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We propose a framework for modelling and solving search problems using logic, and describe a
project whose goal is to produce practically effective, general purpose tools for representing and
solving search problems based on this framework. The mathematical foundation lies in the areas
of finite model theory and descriptive complexity, which provide us with many classical results, as
well as powerful techniques, not available to many other approaches with similar goals. We describe
the mathematical foundations; explain an extension to classical logic with inductive definitions
that we consider central; give a summary of complexity and expressiveness properties; describe
an approach to implementing solvers based on grounding; present grounding algorithms based
on an extension of the relational algebra; describe an implementation of our framework which
includes use of inductive definitions, sorts and order; and give experimental results comparing
the performance of our implementation with ASP solvers and another solver based on the same
framework.

1. INTRODUCTION

We propose a framework for representing and solving search problems with logic,
and describe work to date toward making this framework the basis for practical
tools. A goal of the work is to produce general purpose tools that are effective in
practice for a wide range of applications. The mathematical foundation is provided
by finite model theory, which offers a body of results and techniques not available
to many other approaches with similar goals. The framework can be applied to
a variety of complexity classes, and problem modelling consists primarily of ax-
iomatizing the problem in an appropriate logic. The framework was proposed in
[Mitchell and Ternovska 2005b; 2005¢; 2005a] and certain aspects were further de-
veloped in [Kolokolova et al. 2006; Patterson et al. 2006; 2007]. Here, we report
on the progress to date. We explain the framework and investigate a number of
properties. We also report on an implementation which is primarily directed at NP-
search problems. There, modelling is in an extended first-order logic, and solving
is based on reduction to the satisfiability problem for propositional logic (SAT).
Cook’s theorem [Cook 1971] that every problem in the complexity class NP can
be reduced in polynomial time to SAT suggested a scheme for solving problems in
NP: (1) For each problem II, implement a polytime reduction to SAT; (2) Given an
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instance of II, apply the reduction to produce a propositional formula, then run the
best SAT solver available to find a satisfying assignment (thus solution) if there is
one. This was almost universally considered an idea of purely theoretical interest,
but recent progress in building and applying SAT solvers shows that reduction to
SAT can be an effective practical technique.

Fagin’s theorem [Fagin 1974] showed that the first step, designing and implement-
ing a reduction, can be replaced with declarative modelling. The theorem says that
NP consists exactly of those problems that can be axiomatized in existential second
order logic (3SO). The solving scheme becomes: (1) Axiomatize problem II with
3SO formula ¢; (2) Given instance 7 of II, check if 7 = ¢. A possible implementa-
tion of (2) is by reduction to SAT. Results analogous to Fagin’s followed for other
complexity classes, most notably for P [Immerman 1982; Vardi 1982; Livchak 1983].
This study of the relationship between logical definability and complexity is called
descriptive complexity [Immerman 1999]. The results show that logics can be seen
as modelling languages for problems in corresponding complexity classes — another
idea that has widely been considered of theoretical, but not practical, interest.

The main idea of our approach to search derives from these results, and is very
simple. Our method involves two components, a finite structure A, and a formula
¢ over a larger vocabulary. Vocabulary symbols of the formula which are not
interpreted by A are second-order free variables. Search is formulated as the task
of expanding the given structure A to the vocabulary of the formula, producing a
model of the formula. We call the task model expansion, abbreviated MX.

A natural way to model a search problem is to view ¢ as a problem description. In
this view, instances are finite structures. The formula, which is fixed, specifies the
relationship between an instance and its solutions. We construct structures 5 which
expand A to the vocabulary of ¢, and satisfy ¢. The solutions for an instance A are
given by the interpretations in each expansion structure B of vocabulary symbols
which are not interpreted by 4. This view clearly separates problem descriptions
(formulas in some logic), from instances (finite structures), and matches with the
descriptive complexity results mentioned: Fagin’s theorem tells us that a search
problem can be expressed this way with first-order logic (FO) if, and only if, its
associated decision problem is in NP. Combined with a reduction from FO model
expansion to SAT, we have a universal method for modelling and solving NP-search
problems. Figure 1 illustrates the architecture of a solver based on this scheme.
Other descriptive complexity results provide similar universal methods for a number
of other complexity classes.

The formulation just described has many desirable properties. Yet, there are
applications where it seems more convenient to describe certain properties of the
instance with a formula, rather than in a structure. In this case, we may consider
a combined MX setting, in which an instance consists of both a formula and a
structure. In this setting, the formula may be a conjunction of too parts, of which
one is fixed, and the one varies with the instance. We do not consider this setting
at length here, but we do describe it’s expressiveness and complexity and give an
example in Section 2.

The foundation of our approach in descriptive complexity gives us an important
advantage over several similar approaches which are based on logics with non-
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Problem Specification: ¢ ‘ ‘ Instance: o-structure A

' '

H Parse & Ground H

’ Propositional Formula: GND(¢,.A) ‘

'

“ Propositional Solver H

'

’ Solution ‘

Fig. 1. Solving-by-Grounding Scheme for NP-Search

classical semantics. All similar systems we know of restrict the user’s syntax, often
quite severely, to ensure efficient implementation. Limits apply, for example, to
quantifier alternations, function symbols, formula depth, negation, recursion, etc.
In our view, all of these are useful syntactic devices. We prefer to restrict the
language available as little as possible, leave the question of how liberally the syntax
may be used in practice to practical experience. Allowing very general syntax makes
implementation more work, but we are not very concerned that such features will be
“over-used”, since people, as well as programs, do not deal very well with complex
axioms.

We do not suggest language restrictions are never useful, but when we apply them
we want specific, measurable benefits. In our framework, descriptive complexity
results allow us to fine-tune our languages for desired complexity classes, without
imposing ad-hoc restrictions on syntax. For example, we will discuss the benefit
to grounding-based solvers of writing axioms in the k-guarded fragment of FO,
GF}. [Patterson et al. 2006; 2007].

An interesting property of our approach is that, under certain conditions, MX
representations can exactly capture a user’s intentions regarding what constitutes
a solution. That is, if the user chooses a certain vocabulary for describing instances
and their solutions, an MX axiomatization can always be provided using only this
vocabulary. While a user may find use of additional “auxiliary” vocabulary symbols
handy, their use is not necessary. The property is of practical interest because a
solver may have to construct interpretations for all expansion symbols, so use of
auxiliary symbols appears to imply more work for the solver. The property is
also interesting because it establishes a notion of capturing search that is slightly
different from the usual notion of capturing a complexity class, which applies to
decision problems. In particular, FO model expansion does not capture NP-search
in this sense, but FO(LFP) model expansion, in the presence of order, does. It
is interesting that adding induction does increase expressive power when when we
consider decision problems, but it does when we consider search.
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1.1 Solving Search Problems with Logic: Main Ideas

Here, we present a (rather myopic) history of ideas in logic-based approaches to
search. We restrict our attention to approaches that are intended as general-purpose
methods for representing and solving search problems. We compare a number of
implemented systems with ours in Section 8.

1.1.1  Search as Validity Checking. Our approach is natural in light of descrip-
tive complexity results, but is not typical. Historically problem solving in logic was
often cast as validity checking, as in the influential work of Green [Green 1969).
There, the user axiomatizes the claim that a solution exists, and a resolution the-
orem prover produces, as a side-effect of proving the claim, a term describing the
solution. This idea was the basis of much later work on search in artificial intel-
ligence!, and on general-purpose planning systems in particular. Such approaches
found many obstacles, leading to frequent rejection of predicate logic as a suitable
basis for practical problem solving. Standard tasks such as validity and satisfiability
are undecidable for first-order logic (FO), although it is not expressive enough even
to describe such basic properties as transitive closure or reachability. Attempts to
build practical tools often met with serious performance problems.

1.1.2  Solving by Reduction: Propositional Model Finding. In contrast to the ex-
perience in building general-purpose planning systems based on Green’s scheme, it
was shown in the 1990’s that that reduction to SAT and application of a general-
purpose SAT solver was more effective than special-purpose planning programs of
the day [Kautz and Selman 1992]. SAT-based techniques are currently the best, or
among the best, in several categories of the annual International Planning Com-
petition [Gerevini et al. 2006]. Reduction to SAT has also been shown to be an
effective method for model checking (perhaps better called bug-finding) in hard-
ware verification [Biere et al. 1999]. SAT-based “bounded model checking” (BMC)
is now standard in the electronic design industry, and of growing importance in
software verification. Implementations of other logic-based tools routinely either
use a SAT solver as the core engine, or implement variants of SAT solver methods.
An attraction of basing systems on SAT solvers is that performance of standard
SAT solvers improves regularly, and one can generally “plug in” the latest and
best. SAT solvers are currently effective in a number of domains, and recent work
suggests much more potential.

A number of related approaches to general problem solving are based on more
expressive languages than propositional CNF formulas. These include finite-domain
constraint satisfaction (CSP), satisfiability modulo theories (SMT), conjunctions of
Pseudo-Boolean constraints, etc. These primarily address the problem that many
constraints are not easily or concisely expressed as propositional CNF, but generally
follow the same reduction-based paradigm.

1.1.3  Separation of Instance from Problem Description. When solving a prob-
lem by reduction to SAT, normal practice is to describe the propositional formulas
produced by the reduction using informal schemata, and then implement the reduc-
tion, typically in C or C++. For problems that are very simple to state, this may

11t is also the basis of the Prolog programming language.
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be an adequate methodology. However, real applications tend to involve messy or
less intuitive features, and producing a correct reduction and implementation may
require some effort. Worse, in practice solver efficiency may be very different under
different reductions. Choosing among the many basic ideas for a reduction, and the
many variants of each, must be done experimentally. Thus, to achieve good perfor-
mance on challenging instance families, one may need to produce and implement
many reductions. Since there are not standardized or formal tools to describe and
implement reductions, this is a time-consuming and error-prone process. One sus-
pects that better performance would be obtained over a wider range of applications
if such tools were available.

For this and other reasons, researches in several areas have argued for methods
which provide modelling languages, in which one describes the problem indepen-
dently of particular instances. A solver takes as input a pair consisting of a problem
specification and a distinct instance description. NP-SPEC [Cadoli et al. 2000] was
among the first proposals for a logic-based system which makes this distinction. In
Answer Set Programming (ASP), some authors have argued for the importance of
this separation [Marek and Truszczynski 1999]. Formally, though, both parts are
formulas (logic programs), and the distinction is made only as a convention, and it
is not fully followed. In CSP, there a number of proposals, such as Essence [Frisch
et al. 2007], although there is no widely-used standard to date.

1.1.4  Ezpressive Logics as Languages for Modelling Search. The logics proposed
for modelling languages have been primarily non-classical, presumably because of
the practical need for recursion. For example, the language of NP-SPEC [Cadoli
et al. 2000] is based on Datalog, and ASP [Niemela 1999; Marek and Truszczynski
1999] is based on the language of logic programming with stable model semantics
[Gelfond and Lifschitz 1991]. (It is curious that non-logic-based languages, such as
ESRA and Essence, typically have no construct to express recursion.)

We believe that classical logic should be used for modelling to the greatest de-
gree possible, and that recursion is essential for natural modelling. ID-logic is a
logic which augments classical logic with a non-classical construction to represent
induction, developed in [Denecker 2000; Denecker and Ternovska 2004b; 2007b].
The construct allows for natural modelling of monotone and non-monotone induc-
tive definitions, including iterated induction and induction over well-founded order.
Such constructions occur in mathematics, as well as in common-sense reasoning.
The logic is suitable to model non-monotonicity, causality and temporal reasoning
[Denecker and Ternovska 2004a; 2007a], and as such is a good knowledge represen-
tation language. FO(ID) is the fragment of ID-logic in which the classical part is
FO. We proposed this as the logic of choice for modelling NP-search problems as
model expansion in [Mitchell and Ternovska 2005b; 2005¢]. East and Truszczyn-
ski’s system ASPPS [East and Truszezynski 2004] may be viewed as a precursor of
our work in the sense that it is the first implemented system for solving NP-search
problems whose modelling language may be seen as a restriction of FO(ID) to a
language of propositional schemata with rule-based notation and positive induction.

1.1.5  Herbrand versus non-Herbrand Model Finding. All general-purpose logic-
based systems for search we know of are based on Herbrand model finding. This
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approach has its roots in automated theorem proving, and became prevalent in logic
programming. In the presence of function symbols, many computational problems,
including model expansion, become undecidable if formulated in terms of Herbrand
models. This is one reason we did not adopt Herbrand reasoning in our proposal.

1.1.6  Capturing Complexity Classes. Almost all known to us logic-based sys-
tems which express exactly the search problems in NP are based on non-classical
logic. Perhaps the first such proposal is due to [Cadoli et al. 2000] called NP-SPEC,
which used an extension of Datalog as a modelling language. For results on expres-
siveness and complexity of ASP we refer the reader to [Marek and Truszczynski
1999; Marek and Remmel 2003; Leone et al. 2006]. We have recently learned about
the diploma project by Alban Rrustemi, under the supervision of Anuj Dawar,
which explores a solving scheme very similar to ours, 3SO as the representation
language, and a reduction to SAT [Rrustemi 2004].

1.2 MX Solver Implementation

To demonstrate feasibility of our approach, we have implemented a solver for
FO(ID)-MX, which — when applied in the parameterized setting — solves pre-
cisely the NP-search problems. There are many possible ways of building a solver
for FO(ID) MX. One could, for instance, directly implement a search for desired
structures. Alternately, one may use a generic reduction to SAT, or some other sim-
ple NP-complete problem, and then use a program for solving this problem. Even
having made this choice, there are several options for the “target problem”, and
for how to carry out the reduction. For example, FO(ID)-MX could be reduced
to SAT, but a reduction that captures the semantics of non-monotone inductive
definitions is non-trivial (See [Pelov and Ternovska 2005]). Alternately, one could
reduce to an extension of propositional logic with inductive definitions, but building
a propositional solver for this language is complex (See [Marién et al. 2005; Marién
et al. 2006]).

In our current implementation, called MXG, we perform a reduction to SAT, and
side-step the complexity of dealing with arbitrary inductive definitions by handling
only a “well-behaved” fragment, in which each definition can either be used to
compute the defined predicate during grounding, or replaced with its completion
[Clark 1978], which is a classical formula. The features of our implementation
include multiple sorts, ordered structures, bounded quantifiers, etc.

1.3 Paper Outline

In Section 2 we give formal preliminaries and key definitions, and examine some
basic properties of model expansion. We review FO(ID), the extension of FO with
inductive definitions and describe the main features of our approach which include
the use of multi-sorted logic and ordered structures. In the Section 3, we defined
and explain our notion of capturing search. Section 4 defines and discusses ground-
ing for MX, describes a grounding algorithm based on an extension of the relational
algebra, and explains the result of [Patterson et al. 2007] on grounding for the k-
guarded fragment. Section 5 presents what we know about the complexity and
expressiveness of MX for various fragments and extensions of FO, along with these
same properties for the related tasks of finite satisfiability and model checking as
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described in [Kolokolova et al. 2006]. Section 6 describes our current implementa-
tion. Section 7 provides a comparison of the performance of our implementation
with ASP systems and with MidL [Marién et al. 2005; Marién et al. 2006], another
solver for FO(ID) model expansion. Section 8 compares our system with a num-
ber of related systems, and Section 9 offers some concluding remarks and discusses
future work.

2. OUR PROPOSAL: THE MODEL EXPANSION FRAMEWORK
2.1 Formal Preliminaries

A vocabulary is a set 7 of relation and function symbols, each with an associated
arity. Constant symbols are zero-ary function symbols. A structure A for vocabu-
lary 7 (or, T-structure) is a tuple containing a universe A, and a relation (function)
for each relation (function) symbol of 7. If R is a relation symbol of vocabulary 7,
the relation corresponding to R in a r-structure A is denoted R“. For example, we
write

A= (4; th,...Rf, cf‘,...cjj, flA,fT’:),

where the R; are relation symbols, f; function symbols, and constant symbols ¢;
are 0-ary function symbols. The size of a structure A is the number of elements in
its universe, denoted |A|. For a formula ¢, we write vocab(¢) for the collection of
exactly those function and relation symbols which occur in ¢. For simplicity, we
restrict our presentation to the case with no function symbols. However, all stated
properties and results hold in their presence as well, with the possible exception
of those in Section 4.2 on grounding for GF}, the k-guarded fragment of FO. If
A = (A; R*) and B = (A; RA, SP), then B is an expansion of A to vocabulary
R US. For further terms and results from finite model theory, we refer the reader to
[Immerman 1999; Libkin 2004; Ebbinghaus and Flum 1995]. A detailed discussion
of fixpoint logics such as FO(LFP) and FO(IFP) can be found in e.g. [Dawar and
Gurevich 2002] and in [Ebbinghaus and Flum 1995].

2.2 Main Definition: Model Expansion (MX)

For any logic £, (e.g., FO, FO(ID), FO(LFP), SO, etc.,) the £ model expansion
problem, £-MX, is:

Instance: A pair (¢, A), where
1) ¢ is an £ formula, and
2) A is a finite o-structure, for vocabulary o C vocab(¢).

Problem: Find a structure B such that
1) B is an expansion of A to vocab(¢), and

2) B ¢.

The vocabulary e := vocab(¢) \ o, of symbols not interpreted by the instance
structure, is called the expansion vocabulary. Symbols of the expansion vocabulary
are second-order free variables.

Model expansion for logic £ is equivalent to the task of witnessing the first block
of existential quantifiers in 3SO(L) model checking, where the 3SO(L) is the logic
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obtained from L by allowing existential quantification over relation and function
symbols.

Sometimes, such as when we discuss capturing complexity classes, we will con-
sider the related decision problem, where one is interested only in the existence of an
expansion but does not need to construct it. In our framework, we always assume
a multi-sorted logic? with equality. For example, we use two sorts below in Exam-
ple 2.1. For further examples of multi-sorted MX axiomatizations see Section 7 and
[Mitchell and Ternovska 2005a].

2.3 Parameterized and Combined Model Expansion

2.3.1  Parameterised MX setting. In this setting, the formula and the instance
vocabulary ¢ are fixed, and an instance consists of a finite o-structure A. The
setting corresponds to the notion of data complexity as defined in [Vardi 1982].

ExaMpPLE 2.1 K-COL AS PARAMETERIZED FO MX. The problem is: Given a
graph and a set K of colours, find a proper K-colouring of the graph. We will have
two sorts, vertices V. and colours K. The instance vocabulary is o := {E}; The
expansion vocabulary e := {colour}, where colour is a function from verticies to
colours. The formula is:

¢ = YaVy (E(z,y) D (colour(x) # colour(y)))

where colour is a free second-order variable. An instance is a structure A = (V' U
K; EA), and a solution is an interpretation for colour such that

A
——

(VUK; EA, colour®?) E o.

B

Assume a standard encoding of languages as classes of structures as done in
descriptive complexity (See, e.g., [Libkin 2004]). The connection of FO model
expansion and 3SO logic immediately implies the following theorem.

THEOREM 2.1 [FAGIN 1974]. The first-order model expansion problem in the
parameterised setting captures NP.

The property means that FO model expansion is in NP, and moreover that every
(search) problem in NP can be represented as parameterized FO MX. Thus, FO MX
is a universal framework for representing NP-search problems. We have shown that
adding inductive definitions preserves these properties, while providing modelling
convenience not available in FO. This lead us to propose of FO(ID) as the language
of choice for our framework [Mitchell and Ternovska 2005b; 2005¢].

The following properties for MX in the parameterized setting are immediate from
the definition of MX and results in [Gradel 1992] and [Stockmeyer 1977].

o On ordered structures, FO universal Horn MX captures P,
o On ordered structures, FO universal Krom MX captures NL,

2For theoretical considerations, this assumption can always be removed by the standard transla-
tion.
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o IT}_, MX captures the %7 level of the Polynomial Hierarchy

Thus, for each of these logics, MX provides a universal representation scheme for
problems in the corresponding complexity classes.

Notice the requirement of ordered structures above. Ordered structures are those
with a total ordering on domain elements. For precise details, we refer the reader
to [Ebbinghaus and Flum 1995]. Intuitively, the order is necessary to mimic the
computation of a Turing machine on a tape. While for NP the order can be rep-
resented by an existentially quantified second-order variable, it is conjectured that
there is no logic capturing the class P on arbitrary structures. The conjecture is
due to Gurevich, and the positive resolution of this conjecture (i.e., a proof that
no such logic exists) would imply P# NP. For further discussion and references see
[Libkin 2004].

The formal distinction between problem specification (formula ¢) and instance
description (finite structure A) in the parameterised setting has some important
consequences. One is that these an be reasoned about separately, by the modeller,
and also by a solver which may apply pre-processing methods specific to each. We
may also want the languages for describing instances and problems to be different.
This is natural, as they specify different sorts of objects, but also practical, as in
many applications the problem specification will be carefully refined then used for
many instances.

2.3.2  Combined MX setting. In this setting, both formula ¢ and the structure
A are part of the instance. The setting corresponds to the notion of combined
complexity [Vardi 1982]. Here, we may still have a formula which is fixed for all
instances, but an instance will consist of a formula together with a finite structure
(which may be just the universe). The expansions must satisfy the conjunction of
the two formulas.

EXAMPLE 2.2 PLANNING AS COMBINED FO-MX. Consider a blocks world plan-
ning problem in which we have stacks of blocks on a table and an operation which
can move a block to a new location. An instance consists of a description of the
initial situation, a description of the goal situation, and bound k on the length of the
plan. Both initial and goal situations can easily be given by an instance structure if
they are simple. We consider the case where the goal is disjunctive, for example we
require that block a is either on the table or on top of block b. Here, il is convenient
to describe this with a formula.

Domains of the instance structure are: objects, consisting of blocks and a table,
and steps from 0 to the bound k on plan length. Instance vocabulary is: constant 0,
unary function succ of sort “steps” (both with their standard meaning); table, and
binary predicate InitOn(x,y), giving the initial situation. Expansion vocabulary is:
ternary predicate Put(x,y, 1), which will be the solution (a plan, consisting of one
put action for each step), and auziliary predicates On(z,y,i) and GoalOn(z,y). In
Put and On, the first two arguments are of sort objects, and the third is of sort
step; both arguments of GoalOn are objects.

The formula consists of two parts, one fized and one varying with the instance.
The part that varies with the instance specifies the goal conditions, for example that
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etther block1 or block2 is on the table:
(GoalOn(blockl, table) V GoalOn(block2, table))

The fized part of the formula, or problem azxiomatization, consists of the following
formulas.
1) The initial situation is as specified,

VaVy (InitOn(x,y) = On(z,y,0)).
2) Block x can be moved to y only if nothing is on x or y,
VavyVi (Put(z,y,i) D -3z On(z,x,i) A ~Fw On(w,y,i) A On(x,y, succ(i))
3) We have inertia: nothing moves except by a Put operation,
VaVyVi (On(z,y,i) A =3z (Put(z, z,1)) D On(x,y, succ(i))).
4) The final state satisfies the goal formula:
Vavy(GoalOn(x,y) = On(x,y, k))

We also have axioms saying that the table cannot be on anything, and that no more
than one block is allowed directly on top of another.

We have the following.

THEOREM 2.2. The first-order model expansion problem in the combined setting
is NEXPTIME-complete.

This is equivalent to a result in [Vardi 1982], and can be shown by an easy reduction
from Bernays-Schonfinkel satisfiability or combined complexity of SO over finite
structures, as described in [Mitchell and Ternovska 2005b]. With a few exceptions,
the remainder of paper focuses on the parameterized setting and NP.

2.4 Model Expansion in the Context of Related Tasks

Model expansion is closely related to the more studied tasks of model checking (MC)
and finite satisfiability. In model checking, the entire structure is given and we ask
if the structure satisfies the formula; in model expansion part of a structure is given
and we ask for an expansion satisfying the formula; in finite satisfiability we ask
is any finite structure satisfies the formula. Thus, for any logic £, the complexity
of model expansion — in both parameterized and combined cases — lies between
that of the other two tasks:

MC(L) < MX(L) < Satisfiability (L)

In the case of FO, we have the following. In the parameterized (data complexity)
setting FO MC is in ACy: capturing ACq requires extending the logic, for exam-
ple to FO(<,BIT) or FO(+,x) (see [Immerman 1999]). FO MX captures NP. In
the combined setting (combined complexity), FO MC is PSPACE-complete [Stock-
meyer 1974], and FO MX is NEXPTIME-complete. FO satisfiability in the finite is
undecidable [Trakhtenbrot 1950]. Model expansion avoids undecidability of FO by
specifying the finite universe as part of the instance. We discuss the complexity of
MC, MX and satisfiability for some fragments and extensions of FO in Section 5.
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The spectrum of a sentence ¢ is the set {n € N | ¢ has a model of size n}. If
o = and vocab(¢) = {R1,..., Ry}, the spectrum of ¢ can be alternatively viewed
as finite models (of the empty vocabulary) of the 3SO sentence 3Ry, ...,3R,, ¢, by
associating a universe of size n with n. Thus, if 0 = (), model expansion coincides
with the spectrum problem. The case of Theorem 2.2 with o = ) is equivalent to
the result from [Jones and Selman 1974] that a set X C N is a FO spectrum iff it is
in NEXPTIME. In [Fagin 1974] the class of models of an 3SO formula were called
a generalized spectrum.

There is a simple relationship between MX and database query answering. A
database can be viewed as a finite structure A, and a query as a formula ¢(Z) with
free variables . Answering this query is equivalent to solving the model expansion
problem for A and Vz (P(Z) = ¢(Z)), where P is the only expansion symbol.

2.5 Sorts and Order

Formally, FO is sufficient to axiomatize every search problem in NP. However, for
reasons both practical and theoretical, it is convenient to consider extensions of
FO, as well as to focus on structures with certain properties. We always assume a
multi-sorted logic, and implicitly extend our vocabulary with a unary predicate D
for every sort D. This is convenient for writing understandable axiomatizations, and
also helps with efficient grounding. The assumption could be removed with standard
re-writing of formulas, using the unary sort predicates. In this section, we discuss
two other fundamental variations that are central: restriction to ordered structures,
and extension of FO with inductive definitions. These both provide considerable
convenience in axiomatizing problems, and also contribute to interesting theoretical
properties.

We take all structures to be ordered. More precisely, our vocabulary is always
assumed to include the symbols {<, MAX, MIN,SUCC}. The domain of every
sort has a total order <, with M AX and MIN denoting the extremal elements
of the order, and SUCC being the successor relation. These are parameterized by
sort: elements of different sorts are incomparable.

We assume leq,#, etc. as abbreviations. We also introduce bounded quantifiers,
Vz oy, and dz o y, where x,y are of the same sort, and o is one of the relational
operators above. These are also abbreviations, but turn out to be very useful in
efficient grounding.

As mentioned in section 2.3.1, using ordered structures is necessary (as far as
we know) for capturing lower complexity classes. Similarly, as we explain below,
capturing NP-search — a notion slightly different than the standard notion of
capturing NP — requires ordered structures. The assumption of order is also
extremely useful in practice, both as a convenience in axiomatizing problems and
as a property of domains that can be taken advantage of for efficient grounding.

2.6 Inductive Definitions

Many applications require expression of recursive properties, such as reachability,
temporal properties of dynamic systems, or minimum sets satisfying an induc-
tive property. Such properties are not easily expressed as FO MX. ID-logic [De-
necker 2000; Denecker and Ternovska 2004b; 2007b] is an excellent candidate to
address this problem. This logic provides a convenient way to represent inductive
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constructions which occur in mathematics and common-sense reasoning, including
monotone definitions, (non-monotone) definitions over a well-founded set, and (non-
monotone) iterative definitions. We proposed a fragment of this logic, FO(ID), as
the language for solving NP-search problems with model expansion, in [Mitchell
and Ternovska 2005b; 2005¢; 2005a].

2.6.1 Syntax of FO(ID). The formulas of FO(ID) are constructed from atoms
P(t), and definitions A, closed under the standard use of A,V,—,V,3. A definition
A is a set of rules, which we illustrate by example.

EXAMPLE 2.3 TRANSITIVE CLOSURE OF AN EDGE RELATION.

{ Vavy (TC(z,y) — E(z,y)), }
VaVy (TC(x,y) «+ 3 z (TC(z,2) AN E(z,y))

The syntax is quite general: the body of the rules may be unrestricted FO formulas.
Disjunctions of definitions, multiple definitions for the same predicate, etc., are
allowed.

2.6.2 Semantics of ID-logic. The « operator in rules of definitions is the def-
initional implication, with semantics provided by the well-founded semantics from
logic programming [Van Gelder et al. 1991]. Satisfaction is defined by the following
induction:

A= P®) if ¥4epA
AE¢ot (or otp) if o€ {A,V,—,V,3}, by the standard induction
AEA if A is the 2-valued well-founded model of A

In the context of MX, a definition can be used in multiple ways. For example,
the definition of Example 2.3 can be used to compute the transitive closure of an
edge relation given in the instance, or to construct an edge relation who'’s transitive
closure has been given in the instance.

3. CAPTURING SEARCH

Consider all pairs (instance, certificate), for a particular problem in NP. The search
problem would (trivially) be, given an instance and a problem description, find a
certificate. The question is that whether the user can always write an MX axioma-
tization of the problem so that the expansion predicates are precisely the certificates
the user was thinking of, and nothing else. This property is important from the
perspective of practical problem solving. The smaller the expansion vocabulary is,
the less work the grounder and the propositional solver have to do. The question is
also interesting from a philosophical perspective — is there a precise sense in which
user’s intentions can be captured? Fagin’s theorem, which equates 3SO with NP,
does not answer this question.

It turns out that if we consider FO(LFP)-MX instead of FO-MX as in Fagin’s
theorem, then we can always guarantee (in the presence of ordering on instance
structures) that quantification over the relations representing the original certifi-
cates is enough! So, even though fixpoints do not give any extra power when we
consider NP-decision problems, they come very handy when we consider search!
Here, we formalize the intuitive notion of “capturing intended solutions”.
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Recall the definition of NP. We say that a binary relation R is balanced if |y| <
|z|9M for all z and y satisfying R(z,y). We say that R(z,v) is a checking relation
if R is balanced and

xe L iff Jy R(z,y).
Then
NP = {L € ¥* | L has a polytime checking relation}.

For a particular NP-problem represented by language L, for all strings x, y such as
R(z,y) holds, x is an instance of the problem, and y is a certificate.

DEFINITION 3.1 NP-SEARCH. NP-search is the class of function problems of the
following form: Given an input x and a polytime checking relation R(x,y), if there
is y satisfying R(x,y), than output any such y, otherwise output ‘no’.

The same class of problem is often referred to “Functional NP, or FNP” in the
literature. It is easy to see that each polytime checking relation R(z,y) represents
a particular NP-search problem.

In the descriptive complexity setting, consider a particular problem in NP. In-
stead of the checking relation on strings, consider the corresponding relation on
structures R(A,C), where A is an instance o-structure, and C is a certificate e-
structure, possibly (but not necessarily) over a different universe, and |C| < |.A|9(").
The vocabularies of A and C represent user’s intentions regarding the instances of
the problem and it’s solution, respectively. An important question is whether we
can write MX axiomatizations which respect these intentions, i.e., the expansion
vocabulary is exactly that of C. The answer is essentially yes, although the arity
of the symbols in the vocabulary of C may increase to overcome the difference in
the universes. A simple modification in the vocabulary of C allows us to assume
that structures A, C are over the same universe. To see this, replace the checking
relation R above with a new relation R’ constructed as follows: replace each pair of
structures (A,C) € R with a pair (A,C’), where C’ is over the same universe as A.
To construct C’, mimic the elements of dom(C) with tuples of elements of dom(.A)
and increase the arity of the relations in C’ when needed.

LEMMA 3.2. If R is balanced, then so is R', i.e.,
If for all (A,C) € R, |C| < |A|°W), then for all (A,C") € R', |C'| < |A|PD).

LEMMA 3.3. If R is a polytime checking relation, then so is R'.

So, given a checking relation R for an NP-language L, each pair (A,C) € R can be
viewed as a o U e-structure B, which is an expansion of a o-structure A.

Suppose a checking relation R(z,y) for a problem in NP is given and is repre-
sented by a class of o U e-structures . We would like to know whether we can
write an MX axiomatization over o U e only (without introducing any superfluous
relations or functions). This leads us to the notion of capturing NP-search.

DEFINITION 3.4 CAPTURING NP-SEARCH. Let L be a logic. We say that L

captures NP-search on ordered structures if, for every class K of ordered o U e-
structures, K|, € NP iff there is ¢ € L with vocab(¢) = oUe such that KK = Mod(¢).
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Thus, if a logic £ captures NP-search (on ordered structures, see section 2.3.1 and
[Ebbinghaus and Flum 1995]), then, for a given search problem in NP represented
by a o U erelation R (i.e., a class of ordered o U e-structures), there is a formula
¢ € L such that for every ordered o U e-structure B,

B e R iff B satisfies ¢.

Moreover, for every ¢ € L over vocabulary o U ¢, every model B of ¢ represents a
pair (instance, solution) and its membership in the corresponding checking relation
can be verified in polytime. Since B above is a structure expanding a o-structure A,
whenever logic £ captures NP-search, there is an parameterized MX axiomatization
¢ in £ which uses the vocabulary ¢ U € only.

If we observe that every polytime class of relations can be viewed as an NP
checking relation (or several, depending upon choice of o and ¢), then we see that
the following holds.

THEOREM 3.5. L captures NP-search iff L captures P.
Thus, we have the following property.

COROLLARY 3.6. FO(LFP) and FO(IFP) capture NP-search over ordered struc-
tures; FO does not capture NP-search.

The statement follows from the definition of NP, the two lemmas above, and the
fact that FO(IFP) captures P [Immerman 1982; Vardi 1986], while FO does not
[Ajtai 1983; Furst et al. 1984].

COROLLARY 3.7. Given an NP-search problem represented by a o Ue checking
relation R, there is a parameterized model expansion aziomatization ¢ € FO(LF P)
such that the expansion vocabulary is precisely € and for every o-structure A,

C is a solution to A iff B € Mod(¢), where B is an expansion of A by C,
and all structures are ordered.

There is no such axiomatization in FO over o U e (since FO does not capture
NP-search), but there is one over a larger vocabulary which includes o Ue. The
latter statement is a direct consequence of Fagin’s theorem and the fact that P
C NP. Note that having ordered structures in Corollary 3.7 is essential. Given
Gurevich’s conjecture mentioned in section 2.3.1, it’s unlikely that the corollary
holds for arbitrary (unordered) structures.

While FO(LFP) and FO(ID) are related, FO(ID) requires additional vocabulary
symbols to refer to each inductively defined relation. The corollary above does not
hold for FO(ID), however in this logic, one additional relational symbol is enough.
This is by a strait forward rewriting of an LFP expression by a positive inductive
definition and by taking into account that by a normal form theorem for FO(LFP),
one fixpoint expression is always enough, see e.g. [Ebbinghaus and Flum 1995].

3.0.3  Eliminating Superfluous Vocabulary. While Corollary 3.7 says that a user
can always write parameterized MX axiomatizations in FO(LFP) without using
any additional vocabulary besides o Ue, it is unrealistic to expect that no auxiliary
symbols will be used. It is therefore desirable to develop automated methods for
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eliminating such symbols from axiomatizations. Suppose we start from a FO ax-
iomatization with superfluous symbols. In principle, those symbols can always be
replaced by fixpoint expressions which use the symbols of the desired vocabulary
only. However, it is not clear how to automate that process, and the benefit of such
a rewriting is unclear — the grounder (and possibly the solver) will have to be able
to handle such expressions.

An interesting question is under what conditions superfluous vocabulary can be
eliminated from FO axiomatizations, without appealing to fixpoint logics. Fully
understanding this would answer an open question of Fagin, regarding the number
and arities of second order variables required for 3SO to capture NP [Fagin 1993].
The question is closely related to the problems of recognizing those 3SO formu-
las which define NP-complete or polytime classes of structures (see [Medina and
Immerman 1994]). This is an interesting topic for further research.

4. SOLVING BY GROUNDING

One approach to solving problems cast as MX is through propositionalization,
or grounding, in which the question of existence of an expansion is reduced to
propositional satisfiability, or some related propositional problem. Our proposal in
[Mitchell and Ternovska 2005b] was, in fact, the result of looking for a way to com-
bine the power of current SAT solvers with a very expressive modelling language.

In this section, we define the notions of grounding and reduced grounding, de-
scribe a generic grounding algorithm based on an extended form of the relational
algebra, and outline an efficient algorithm for RGF}, those MX axiomatizations in
the guarded fragment GFj, of FO for which all guards are instance relations.

Informally, a grounding is a formula that results from eliminating first order
variables by replacing them with constant symbols. To do this, we introduce a
new constant symbol for each element of the domain. For domain A, we denote
the set (or tuple, depending on context) of such constants by A. These are always
interpreted by the corresponding domain elements.

In practice, we would like to produce groundings which are as simple as possible.
In particular, since the instance structure gives interpretations for the instance
vocabulary, all symbols from the instance vocabulary may be “evaluated out”,
leaving a “reduced grounding”.

DEFINITION 4.1 GROUNDING, REDUCED GROUNDING FOR MX.
Formula Gr(¢,.A) is a grounding of formula ¢ over a o-structure A = (A, o) if

(1) Gr(¢, A) is a ground formula over o UeU A, i.e., it contains no variables; and

(2) for every expansion structure B = (A, o, eB) over vocab(¢),

B¢ iff (B,AP) | Gr(e,A),
where AB denotes the interpretation of the new constants A.

A formula Gr(¢, A) is a reduced grounding if it is over vocabulary & U A, e, it
does not contain any symbols of the instance vocabulary o.

Note that Gr(¢,.A) is still a first-order formula. Also, note that our notion of
grounding is distinct from that used in ASP and in logic programming in general.
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Whereas we add constants to reflect an explicitly given universe, in ASP the uni-
verse is taken to be the set of constants appearing in the formulas, and ground
instances of the formulas are produced over the Herbrand universe.

The following naive algorithm constructs a reduced grounding of a first-order
sentence ¢ over a structure 4 in time O(n®), where a is the width of the formula
(i.e., the maximum number of free variables in any sub-formula). For simplicity,
first re-write ¢ in prenex normal form, so that ¢ = Qx...Q,x, ¥ where each
@Q; is either V or 3, and 9 is quantifier free. Now, recursively construct a ground
formula Gnd(¢, A) as follows:

10) if ¢ is quantifier free,
Gnd(¢, A) = § Ve i Gnd(Y(a/x), A) if ¢ is )
Naci Gnd(Y(a/z), A) if ¢ is Vayp

Finally, change the grounding Gnd(¢,.A) into a reduced grounding as follows. For
each k-ary instance relation symbol R and each k-tuple ¢ of elements of from U,
if £ € RA, (resp. Zt) ¢ RA), replace each occurrence of R(f in ¢ with true (resp.
false). Then recursively eliminate all occurrences of true and false in the obvious
way, e.g., replacing (¢ A true) with (¢), ete.

In the parameterized setting ¢ is fixed, so this construction is poly-time. This
does not mean it will be efficient enough in practice, and we are interested in ways
to improve upon it. However, the following proposition suggests that we cannot
simultaneously capture NP and have a grounding algorithm which is asymptotically
much better.

PROPOSITION 4.1. There is no logic L, such that the following two properties
hold stmultaneously:

(1) L-MX(o,¢) captures NP, and
(2) For some natural number k, L-M X (o, ¢) can be reduced to SAT in time O(n*),
where n is the size of the instance structure (i.e., does not depend on ¢).

Supposing otherwise, we would have for every class IC of structures in NP, an
O(n*) time reduction to SAT, so membership in K can be decided in NTIME(n*).
But by the hierarchy theorem [Cook 1973], for every k, there are infinitely many
problems in NP which are not in NTIME(n*).

One can obtain better complexity results for particular classes of formulas, as
illustrated later in this section, and a number of techniques can be used to produce
better performance in practice than the naive algorithm.

4.1 Grounding with Extended Relational Algebra

An approach to obtaining faster grounding algorithm that we have been exploring is
to view grounding as a generalization of database query answering. To that end, we
consider grounding algorithms based on a generalization of the relational algebra.
The algebra is over extended X-relations, a generalization of the database notion of
X-relations introduced in [Patterson et al. 2007].

In this section, we describe a general grounding algorithm based on this algebra.
In Section 6, we describe our implemented grounder, MXG, which uses a variant
of this algorithm. In Section 4.2, we describe the algorithm from [Patterson et al.
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2007], which has an improved upper bound for formulas in k-guarded form based
on the algebra.

DEFINITION 4.2 [PATTERSON ET AL. 2007] EXTENDED X-RELATION. Let A =
(A;0), and X be a tuple of variables. An extended X-relation R over A is a set
of pairs (v,1) such that

(1) 1 is a ground formula over e UA and v : X — A;
(2) for every ~y, there is at most one ¥ such that (v,¢) € R.

One can think of an X-relation R as a representation of the unique mapping dr
from instantiations of variables in X to ground formulas:

_ v if (v,¥) eR
Or () = { false ifv¢ R

where 1 is a ground formula over € U A and v: X — A

Given a formula ¢, and structure A, to produce the grounding of ¢ wrt A, we
will consider subformulas x of ¢. For each subformula y, we compute a formula
1) for each instantiation of the free variables of y, such that each 1 is a reduced
grounding of x under the corresponding instantiation. We call such a representation
an answer to ¢ wrt A.

DEFINITION 4.3 [PATTERSON ET AL. 2007] ANSWER TO ¢ WRT A. Let ¢ be a
formula in o U e with free variables X, A a o-structure with domain A, and R
an extended X -relation over A. We say R is an answer to ¢ wrt A if for any
v: X — A, we have that 5 () is a reduced grounding of ¢[y] over A. Here, $[~]
denotes the result of instantiating free variables in ¢ according to ~y.

We compute an answer to a formula by computing answers to its subformulas
and combining them according to the connective. For example, the answer to
formula D(z,y,2) A E(y,z) with respect to A = ({1,2,3}; D4, EA), where DA =
{(1,2,3),(2,3,3)} and E is an expansion predicate is the extended {z, y, z }-relation:

X|y|z Y
1123 E@23)
2 [3[3]E®3,3)

For the above example §(y) = E(2,3) for the instantiation v = (1,2, 3) and d(y) =
E(3,3) for v = (1,2,3). Otherwise d(y) = false.

4.1.1 Eaxtended Relational Operators. We generalize the standard relational op-
erators — join, project, union,tional operators — join, project, union, division — to
extended X-relations wrt a structure A. The definitions are given below. There is
a natural correspondence between the logical connectives and quantifiers and these
operations. To compute a reduced grounding of a FO sentence ¢ over structure A,
our algorithm will recursively apply the extended relational algebra operators to
these extended relations.

SFU Computing Science Technical Report, TR 2006-24, 2006.



18 . Mitchell, Ternovska, Hach and Mohebali

In the following, let R be an extended X-relation, S an extended Y-relation,
Z C X. Then

R = {(, )l v € R, = —0r(7)} U{(7,true)ly ¢ R}.
RUS = {(1,¥)] 7: (XUY) = A,~|x e Rorvly € 8,9 = r(vlx) Vs(yly)}-
mz(R) = {(v,¥)| v : Z — A,y =]z for some y e R and ¢ = /| _ . dr(7)}.

R/Z ={(, )y : (X =2)— A, forall v/ : Z — A there is v € R that
Yz =7"ANvx-z=7"and = A, .,y or(M}
The following property slightly generalizes one given in [Patterson et al. 2007].
PROPOSITION 4.2. If extended relations R,S are the answers to ¢1,¢2 over
structure A, then: (1) R v S is the answer to ¢1 A ¢2; (2) R is the answer to

—¢1; (3) RUS is the answer to ¢1 V ¢2; (4) Tx_1s3R is the answer to Ixpy; (5)
R,/ {x} is the answer to Vx¢;.

This immediately suggests the following algorithm, which recursively applies oper-
ators in correspondence with the formula structure.

Gnd(A, P(Z)) = {(v,true)]ye PAYif Pco
Gnd(A,P(z)) = {(7,P()|v: X - A} if Pee
Gnd(A,—~) = Gnd(A,v)

Gnd(A, ¢ A) = Gnd(A, ¢) x Gnd(A, )
Gnd(A, ¢ V) = Gnd(A, ¢)UGnd(A,)

Gnd(A, Jy¢) = Tz} — {7} Gnd(A, ¢)

where {Z} is the set of variables in the answer of Gnd(A, ¢)
Gnd(A,vye) = Gnd(A,¢){y}

4.2 Grounding k-Guarded Formulas

In this section we sketch the result from [Patterson et al. 2007], giving an efficient
algorithm to produce reduced groundings Gnd(¢, .A) under certain conditions. The
conditions are that ¢ is in the k-guarded fragment GFj, [Gottlob et al. 2001] and
that the relation symbols that act as guards in ¢ are not expansion symbols. The
algorithm runs in O(¢£2n*) time, where ¢ is the size of the sentence, and n is the
size of the largest relation in the structure.

The guarded fragment GF of FO was introduced by Andréka et al. [Andréka
et al. 1998], and has recently received considerable attention. Here any existentially
quantified subformula ¢ must be conjoined with a guard, i.e., an atomic formula
over all free variables of ¢. Gottlob et al. [Gottlob et al. 2001] extended GF to
the k-guarded fragment GF; where the conjunction of up to k atoms may act as a
guard. Formally, GF}, is defined as follows:

DEFINITION 4.4. The k-guarded fragment GFy of FO is the smallest set of for-
mulas that:
(1) contains all atomic formulas;
(2) is closed under Boolean operations;
(3) contains IT(G1 A ... NGy A @), provided the G; are atomic formulas, m < k,
¢ € GFy, and the free variables of ¢ appear in the G;.
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Here, Gy A\ ... NG, is called the guard of ¢.

Since by GF}, is closed under negation, we may consider universal quantification
included as an abbreviation in the usual way.

Note that the above mentioned complexity result O(£2n*) only applies to k-
guarded sentences, not k-guarded formulas in general. To see why notice that
—R(z,y, z) is a 1-guarded formula, but cannot be evaluated in O(n) time. However,
the same complexity result applies to strictly k-guarded formulas, defined as follows:

DEFINITION 4.5 SGFy. The strictly k-guarded fragment SGF}, is the fragment
of GFy, with formulas of the form 3Z(G1 A ... NGy N ).

Here, we are including the degenerate cases where  is empty (no leading existential
quantifier), m = 0 (no free variables and therefore no guards), or ¢ is true. Thus
any k-guarded sentence is strictly k-guarded (take T as empty and m = 0).

DEFINITION 4.6 RGFy. RGF) denotes the set of FO-MX aziomatizations ¢
which are k-guarded formulas for which no expansion predicate appears in any
guard.

The restriction that “no expansion predicate appears in any guard” is necessary
for polynomial-time grounding. Indeed, there is no polytime grounding algorithm
for 1-guarded sentences. Otherwise, we would have a poly-time reduction to SAT
from FO-MX for 1-guarded sentences, and hence the combined complexity would
be in NP. However, it is NEXP-complete [Vardi 1982].

It is easy to see that any FOF formula can be rewritten in linear time into
an equivalent one in RGFj, by using atoms of the form x = z as guards when
necessary. For example, the formula Jx3yF(z,y) can be rewritten as JzIy[z =
xr ANy =y A E(z,y)]; and the formula Jz3y[R(z) A E(z,y)] can be rewritten as
JoJy[R(x)A\y = yAE(x,y)], where R is an instance predicate, and E is an expansion
predicate.

Extending the result of [Kolaitis and Vardi 1998], Flum et al. [Flum et al. 2002]
showed that FOF, the set of FO sentences with at most k distinct variables, has the
same expressive power as FO formulas of treewidth bounded by k. The fragment
RGF}, contains FO¥, and thus contains (in terms of expressiveness) FO sentences
with treewidth less than k, according to the logical characterization of treewidth
[Kolaitis and Vardi 1998; Flum et al. 2002]. Thus any FO formula with treewidth
less than k is equivalent to one in RGF. In practice, most sentences have small
treewidth — people prefer to write axioms which are easy to understand. Database
query evaluation for guarded fragments can be done more efficiently (in polytime)
than for unrestricted FO (e.g. [Flum et al. 2002]), and similarly, the grounding
algorithm of [Patterson et al. 2007] performs better in case of guarded formulas.

The efficiency of the algorithm comes from this: Whenever we perform an R X S
or R X¢ § operation, the set of variables of S is a subset of that of R. Thus,
the set of tuples of the resulting extended relation is a subset of that of R. Both
operations can be done in time O(nm), where n is the size of the relation part of R,
and m is the maximum size of a formula in R or §. The algorithm also ensures, by
introducing new propositional symbols, that for any join R X S or R X¢ S, every
formula in R or S is of size O(l), where [ is the size of the formula to be grounded.
So, each join or join with complement is done in linear time.
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An Algorithm for Grounding k-Guarded Formulas. If ¢ is an atomic formula
R(t), we use ¢(A) to denote the extended relation {(v, true) | £[y] € RA}.

Procedure Gnd(A, ¢)
Input: A structure A and a formula ¢ € RGF}
Output: An answer to ¢ wrt A

Suppose ¢(Z) = FG(G1 A ... A Gy AW). Return 7;Gnd(A, R,v'), where R is
G1(A) X ... X G, (A), and ¢ is the result of pushing —’s in ¢ inward so that they
are in front of atoms or existentials.

Given a structure A and a formula ¢ € RGFy, suppose ¢(Z) = I5(G1A...AGp A
). Let R be G1(A) X ... X G,,(A), and let ¢ be the result of pushing —’s in
inward so that they are in front of atoms or existentials. Return 7zGnd(A, R, ")
with each formula replaced by a new propositional symbol. We also save the defi-
nitions of these new symbols.

Procedure Gnd(A, R, ¢) is defined recursively by:

(1) If ¢ is a positive literal of an instance predicate,
then Gnd(A, R, ¢) = R X ¢(A);

(2) If ¢ is =¢', where ¢’ is an atom of an instance predicate,
then Gnd(A, R, ¢) =R X° ¢/'(A);

(3) If ¢ is a literal of an expansion predicate,
then Gnd(A4, R, ¢) = {(v,o[]) [ v € R}.

(4) Gnd(A, R, (¢ Ap)) = Gnd(A, R, o) N Gnd(A, R,v);

(5) Gnd(A, R, (¢ V1)) =Gnd(A,R, o) UGnd(A,R,v).

(6) Gnd(A, R,3Ige) =R X Gnd(A, Igo);

(7) Gnd(A, R,—-35¢) = R X Gnd(A, Iye).

THEOREM 4.7 [PATTERSON ET AL. 2007]. Given a structure A and a formula
¢ € RGFy, Gnd returns an answer to ¢ wrt A in O((*n*) time, where ¢ is the
size of ¢ and n is the size of A. (Hence, if ¢ is a sentence, Gnd returns a reduced
grounding of ¢ over A.)

The paper [Patterson et al. 2007] also describes a grounding procedure for a
guarded fragment of ID-logic, which we will not discuss here.

5. EXPRESSIVENESS & COMPLEXITY OF MX AND RELATED TASKS

In this section we present a summary of most of what we know about the complexity
and expressiveness of model expansion for FO and a variety of extensions and
restrictions. For context, we also included the corresponding properties of the
related, and more studied, tasks of finite satisfiability and model checking. The
properties are shown in Table I. We restrict our discussion here to an explanation
of the table and a few other remarks, and refer the reader to [Kolokolova et al.
2006] for proofs and further discussion.
For a given logic £, we consider complexity of three problems.

(1) Model Checking (MC): given (A, ¢), where ¢ is a sentence in £ and A is a finite
structure for vocab(¢), does A E ¢?
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Table I. Table of Complexity and Expressiveness Properties

Logic Model checking Model expansion Satisfiability
Combined ‘ Data Comb. ‘ Data
FO PSPACE-c [S74] | =51rAC”[BIS90]| NEXP-c | =NP Und [Tra50]
[Fag74]
FO(LFP)| EXP-c [Var82] =P NEXP-c | = NP Und.
[182,v82,182]
FO(ID) || EXP-c =,P [KLMTO06] NEXP-c | = NP Und.
[KLMTO06]
FO* P-c AC’ NP-c NP-c,# NP || Und(j>2)
[Var95] NEXP—C(k=2)
EXP—C<k:1>
GFy P-c AC? NEXP-c | = NP>y, || Und@so)
[GOQQ,GLSO].] NP—C(kZl) 2EXP—C(k:1)
[Gra99]
RGFg n.a. n.a. NP-c NP-c, Z NP || n.a.
uGF UPN co-UP P NEXP-c | NP-c 2EXP-c
[GW99]
GF«(ID)| EXP P NEXP-c | =NP;>1) und ;> 1)

(2) Model Expansion (MX): given (A, ¢), where ¢ is a sentence in £, A is a finite
o-structure and o C vocab(¢@), is there B for vocab(¢) which expands A and
BE ¢?

(3) Flinite Satisfiability: given a sentence ¢ in L, is there a finite A for vocab(¢)
such that A F ¢?

For model checking and model expansion we consider two notions of complexity,
introduced by [Vardi 1982]. (Here we follow the presentation of [Libkin 2004].) Let
enc() denote some standard encoding of structures and formulas by binary strings.

DEFINITION 5.1. Let K be a complezity class and L a logic.

The data complexity of L is K if for every sentence ¢ of L the language
{enc(A)|A = ¢} belongs to K. The combined complexity of L is K if the
language {(enc(A), enc(¢))|A = ¢} belongs to K.

Let C be a class of finite structures. L captures K on C ( L =¢ K) if data
complexity of L is K and for every property of P of structures from C' that can
be tested with complexity K there is a sentence ¢pp of L such that A = ¢p iff
A has property P, for every A € C. We say that MX for a logic L captures a
complezity class K if K is captured by 3SO(L).

Data complexity of MX corresponds to the parameterized MX setting. The
complexity of MX trivially falls between complexities of MC and satisfiability, since
part of the input structure, which must include the universe, is given.

Table I has columns corresponding to the five tasks of interest, and rows corre-
sponding to different logics. FO(ID) and FO(LFP) are FO extended with inductive
definitions and least fixpoints, respectively. FOy, is the k-variable fragment of FO;
GF}, is the k-guarded fragment of FO, which is strictly more expressive than FOy.
RGF}, is GF applied in MX, under the restriction that guards predicates may not
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be expansion predicates. puGF is GFq, extended with greatest and least fixpoint
operators, and GFj(ID) is GF}, extended with inductive definitions.

The notation for entries in the table is as follows. Consider the entry for logic
L and task T. For complexity class K, the entry K means that task T for £ is in
K; the entry K. means that for some set of L-formulas T is K-complete; the entry
=K means that £ captures K. A subscript on K, K(p), indicates the property holds
under the condition P. The subscripted equivalences, =, and =g denote cap-
turing provided that £ is extended with a successor operator, or the BIT operator,
respectively. FO(BIT) is equivalent in expressive power to FP(4x). [Immerman
1999].

5.1 Expressiveness of MX for Guarded Fragments

It is easy to see that there are NP-complete problems which are expressible as
RGF-MX, as the following example shows.

EXAMPLE 5.1 3-SAT As RGF-MX. For a given set of clausesT' = {C4,...Cp,},
the instance structure A has universe {a,—ala € atoms(T')} and the relations
Complements® and Clause™. Let ¢ be

VavyVz (Clause(z,y, z)

D True(x) V True(y) V True(z))
A Vavy (Complements(x,y)

D (True(z) = —True(y)))

A solution is an expansion of A by the relation True™, which specifies which literals
are mapped to true by a satisfying assignment.

However, GF1-MX does not capture NP. For example, the class of structures con-
sisting of just a universe and the k-ary universal relation is not expressible with
GF;-MX. In [Kolokolova et al. 2006], it is shown that parameterized GFj-MX, for
k > 2, does capture NP. The proof relies on the fact that for every FO formula,
there is logically equivalent formula in GFy, (over a larger vocabulary). The positive
result on grounding of RGFj, described in Section 4.2, does not apply to GFg, so
the question arises: Does RGF}, for some k, provide a universal language for NP?
The answer is no.

PROPOSITION 5.1 [KOLOKOLOVA ET AL. 2006]. Parameterized RGFy,-MX does
not capture NP, for any k.

Since SAT can be decided in nondeterministic O(n?) time, by Theorem 4.7,
MX for RGF}, can be decided in nondeterministic O(n2*) time. By Cook’s NTIME
hierarchy theorem [Cook 1973], for any i > 2k, there is a problem that can be solved
in nondeterministic O(n?) time but not nondeterministic O(n~!) time. Thus there
are infinitely many problems in NP that cannot be expressed by MX for RGF.

6. MXG: A GROUNDER/SOLVER FOR FO(ID) MODEL EXPANSION

In this section we describe an implemented solver, called MXG, for FO(ID) model
expansion. The solver language allows axiomatizations in multi-sorted FO(ID)
with arbitrary function-free FO formulas and a limited form of inductive defini-

SFU Computing Science Technical Report, TR 2006-24, 2006.



Modelling and Solving Search Problems with Logic . 23

Problem Specification: ¢ ‘ ‘ Instance: o-structure A

' '

“ Parse & Ground 7 ‘ ‘

’ Propositional Formula CNF(GND(¢,.A)) ‘

“ Propositional Solver ” Mapping

’ Satisfying Assignment (or UNSAT) ‘

“ Project & Map ”

'

’ Solution ‘

Fig. 2. MXG architecture. Double-lined boxes represent software components; single-lined boxes
represent files.

tion. Linux executables for the current version of MXG, and examples, may be
downloaded from http://www.cs.sfu.ca/research/groups/mxp/mxg/.

The architecture of MXG is illustrated in Figure 2. It takes as input a pair of
files containing a problem specification and an instance description. The problem
specification gives the vocabularies, type (sort) declarations, and axiomatization.
The instance description gives the domains (i.e., a concrete set for each type or
sort), and interpretations of the instance predicates. The grounding phase produces
two files, one containing a propositional CNF formula in DIMACS form, and one
specifying a mapping between variables in the CNF formula and ground atoms of
the FO language. In principle any standard SAT solver can be used to search for
satisfying assignments of the CNF formula, although at time of writing changing
SAT solvers requires modifying the MXG source code. If a satisfying assignment is
found, the mapping is used to produce a solution, in the form of a list of positive
ground atoms describing the extension of each solution relation.

The MXG grounding algorithm is based on the extended relational algebra de-
scribed in Section 4.1, but it is extended to directly produce a propositional CNF
formula in DIMACS form. Several implementation-level devices and heuristics are
used which reduce running time in comparison with a literal implementation of the
algorithm of Section 4.1.

Our general syntax makes efficient implementation a substantial amount of work.
A number of features we consider important for a real application system have not
been implemented yet, and our grounding is currently slower than ASP grounders
such as LPARSE. Nonetheless, the solver clearly demonstrates the viability of the
MX approach. As shown in Section 7, the performance of our solver, which is in
development for much less than a year, compares favourably with ASP systems that
are more mature. Clearly, being able to take advantage of off-the-shelf SAT solvers
plays a role here. We also find that our richer syntax is frequently convenient in
writing and experimenting with axiomatizations. We believe that with additional
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/* K-Colouring Problem Specification */
Given:
type Clr Vtx;
Edge (Vtx, Vtx)
Find:
Colour (Vtx,Clr)
Satisfying:
'mn c: Colour(n, c) & Colour(m, c) => “Edge(n,m).
'm c1 c2<cl: “(Colour(m,cl) & Colour(m,c2)).
'm: ? ¢: Colour(m,c).

/* K-Colouring Sample Instance Description */
Clr = [Red, Blue, Green]

Vtx = [A..E]

Edge = { A,B; A,D; B,C; D,C; E,D }

Fig. 3. K-Coloring Problem Specification and Instance Description

work our grounder can be made as fast as ASP grounders, at least for similarly
limited syntax. However, even now grounding time is a small fraction of total
solving time for instance families that are computationally non-trivial.

6.1 The MXG Solver Language

Our solver language syntax is, in part, a co-operative effort involving ourselves, the
developers of the solver MidL. [Marién et al. 2006] and others. Differences between
the languages of MXG and MidL primarily reflect differences in what is implemented
in the respective systems. Appendix A gives the grammar for the MXG language.
MXG Version 0.16 implements the language described by this grammar, except
that inductive definitions are not handles in generality, as described below.

The solver input consists of a problem specification and an instance description,
which have distinct syntax. The problem specification structure reflects nature of
search problems: Given and instance, we wish to find a solution object satisfying
certain properties. The given section specifies the types (sorts), and the vocabulary
of the instance structure. The find part specifies the solution vocabulary. The satis-
fying part gives the problem axiomatization, including declaration of any auxiliary
vocabulary used there. An instance description gives the concrete domains for each
type, and instance relations in extensional form.

For illustration, Figure 3 gives a specification for graph K-Colouring, and an
example of an instance for that specification. (Further specification examples can
be found in Section 7.) The first line of each is a comment. The Given part of
the specification declares the types Clr (the set of colours) and Vtx (the set of
vertices), which will be given by the instance. The line “Edge(Vtx,Vtx)” declares
Edge to be an instance relation symbol, which must be interpreted by a binary
relation over Vtx2. In the Find part, Colour(Vertex,Colour) declares the solution
relation Colour to be a binary relation over Vtx x Clr. The Satisfying part consists
of ASCII representations of three FO formulas. The mapping from logical symbols
to ASCII symbols is given in Table II.

The language has a very simple type system, corresponding to standard multi-
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Table II.  ASCII Equivalents for Logical Symbols
Logical Symbol VII|IA|V|=| D
ASCII Representation | ! [ 7| & | | |~ |=>

sorted logic, except that we declare types (sorts) of arguments to predicate symbols,
not of variables. Types of variables are inferred from their roles as terms, which
must be consistent. Infix binary predicates <=, =, > >= ~=_ are all built-in. For-
mally, these are abbreviations. Only variables of the same type may be compared,
and all order operators reflect the same order as <. The language also includes
bounded quantifiers, x<y and x>y, which are also formally abbreviations. For ex-
ample, 'x y<x ¢ is the ASCII representation of Vz Vy < = ¢, which abbreviates
Vo Vy(y <z D ¢). Implementing these directly in the grounder seems to be more
efficient than replacing them with their definitions.

6.1.1 Instance Descriptions. Instance descriptions give the domains of types
and the extensions of instance relations. The syntax is illustrated in the K-colouring
example of Figure 3. Domains may be given as an enumerated list of constant sym-
bols (e.g., [a,b,c]); a range of integers (e.g., [10..99]); or a range of characters
(e.g., [a..ql). For a enumerated list the order is as given; for a range of integers it
is numerical; and for a range of characters it is alphabetic. Extensions of relations
are given as a set of semi-colon separated tuples, with elements of tuples being
comma-separated.

6.1.2 Inductive Definitions. In the solver syntax for inductive definitions, the
universal quantifiers for variables occurring in heads of rules are implicit. For
example, the definition of the transitive closure, TC, of an edge relation E is:

{ TC(u,v) <- E(u,v).
TC(u,v) <- TC(u,w) & E(w,v).}

Another example is the relation Diff in the Blocked Queens axiomatization of Sec-
tion 7.4.4.

MXG Version 0.16 requires only one defined relation symbol per definition, and
bodies of rules are quantifier-free formulas in which free variables that do not occur
in the head of the rule are taken to be existentially quantified. Moreover, heads of
all rules must have the same tuple of variables. Such definition are handled correctly
under the condition that each definition is either equivalent to its completion, or can
be “directly computed”, in the following sense. The grounder processes definitions
in the order they appear in the specification file. When processing a definition,
it “directly computes” the defined relation if the following hold of the definition:
(1) the body of each rule is a conjunction of literals, and (2) there is no negative
occurrence of the defined relation symbol, and (3) except for the relation being
defined, every relation symbol is for an instance relation or a relation that has
already been “directly computed”. Otherwise, the grounder produces and then
grounds the completion of the definition. If definition D be a set of rules rq,..r; of
the form r; = P(Z) <« ¢;(Z,7), then the completion of D is the formula:

vz P() & \/ 3y 6i(7.7)
1<i<k
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Definitions are equivalent to their completion when the induction is over a well-
founded order (see [Denecker and Ternovska 2007b]).

7. EMPIRICAL PERFORMANCE RESULTS

Here we present an empirical comparison of the performance of MXG with MidL,
an FO(ID) model expansion solver produced at the Katholieke Universitat Lueven
(KU Leuven), and with several ASP solvers. We compare with ASP solvers for
several reasons, including (1) ASP is the most widely known and most developed
framework which is comparable in goals and techniques to ours; (2) The Asparagus
repository of ASP solvers, axiomatizations, and benchmark instances® provides a
useful resource for efficiently carrying out such a comparison. Our intention here is
to show that our approach is feasible, and that it can provide at least comparable
performance to ASP, which may be seen as the “nearest neighbor” technology.
Comparison with a much wider range of approaches and systems, and over a wider
range of problems and instances, is needed in the longer term. The following solvers
were compared:

MXG 0.15 with RSat 1.3 for the SAT solver (Denoted MXG+RSat);

MidL 1.0.0, an “native” FO(ID) model expansion solver;

Cmodels 3.64, a SAT-based ASP solver?;

smodels 2.32, a “native” ASP solver — the de facto standard for comparison ;
clasp rc3, a “native” ASP solver with clause learning;

DLV 2006-7-14, an ASP solver for disjunctive logic programs ;

Grounding for Cmodels, smodels and clasp was done using LPARSE version 1.0.17.
MidL uses a variant of LPARSE which comes with the MidL. download, and DLV
does its own grounding. MXG 0.16, which we describe here and make available for
download, differs from 0.15 in some aspects of file formats, minor syntactic points,
as well as lifting the restriction to formulas in prenex form. However, performance
on the specifications given here is identical.

Our choice of benchmark problems reflects two goals; to use a variety of problems
with non-trivial instance collections, and to use problems for which ASP axiomati-
zations have been provided (presumably by people with some ASP expertise). We
report results for:

(1) Graph K-colouring

(2

(3) Bounded Spanning Tree
(

(

) Hamiltonian Cycle
)
4) Blocked Queens
)

5) Latin Square Completion

3http://asparagus.cs.uni-potsdam.de/

4Unfortunately, the version of Cmodels available at the time we ran our tests turned out to have
bugs, which caused it to produce a significant number of incorrect results, as well as to crash
on some inputs. Thus, the curves for Cmodels must be considered speculative. Nevertheless,
Cmodels has a track record as a good ASP solver, and we expect that with the bugs repaired the
performance profile will not be very different than shown in our plots.
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(6) Social Golfer

We have three quite different sorts of problems on graphs, the first two being “clas-
sic” well-studied NP-hard graph problems. We also have three “typical” examples
of finding combinatorial structures. Latin squares and Blocked Queens seem to have
a similar flavour, but have very different solver performance profiles. We define the
problems, specify the instances used, and give our MXG axiomatizations below, in
Sections 7.4.1 through 7.4.6.

7.1 Overall Solver Performance

When we consider total solving time (time for grounding plus time for the ground
solver), MXG+RSat had the best performance of the six solvers tested on two of
the six problems studied (K-Colouring and Blocked Queens), was fourth best on
Hamiltonian Cycle, and was second or third on the remaining three. Thus, overall,
MXG+RSat performance is competitive with other current solvers.

The ASP solver clasp, with LPARSE doing the grounding, had the best overall
performance on four problems, and was the only solver that did not come in last
on some problem.

LPARSE and DLV grounding time is usually small in comparison with ground
solving time. MXG is significantly slower than LPARSE at grounding some prob-
lems, and for these the MXG+RSat time is dominated by the grounding time. For
example, the time for RSat to solve the ground formulas produced by MXG for Latin
Square Completion and Bounded Spanning Tree instances is very small in compar-
ison with MXG grounding time, and also in comparison with the ground solving
time for other solvers. Separate grounding and solving times for MXG+RSat and
LPARSE+clasp, for the problem of Latin Square Completion, are presented in
Section 7.4.3 to illustrate.

Currently, MXG takes about three times as long as LPARSE on some problems.
It is an interesting question whether a grounder for MXG syntax can be made as
fast as the ASP grounders. If so, the resulting MX solver would dominate on the
majority of problems tested here.

7.2 Cumulative Performance Plots

The performances plots (Figures 4 through 6) have the following format. The X-
axis is time in seconds; the Y-axis is the cumulative number of instances solved
within a given time bound. For example, a point at (5,10) indicates that among
the instances tested, 5 were solved in 10 seconds or less each, and the remaining all
required more than 10 seconds each. We plot a point for each instance solved, so
if the 7*" instance solved required n seconds, there is a point at (i,n). We connect
the points for each solver with a curve, as a visual aid.

Presenting solver times for non-trivial sets of instances of NP-hard problems is
not always simple. Solvers of essentially the same quality often succeed on different
instances even within a collection of very similar instances. (Even a tiny change to a
solver can affect which instances are solved, while not affecting the number solved.)
Thus, tables of run-times are hard to interpret, especially for large collections of
instances. Also, we are typically interested in scaling — how performance with
problem size — for a general category of instances, more than with performance on
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particular small instances. Often the solvers with the best scaling performance are
not the fastest on small instances. Further, run-times typically exhibit very high
variance, so the mean run time may be dominated by a few extreme instances and
not reflect typical performance. The cumulative plot format reduces emphasis on
particular run-times, and gives a good overall picture of relative performance and
scaling of solvers on a collection of instances. (Looking at run-times for particular
instances often s very interesting, it is just not the best way to see the overall
trend.)

Observe that the x-axis of all plots is logarithmic, and thus some care is required
in interpreting the curves. The curve for a sequence of instances with linear growth
in run-time will show up as a curve with large and rapidly increasing slope. A
straight line suggests an exponential increase in run-times, and the smaller the
slope the higher the exponent.

We ran all tests with a time cut-off of 30 minutes (1800 seconds), so the right-
hand edge of each plot is at 1800 seconds. The upper edge of each plot is at a
value a bit larger than the number of instances in the relevant collection, so we can
see the points when all instances were solved within the cut-off time. If (x,y) is
the extreme upper-right point of the curve for solver A, then A solved y instances
in x seconds or less, and failed to solve any of the remaining instances within the
30-minute cut-off. In all cases, we report the total time for both grounding and
solving. For instances which are not computationally trivial, LPARSE grounding
is almost always a small fraction of solving time. MXG is significantly slower at
grounding, and for some problems run-time is dominated by the grounding time.

7.3 Test Platform

All tests were run on Sun Fire VZ20 Dual Opteron computers with two 2.4 GHz
AMD Opteron 250 processors having 1MB cache and 2GB of RAM per processor.
The machines were running Suse Enterprise Linux 2.6.11. The executables for
DLV, clasp, MidL and RSat were downloaded from the respective solver sites.’
Executables for smodels, Cmodels and MXG were compiled with gce version 3.3.4,
using the default settings of the makefiles provided with the solver sources.

7.4 Problem Specifications and Performance Plots

In this section, we present the plots showing the relative performance of the various
systems on the chosen benchmark problems, and also the MXG axiomatizations we
used.® These axiomatizations are not the simplest possible, but also are not highly
optimized. They are all produced by: (1) writing the simplest or most natural
axiomatization we though of; (2) re-writing axioms with a syntactic form we know
to be handled poorly by our current grounder implementation; (3) adding some
redundant axioms which appear to improve performance. Step 2 only makes sense
in the context of a general syntax, and we expect future grounder versions to

Shttp://www.dbai.tuwien.ac.at/proj/dlv/, http://www.cs.uni-potsdam.de/clasp/,
http://www.cs.kuleuven.be/ maartenm/research/midl.html, http://reasoning.cs.ucla.edu/rsat/

6 All MXG axioms here are in prenex form, because at the time we wrote them this was an MXG
restriction. Version 0.16 does not have this restriction, but is essentially equivalent except for this
and some other small syntactic differences.
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significantly reduce the effects of this. Adding redundant constraints is a standard
practice in most areas of constraint solving.

For the ASP solvers, we used axiomatizations downloaded from Asparagus. For
MidL, we used axiomatizations for K-Colouring, Hamiltonian Cycle and N-Queens
included in the MidL. download package. To the latter, we added an axiom enforcing
the blocked cells to produce a Blocked Queens axiomatization. For the remaining
problems we used a direct translation of our MXG axiomatizations into the MidL
language, which primarily amounted to replacing bounded quantifiers with their
definitions.

We will say that a solver “solved” an instance if it produced a solution or correctly
reported it unsatisfiable, and “failed to solve” the instance if it did not halt within
the 30 minute time cut-off. We verified every solution produced during our tests
with both MXG and smodels. For each problem, we estimate an order of preference
of solvers based on performance. Since we prefer to reward good scaling over fast
solving of small instances, our ordering is as follows: we prefer those solvers that
solved the most instances within the cut-off time, and among those we prefer the
one that minimized the maximum time for solving an instance. Solver order could
change with an increased cut-off time, but this will be the case with any preference
scheme that rewards good scaling.

7.4.1  Graph K-Colouring. Graph colouring is a classic and well-studied NP-
hard search problem. An instance consists of a graph and a number K, and a
solution is a proper K-colouring of the graph. That is, we want a function mapping
vertices to a set of K colours, so that no two adjacent vertices are mapped to
the same colour. Our test set consisted of 17 instances, 5 3-colouring instances
from Asparagus and 12 instances from the LEI category of the graph colouring
benchmark collection at http://mat.gsia.cmu.edu/COLOR /instances. These latter
are are challenging instances on graphs of 450 vertices, variously with 5, 15 and 25
colours. All 17 instances are colourable with the alloted number of colours.

The performance of the solvers is shown in Figure 4. The figure clearly shows
the following order of solvers, from best to worst: MXG+RSat, clasp, MidL, DLV,
smodels. Notice that no solver was successful on all instances: MXG+RSat and
clasp solved 13 of the 17 instances, while others solved 10 or fewer. The four
instances that were not solved by MXG went unsolved by all solvers tested.

Reduction to SAT is known to be quite effective for graph colouring. Since the
propositional formulas produced by MXG are same as the usual reduction from K-
Col to SAT, it is not very surprising that MXG+RSat does well on this problem.

Because the current version of MXG does not support arithmetic, we take our
instance to consist of the graph plus the set of colours, so we have two sorts: vertices
and colours. The axiomatization simply says there is a binary relation Colour which
must be a proper colouring of the vertices:

Given :
type Clr Vtx;
Edge(Vtx, Vtx)
Find :
Colour(Vtx, Clr)
Satisfying :
V m n ¢ Colour(n, ¢) A Colour(m, ¢) O —~Edge(n, m)
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Fig. 4. Performance on K-Colouring (left) and Hamiltonian Cycle (right)

¥V m cl ¢2<cl —(Colour(m, c1) A Colour(m, c2))
V m 3 ¢ Colour(m, c)

7.4.2  Hamiltonian Cycle. Hamiltonian Cycle is another “classic” NP-hard search
problem: Given a graph, find a cycle in the graph which which visits every vertex
exactly once. Existence is NP-complete. The test set consists of 30 instances from
Asparagus, with sizes of 100 vertices and 800 edges; 150 vertices and 1200 edges;
and 200 vertices and 1800 edges. All instances have Hamiltonian Cycles. Perfor-
mance is illustrated in Figure 4. Here, MXG does not fair as well. The ordering
appears to be: clasp, DLV, Cmodels, MXG, smodels, MidL. Only clasp and DLV
solved all instances. Notice that smodels solved a number of instances faster than
MXG, but that it only solved 14 instances while MXG solved 23. MXG is slower
than smodels on easier instances, but appears to scale better. MidL. does not ap-
pear in the plot because it failed to solve any instance. Interestingly, it seems to
preform quite well on the Asparagus instances of Hamiltonian Path. MXG also
performs poorly on those.

Here, not having general inductive definitions may be hurting MXG: Expressing
that every vertex is on a single cycle is straightforward classically, but expressing
that the cycle is unique is not. ASP and MidL axiomatizations can do this by
directly expressing reachability. In our MXG axiomatization we use the built-in
ordering < on vertices which, together with the pair (M AX, MIN), produces a
cycle that visits every vertex once. Then we require that Map() is a permutation on
the vertices that maps to this cycle. The solver must also construct the actual set of
edges, He, in agreement with this permutation. In the axiomatization, the predicate
P provides a weak upper bound on Map which can be computed at grounding time,
and provides a small performance improvement:

Given :

type Vtx;

Edge(Vtx, Vtx)
Find :

Hce(Vtx, Vix)
Satisfying :

SFU Computing Science Technical Report, TR 2006-24, 2006.



Modelling and Solving Search Problems with Logic . 31

Table III. Grounding and Solving Times for MXG+RSat and
LPARSE+-clasp, on Latin Square Completion. Times are mean times
in seconds, with standard deviation in parentheses.

Grounder + Solver | Grounder GroundSolver | TotalTime
MXG~+RSat 24.72 (0.11) 0.64 (0.06) | 25.40
LPARSE-+clasp 0.54 (0.02)| 12.49 (1.51) | 13.03
Difference 24.18 —11.85 12.37

Map(Vtx, Vtx)

P(Vtx, Vtx)

{ P(x, n) < x = MIN A n = MIN

P(x, n) < P(y, n2) A SUCC(n2, n) A Edge(y, x) }

Map(MIN, MIN)

V x n Map(n, x) D P(x, n)

V n 3 f Map(n, f)

V £ 3 n Map(n, f)

¥V nl n2<nl f =(Map(nl, f) A Map(n2, f))

V n 1 £2<f1 -(Map(n, f1) A Map(n, £2))

Vv nl n2 f1 3 £2 [Map(nl, f1) A (SUCC(nl, n2)V(nl = MAX A n2 = MIN))| D
Map(n2, £2) A (Edge(fl, £2) V Edge(f2, f1))

V nl n2 v u [(Edge(u, v) V Edge(v, u)) A Map(nl, v) A Map(n2, u) A
(SUCC(n1, n2) V (n1 = MAX A n2 = MIN))] D He(v, u)

Vv v u 3 nl n2 He(v, u) D
Map(nl, v) A Map(n2, u) A (Edge(v, u) vV Edge(u, v)) A
(SUCC(nl, n2) V (n1 = MAX A n2 = MIN))

7.4.3  Latin Square Completion. A Latin Square (or Quasigroup) is an n by n
matrix with elements in {1,...n}, where every row and every column has every
possible element. Constructing Latin Squares is easy. In the Latin Square Com-
pletion problem, an instance is the set {1,...n} plus prescribed values for certain
elements. The task is to construct a Latin square consistent with the prescribed
elements. Existence of such a completion is NP-complete. The test set consists of
100 instances from Asparagus. All are of size 30-by-30, and all have solutions.

The apparent ordering is: clasp, MXG, MidL, Cmodels, smodels, DLV. (It is
tempting to read the plot as showing Cmodels better than MidL, but it is not:
MidL solved all instanes within about a minute, whereas Cmodels left two unsolved
after 30 minutes.) The performance plot is shown in Figure 5. Two observations
are in order. First, in contrast to K-Colouring and Hamiltonian Cycle, there is
a qualitative difference in performance of the solvers. At one extreme, DLV and
smodels see the instances as all of distinct hardness. At the other extreme, MXG
sees them as essentially identical. Second, the lead clasp holds over MXG+RSat is
more than accounted for by the difference in grounding time. clasp solves the ground
instances in about 12 seconds each, whereas RSat requires about 0.64 seconds each.
This, as well as the remarkable uniformity of run-times for MXG+RSat, can be
seen in Table III, which shows the breakdown of grounding and ground solving

time for MXG+RSat and clasp.

The MXG axiomatization is the obvious one, plus one redundant constraint. Cell
denotes matrix elements; we require that each row and column contains a bijection
on {1,...n}; the redundant constraint is that each cell has exactly one element:

Given :
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Fig. 5. Performance on Latin Square Completion (left) and Blocked Queens (right)

type Num;
Preassigned(Num, Num, Num)
Find :
Cell(Num, Num, Num)
Satisfying :
V x y z Preassigned(x, y, z) D Cell(x, y, z)
Vxz 3y Cell(x, y, 2)
V x z yl y2<yl —(Cell(x, y1, z) A Cell(x, y2, z))
Vyz3x Cell(x,y, z)
Vy z x1 x2<x1 —(Cell(x1, y, z) A Cell(x2, y, z))
Vxy 3z Cell(x, y, 2)
V x y zl z22<zl —(Cell(x, y, z1) A Cell(x, y, z2))

7.4.4 Blocked Queens. The n-Queens problem is to place n Queens on an n-
by-n chessboard, so that no two attack each other. Although once a favourite
benchmark problem in constraint programming, finding solutions with a modern
solver is trivial — not to mention that analytic solutions are well known. In the
blocked queens problem, one has certain cells pro-scribed to not contain a queen.
Existence of such a completion is NP-complete. The test set consists of 40 instances
from Asparagus, of sizes from 28-by-28 to 56-by-56, 20 of which have solutions.

While having a similar flavour to Latin Square completion, the performance pro-
file (at least on the Asparagus instances) is different, in that all solvers found the
instances to vary considerably in difficulty. Moreover, the order has changed con-

siderably, to: MXG, smodels, DLV, MidL, clasp.

The MXG axiomatization required some thought because the current version has
no arithmetic, without which it is not very convenient to describe the diagonals. The
solution is the inductively-defined subtraction relation diff(), which is computed by
MXG during grounding. This is slower than built-in subtraction, but fast enough
that MXG+RSat performs best overall. The remaining axioms are standard:

Given:

type Num;
Find :

Queen(Num, Num)
Satisfying :

SFU Computing Science Technical Report, TR 2006-24, 2006.



Modelling and Solving Search Problems with Logic . 33

Diff(Num, Num, Num)

Block(Num, Num)

{ Diff(i, x2, y2) «— (x2 = MIN A y2 = i)

Diff(i, x2, y2) « (Diff(i, x1, y1) A SUCC(x1, x2) A SUCC(yl1, y2)) }

V x y Queen(x, y) D —Block(x, y)

Viy2x2 yl<y2 x1<x2 —(Queen(x1l, y1) A Queen(x2, y2) A
Diff(i, x1, x2) A Diff(i, y1, y2)))

Viyl x2 y2<yl x1<x2 ~(Queen(x1l, y1) A Queen(x2, y2) A
Diff(i, x1, x2) A Diff(i, y2, y1)))

V x y1 y2<yl Queen(x, y1) D —Queen(x, y2)

V x1 x2<x1 y Queen(x1, y) D —Queen(x2, y)

V x 3y Queen(x, y)

Vy 3 x Queen(x, y)

7.4.5 Social Golfer. The goal is to schedule g x s golfers into g groups of s
players over w rounds (weeks), such that no two golfers play in the same group
more than once. The test set consists of 174 instances from Asparagus, spanning
(but not covering) the parameter range: number of weeks from 2 to 8; group size
from 2 to 6; number of groups from 2 to 8. We know 72 instances to have solutions
and 64 to have no solution, leaving 38 of unknown status. The order of solvers is:
clasp, MXG, smodels, DLV, Cmodels, MidL.

Given :
type Players Groups Groupsize Weeks;
Find :
Plays(Players, Weeks, Groups)
Satisfying :
M(Weeks, Players, Groupsize)
Soc(Weeks, Players, Players)
V p w 3 g Plays(p, w, g)
vV pw gl g2<gl —(Plays(p, w, g1) A Plays(p, w, g2))
V w pl 3 p2 (Soc(w, pl, p2)VSoc(w, p2, pl))
V pl p2>pl wl w2<wl =(Soc(wl, pl, p2) A Soc(w2, pl, p2))
V pl p2>pl w 3 g Soc(w, pl, p2) < Plays(pl, w, g) A Plays(p2, w, g)
V w g pl p2<pl 1 =(Plays(pl, w, g) A Plays(p2, w, g) A M(w, p2,1) A M(w, pl, 1))
Vwp3IlM(w,p,l)

7.4.6 Bounded Spanning Tree. A spanning tree of a graph is a sub-graph that is
a tree and visits every vertex. A spanning tree can be found in linear time. In this
version of the problem, an instance consists of a directed graph and a bound K,
and we require a directed spanning tree in which no vertex has out-degree larger
than K. Existence is NP-complete. The test set is 30 instances from Asparagus,
some with 35 and some with 45 vertices. All have solutions. All instances of the
same size look identical to MXG, with 35 vertex instances taking about 2 seconds
and 45 vertex instances taking about 8 seconds. The solver order is: clasp, MXG,
Cmodels, MidL, smodels, DLV. As with Latin Square Completion, the difference
between clasp and MXG+RSat is entirely accounted for by grounding time. If
MXG grounding was as fast as LPARSE, MXG+RSat would perform better than
LPARSE+-clasp on these instances.

Given:
type Vtx Bound;
Edge(Vtx, Vtx)
Find :
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Fig. 6. Performance on Social Golpher (left) and Bounded Spanning Tree (right)

Bstedge(Vtx, Vtx)
Satisfying :
Map(Vtx, Vtx)
M(Vtx, Bound)
vV v 3 u Map(v, u)
vV u 3 v Map(v, u)
V n f1 £2>f1 =(Map(n, f1) A Map(n, {2))
Vv nl n2>nl f -(Map(nl, f) A Map(n2, f))
vV v u Map(MIN, v) D —Bstedge(u, v)
vV uvxy<x =(Map(x, u) A Map(y, v) A Bstedge(u, v))
V v u Bstedge(u, v) D Edge(u, v)
V v 3 u -Map(MIN, v) D Bstedge(u, v)
V x u v<u —(Bstedge(u, x) A Bstedge(v, x))
vV uv w<v k =(Bstedge(u, v) A Bstedge(u, w) A M(v, k) A M(w, k))
vV u 3 k M(u, k)

8. RELATED SYSTEMS

A broad survey of related work is infeasible here, and we focus our attention on
implemented systems which roughly parallel MXG: general-purpose, logic-based
systems for representation and solving of search problems, with a primary focus on
NP-search.

8.1 Representation in 3SO

Many researchers have entertained the idea of using 3SO as a representation lan-
guage for problems in NP.” We have heard anecdotal reports of projects to test
the idea of using 350 and reduction to SAT, in one or another form, to solve
NP-complete problems. One such project is reported in [Rrustemi 2004]. We are

"Indeed, the first author made such a proposal to Hector Levesque as an undergraduate student
in 1989, and certainly many had thought of it before then. The proposal elicited an explanation of
two basic obstacles which have since been at least partially overcome: the need to extend classical
logic with recursion, and the absence of a computational mechanism, such as an effective SAT
solver, likely to work in practice.
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not aware of any serious attempt to develop the idea further and to address issues
which must be handled to produce practical tools.

Mancini [Mancini 2004] has explored various ways in which 3SO axiomatizations
can be manipulated to support effective search. Mancini views 3SO as a natural
abstraction of concrete modelling languages proposed in the constraint satisfaction
and constraint programming communities. His work studies a variety of automat-
able ways to manipulate such axiomatizations to improve solver performance. A
number of these have promise, and could naturally be applied to MX specifications.

In contrast to Mancini, we take 35O, with some extensions, as the actual mod-
elling language to be implemented. We envision adding syntactic layers on top of
the foundation of 3SO, rather than developing such languages independently and
viewing 35S0 as an abstraction of them.

8.2 Other FO(ID)-MX Solvers

An earlier solver produced at SFU used a slightly modified version of LPARSE, the
standard ASP grounder, together with a translation from propositional logic with
inductive definitions to SAT [Pelov and Ternovska 2005]. The formula ¢ was in
the input syntax of LPARSE, but with FO(ID) semantics. The output of LPARSE
was transformed to SAT using a level-mapping reduction for inductive definitions.
While performance was acceptable on benchmark problems considered, we did not
pursue the approach because using the level-mapping reductions did not appear
promising as a general scheme.

MidL is a solver for FO(ID) model expansion developed by Marc Denecker’s
group at KU Leuven [Marién et al. 2006]. The MidL input language is similar to
that of MXG. Some differences, at time of writing, are that the MidL language does
not have ordered domains, but does have a form of arithmetic. The MidL grounder
is based on LPARSE, and produces ground formulas in propositional logic with
inductive definitions, called PC(ID). The MidL solver engine handles this logic
natively, rather than using reduction to SAT, as described in [Marién et al. 2005].

8.3 ASPPS (ASP-Propositional Schemata)

East and Truszczynski’s ASPPS [East and Truszczynski 2004] is the first system we
know of based on the idea of extending classical logic with a recursion mechanism.
The modelling language is classical formulas, in an ASP-like syntax, augmented
by arithmetic, weight constraints, and Horn rules with minimum-model semantics.
It may be seen as FO(ID) restricted to a formulas and rules of a simple syntactic
form, and extended with weight constraints and arithmetic. ASPPS is based on
Herbrand models, but otherwise could be viewed as a pre-cursor to FO(ID)-MX.
The system supports grounding to SAT, and also to propositional CNF extended
with cardinality constraints.

8.4 NP-SPEC and Spec2SAT

The earliest proposal we are aware of for a declarative language to represent arbi-
trary NP search problems exactly, is NP-SPEC [Cadoli et al. 2000]. The modelling
language is stratified Datalog, extended by a set-based notation for describing finite
domains, several aggregate operators, and notation for declaring particular relations
to have certain properties, such as being a bijection, permutation, etc. An instance
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it is a finite database, i.e., as set of ground atoms representing a multi-sorted finite
structure. The initial implementation was provided by reduction to Prolog, with
apparently poor performance. Later an implementation, called Spec2SAT, was pro-
vided using reduction to SAT [Cadoli and Schaerf 2005], but this handled only the
fragment of the specification language without aggregates, recursion, or negative
occurrences of defined predicates in rule bodies.

8.5 ESRA

ESRA [Flener et al. 2003] is The ESRA modelling language [Flener et al. 2003] is
syntactically FO with extensions, provided with a denotational semantics. Exten-
sions include domain declarations (sorts), arithmetic over finite sets of integers, set
operations, a summation operator and a counting quantifier. Instances take the
form of a collection of finite “domains”, some of which may be sets of tuples from
others. Solutions are instantiations of “decision variables”, which may be relations
or functions. The language is provides an interesting example because it appears
formally to be equivalent to model expansion for an extension of FO, although not
formalized in this way.

The ESRA authors regard it as a constraint programming language based on re-
lations as an abstract data type — thus, one presumes, the choice of a denotational
rather than model-theoretic semantics. ESRA is implemented in the form of compi-
lation to OPL, a related modelling language with an effective solver implementation
[Hentenryck 1999]. The ESRA authors aim to provide a simple, high-level language
“capture common modelling idioms”, while expressing dis-interest in any formal no-
tion of completeness, such as capturing a class of problems. (Clearly ESRA can
express every problem in NP. It seems unlikely is captures NP-search, in the sense
of Section 3, as is has no recursion, although it is also possible that other features
allow it to express problems beyond NP.)

8.6 ASP (Answer Set Programming)

Answer Set Programming [Marek and Truszczynski 1999; Niemela 1999] is based
on the language of logic programming, with the stable model semantics [Gelfond
and Lifschitz 1991]. There are many ground solvers, most of which take as input
the ground programs produced by the LPARSE grounder. This language extends
normal logic programs with weight constraints (a generalization of cardinality con-
straints), and arithmetic. A number of groups are working on the area, and new
solvers appear regularly.

Instances are provided in the form of a set of ground atoms, which formally
are part of the logic program. Separation of problem and instance descriptions
is considered important [Marek and Truszczynski 1999] but maintained only as
a convention which is not always followed in practice. The semantics is based
on Herbrand models, which entails significant restrictions on the use of function
symbols. In model expansion, no such mechanism is required to invoke closure on
the universe.

The built-in recursion in ASP is often convenient, particularly for axiomatizing
problems involving sequences of events, such as verification and planning problems.
One problem, in our view, is that the entire formula (logic program) is involved
in the recursion. Many properties which can be easily and naturally expressed
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classically require a less natural expression within this recursion.

9. CONCLUSIONS AND FUTURE WORK

NP-hard search problems arise frequently in application areas ranging from soft-
ware verification to bio-informatics, and often the inability to solve sufficiently large
instances within practical time bounds is a significant obstacle to practical work.
Practitioners in these areas need effective tools, but producing good implemen-
tations requires considerable effort; moreover, there are relatively few techniques
which work well in practice, and these are implemented over and over in different
domains. There appears to be a role for well-implemented general-purpose tools
for modelling and solving search problems. Such tools could greatly facilitate the
work of many practitioners who now must get by with poorly adapted tools and
techniques, or invest a great deal of energy implementing domain-specific search
algorithms. We believe that the model expansion framework has a potential as a
basis for such technology.

9.1 Our Framework for Search

Our framework for representing and solving search problems with logic is based on
a simple idea: we have a finite structure and are looking for an expansion of this
structure to satisfy a formula. The framework has two settings, parameterized and
combined. To date, our attention has been largely directed to the parameterized
setting. Here, the formula is fixed and provides a problem specification. Some
properties of the setting include:

(1) This setting separates problem description (a formula) from an instance of the
problem (a finite structure).

(2) It provides a universal framework for search in a number of complexity classes
through the capturing results of descriptive complexity.

(3) Since the formula is fixed, pre-processing of the formula to improve solver per-
formance is possible.

(4) In this setting, user’s intentions regarding search can be captured in a precise
sense.

We have implemented a solver, MXG, for parameterized FO(ID) model expansion.
The performance of the solver clearly shows feasibility of the approach, providing
performance comparable to more mature ASP systems.

Properties of the combined setting include:

(1) The setting provides flexibility, in allowing an instance to be in part represented
by a formula (cf. the block-world planning example in section 2.3.2).

(2) It allows one to express problems of higher complexity than NP (up to NEXP-
TIME) with FO or with FO(ID).

One natural direction of future work is to develop notions of capturing various
complexity classes in this setting.
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9.2 Future and Current Work: Foundations

One of the main remaining tasks is adding arithmetic and other structured domains,
such as strings. For these, some “built-in” domains, with certain functions and
predicates, will be added. Care is required, as these additions can easily change
the task complexity. For example, in adding arithmetic is that we have an infinite
domain, such as the natural numbers or reals, and in this setting model expansion is
no longer decidable. In our current work, we formalize the notion of a “meta-finite”
model expansion, where a secondary, potentially infinite structure is present, and
investigate the conditions under which model expansion is decidable or under which
we can preserve complexity and expressiveness properties of interest.

Other extensions that are current or future work include: aggregates; new sort
declarations; “upper guards”; methods for “compiling out” auxiliary vocabulary
symbols; a game-theoretic formalization of model expansion.

9.3 Future Work: Solvers

Within our current solver architecture, we plan to study several approaches to im-
proving performance, such as various techniques for processing the problem specifi-
cation; use of propositional languages richer than simple CNF, handling a broader
range of inductive definitions; and recognition of special cases which allow for effi-
cient grounding and solving; techniques for “on-the-fly” grounding.

We would like to investigate the option of having “normal forms” of MX ax-
iomatizations, with appropriate algorithms to translate to those forms, for efficient
grounding and solving. We also plan to explore alternate schemes for solver con-
struction, such as the local search approach proposed in [Agren et al. 2005], and
application of general finite-model finding tools, such as used in the theorem proving
community.

9.4 Future Work: Modelling Languages

For many industrial practitioners, classical logic may not be an acceptable modelling
language, so languages to be used in industry will likely be syntactic variants of
FO(ID). Since SQL is essentially a syntactic variant of FO, and is widely used in
industry, it seems natural to explore the idea of basing a modelling language on
SQL. Another natural approach is to extend FO(ID) with constructs such as those
in ESRA and other constraint languages, which provide considerable convenience
and reduce the number of axioms needed to model a problem.

A. SYNTAX FOR MXG VERSION 0.16

A.1 Problem Specification Grammar

<TheoryFile> ::= <GivenPart> <FindPart> <SatisfyingPart>
<GivenPart> ::= Given : <TypeDeclaration> <SymbDeclaration>
<TypeDeclaraion> ::= type <TypeNames> ;

<TypeNames> ::= <TypeName> | <TypeNames> <TypeName>
<SymbDeclaration> ::= | <SymbDeclaration> <a_SymbDCL>

<a_SymbDCL> ::= <PredDCL> | <ConstDCL>

<PredDCL> ::= <PredName> ( <PredTypes> )

<PredTypes> ::= <TypeName> | <PredTypes> , <TypeName>
<ConstDCL> ::= <ConstName> : <TypeName>

<FindPart> ::= Find : <SymbDCL>
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<SatisfyingPart> ::= Satisfying : <SatisfyingRules>

<SatisfyingRules> ::= <a_SatisfyingRule> | <SatisfyingRules> <a_SatisfyingRule>
<a_SatisfyingRule> = <an_Axiom> | <a_SymbDCL>

<an_Axiom> = <FO_Formula> | { <IDD_Rules> }

<FO_Formula> ::= <Unitary_Formula> |

<FO_Formula> <BinaryOperator> <Unitary_Formula>

( <FO_Formula> ) | <QuantPart> : <Unitary_Formula> |
“<Unitary_Formula> | <atomic_formula>

<PredName> ( <Args> ) |

SUCC ( <Args> ) |

<0rd_Relation>

<VarName> <OrdOperator> <VarName> |

<VarName> <OrdOperator> <ConstName> |

<VarName> <OrdOperator> MIN |

<VarName> <OrdOperator> MAX |

<ConstName> <OrdOperator> <VarName> |

MIN <OrdOperator> <VarName> |

MAX <OrdOperator> <VarName>

<unitary_formula> ::=

<atomic_formaula> ::=

<0rd_Relation> RS

<QuantPart> <Quantifier> <Variables>
<Quantifier> 7

<Variables> = <a_Var> | <Variables> <a_Var>
<a_Var> = <VarName> | <Ord_Relation>

<Args> = <an_Arg> | <Args> , <an_Arg>
<an_Arg> = <VarName> | MIN | MAX | <ConstName>
<0rdOperator> =< | =] > | >|-=
<BinaryOperator> =& | <vline> | => | <=>

<vline>

<IDD_Rules> = <IDD_Rule> | <IDD_Rules> <IDD_Rule>
<IDD_Rule> = <PredName> ( <Args> ) <- <QF_FO_Formula>

<QF_FO_Formula>

= <atomic_formula> |

( <QF_FO_Formula> ) |

<QF_FO_Formula> <BinaryOperator> <atomic_formula> |
~( <QF_FO_Formula> ) | “<atomic_Formula>

A2

<InstanceFile>

Instance Description Grammar

<InstanceFile> <an_InstancePart>
<InstnaceType> | <InstnacePred> | <InstanceConst>

<an_InstancePart> |
<an_InstancePart> ::=

<InstnaceType> ::= <TypeName> = [ <TypeElements> ]
<TypeElements> ::= <Character>..<Character> |

<Number>. .<Number> | <TypeElementSet>
<TypeElementSet> ::= <a_TypeElement> |

<TypeElementSet> ; <a_TypeElement>
<a_TypeElement> ::= <ElementName> | <Number> | Character
<InstnacePred> ::= <PredName> = { <Tuples> }
<Tuples> ::= <a_Tuple> | <Tuples> ; <a_Tuple>
<a_Tuple> ::= <a_TypeElement> | <a_Tuple> , <a_TypeElement>
<InstanceConst> ::= <ConstName> = <a_TypeElement>
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