
Two-Point Euclidean Shortest Path Queries in the Plane(Extended Abstract)
To appear in Proc. Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '99), January 17-19, 1999

Yi-Jen Chiang� Joseph S. B. MitchellyAbstractWe consider the two-point query version of the fundamentalgeometric shortest path problem: Given a set h of polygonalobstacles in the plane, having a total of n vertices, build adata structure such that for any two query points s andt we can e�ciently determine the length, d(s; t), of anEuclidean shortest obstacle-avoiding path, �(s; t), from s tot. Additionally, our data structure should allow one to reportthe path �(s; t), in time proportional to its (combinatorial)size. We present various methods for solving this two-pointquery problem, including algorithms with o(n), O(log n+h),O(h log n), O(log2 n) or optimal O(log n) query times, usingpolynomial-space data structures, with various tradeo�sbetween space and query time. While several results havebeen known for approximate two-point Euclidean shortestpath queries, it has been a well-publicized open problemto obtain sublinear query time for the exact version ofthe problem. Our methods also yield data structures fortwo-point shortest path queries on nonconvex polyhedralsurfaces.1 IntroductionLet P denote a polygonal domain in the plane, having nvertices and h holes; P is a closed, multiply-connectedregion whose boundary is a union of n line segments,forming h + 1 closed (polygonal) cycles. (A simplepolygon, then, is the special case of a polygonal domainwith h = 0.) We will refer to P as \free space", and tothe h+1 connected components, O, of the complementof P (h holes, plus the face at in�nity) as \obstacles."We let �(s; t) denote an obstacle-avoiding (Euclidean)shortest path from s 2 P to t 2 P ; d(s; t) will denote�yjc@poly.edu. Department of Computer and InformationScience, Polytechnic University, 6 MetroTech Center, Brooklyn,NY 11201. Most of this work was done while with the Departmentof Applied Mathematics and Statistics, SUNY at Stony Brook,and supported by NSF grant DMS-9312098 and a grant fromSandia National Labs.yjsbm@ams.sunysb.edu. Department of Applied Mathematicsand Statistics, State University of New York, Stony Brook, NY11794-3600. Partially supported by NSF grant CCR-9504192, andby grants from Boeing Computer Services, Bridgeport Machines,Hughes Aircraft, Seagull Technology, and Sun Microsystems.

the length of �(s; t).In this paper, we consider the two-point shortest-path query problem, in which we are to construct adata structure that enables e�cient processing of aquery that speci�es two points, s and t, and requeststhe length, d(s; t), of a shortest path between them.The query may also request an actual instance of ashortest path. Since in general a path can be reportedin additional time O(k), where k is the number of edgesin the output path, we concentrate on the complexity ofperforming a two-point distance query, to obtain d(s; t).While nearly-optimal results are known for thesingle-source query problem, prior to this work the two-point query problem has had no exact algorithm withsublinear query time; e.g., the recent survey [27] posesthis open problem. Here, we provide several new results:(1) An algorithm that uses O(n5+10�+�) time andspace to compute a data structure that supportsO(n1�� logn)-time two-point shortest path queries,for any � with 0 < � � 1 and any �xed � > 0.In particular, this algorithm achieves slightly sub-linear (o(n)) query time, with a data structure ofsize O(n5+�). It also achieves optimal query timeO(logn), with O(n15+�) space.(2) An algorithm that uses O(n11) space and prepro-cessing to construct a data structure supportingoptimal (O(log n)-time) queries. Alternatively, thealgorithm requires O(n10 logn) space and prepro-cessing in order to support O(log2 n)-time queries.(3) Algorithms that are sensitive to the number, h, ofobstacles. Since it may be that h << n, thesemethods o�er important, potentially practical, al-ternatives to the high space complexities of the al-gorithms (1)-(2). Speci�cally, we obtain(a) query time O(logn + minfhs; htg), usingO(n5) space, where hs (resp., ht) is the num-ber of \pivotal" (Section 5) obstacle verticesvisible from s (resp., t), and hs and ht arebounded by O(h); or(b) query time O(h logn), using O(n+ h5) space.1

2 In particular, the bounds (b) match the optimalbounds (O(logn) query, O(n) space) for simplepolygons, in the case that the number h of holesis constant; these bounds interpolate between theoptimal results known in the case of no holes, andthe general results we obtain for any number (O(n))of holes.(4) Algorithms for two-point shortest path queries onnonconvex polyhedral surfaces, with space com-plexity a factor of n greater than in the planarproblem.These results are summarized in Table 1. Wenote that, while the space bounds for the optimal(O(log n)) query time methods appear high, they shouldbe compared with the best bounds known (see below)for the \simple" case of computing shortest paths on thesurface of a convex polytope, where two-point queriesare answered in time O(logn), using O(n8+�) space andpreprocessing time, for � > 0.SPACE QUERY TIMEn5+� o(n)n5+10�+� n1�� logn, any 0 < � � 1n10 logn log2 nn11 lognn5 logn+minfhs; htgn+ h5 h lognOur methods also develop and utilize structure ofshortest path maps that may have independent inter-est. In particular, we devise a simple parametric pointlocation method for shortest path maps, and make itdynamic (Section 4.2). We also introduce the notionof a coarsened shortest path map (Section 5), which weuse in conjunction with the corridor structure of polyg-onal domains to obtain bounds that are sensitive to thenumber of holes. Further, we give the �rst polynomialbound (O(n10)) on the number of combinatorially dis-tinct shortest path maps in a polygonal domain.Related Work. There has been an abundance of workon geometric instances of the shortest path problem;we refer the reader to surveys in [19, 20, 27]. Forthe problem of computing Euclidean shortest paths ina polygonal domain, the best current results compute asingle-source shortest path map (see the next section forde�nitions) in time and space O(n logn) ([14]), usingthe continuous Dijkstra paradigm ([18]), or computeshortest paths using visibility graph methods, in timeO(n + h2 logn) [15]. The best known lower bound is
(n + h logh). After computing a shortest path mapwith respect to a given source point, shortest path

queries to any destination can be answered in timeO(logn).In the case that P is a simple polygon (h =0), Guibas and Hershberger [11] have shown how topreprocess P in time O(n), into a data structure of sizeO(n), to support two-point shortest-path queries in timeO(logn).Two-point Euclidean shortest-path queries inpolygonal domains are considerably more challengingthan the case of simple polygons. In a recent paper ofChen et al. [7], it has been shown that, using O(n2)space, one can achieve query time O(K logn), whereK = minfks; ktg is the smaller of the number of ver-tices visible from s and visible from t. However, this isworst-case O(n logn), which is no better than comput-ing a shortest path map from scratch.Given the di�culty of exact two-point queries,attention has focused on approximate two-point queries.As observed in [6], a method of Clarkson [8] can beused to construct a data structure of size O(n2), inO(n2 logn) time, so that (1 + �)-optimal queries canbe answered in time O(logn), for any �xed � > 0.Chen [6] obtains nearly linear-space data structures forapproximate shortest path queries, giving a (6 + �)-approximation, using O(n3=2= log1=2 n) time to build adata structure of size O(n logn), after which queries canbe answered in time O(logn). These results have beenimproved recently by Arikati et al. [2], who give a familyof results, based on planar spanners, with tradeo�samong the approximation factor and the preprocessingtime, storage space, and query time.For the problem of shortest paths on a polyhedralsurface, some results are also known on the two-pointquery problem, at least for the case of convex polytopes.Agarwal et al [1] have also shown that two-point queriescan be answered in time O((pn=m1=4) logn), withO(n6m1+�) preprocessing time and storage, for anychoice of 1 � m � n2, and � > 0. Har-Peled [12]obtains results for the approximate two-point queryproblem: He gives an O(n)-time algorithm to preprocessa convex polytope so that a two-point query can beanswered in time O((logn)=�1:5 + 1=�3), yielding the(1+ �)-approximate shortest path distance, as well as apath having O(1=�1:5) segments that avoids the interiorof the input polytope.2 PreliminariesThe input to our problem is a (multiply connected)polygonal domain, P , having h holes and a total of nvertices. We let V denote the set of vertices of P . Weoften refer to the complement of P (including the holesand the face at in�nity) as obstacles and the verticesV as obstacle vertices. A query is speci�ed by a pair

3of points, (s; t), with s; t 2 P . We let jpqj denotethe Euclidean length of the line segment pq, and welet d(p; q) denote the length of a shortest path, �(p; q),joining p 2 P and q 2 P .The visibility graph, V G(P), of P is the graph whosenodes correspond to vertices of P and whose edgeslink pairs of vertices that see one another. (Vertexu sees vertex v if the line segment uv lies within P .)V G(P) can be computed in optimal output-sensitivetime O(eV G + n logn), where eV G denotes the numberof edges in the visibility graph [22]. It is a fundamentalfact, based on local optimality, that any shortest path�(s; t) must be a polygonal path that corresponds to apath in the visibility graph (after augmenting it withedges linking s and t to vertices visible from them).For a point z 2 P , the visibility pro�le of z, denotedV P (z), is the locus of all points within P that are visiblefrom z.Given a source point, z, a shortest path tree,SPT (z), is a spanning tree of z and the vertices of Psuch that the (unique) path in the tree between z andany vertex of P is a shortest path in P .The shortest path map, SPM(z), with respect to z,is a decomposition of P into regions (cells) according tothe \combinatorial structure" of shortest paths from zto all other points. Refer to Fig. 1. Speci�cally, for allpoints p interior to a cell � of SPM(z), the sequence ofobstacle vertices along �(z; p) is �xed. In particular, thelast obstacle vertex along �(z; p) is the root of the cell �containing p. We note that each cell is star-shaped withrespect to its root, which lies on the boundary of the cell,and hence can be readily triangulated by connectingeach vertex of the SPM(z) to the root of the cellscontaining it. We de�ne the weight of an obstacle vertex,v, to be d(z; v). Typically, we will store with eachvertex v both its weight, d(z; v), and its predecessor,r(v), which is the vertex (or point z) preceding v in ashortest path from z to v. Note that vertex v appearson the boundary of the (star-shaped) cell rooted at r(v).The boundaries of cells consist of portions of obstacleedges, extension segments (extensions of visibility graphedges incident on the root), and bisector curves. Thebisector curves are, in general, hyperbolic arcs that arethe locus of points p that are equidistant (in the shortestpath metric) from two distinct roots, u and v: pointsp satisfy d(z; u) + jupj = d(z; v) + jvpj. (Extensionsegments can be considered to be degenerate instancesof bisector curves.)Given point z, the shortest path map SPM(z) is a(unique) planar subdivision of complexity O(n), whichcan be constructed in O(n logn) time, using O(n logn)working storage [14].If SPM(z) is preprocessed for point location, then

s

r
t

Figure 1: A shortest path map with respect to s.single-source shortest path queries can be answerede�ciently by locating the query point t within thedecomposition: If t lies in the cell rooted at r, the lengthof a shortest path to t is given by d(z; t) = d(z; r)+ jrtj.A shortest z-t path can then be output in time O(k),where k is the number of vertices along the path, bysimply following predecessor pointers back from r to z.We de�ne AV P , the VP-equivalence decompositionof P , to be the subdivision of P into cells for whichV P (z) is combinatorially constant, as z varies withina cell. It is easy to see that AV P is obtained bycomputing the arrangement of obstacle edges, togetherwith the extended visibility graph edges. Thus, we seethat AV P has worst-case complexity O(e2V G) = O(n4);this bound is known to be tight.Similarly, the SPT-equivalence decomposition of P ,ASPT , is the subdivision of P into cells for whichSPT (z) is combinatorially constant. It is easy to seethat ASPT is obtained by overlaying the n shortestpath maps, SPM(v), for each vertex v of P . Sinceeach SPM(v) is of size O(n), the overlay of these nsubdivisions yields a decomposition of P of complexityO(n4); this bound is tight in the worst case. Note thatASPT is a re�nement of the decomposition AV P : eachcell of ASPT is a subcell of a cell of AV P , since havinga constant SPT implies having a constant VP.In Section 4, we will also de�ne the \SPM-equivalence decomposition."3 Method I: Mapping to Higher DimensionsIn this section, we show how the two-point queryproblem can be solved in optimal time (O(logn)) bymapping it into a four-dimensional point location query.A related approach was used in [1] for the case ofshortest path queries on a convex surface.First, we note that a shortest path �(s; t) from sto t either consists of the single segment st (if s sees t)or consists of a polygonal chain (s; vi; : : : ; vj ; t), whosebend points occur at obstacle vertices, where vi is theobstacle vertex adjacent to s and vj is the obstacle

4vertex adjacent to t. (Possibly, vi = vj .)From now on, we assume that s is not visible fromt; this is easily checked in time O(logn) (using spaceO(n2 logn)), using a two-point query structure V .Our goal now, for a given query point (xs; ys; xt; yt),is to minimize over all choices of �rst vertex (vi) andlast vertex (vj). This is equivalent to evaluating at(xs; ys; xt; yt) the lower envelope function f : <4 ! <,given byf(xs; ys; xt; yt) = mini2Is;j2It �jsvij+ d(vi; vj) + jvjtj� ;where the minimum is taken over all choices (i 2 Is)of vertex vi that sees s and all choices (j 2 It) of ver-tex vj that sees t. The index sets Is and It depend onthe coordinates (xs; ys; xt; yt); however, these index setsare constant for a given choice of AV P -cell �s contain-ing s and AV P -cell �t containing t. Thus, for each ofthe O(n8) choices of the pair (�s; �t), we construct adata structure to compute the lower envelope of f =mini2Is;j2It fi;j at a query point (xs; ys; xt; yt) 2 <4,where fi;j(xs; ys; xt; yt) = jsvij + d(vi; vj) + jvjtj. Wehave O(n2) functions, each of which is a surface in <5,and we desire the lower envelope at a given point in<4. This can be done in query time O(logn) using adata structure of size O((n2)2�5�3+�) = O(n14+�), us-ing known results on higher-dimensional point location,based on decompositions of arrangements of real alge-braic surfaces (e.g., see Section 8.3, [25]). Since thisstructure is built for each of theO(n8) choices of (�s; �t),we have overall O(n22+�) space, for O(logn) query time.Using an alternative mapping into a lower envelopeproblem, we can improve the space complexity, asfollows. Since we are assuming that s does not see t (asthis is the trivial case), we know that there is at leastone obstacle vertex vi on �(s; t) and that the length of�(s; t) is given by d(s; vi) + d(vi; t), for any choice ofvi on an optimal path. (vi need not be visible to s orto t, since we are using geodesic distances d(s; vi) andd(vi; t).) Thus, d(s; t) = mini d(s; vi) + d(vi; t), wherethe minimum is taken over all vertices vi 2 V . We seek,at the given query point, the lower envelope of the nfunctions of the formgi(xs; ys; xt; yt) = d(s; vi) + d(vi; t):Now, these functions have a special structure: each isa function of four variables that separates into a sumof two functions, each of two variables. Further, eachof the two-variable functions (d(s; vi) and d(vi; t)) isencoded in the shortest path map SPM(vi) rooted atvi, which itself describes a surface in three dimensions.In particular, gi(xs, ys, xt, yt) can be written explicitlyif we know the root (ui) of the cell of SPM(vi) that

contains s and the root (wi) of the cell of SPM(vi)that contains t:gi(xs; ys; xt; yt) =p(xs � xui)2 + (ys � yui)2 + d(ui; vi)+d(vi; wi) +p(xt � xwi)2 + (yt � ywi)2:The cell �s (resp., �t) of ASPT that contains s (resp.,t) gives us the identity of the root ui (resp., wi), forevery choice of vi. Thus, we construct ASPT and storewith each cell the list of roots corresponding to it, foreach choice of vi. This requires O(n5) space. Also, foreach of the O(n8) choices of the pair (�s; �t) of cells,we construct a data structure, of size O(n2�5�3+�) =O(n7+�), to support O(logn) lower envelope queries onthe n functions gi. The overall space bound is O(n15+�).By trading o� space for query time, we are able toobtain a substantial reduction in the size of our datastructures, while allowing the query time to increase(though remain sublinear). The full paper describes indetail how we do this, utilizing a partition of the vertexset V into m = n1�� sets (C1; : : :, Cm) each of size n�for a parameter � 2 (0; 1].Theorem 3.1. Using O(n5+10�+�) time and space,one can compute a data structure that supportsO(n1�� logn)-time two-point shortest path queries in apolygonal domain in the plane. Here, � is any �xed pa-rameter satisfying 0 < � � 1 and � > 0 is any �xedpositive number. In particular, O(logn)-time queriescan be performed using O(n15+�) space, and sublinear(o(n)) queries can be performed using O(n5+�) space.4 Method II: SPM-Equivalence DecompositionsIn this section, we give a di�erent method for queryprocessing, which yields improved space bounds on thedata structure to support logarithmic (or polylogarith-mic) query bounds.We de�ne the SPM-equivalence decomposition,ASPM , of P to be the subdivision of P into cells suchthat for all points z in the same cell � of A, the shortestpath maps SPM(z) are topologically equivalent. (Wesay that two shortest path maps are topologically equiv-alent if their underlying plane graphs are isomorphic.)For simplicity of notation, we will use the term equiv-alence decomposition and write simple A, instead ofASPM , in this section. Note that A is a re�nement ofthe decomposition ASPT , since having distinct shortestpath trees implies having topologically distinct shortestpath maps.Our method consists of the following preprocessingsteps:1. Construct the equivalence decomposition, A, andan associated point-location data structure.

52. For each cell � of A, compute the shortest pathmap SPM(�), whose underlying plane graph is theplane graph of SPM(z) for any point z 2 �, andwhose geometric realization is parameterized; i.e.,each of the geometric constituents (vertices andedges) is expressed algebraically as a function of thecoordinates of z 2 �, thereby allowing the actualobject to be computed in time O(1) for a givenpoint z.3. For each cell �, build a point-location data struc-ture D(�) for SPM(�). This data structure servesfor locating a query point q in SPM(z) for anyz 2 � and is again parameterized; i.e., each parti-tioning object stored and used for comparison dur-ing a search (in processing a query) is representedby an equation such that its exact position can becomputed in O(1) time, given a source point z 2 �.In order to process a two-point shortest path query,for points s and t, we �rst locate the cell � of A contain-ing s; this point location in the (static) subdivision Acan be done using a data structure (of size jAj), by anyof the existing optimal techniques [9, 16, 24]. Then,to determine the shortest path length d(s; t), we per-form a point location query for t in SPM(s). This,however, requires that we develop a new point locationdata structure that supports parametric point locationin SPM(s). For this, we exploit the structure of themap SPM(s), as we will discuss below. First, we an-alyze the structure and complexity of the equivalencedecomposition, A.4.1 Equivalence Decomposition A. Simple exam-ples show that AV P can have complexity
(n4); sinceASPT is a re�nement of AV P , and A = ASPM is a re-�nement of ASPT , this also shows that
(n4) is a lowerbound on the complexity of A. In the case of AV P andASPT , there is a matching O(n4) upper bound (see re-mark in Section 2). We do not yet know a tight upperbound on jAj; the following analysis of the structure ofA gives the best upper bound we know.1The decomposition A arises from an arrangementof two types of curves: \bisector curves" and \topologycurves." The bisector curves are the O(n2) hyperbolicarcs (possibly degenerated to straight lines) of the nshortest path maps, SPM(v), having sources at eachvertex v. A topology curve c is a curve such that,as z crosses the curve, the topology of the underlyingplane graph of SPM(z) changes, as an edge contractsor expands; i.e., moving z across c is an event of atopological change in SPM(z).1We thank M. Sharir for discussions on this analysis.

Events that cause an edge contraction/expansion inSPM(z) can be classi�ed according to the type of theSPM-edge and the type of its endpoints. SPM-edgesare either bisector (B) edges or obstacle (O) edges. Theendpoints of a bisector edge can be classi�ed as \BB" or\BO," depending on what type of edge is incident at theendpoint: an endpoint is \BB" if only bisector edges areincident on it, and it is \BO" otherwise. Similarly, theendpoints of an obstacle edge can be classi�ed as \OO"(meaning am obstacle vertex) or \BO." Bisector edgesare of three possible types, then: (BB,BB), (BB,BO),and (BO,BO). One can show, however, that a bisectoredge of type (BO,BO) can never contract to zero lengthas z varies. (It would have to contract to an obstaclevertex, \trapping" the region to one side of the bisector,allowing no path back to z.) Obstacle edges in SPM(z)are also of three possible types: (OO,OO), (OO,BO),and (BO,BO). An edge of type (OO,OO) does notcontract to a point.In the nondegenerate situation, every node of thegraph SPM(z) is of degree three. When z moves toa point, as it crosses a topology curve c, that causesone or more SPM-edges to contract, higher degreenodes arise. We can classify the possible events (andcorresponding topology curve c) according to the typeof edge contraction, as follows:(1) (BB,BB) bisector edge contracts: Fig. 2(a). Atthe point q of contraction, four bisector curvesof SPM(z) meet at q; q then is a degree-4 nodein SPM(z), and there exist four distinct shortestpaths from z to q.(2) (BB,BO) bisector edge contracts: Fig. 2(b). Atthe point q of contraction, two bisector curves ofSPM(z) meet with an obstacle edge at point q; qthen is a degree-4 node in SPM(z) and there existthree distinct shortest paths from z to q.(2)' (BO,BO) obstacle edge contracts: Fig. 2(b). Thisevent is symmetric with the event of Type (2),since the contraction of a (BB,BO) bisector edgeis followed by the expansion of a (BO,BO) obstacleedge, and vice versa.(3) (OO,BO) obstacle edge contracts: Fig. 2(c). Atthe point q = v of contraction, a bisector curveof SPM(z) meets the obstacle vertex v; v then isa degree-3 node in SPM(z) and there exist twodistinct shortest paths from z to v. In other words,z lies on a bisector in SPM(v).Since a type (3) curve c is simply a bisector curvein SPM(v), we concentrate on type (1) and type (2)topology curves.

6

v’2

v2

v’1

v1

v1

v’1

v2

v’2

v4

v3

v’3

v’4

v3

v’3

v1

v’1

v2

v’2

q

z

c

z

c

z

c

z

c

v

(c)

z = p

v

SPM(z)

q

z = p

SPM(z)

(a)

z

(b)

z = p

SPM(z)

z

c

c c

c c

v

Figure 2: Three types of events that cause an edgecontraction/expansion in SPM(z) and thus de�ne atopology curve c.Consider �rst the type (1) topology curves(Fig. 2(a)). A type (1) topology curve c can be char-acterized as the locus of points p 2 P such that thereexists a corresponding point q having four equidistantdistinct shortest paths between p and q. If v1; v2; v3 andv4 are the vertices of P adjacent to p in the four shortestpaths from p to q, then point p satis�es jpv1j+d(v1; q) =jpv2j+ d(v2; q) = jpv3j+ d(v3; q) = jpv4j+ d(v4; q):If we substitute the coordinates, p = (xp; yp) andq = (xq ; yq), into the above equations, we obtain threeindependent constraints in the four variables xp; yp; xqand yq, resulting in one degree of freedom; this yields analgebraic description of curve c. However, to completethe explicit set of equations, we must express d(vi; q)directly in terms of the variables, for all i = 1; : : : ; 4.For this, we assume that the vertex of P adjacent toq in the shortest path �(q; vi) is the vertex v0i, so thatd(vi; q) = d(vi; v0i) + jv0iqj. (With a slight abuse of ourterminology, we call vi (resp. v0i) the predecessor vertexof p (resp. of q) in the shortest path from p to q throughvi and v0i.) Then, a complete description of c is givenby the equationsjpv1j+ d(v1; v01) + jv01qj = jpv2j+ d(v2; v02) + jv02qj

= jpv3j+ d(v3; v03) + jv03qj= jpv4j+ d(v4; v04) + jv04qj;where d(vi; v0i) is a constant, easily tabulated when wecompute the shortest path maps SPM(vi), for i =1; : : : ; 4.We derive an upper bound on the number of thetype (1) topology curves, c. A naive bound of O(n8)results from just considering the number of possiblechoices for the eight vertices, vi and v0i, i = 1; : : : ; 4 ,used to specify c. We improve this bound as follows.After we choose the four vertices v1; : : : ; v4, we overlaythe four shortest path maps SPM(v1); : : : SPM(v4),resulting in an arrangement of O(n2) cells. For a pointq in any of the O(n2) cells, the shortest path fromq to vi has a �xed predecessor v0i, i = 1; : : : ; 4; thisv0i is the predecessor vertex of the cell of SPM(vi) inwhich q lies. Thus for a �xed set of predecessor verticesv1; : : : ; v4 of p, there are only O(n2) sets of verticesv01; : : : ; v04 rather than (n�44) = O(n4). Therefore thetotal number of the type (1) topology curves is boundedby (n4)�O(n2) = O(n6). An upper bound for the numberof the type (2) (or (2)') topology curves can be derivedsimilarly (see the full paper). We conclude that thereare O(n6) topology curves in total.Now, the complexity of the equivalence decomposi-tion A is linear in the number of intersection pointsbetween pairs of curves that de�ne it. There arethree types of intersections: bisector-bisector, bisector-topology, and topology-topology curve intersections.Since any SPM has O(n) bisectors, the n SPM's(SPM(v)) give O(n2) bisector curves, and thus thereare O(n4) bisector-bisector intersections. The O(n6)topology curves and the O(n2) bisector curves giveO(n8) bisector-topology intersections. To count thenumber of topology-topology intersections, we observethat there are three kinds of intersections between twotopology curves: both curves are of type (1); both areof type (2); one is of type (1) and the other is of type(2). We �rst discuss the case in which the intersectionsare between two type (1) topology curves. Consider theequations that de�ne a type (1) curve c: for a pointp 2 c there is a corresponding point q such that thereare four distinct shortest paths of the same length fromp to q, respectively via some predecessor vertices v1 (andv01), v2 (and v02), v3 (and v03), and v4 (and v04), where viand v0i are respectively the predecessors of p and of qfor i = 1; � � � ; 4. Now, consider another type (1) curvec0 that intersects c at point p: c0 is determined simi-larly, namely the locus of points p such that four dis-tinct shortest paths are of equal length from p to somepoint q0 (possibly di�erent from q), via some predeces-

7sor vertices u1 (and u01), u2 (and u02), u3 (and u03), andu4 (and u04). There are six variables: xp; yp; xq ; yq; xq0 ,and yq0 , where p = (xp; yp) and similarly for q andq0. We also have six equations: d(p; q; v1; v01) =d(p; q; v2; v02) = d(p; q; v3; v03) = d(p; q; v4; v04), togetherwith d(p; q0; u1; u01) = d(p; q0; u2; u02) = d(p; q0; u3; u03) =d(p; q0; u4; u04), where we let d(p; q; v1; v01) denote the dis-tance of the shortest path from p to q via v1 and v01,etc. These six equations completely determine the sixvariables, and thus determine the intersection(s) be-tween the curves c and c0. As in our derivation ofthe O(n6) bound on the number of topology curves,we have (n8) = O(n8) ways to choose the eight verticesv1; � � � ; v4; u1; � � � ; u4. We then overlay the eight short-est path maps SPM(vi) and SPM(ui), i = 1; � � � ; 4,to result in an arrangement of O(n2) cells; this givesO(n2) choices for the predecessor vertices v0i and u0i,i = 1; � � � ; 4. Therefore, the total number of the type(1)-type (1) intersections is O(n8 � n2) = O(n10). (Thisis to be compared with the naive bound of (n16) = O(n16)or O(n6 �n6) = O(n12).) By a similar argument, we canshow that the total number of the type (2)-type (2) in-tersections is (n6) � O(n2) � O(n2) = O(n10) (there areO(n2) choices of the two obstacle edges where q and q0lie), and that the total number of the type (1)-type (2)intersections is (n7) � O(n2) � O(n) = O(n10). Therefore,we have O(n10) topology-topology intersections in total.Lemma 4.1. The complexity of the equivalence decom-position A is O(n10).Corollary 4.1. There are at most O(n10) combina-torially distinct shortest path maps SPM(z) for z in apolygonal domain having n vertices.4.2 Parametric Point Location. In this section wepresent our parametric point location data structureD(�) for SPM(�), for each cell � 2 A. The mainchallenge is that the structure D(�) should depend onlyon the topology and not on the geometry, of SPM(�).Unfortunately, none of the existing point location datastructures in the literature ful�lls this requirement. Oursolution is a new optimal point location method onSPM's that makes use of the properties of SPM's andis very simple. We also make the method dynamic fortopological updates (namely contractions and expansionsof edges in a SPM), and store the updates into apersistent data structure to save the overall space andpreprocessing time, at the cost of slightly increasing thequery time.The idea of parametric point location is to storewith each partitioning object in D(�) its equation sothat its exact position can be computed in O(1) timegiven a source point z 2 �. Then the query algorithm

proceeds as usual, except that during the search, eachtime we need a comparison between the query point qand an partitioning object, we compute the position ofthat object �rst.Existing point location data structures rely on thegeometry of SPM(�) and cannot serve for our purpose.The full paper discusses the de�ciencies of several priordata structures.We have devised a new point location methodfor SPM(�), which exploits special structure of theshortest path map. Roughly speaking, we do thefollowing. First, we perform point location within a(�xed) subdivision induced by a shortest path treerooted at a �xed point z0 2 �; this gives partialinformation on the location within SPM(�). Then, wecomplete the task of locating the query point within theset of bisector arcs, utilizing a centroid decompositiontree associated with the tree of bisector curves thatlies within each face of the decomposition inducedby SPT (z0). Details of the method, as well as theunderlying structural results, are given in the full paper.Theorem 4.1. Given a polygonal domain having nvertices, there exists a data structure using O(n11) spaceand preprocessing time that supports two-point shortestpath queries in O(logn) time.We also devise a method, employing persistent datastructures, which allows us to reduce the space andpreprocessing time, at the cost of slightly increasing thequery time. In the full paper, we prove:Theorem 4.2. Given a polygonal domain having nvertices, there exists a data structure using O(n10 logn)space and preprocessing time that supports two-pointshortest path queries in O(log2 n) time.5 Exploiting Visibility and Corridor StructureIn this section, we develop methods that utilize sub-stantially smaller data structures, especially when thenumber h of holes in P is small compared with n. Thetradeo� for this improvement in space complexity isthat these methods have worst-case query time
(n) or
(n logn) when the number of holes is very high (e.g.,if h =
(n)).Visibility Structure. In the full paper, we describea visibility-based method that results in the theorembelow, which utilizes the notion of a \pivotal" vertex:We say that a vertex v is pivotal with respect to a givencell � ofASPT , if for any point z 2 �, v is the �rst vertexon the (shortest) path, within SPT (z), from z to someobstacle vertex v0 not on the same obstacle as v.

8Theorem 5.1. Using O(n5) time and space, one cancompute a data structure that supports O(logn +minfhs; htg) query time, where hs (resp., ht) is thenumber of pivotal obstacle vertices visible from s(resp., t). Here, hs and ht are bounded by O(h).Exploiting Corridor Structure. We describe now amethod to obtain linear in n space complexity, withlogarithmic query time, for any �xed h. The methodrelies on the decomposition of the multiply-connecteddomain P into \corridors" ([15, 21]), which we nowreview.First, we triangulate P ; by standard techniques,this can be done in time O(n logn), but it can also beperformed in nearly-optimal time O(n+ h log1+� h) [3].Let T denote the resulting triangulation; we �x T in thefollowing discussion. Let GT denote the graph-theoreticdual of T . Then GT is a planar graph having O(n)nodes, O(n) arcs, and h+ 1 faces.We now perform the following operations on GT .First, we delete any degree-1 node of GT , along with itsincident edge; we continue doing this until there are nodegree-1 nodes. At this stage, GT has h+1 faces and allnodes are of degree 2 or 3. We assume from now on thath � 2; the case h � 1 is easily handled separately (usingan extension to [11] that we prove in the full paper).Thus, not all nodes are of degree 2, implying that thereare at least two degree-3 nodes (since there must alwaysbe an even number of odd-degree vertices in a graph).Next, for each degree-2 node, we delete it and replace its2 incident edges with a single edge. The resulting graph,call it G, is a 3-regular planar graph, possibly with loopsand possibly with multi-edges (2 edges joining the samepair of nodes). Further, G has h+1 faces, 2h�2 nodes,and 3h � 3 arcs (by Euler's formula). The nodes of Gcorrespond to triangles in T , called junction triangles.If we remove the junction triangles from P , we are leftwith a set of polygons (one per arc of G), called thecorridors of P . The contraction process implies thatthe corridors are in fact simple polygons.Now, the boundary of a corridor C consists of fourportions: (1) a polygonal chain along @O1, from a vertexa to a vertex b; (2) a diagonal bc from b to a vertexc 2 @O2 (possibly O2 = O1); (3) a polygonal chainalong @O2, from c to a vertex d; and (4) a diagonal da.The segments ad and bc are called the doors of C; theyseparate C from adjacent junction triangles. (It may bethat a = b or that c = d, if C corresponds to a looparc in GT .) The (connected) region H � C boundedby �(a; b), bc, �(c; d), and da is called the hourglass [11]associated with C. The set di�erence C n H consistsof a union of simple polygons called the pockets of C;each pocket has a lid consisting of a subpath (possibly

a single segment) of one of the two shortest paths thatdetermine H . We let Q denote the union of the junctiontriangles and hourglasses of P .Each H may be an open hourglass, if �(a; b) \�(c; d) = ;, or a closed hourglass, if �(a; b) \ �(c; d) =�(u; v), the corridor path linking the apex u of a funnel(with base ad) to the apex v of a funnel (with basebc). An open hourglass has two associated convexchains, �(a; b) and �(c; d). A closed hourglass has fourassociated convex chains: �(a; u), �(u; d), �(b; v), and�(v; c). In total time O(n), after triangulation, wecan identify the corridors and compute their associatedhourglasses, pockets, and convex chains; this gives usalso a full description of the region Q.We now introduce the notion of a coarsened short-est path map, CSPM(z). In its most general form,CSPM(z) is de�ned with respect to a partitioning ofa subset V 0 � V of the vertex set V : V 0 = V1 [V2 [� � � [Vm. The cell, �(Vi), corresponding to a set Viof vertices is the locus of all points p 2 P for whichthe last vertex along a shortest path �(z; p) is a vertexr 2 Vi; we say that Vi is the root of cell �(Vi). Cells canshare boundary points but must have pairwise-disjointinteriors. The cells �(Vi), in general, will not cover P ;we let �(z) = P n [i�(Vi). In the usual de�nition ofa shortest path map, V 0 = V and the sets Vi are thesingleton vertices. Also, in general, the cells �(Vi) maybe disconnected, consisting of many multiply-connectedcomponents. However, for our method here we use aparticular choice of V 0 and its partitioning, which willenable us to conclude that the cells are simply connectedand that they cover all of Q.Consider a convex chain �. For a vertex v 2 �,we say that a line segment pv, for p 2 P , is a lefttangency (resp., right tangency) if the � lies in the(closed) halfplane to the left (resp., right) of the orientedline through pv. For a given source point z on someconvex chain, we say that v 2 � is a left tangencyvertex (resp., right tangency vertex) if there exists apoint p 2 P such that pv is a left tangency (resp., righttangency) and pv � �(z; p). It is not hard to see thatLemma 5.1. For a �xed source point z on some convexchain, each vertex v 2 � on convex chain � is either aright tangency vertex or a left tangency vertex, not both.Furthermore, each convex chain � can be split intwo according to the local direction of shortest pathswhose last vertex lies on the chain:Lemma 5.2. Consider a source point z on a convexchain of P . Let � = (v1; : : : ; vm) be a convex chainof P , oriented so that � is rightward turning (vi+1 liesto the right of the oriented line through vi�1vi). Then,

9there exists an index j 2 [0;m+1] such that fv1; : : : ; vjgare left tangency vertices and fvj+1; : : : ; vmg are righttangency vertices. (If j = 0 (resp., j = m+1), then allvertices are right (resp., left) tangency vertices.)Thus, by the above lemma, for a �xed z we cansplit each chain in at most two subchains accordingto identity of the vertices as left or right tangencies.How to perform this split is easily determined from theshortest path map SPM(z) in linear time. Let C(z)denote the resulting set of convex chains.We now de�ne a particular coarsened shortest pathmap, CSPM(z), as follows. Let V 0 be the set ofobstacle vertices that lie on the convex chains C(z).Partition V 0 according to the O(h) elements of C(z).In the full paper we prove:Lemma 5.3. In the coarsened shortest path mapCSMP (z) based on the convex chains � 2 C(z), thecells �(�) are simply connected and cover Q.In order to construct CSPM(z), we �rst buildSPM(z). We then make a pass over the SPM(z) andremove any bisector (extension segment) that bisectsbetween two root vertices that are on the same convexchain or between two non-chain vertices (i.e., pocketvertices). The cells in the resulting subdivision ofP correspond either to points having a root set Viconsisting of vertices along a single convex chain, or topoints lying within a subpocket, having a vertex on theboundary of an adjacent cell that is rooted at a convexchain.Since there are only O(h) simply-connected cells,we know that the CSPM(z) has only O(h) nodes ofdegree greater than two in its set of edges. However,the boundary between two cells of CSPM(z) may havecomplexity
(n), if the root chains have complexity
(n). It is important for our space bound that wesimplify the CSPM(z), into a new type of subdivision,which we call a simpli�ed coarsened shortest path map,so that it can be stored using onlyO(h) line segments (inaddition to the O(n) boundary complexity of P , whichis constant over all choices of z). This is done as follows.First, we note that the bisector in CSPM(z) betweentwo chains � and �0 is, in general, a curve consistingof many hyperbolic arcs joined end-to-end. We deleteall such bisecting curves (as they may have complexity
(n)), but add a line segment joining each of the O(h)degree-3 nodes (that occur where three such bisectingcurves come together) to each of their three root verticesalong the three (distinct) convex chains that serve asthe common \root" of the node. We are left with O(h)segments, S, that partition P into O(h) regions. Bydeleting bisecting chains, we have created ambiguity:

By locating a point in the new simpli�ed CSPM, weno longer know the exact identity of the root chain ofthat point | there are two possible root chains. Butfrom the point of view of determining an optimal pathto a query point, this does not matter: We can computeboth paths and compare their lengths. When locatinga point in the resulting simpli�ed CSPM, though, wedo have one more step to perform in order to computethe shortest path length: We must �nd the point oftangency from the query point to the root convex chain.This is easily done in O(logn) time, by binary search.(Further details are given in the full paper.)Theorem 5.2. One can compute a data structure ofsize O(n + h5) supporting O(h logn)-time two-pointshortest path queries in a polygonal domain having nvertices and h holes.6 Queries on Polyhedral SurfacesOne extension of our results is to the problem of two-point shortest path queries on nonconvex surfaces. Bya generalization of our methods, we can construct datastructures that are a factor of n larger than those weconstruct in a planar polygon, P , while achieving thesame polylogarithmic query times. The main idea is toconsider each of the n facets separately, and to constructdecompositions of each, using \virtual" vertex sourcesthat have been unfolded into the plane of the facet(see [1]). Details will appear in the full paper.7 ConclusionWe have o�ered some of the �rst algorithmic solutions tothe exact two-point shortest path query problem. It isprobably possible to improve some of our space and timebounds. It would be most interesting to see if one canachieve, for instance, sublinear query time, while usingonly quadratic space (e.g., storing the set of shortestpath maps rooted at every vertex).An interesting combinatorial question is also sug-gested by our work: How many combinatorially distinctshortest path maps are there for a polygonal domain hav-ing n vertices? Our results have shown that this num-ber is somewhere between
(n4) and O(n10), leaving arather large gap. A related open question is to deter-mine the combinatorial complexity of the lower envelopeg = mini gi(x1; y1; x2; y2), for the functions gi de�ned inSection 3; we know of nothing better than the O(n12+�)upper bound implied by the fact that the lower envelopehas complexity O(n4+�) for each of the O(n8) choices ofpairs of cells in ASPT .Also, although our emphasis here has been on exactquery methods, it would be most interesting to see ifone can perform O(1)-approximate two-point queries in

10polylogarithmic time, using nearly linear storage.Acknowledgements. We thank Sariel Har-Peled andMicha Sharir for their input on the subject of thispaper.References[1] P. K. Agarwal, B. Aronov, J. O'Rourke, and C. A.Schevon. Star unfolding of a polytope with applica-tions. SIAM J. Comput., 26:1689{1713, 1997.[2] S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M.Smid, and C. D. Zaroliagis. Planar spanners andapproximate shortest path queries among obstacles inthe plane. 4th Annual European Symposium, SpringerLNCS Vol. 1136, 1996.[3] R. Bar-Yehuda and B. Chazelle. Triangulating disjointJordan chains. Internat. J. Comput. Geom. Appl.,4(4):475{481, 1994.[4] B. Chazelle. A theorem on polygon cutting withapplications. In Proc. 23rd Annu. IEEE Sympos.Found. Comput. Sci., pages 339{349, 1982.[5] B. Chazelle and L. J. Guibas. Visibility and intersectionproblems in plane geometry. Discrete Comput. Geom.,4:551{581, 1989.[6] D. Z. Chen. On the all-pairs Euclidean short pathproblem. In Proc. 6th ACM-SIAM Sympos. DiscreteAlgorithms, pages 292{301, 1995.[7] D. Z. Chen, O. Daescu, and K. S. Klenk. On geomet-ric path query problems. In Proc. 5th Workshop Al-gorithms Data Struct., volume 1272 of Lecture NotesComput. Sci., pages 248{257. Springer-Verlag, 1997.[8] K. L. Clarkson. Approximation algorithms for shortestpath motion planning. In Proc. 19th Annu. ACMSympos. Theory Comput., pages 56{65, 1987.[9] H. Edelsbrunner, L. J. Guibas, and J. Stol�. Optimalpoint location in a monotone subdivision. SIAM J.Comput., 15(2):317{340, 1986.[10] M. Goodrich and R. Tamassia. Dynamic trees anddynamic point location. In Proc. 23rd Annu. ACMSympos. Theory Comput., pages 523{533, 1991.[11] L. J. Guibas and J. Hershberger. Optimal shortest pathqueries in a simple polygon. J. Comput. Syst. Sci.,39:126{152, 1989.[12] S. Har-Peled. Approximate shortest paths and geodesicdiameters on convex polytopes in three dimensions. InProc. 13th Annu. ACM Sympos. Comput. Geom., pages359{365, 1997.[13] P. J. He�ernan and J. S. B. Mitchell. An optimalalgorithm for computing visibility in the plane. SIAMJ. Comput., 24(1):184{201, 1995.[14] J. Hershberger and S. Suri. An optimal algorithm forEuclidean shortest paths in the plane. Manuscript,Washington University, 1995.[15] S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell. Ane�cient algorithm for Euclidean shortest paths amongpolygonal obstacles in the plane. Discrete Comput.Geom., 18:377{383, 1997.

[16] D. G. Kirkpatrick. Optimal search in planar subdivi-sions. SIAM J. Comput., 12(1):28{35, 1983.[17] J. S. B. Mitchell. Shortest paths among obstacles inthe plane. In Proc. 9th Annu. ACM Sympos. Comput.Geom., pages 308{317, 1993.[18] J. S. B. Mitchell. Shortest paths among obstacles inthe plane. Internat. J. Comput. Geom. Appl., 6:309{332, 1996.[19] J. S. B. Mitchell. Shortest paths and networks. InJ. E. Goodman and J. O'Rourke, editors, Handbookof Discrete and Computational Geometry, chapter 24,pages 445{466. CRC Press LLC, Boca Raton, FL, 1997.[20] J. S. B. Mitchell. Geometric shortest paths and networkoptimization. In J.-R. Sack and J. Urrutia, editors,Handbook of Computational Geometry, page ?? ElsevierScience Publishers B.V. North-Holland, Amsterdam,1998.[21] J. S. B. Mitchell and S. Suri. Separation and approxi-mation of polyhedral objects. Comput. Geom. TheoryAppl., 5:95{114, 1995.[22] M. Pocchiola and G. Vegter. Computing the visibilitygraph via pseudo-triangulations. In Proc. 11th Annu.ACM Sympos. Comput. Geom., pages 248{257, 1995.[23] F. P. Preparata and R. Tamassia. E�cient pointlocation in a convex spatial cell-complex. SIAM J.Comput., 21:267{280, 1992.[24] N. Sarnak and R. E. Tarjan. Planar point location usingpersistent search trees. Commun. ACM, 29:669{679,1986.[25] M. Sharir and P. K. Agarwal. Davenport-Schinzel Se-quences and Their Geometric Applications. CambridgeUniversity Press, New York, 1995.[26] D. D. Sleator and R. E. Tarjan. A data structure fordynamic trees. J. Comput. Syst. Sci., 26(3):362{381,1983.[27] S. Suri. Polygons. In J. E. Goodman and J. O'Rourke,editors, Handbook of Discrete and Computational Ge-ometry, chapter 23, pages 429{444. CRC Press LLC,Boca Raton, FL, 1997.

