stavros Christodoulakis, “Principles of Delay-Sensitive Multimedia
Storage and Retrieval,” ACM Transactions on Information Systems, 10(1): 51-90, 1992

[36] J. Gemmell, H.M. Vin, D.D. Kandlur, P.V. Rangan, and L.A. Rowe, “Multimedia
Storage Servers: A Tutorial,” IEEE Computer, Vol.28, no.5, May 1995, pp.40-49

[37] G. A. Gibson，D. F. Nagle，K. Amiri， and et al. “File Server Scaling With
network-attached secure disks”. Proceedings of the ACM International conference on
Measurement and Modeling of Computer Systems (Sigmetrics’97)，Seattle, WA. June
1997. pages 272-284

[38] G. A. Gibson and R. V. Meter, “Network attached storage architecture,” Commun. ACM,
vol. 43, no. 11, pp. 37–45, Nov. 2000.

[39] L. Golubchik，J. C. Lui，and R. R. Muntz，“Chained Declustering: Load balancing and
robustness to skew and failures，” in Proceedings of the Second International Workshop
on Research Issues in Data Engineering: Transaction and Query Processing，February
1992. pp. 88-95

[40] P. Goyal, J. K. Sahni, P. Shenoy, R. Srinivasan, H. Vin, and T.R.Vishwanath. QLinux
2.4.x: A QoS enhanced Linux Kernel for Multimedia Computing. Qlinux home page,
2002. http://lass.cs.umass.edu/software/qlinux/

[41] C. Griwodz, M. Bar, and L. C. Wolf, “Long-term Movie Popularity Models in
Video-on-Demand Systems or the Life of an On-Demand Movie,” Proc. Multimedia 97,
ACM Press, New York, 1997, pp.349-357.

[42] A. Guha, “The evolution to network storage architectures for multimedia applications,”
Proc. IEEE Int. Conf. Multimedia Computing and Systems, pp. 68–73, June 1999.

[43] Roger L. Haskin and Frank B. Schmuck. “The Tiger Shark File System,” Proc. of
COMPCON’96. 1996. Page(s): 226-231

[44] A. Heybey, M. Sullivan, and P. England, “Calliope: A distributed, scalable multimedia
server,” Proc. of USENIX 1996 Annual Technical Conference, 1996.

[45] Kai Hwang, Hai Jin, R. Ho, “Orthogonal Striping and Mirroring in Distributed RAID for

38

I/O-Centric Cluster Computing,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 13, NO. 1, pp. 26-44, January 2002.

[46] I. Kamel, T. Niranjan, and S. Ghandeharizadeh, “A Novel Deadline Driven Disk
Scheduling Algorithm for Multi-Priority Multimedia Object,” In Proceedings of the
IEEE Data Engineering Conference, February 2000

[47] Sooyong Kang and Heon Y. Yeom, “Statistical admission control for soft real-time VOD
servers,” Proc. of ACM Symposium on Applied Computing 2000, pp 579-584

[48] S. Kim and C. R. Das, “A Reliable Statistical Admission Control Strategy for Interactive
Video-On-Demand Servers with Interval Caching,” Proceedings of the 2000
International Conference on Parallel Processing (ICPP), pp. 135-142

[49] Argy Krikelis, “Scalable multimedia servers”, IEEE Concurrency, Volume 6, Issue 4, pp.
8-10, Dec. 1998.

[50] J. B. Kwon, H. Y. Yeom. “An Admission Control Scheme for Continuous Media Servers
using Caching,” in Proceeding of IEEE International Performance, Computing,and
Communications Conference, 2000. IPCCC’00. pp. 456-462

[51] E. K. Lee, “Highly-Available, Scalable Network Storage,” in Proc. of CompCon, March
1995.

[52] J. Y. B. Lee, “Parallel video servers: a tutorial,” IEEE Multimedia, Volume 5 Issue 2，
April-June 1998，pp. 20 –28

[53] J. Y. B. Lee. “Concurrent Push – A Scheduling Algorithm for Push-Based parallel Video
Servers,” IEEE Transactions on Circuits and Systems for Video Technology. VOL. 9，
No. 3， April 1999. pp. 467-477

[54] J. Y. B. Lee. “Supporting Server-Level Fault Tolerance in Concurrent-Push-Based
Parallel Video Servers”. IEEE Transactions on Circuits and Systems for Video
Technology. VOL.11，No.1， January 2001. pp. 25-39

[55] Peter W. K. Lie, John C. S. Lui, Leana Golubchik, “Threshold-Based Dynamic
Replication in Large-Scale Video-on-Demand Systems,” Multimedia Tools and
Applications 11(1): 35-62 (2000)

[56] Linux Virtual Server Project，http://www.LinuxVirtualServer.org/

[57] T. Little and D. Venkatesh, “Popularity-based Assignment of Movies to Storage Devices
in a Video-on-Demand System,” IEEE Multimedia, vol.2, pp.280-287, Spring 1995.

[58] C. L. Liu and J.W.Layland, “Scheduling algorithms for multiprogramming in a hard real
time environment,” Journal of ACM, Jan 1973, vol.20, no.1, pp.46-61

[59] D. Makaroff, G. Neufeld and N. Hutchinson, “An Evaluation of VBR Admission
Algorithms for Continuous Media File Servers,” ACM Multimedia’97, Seattle, WA,
November, 1997, pp 143-154

[60] Dwight J. Makaroff, Gerald W. Neufeld, Norman C. Hutchinson, “Design and
Implementation of a VBR Continuous Media File Server,” IEEE Transactions on
Software Engineering 27(1): 13-28 (2001)

39

[61] Jeffrey Mogul. “Network behavior of a busy Web server and its clients”. Research
Report 95/5, DEC Western Research Laboratory, October 1995.

[62] Miyazaki, Klara Nahrstedt, “Dynamic Coordination of Movies According to Popularity
Index and Resource Availability within a Hierarchical VoD System,” in Proc. of IEEE
Region 10 Annual Conference, Speech and Image Technologies for Computing and
Telecommunications, pp. 199-203, Queensland, Australia, December, 1997

[63] Chang-Soon Park, Mann-Ho Lee, Young-Sung Son and Oh-Young Kwon, “Design and
implementation of VoD server by using clustered file system,” IEEE International
Conference on Multimedia and Expo 2000, Volume 3. Page(s): 1465 –1468

[64] P.V. Rangan and H. M. Vin, “Efficient Storage Techniques for Digital Continuous
Multimedia,” IEEE Transactions on Knowledge and Data Engineering Special Issue on
Multimedia Information Systems. August 1993

[65] A.L.N. Reddy and J.C. Wyllie, “I/O Issues in a Multimedia System,” IEEE Computer,
March 1994, pp.17-28

[66] Y. Rompogiannakis, G. Nerjes, P. Muth, M. Paterakis, P. Triantafillou, G. Weikum,
“Disk scheduling for mixed-media workloads in a multimedia server,” Proceedings of
the sixth ACM international conference on Multimedia, p.297-302, September 13-16,
1998.

[67] Samit Sahu, Zhi-Li Zhang, Jim Kurose, and Don Towsley, “On the Efficient Retrieval of
VBR Video in a Multimedia Server,” in Proceedings of IEEE Conference on Multimedia
Computing and Systems, Ottawa, Ontario, Canada, June 1997

[68] Olav Sandsta, Stein Langorgen, and Roger Midtstraum. “Video Server on an ATM
Connected Cluster of Workstations,” in Proceedings of the 17th International
Conference of the Chilean Computer Science Society (SCCC '97). pp. 207-217

[69] H. Schulzrinne，S. Casner，R. Frederick，and V. Jacobson, “RTP: A Transport Protocol
for Real-Time Applications,” RFC 1889，http://www.ietf.org/rfc/rfc1889.html, Jan. 1996

[70] H. Schulzrinne，A. Rao，and R. Lanphier, “Real Time Streaming Protocol (RTSP),” RFC
2326，http:// www.ietf.org /rfcs/rfc2326.html, Apr. 1998

[71] P. J. Shenoy， P. Goyal， S. S. Rao，and H. M. Vin, “Symphony: An Integrated
Multimedia File System,” Proceedings of SPIE/ACM Conference on Multimedia
Computing and Networking，1998. pp. 124-138

[72] P. Shenoy and H. Vin, “Cello: A disk scheduling framework for next generation
operating systems, ” in Proc. ACM SIGMETRICS 1998. pp. 44-55.

[73] P. Shenoy and H. Vin, “Efficient Striping Techniques for Variable Bit Rate Continuous
Media File Servers,” Performance Evaluation, vol. 38, pp.175-199, 1999.

[74] Cyrus Shahabi, Roger Zimmermann, Kun Fu, and Shu-Yuen Didi Yao. “Yima: a
second-generation continuous media server,” Computer, Volume: 35 Issue: 6 , June
2002 Page(s): 56 –62

[75] J. R. Snatos and R. Muntz, “Performance Analysis of the RIO Multimedia Storage

40

System with Heterogeneous Disk Configurations,” Proc.of 6th ACM International
Multimedia Conference, 1998

[76] J. Santos, R. Muntz, B. Ribeiro-Neto, “Comparing random data allocation and data
striping in multimedia servers,” Proc. of ACM SIGMETRICS, 2000, pp.44-55.

[77] Dinkar Sitaram and Asit Dan, “Multimedia Servers – Applications, Environments and
Design,” Morgan Kaufman Publishers, 2000.

[78] Valery Soloviev and Alex Rousskov, “The CANDID Video-on-Demand Server,”
Technique Report NDSU-CSOR-TR-95-07.

[79] R. Steinmetz and K. Nahrstedt, Multimedia: Computing, Communications and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1995

[80] Guang Tan，Hai Jin，and Liping Pang，“A Scalable Video Server Using Intelligent
Network Attached Storage”，to appear in Proceedings of IFIP/IEEE International
Conference on Management of Multimedia Networks and Services 2002

[81] R. Tewari, D. M. Dias, W. Kish, and H. Vin, “High Availability for Clustered
Multimedia Servers,” in Proc. of International Conference on Data Engineering, Feb.
1996.

[82] Renu Tewari，Rajat Mukherjee，Daniel M. Dias，and et al., “Design and Performance
Tradeoffs in Clustered Video Servers,” Proc. of MULTIMEDIA’96. pp. 144-150

[83] C. A. Thekkath, T. Mann and E. K. Lee, “Frangipani: A Scalable Distributed File
System,” ACM Symposium on Operating System Principles, 1997. pp. 224-237

[84] W. Tetzlaff and R. Flynn, “Disk Striping and Block Replication Algorithm for Video
File Servers,” in Proc. of ICMCS’96, pp. 590-597, June 1996.

[85] N. Venkatasubramanian and S. Ramanthan, “Load Management in Distributed Video
Servers,” Proc. 17th Int’I Conf. On Distributed Computing Systems, IEEE Computer
Society Press, Los Alamitos, Calif., 1997, pp.528-535.

[86] M. Vernick. The Design, Implementation, and Analysis of the Stony Brook Video Server.
Doctoral Dissertation. Computer Science Dept. at State University of New York at Stony
Brook. 1996. pp. 77-98

[87] Harrick M. Vin, Pawan Goyal, Alok Goyal, and Anshuman Goyal, “A Statistical
Admission Control Algorithm for Multimedia Servers,” In ACM Multimedia. pp.33-40,
October 15-20, 1994, San Francisco.

[88] Harrick M. Vin, Alok Goyal, Anshuman Goyal, and Pawan Goyal, “An
observation-based admission control algorithm for multimedia servers,” In Proc. of the
First IEEE International Conference on Multimedia Computing and Systems (ICMCS),
pages 234--243, May 1994.

[89] VoDKA Projects. http:// http://vodka.lfcia.org/

[90] VIOLA (VIdeo-On-LAns) Project, http://www.cintec.cuhk.edu.hk/mns/viola.html

[91] R. Wijayaratne and A. L. Narasimha Reddy, “System support for providing integrated

41

services from networked multimedia storage servers,” in Proc. of ACM Multimedia
Conf., Sept. 2001.

[92] Song Wu, Hai Jin, “Symmetrical Pair Scheme: a Load Balancing Strategy to Solve
Intra-Movie Skewness for Parallel Video Servers,” in Proc. of the International Parallel
and Distributed Processing Symposium, Marriott Marina, Fort Lauderdale, Florida,
April, 2002.

[93] Song Wu, Hai Jin, Guang Tan, “Analysis of Load Balancing Issues Caused by
Intra-Movie Skewness for Parallel Video Servers,” to appear in Parallel and Distributed
Computing Practices, 2002.

[94] Roger. Zimmermann, Kun Fu, Cyrus Shahabi, Didi Yao and Hong Zhu, ``Yima: Design
and Evaluation of a Streaming Media System for Residential Broadband Services,'' Proc.
VLDB 2001 Workshop Databases in Telecommunications, Springer-Verlag, Berlin, 2001,
pp. 116-125.

