To appear in Proc. Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’99), January 17-19, 1999

Two-Point Euclidean Shortest Path Queries in the Plane
(Extended Abstract)

Yi-Jen Chiang*

Abstract

We consider the two-point query version of the fundamental
geometric shortest path problem: Given a set h of polygonal
obstacles in the plane, having a total of n vertices, build a
data structure such that for any two query points s and
t we can efficiently determine the length, d(s,t), of an
Euclidean shortest obstacle-avoiding path, 7(s,t), from s to
t. Additionally, our data structure should allow one to report
the path m(s,t), in time proportional to its (combinatorial)
size. We present various methods for solving this two-point
query problem, including algorithms with o(n), O(log n+h),
O(hlogn), O(log® n) or optimal O(logn) query times, using
polynomial-space data structures, with various tradeoffs
between space and query time. While several results have
been known for approzrimate two-point Euclidean shortest
path queries, it has been a well-publicized open problem
to obtain sublinear query time for the exact version of
the problem. Our methods also yield data structures for
two-point shortest path queries on nonconvex polyhedral
surfaces.

1 Introduction

Let P denote a polygonal domain in the plane, having n
vertices and h holes; P is a closed, multiply-connected
region whose boundary is a union of n line segments,
forming h + 1 closed (polygonal) cycles. (A simple
polygon, then, is the special case of a polygonal domain
with h = 0.) We will refer to P as “free space”, and to
the h + 1 connected components, O, of the complement
of P (h holes, plus the face at infinity) as “obstacles.”
We let 7(s,t) denote an obstacle-avoiding (Euclidean)
shortest path from s € P to t € P; d(s,t) will denote

~ Fyjc@poly.edu. Department of Computer and Information
Science, Polytechnic University, 6 MetroTech Center, Brooklyn,
NY 11201. Most of this work was done while with the Department
of Applied Mathematics and Statistics, SUNY at Stony Brook,
and supported by NSF grant DMS-9312098 and a grant from
Sandia National Labs.

Tjsbm@ams.sunysb.edu. Department of Applied Mathematics
and Statistics, State University of New York, Stony Brook, NY
11794-3600. Partially supported by NSF grant CCR-9504192, and
by grants from Boeing Computer Services, Bridgeport Machines,
Hughes Aircraft, Seagull Technology, and Sun Microsystems.

Joseph S. B. Mitchell

the length of 7 (s, t).

In this paper, we consider the two-point shortest-
path query problem, in which we are to construct a
data structure that enables efficient processing of a
query that specifies two points, s and ¢, and requests
the length, d(s,t), of a shortest path between them.
The query may also request an actual instance of a
shortest path. Since in general a path can be reported
in additional time O(k), where k is the number of edges
in the output path, we concentrate on the complexity of
performing a two-point distance query, to obtain d(s, t).

While nearly-optimal results are known for the
single-source query problem, prior to this work the two-
point query problem has had no exact algorithm with
sublinear query time; e.g., the recent survey [27] poses
this open problem. Here, we provide several new results:

(1) An algorithm that uses O(n°*19%¢) time and
space to compute a data structure that supports
O(n'~°%logn)-time two-point shortest path queries,
for any 6 with 0 < § < 1 and any fixed € > 0.
In particular, this algorithm achieves slightly sub-
linear (o(n)) query time, with a data structure of
size O(n°T¢). It also achieves optimal query time
O(logn), with O(n'5+€) space.

(2) An algorithm that uses O(n'!) space and prepro-
cessing to construct a data structure supporting
optimal (O(logn)-time) queries. Alternatively, the
algorithm requires O(n'%logn) space and prepro-
cessing in order to support O(log2 n)-time queries.

(3) Algorithms that are sensitive to the number, h, of
obstacles. Since it may be that h << n, these
methods offer important, potentially practical, al-
ternatives to the high space complexities of the al-
gorithms (1)-(2). Specifically, we obtain

(a) query time O(logn + min{h,, h;}), using
O(n®) space, where hg (resp., h;) is the num-
ber of “pivotal” (Section 5) obstacle vertices
visible from s (resp., t), and hg and h; are
bounded by O(h); or

(b) query time O(hlogn), using O(n + h®) space.

In particular, the bounds (b) match the optimal
bounds (O(logn) query, O(n) space) for simple
polygons, in the case that the number h of holes
is constant; these bounds interpolate between the
optimal results known in the case of no holes, and
the general results we obtain for any number (O(n))
of holes.

Algorithms for two-point shortest path queries on
nonconvex polyhedral surfaces, with space com-
plexity a factor of n greater than in the planar
problem.

These results are summarized in Table 1. We
note that, while the space bounds for the optimal
(O(logn)) query time methods appear high, they should
be compared with the best bounds known (see below)
for the “simple” case of computing shortest paths on the
surface of a conver polytope, where two-point queries
are answered in time O(logn), using O(n®+¢) space and
preprocessing time, for € > 0.

SPACE | QUERY TIME

note o(n)

ndH100+e | pl=dloen, any 0 < 6 < 1
n'logn | log’n

n'! logn

n® logn + min{hg, h;}

n+ h? hlogn

Our methods also develop and utilize structure of
shortest path maps that may have independent inter-
est. In particular, we devise a simple parametric point
location method for shortest path maps, and make it
dynamic (Section 4.2). We also introduce the notion
of a coarsened shortest path map (Section 5), which we
use in conjunction with the corridor structure of polyg-
onal domains to obtain bounds that are sensitive to the
number of holes. Further, we give the first polynomial
bound (O(n'%)) on the number of combinatorially dis-
tinct shortest path maps in a polygonal domain.

Related Work. There has been an abundance of work
on geometric instances of the shortest path problem;
we refer the reader to surveys in [19, 20, 27]. For
the problem of computing Euclidean shortest paths in
a polygonal domain, the best current results compute a
single-source shortest path map (see the next section for
definitions) in time and space O(nlogn) ([14]), using
the continuous Dijkstra paradigm ([18]), or compute
shortest paths using visibility graph methods, in time
O(n + h*logn) [15]. The best known lower bound is
Q(n 4+ hlogh). After computing a shortest path map
with respect to a given source point, shortest path

queries to any destination can be answered in time
O(logn).

In the case that P is a simple polygon (h =
0), Guibas and Hershberger [11] have shown how to
preprocess P in time O(n), into a data structure of size
O(n), to support two-point shortest-path queries in time
O(logn).

Two-point Euclidean shortest-path queries in
polygonal domains are considerably more challenging
than the case of simple polygons. In a recent paper of
Chen et al. [7], it has been shown that, using O(n?)
space, one can achieve query time O(K logn), where
K = min{k,, k:} is the smaller of the number of ver-
tices visible from s and visible from #. However, this is
worst-case O(nlogn), which is no better than comput-
ing a shortest path map from scratch.

Given the difficulty of exact two-point queries,
attention has focused on approximate two-point queries.
As observed in [6], a method of Clarkson [8] can be
used to construct a data structure of size O(n?), in
O(n?logn) time, so that (1 + €)-optimal queries can
be answered in time O(logn), for any fixed ¢ > 0.
Chen [6] obtains nearly linear-space data structures for
approximate shortest path queries, giving a (6 + €)-
approximation, using O(n3/2/log'/? n) time to build a
data structure of size O(nlogn), after which queries can
be answered in time O(logn). These results have been
improved recently by Arikati et al. [2], who give a family
of results, based on planar spanners, with tradeoffs
among the approximation factor and the preprocessing
time, storage space, and query time.

For the problem of shortest paths on a polyhedral
surface, some results are also known on the two-point
query problem, at least for the case of convez polytopes.
Agarwal et al [1] have also shown that two-point queries
can be answered in time O((y/n/m'/*)logn), with
O(nSm'*?) preprocessing time and storage, for any
choice of 1 < m < n? and 6 > 0. Har-Peled [12]
obtains results for the approzrimate two-point query
problem: He gives an O(n)-time algorithm to preprocess
a convex polytope so that a two-point query can be
answered in time O((logn)/e'® + 1/€3), yielding the
(14 €)-approximate shortest path distance, as well as a
path having O(1/€'-%) segments that avoids the interior
of the input polytope.

2 Preliminaries

The input to our problem is a (multiply connected)
polygonal domain, P, having h holes and a total of n
vertices. We let V' denote the set of vertices of P. We
often refer to the complement of P (including the holes
and the face at infinity) as obstacles and the vertices
V' as obstacle vertices. A query is specified by a pair

of points, (s,t), with s,t € P. We let |pg| denote
the Euclidean length of the line segment pg, and we
let d(p,q) denote the length of a shortest path, 7(p, ¢),
joining p € P and ¢q € P.

The wisibility graph, VG(P), of P is the graph whose
nodes correspond to vertices of P and whose edges
link pairs of vertices that see one another. (Vertex
u sees vertex v if the line segment wo lies within P.)
VG(P) can be computed in optimal output-sensitive
time O(eva + nlogn), where ey denotes the number
of edges in the visibility graph [22]. It is a fundamental
fact, based on local optimality, that any shortest path
m(s,t) must be a polygonal path that corresponds to a
path in the visibility graph (after augmenting it with
edges linking s and ¢ to vertices visible from them).

For a point z € P, the visibility profile of z, denoted
V P(z), is the locus of all points within P that are visible
from z.

Given a source point, z, a shortest path tree,
SPT(z), is a spanning tree of z and the vertices of P
such that the (unique) path in the tree between z and
any vertex of P is a shortest path in P.

The shortest path map, SPM (z), with respect to z,
is a decomposition of P into regions (cells) according to
the “combinatorial structure” of shortest paths from z
to all other points. Refer to Fig. 1. Specifically, for all
points p interior to a cell o of SPM(z), the sequence of
obstacle vertices along 7(z, p) is fixed. In particular, the
last obstacle vertex along 7 (z, p) is the root of the cell o
containing p. We note that each cell is star-shaped with
respect to its root, which lies on the boundary of the cell,
and hence can be readily triangulated by connecting
each vertex of the SPM(z) to the root of the cells
containing it. We define the weight of an obstacle vertex,
v, to be d(z,v). Typically, we will store with each
vertex v both its weight, d(z,v), and its predecessor,
r(v), which is the vertex (or point z) preceding v in a
shortest path from z to v. Note that vertex v appears
on the boundary of the (star-shaped) cell rooted at r(v).
The boundaries of cells consist of portions of obstacle
edges, extension segments (extensions of visibility graph
edges incident on the root), and bisector curves. The
bisector curves are, in general, hyperbolic arcs that are
the locus of points p that are equidistant (in the shortest
path metric) from two distinct roots, u and v: points
p satisfy d(z,u) + |up| = d(z,v) + [vp|. (Extension
segments can be considered to be degenerate instances
of bisector curves.)

Given point z, the shortest path map SPM(z) is a
(unique) planar subdivision of complexity O(n), which
can be constructed in O(nlogn) time, using O(nlogn)
working storage [14].

It SPM(z) is preprocessed for point location, then

Figure 1: A shortest path map with respect to s.

single-source shortest path queries can be answered
efficiently by locating the query point ¢ within the
decomposition: If ¢ lies in the cell rooted at r, the length
of a shortest path to t is given by d(z,t) = d(z,r) + |rt].
A shortest z2-t path can then be output in time O(k),
where k is the number of vertices along the path, by
simply following predecessor pointers back from r to z.

We define AVF | the VP-equivalence decomposition
of P, to be the subdivision of P into cells for which
V P(z) is combinatorially constant, as z varies within
a cell. It is easy to see that AY" is obtained by
computing the arrangement of obstacle edges, together
with the extended visibility graph edges. Thus, we see
that AY® has worst-case complexity O(e? o) = O(n?);
this bound is known to be tight.

Similarly, the SPT-equivalence decomposition of P,
ASPT is the subdivision of P into cells for which
SPT(z) is combinatorially constant. It is easy to see
that ASPT is obtained by overlaying the n shortest
path maps, SPM(v), for each vertex v of P. Since
each SPM(v) is of size O(n), the overlay of these n
subdivisions yields a decomposition of P of complexity
O(n*); this bound is tight in the worst case. Note that
ASPT i5 a refinement of the decomposition AYF: each
cell of ASFT is a subcell of a cell of AVF | since having
a constant SPT implies having a constant VP.

In Section 4, we will also define the
equivalence decomposition.”

“SPM-

3 Method I: Mapping to Higher Dimensions

In this section, we show how the two-point query
problem can be solved in optimal time (O(logn)) by
mapping it into a four-dimensional point location query.
A related approach was used in [1] for the case of
shortest path queries on a convex surface.

First, we note that a shortest path w(s,t) from s
to t either consists of the single segment st (if s sees t)
or consists of a polygonal chain (s,v;,...,v;,t), whose
bend points occur at obstacle vertices, where v; is the
obstacle vertex adjacent to s and v; is the obstacle

vertex adjacent to t. (Possibly, v; = v;.)
From now on, we assume that s is not visible from
t; this is easily checked in time O(logn) (using space
O(n%logn)), using a two-point query structure V.
Our goal now, for a given query point (s, ys, T, yt),
is to minimize over all choices of first vertex (v;) and
last vertex (v;). This is equivalent to evaluating at
(7s,Ys,7t,y:) the lower envelope function f : R* — R,
given by
min

iel, jel, (573 + d(vi, v5) + ;1] ,

fas, ys, we,90) =
where the minimum is taken over all choices (i € Iy)
of vertex v; that sees s and all choices (j € I;) of ver-
tex v; that sees t. The index sets Iy and I; depend on
the coordinates (x5, ys, T+, y¢); however, these index sets
are constant for a given choice of AV -cell o, contain-
ing s and AYP-cell o; containing t. Thus, for each of
the O(n®) choices of the pair (o,,0:), we construct a
data structure to compute the lower envelope of f =
miner, jer, fij at a query point (z,,ys,z:,y:) € R,
where fi,j(ms:ys;mt:yt) = [5mi] + d(vi7vj) + ‘m| We
have O(n?) functions, each of which is a surface in ®?,
and we desire the lower envelope at a given point in
R*. This can be done in query time O(logn) using a
data structure of size O((n?)?°73%t¢) = O(n'**¢), us-
ing known results on higher-dimensional point location,
based on decompositions of arrangements of real alge-
braic surfaces (e.g., see Section 8.3, [25]). Since this
structure is built for each of the O(n®) choices of (o5, 0¢),
we have overall O(n?2%¢) space, for O(log n) query time.
Using an alternative mapping into a lower envelope
problem, we can improve the space complexity, as
follows. Since we are assuming that s does not see ¢ (as
this is the trivial case), we know that there is at least
one obstacle vertex v; on 7(s,t) and that the length of
w(s,t) is given by d(s,v;) + d(v;,t), for any choice of
v; on an optimal path. (v; need not be visible to s or
to t, since we are using geodesic distances d(s,v;) and
d(v;,t).) Thus, d(s,t) = min; d(s,v;) + d(v;,t), where
the minimum is taken over all vertices v; € V. We seek,
at the given query point, the lower envelope of the n
functions of the form

9i(Ts,Ys, Te,yr) = d(s,v;) + d(v;, 1).

Now, these functions have a special structure: each is
a function of four variables that separates into a sum
of two functions, each of two variables. Further, each
of the two-variable functions (d(s,v;) and d(v;,t)) is
encoded in the shortest path map SPM (v;) rooted at
v;, which itself describes a surface in three dimensions.

In particular, g;(zs, ys, ®t, y) can be written explicitly
if we know the root (u;) of the cell of SPM (v;) that

contains s and the root (w;) of the cell of SPM (v;)
that contains ¢:

gi($57yszxt7yt) = \/(ZES - xui)Z + (ys - in)2 + d(ui7vi)

+d(vi, w;) + (Tt — Twp;)® + (Yt — Yui)2

The cell o, (resp., o;) of ASPT that contains s (resp.,
t) gives us the identity of the root wu; (resp., w;), for
every choice of v;. Thus, we construct A°F7T and store
with each cell the list of roots corresponding to it, for
each choice of v;. This requires O(n®) space. Also, for
each of the O(n®) choices of the pair (o,0;) of cells,
we construct a data structure, of size O(n?°-3t¢) =
O(n™¢), to support O(logn) lower envelope queries on
the n functions g;. The overall space bound is O(n!5+¢).

By trading off space for query time, we are able to
obtain a substantial reduction in the size of our data
structures, while allowing the query time to increase
(though remain sublinear). The full paper describes in
detail how we do this, utilizing a partition of the vertex
set V into m = n'7? sets (Cy,..., Cy,) each of size n’
for a parameter ¢ € (0, 1].

THEOREM 3.1. Using O(n®t19%%+9) time and space,
one can compute a data structure that supports
O(n'~°%logn)-time two-point shortest path queries in a
polygonal domain in the plane. Here, § is any fized pa-
rameter satisfying 0 < § < 1 and € > 0 is any fized
positive number. In particular, O(logn)-time queries
can be performed using O(n*®*¢) space, and sublinear
(o(n)) queries can be performed using O(n°T¢) space.

4 Method II: SPM-Equivalence Decompositions

In this section, we give a different method for query
processing, which yields improved space bounds on the
data structure to support logarithmic (or polylogarith-
mic) query bounds.

We define the SPM-equivalence decomposition,
ASPM “of P to be the subdivision of P into cells such
that for all points z in the same cell o of A, the shortest
path maps SPM(z) are topologically equivalent. (We
say that two shortest path maps are topologically equiv-
alent if their underlying plane graphs are isomorphic.)
For simplicity of notation, we will use the term equiv-
alence decomposition and write simple A, instead of
ASPM “in this section. Note that A is a refinement of
the decomposition A%FT | since having distinct shortest
path trees implies having topologically distinct shortest
path maps.

Our method consists of the following preprocessing
steps:

1. Construct the equivalence decomposition, A, and
an associated point-location data structure.

2. For each cell o of A, compute the shortest path
map SPM (o), whose underlying plane graph is the
plane graph of SPM (z) for any point z € o, and
whose geometric realization is parameterized; i.e.,
each of the geometric constituents (vertices and
edges) is expressed algebraically as a function of the
coordinates of z € o, thereby allowing the actual
object to be computed in time O(1) for a given
point z.

3. For each cell o, build a point-location data struc-
ture D(o) for SPM (o). This data structure serves
for locating a query point g in SPM(z) for any
z € o and is again parameterized; i.e., each parti-
tioning object stored and used for comparison dur-
ing a search (in processing a query) is represented
by an equation such that its exact position can be
computed in O(1) time, given a source point z € o.

In order to process a two-point shortest path query,
for points s and ¢, we first locate the cell o of A contain-
ing s; this point location in the (static) subdivision A
can be done using a data structure (of size |A|), by any
of the existing optimal techniques [9, 16, 24]. Then,
to determine the shortest path length d(s,t), we per-
form a point location query for ¢ in SPM(s). This,
however, requires that we develop a new point location
data structure that supports parametric point location
in SPM(s). For this, we exploit the structure of the
map SPM(s), as we will discuss below. First, we an-
alyze the structure and complexity of the equivalence
decomposition, A.

4.1 Equivalence Decomposition A. Simple exam-
ples show that AY" can have complexity 2(n*); since
ASPT is a refinement of AYF, and A = ASPM is a re-
finement of AS"", this also shows that Q(n?) is a lower
bound on the complexity of A. In the case of A" and
ASFT there is a matching O(n?*) upper bound (see re-
mark in Section 2). We do not yet know a tight upper
bound on |A4]; the following analysis of the structure of
A gives the best upper bound we know.!

The decomposition A arises from an arrangement
of two types of curves: “bisector curves” and “topology
curves.” The bisector curves are the O(n?) hyperbolic
arcs (possibly degenerated to straight lines) of the n
shortest path maps, SPM (v), having sources at each
vertex v. A topology curve ¢ is a curve such that,
as z crosses the curve, the topology of the underlying
plane graph of SPM(z) changes, as an edge contracts
or expands; i.e., moving z across c¢ is an event of a
topological change in SPM(z).

TWe thank M. Sharir for discussions on this analysis.

Events that cause an edge contraction/expansion in
SPM (z) can be classified according to the type of the
SPM-edge and the type of its endpoints. SPM-edges
are either bisector (B) edges or obstacle (O) edges. The
endpoints of a bisector edge can be classified as “BB” or
“BO,” depending on what type of edge is incident at the
endpoint: an endpoint is “BB” if only bisector edges are
incident on it, and it is “BO” otherwise. Similarly, the
endpoints of an obstacle edge can be classified as “O0”
(meaning am obstacle vertex) or “BO.” Bisector edges
are of three possible types, then: (BB,BB), (BB,BO),
and (BO,BO). One can show, however, that a bisector
edge of type (BO,BO) can never contract to zero length
as z varies. (It would have to contract to an obstacle
vertex, “trapping” the region to one side of the bisector,
allowing no path back to z.) Obstacle edges in SPM (z)
are also of three possible types: (00,00), (O0,BO),
and (BO,BO). An edge of type (00,00) does not
contract to a point.

In the nondegenerate situation, every node of the
graph SPM/(z) is of degree three. When z moves to
a point, as it crosses a topology curve ¢, that causes
one or more SPM-edges to contract, higher degree
nodes arise. We can classify the possible events (and
corresponding topology curve ¢) according to the type
of edge contraction, as follows:

(1) (BB,BB) bisector edge contracts: Fig. 2(a). At
the point ¢ of contraction, four bisector curves
of SPM(z) meet at ¢; ¢ then is a degree-4 node
in SPM(z), and there exist four distinct shortest
paths from z to q.

(2) (BB,BO) bisector edge contracts: Fig. 2(b). At
the point ¢ of contraction, two bisector curves of
SPM(z) meet with an obstacle edge at point g; ¢
then is a degree-4 node in SPM (z) and there exist
three distinct shortest paths from z to q.

(2)’ (BO,BO) obstacle edge contracts: Fig. 2(b). This
event is symmetric with the event of Type (2),
since the contraction of a (BB,BO) bisector edge
is followed by the expansion of a (BO,BO) obstacle
edge, and vice versa.

(3) (OO,BO) obstacle edge contracts: Fig. 2(c). At
the point ¢ = v of contraction, a bisector curve
of SPM(z) meets the obstacle vertex v; v then is
a degree-3 node in SPM(z) and there exist two
distinct shortest paths from z to ». In other words,
z lies on a bisector in SPM (v).

Since a type (3) curve ¢ is simply a bisector curve
in SPM(v), we concentrate on type (1) and type (2)
topology curves.

©
\Y
SPM(2)
Ze- 7{_ =

Figure 2: Three types of events that cause an edge
contraction/expansion in SPM(z) and thus define a
topology curve c.

Consider first the type (1) topology curves
(Fig. 2(a)). A type (1) topology curve ¢ can be char-
acterized as the locus of points p € P such that there
exists a corresponding point ¢ having four equidistant
distinct shortest paths between p and q. If vy, v2, v3 and
vy are the vertices of P adjacent to p in the four shortest
paths from p to ¢, then point p satisfies |po7|+d(v1,q) =
vz + d(v2,) = [PUs| + d(vs, q) = [PUa]| + d(va,q).

If we substitute the coordinates, p = (zp,y,) and
q = (z4,y,), into the above equations, we obtain three
independent constraints in the four variables z,, yp, z,
and y,, resulting in one degree of freedom; this yields an
algebraic description of curve ¢. However, to complete
the explicit set of equations, we must express d(v;, q)
directly in terms of the variables, for all i = 1,...,4.
For this, we assume that the vertex of P adjacent to
g in the shortest path m(q,v;) is the vertex v}, so that
d(vi,q) = d(vi,v}) + |[vig|. (With a slight abuse of our
terminology, we call v; (resp. v}) the predecessor vertex
of p (resp. of q) in the shortest path from p to ¢ through
v; and v}.) Then, a complete description of ¢ is given
by the equations

pvt] + d(v,07) + [v]q] = [PUa] + d(v2,vh) + |vhq]

P3| + d(vs, v§) + [vhg]
Pus| + d(vg, vy) + |v}ql,

where d(v;, v}

!) is a constant, easily tabulated when we
compute the shortest path maps SPM(v;), for i =
1,...,4.

We derive an upper bound on the number of the
type (1) topology curves, c¢. A naive bound of O(n®)
results from just considering the number of possible
choices for the eight vertices, v; and v}, i = 1,...,4 ,
used to specify ¢. We improve this bound as follows.
After we choose the four vertices vy, ..., vs, we overlay
the four shortest path maps SPM(v1),...SPM (v4),
resulting in an arrangement of O(n?) cells. For a point
q in any of the O(n?) cells, the shortest path from
g to v; has a fixed predecessor v}, i = 1,...,4; this
v} is the predecessor vertex of the cell of SPM (v;) in
which ¢ lies. Thus for a fixed set of predecessor vertices
v1,...,v4 of p, there are only O(n?) sets of vertices
vf,..., v}y rather than (",*) = O(n*). Therefore the
total number of the type (1) topology curves is bounded
by (})-O(n?) = O(n%). An upper bound for the number
of the type (2) (or (2)’) topology curves can be derived
similarly (see the full paper). We counclude that there
are O(n%) topology curves in total.

Now, the complexity of the equivalence decomposi-
tion A is linear in the number of intersection points
between pairs of curves that define it. There are
three types of intersections: bisector-bisector, bisector-
topology, and topology-topology curve intersections.
Since any SPM has O(n) bisectors, the n SPM’s
(SPM (v)) give O(n?) bisector curves, and thus there
are O(n*) bisector-bisector intersections. The O(n%)
topology curves and the O(n?) bisector curves give
O(n®) bisector-topology intersections. To count the
number of topology-topology intersections, we observe
that there are three kinds of intersections between two
topology curves: both curves are of type (1); both are
of type (2); one is of type (1) and the other is of type
(2).

We first discuss the case in which the intersections
are between two type (1) topology curves. Consider the
equations that define a type (1) curve ¢: for a point
p € c there is a corresponding point ¢ such that there
are four distinct shortest paths of the same length from
p to g, respectively via some predecessor vertices vy (and
v}), va (and v}), vs (and v}), and vy (and v})), where v;
and v} are respectively the predecessors of p and of ¢
for i = 1,---,4. Now, consider another type (1) curve
c' that intersects ¢ at point p: ¢ is determined simi-
larly, namely the locus of points p such that four dis-
tinct shortest paths are of equal length from p to some
point ¢' (possibly different from q), via some predeces-

sor vertices vy (and wu}), us (and uj), us (and u}), and
ug (and u}). There are six variables: zp,yp, Tq, Yq, Tq'»
and y,, where p = (z,,y,) and similarly for ¢ and
qg'. We also have six equations: d(p,q,v1,v]) =
d(p,q,va,v5) = d(p,q,vs,vs) = d(p,q,vs,v)), together
with d(p qlz Uy, ull) = d(p7 q’7 Uz, ul2) = d(p qI: us, uIS) =
d(p,q',us,uly), where we let d(p, g, v1,v}) denote the dis-
tance of the shortest path from p to ¢ via v; and v},
etc. These six equations completely determine the six
variables, and thus determine the intersection(s) be-
tween the curves ¢ and ¢’. As in our derivation of
the O(n%) bound on the number of topology curves,
we have (3) = O(n®) ways to choose the eight vertices
V1, ,Ug,U1, -, uy. We then overlay the eight short-
est path maps SPM(v;) and SPM (u;), i = 1,---,4,
to result in an arrangement of O(n?) cells; this gives
O(n?) choices for the predecessor vertices v} and u},
i = 1,---,4. Therefore, the total number of the type
(1)-type (1) intersections is O(n® - n?) = O(n'®). (This
is to be compared with the naive bound of (;7) = O(n'®)
or O(n®-n%) = O(n'?).) By a similar argument, we can
show that the total number of the type (2)-type (2) in-
tersections is (2) - O(n?) - O(n?) = O(n'%) (there are
O(n?) choices of the two obstacle edges where ¢ and ¢'
lie), and that the total number of the type (1)-type (2)
intersections is () - O(n?) - O(n) = O(n'®). Therefore,
we have O(n'?) topology-topology intersections in total.

LEMMA 4.1. The complexity of the equivalence decom-
position A is O(n'?).

COROLLARY 4.1. There are at most O(n'®) combina-
torially distinct shortest path maps SPM (z) for z in a
polygonal domain having n vertices.

4.2 Parametric Point Location. In this section we
present our parametric point location data structure
D(o) for SPM(o), for each cell 0 € A. The main
challenge is that the structure D(o) should depend only
on the topology and not on the geometry, of SPM (o).
Unfortunately, none of the existing point location data
structures in the literature fulfills this requirement. Our
solution is a new optimal point location method on
SPM’s that makes use of the properties of SPM’s and
is very simple. We also make the method dynamic for
topological updates (namely contractions and expansions
of edges in a SPM), and store the updates into a
persistent data structure to save the overall space and
preprocessing time, at the cost of slightly increasing the
query time.

The idea of parametric point location is to store
with each partitioning object in D(o) its equation so
that its exact position can be computed in O(1) time
given a source point z € g. Then the query algorithm

proceeds as usual, except that during the search, each
time we need a comparison between the query point ¢
and an partitioning object, we compute the position of
that object first.

Existing point location data structures rely on the
geometry of SPM (o) and cannot serve for our purpose.
The full paper discusses the deficiencies of several prior
data structures.

We have devised a new point location method
for SPM (o), which exploits special structure of the
shortest path map. Roughly speaking, we do the
following. First, we perform point location within a
(fixed) subdivision induced by a shortest path tree
rooted at a fixed point zg € o; this gives partial
information on the location within SPM (o). Then, we
complete the task of locating the query point within the
set of bisector arcs, utilizing a centroid decomposition
tree associated with the tree of bisector curves that
lies within each face of the decomposition induced
by SPT(zp). Details of the method, as well as the
underlying structural results, are given in the full paper.

THEOREM 4.1. Given a polygonal domain having n
vertices, there exists a data structure using O(n'') space
and preprocessing time that supports two-point shortest
path queries in O(logn) time.

We also devise a method, employing persistent data
structures, which allows us to reduce the space and
preprocessing time, at the cost of slightly increasing the
query time. In the full paper, we prove:

THEOREM 4.2. Given a polygonal domain having n
vertices, there exists a data structure using O(n'"logn)
space and preprocessing time that supports two-point
shortest path queries in O(log®n) time.

5 Exploiting Visibility and Corridor Structure

In this section, we develop methods that utilize sub-
stantially smaller data structures, especially when the
number h of holes in P is small compared with n. The
tradeoff for this improvement in space complexity is
that these methods have worst-case query time Q(n) or
Q(nlogn) when the number of holes is very high (e.g.,
if h =Q(n)).

Visibility Structure. In the full paper, we describe
a visibility-based method that results in the theorem
below, which utilizes the notion of a “pivotal” vertex:
We say that a vertex v is pivotal with respect to a given
cell o of ASPT | if for any point z € &, v is the first vertex
on the (shortest) path, within SPT(z), from z to some
obstacle vertex v’ not on the same obstacle as v.

THEOREM 5.1. Using O(n®) time and space, one can
compute a data structure that supports O(logn +
min{hs, ht}) query time, where hg (resp., h) is the
number of pivotal obstacle wvertices wisible from s
(resp., t). Here, hs and hy are bounded by O(h).

Exploiting Corridor Structure. We describe now a
method to obtain linear in n space complexity, with
logarithmic query time, for any fixed h. The method
relies on the decomposition of the multiply-connected
domain P into “corridors” ([15, 21]), which we now
review.

First, we triangulate P; by standard techniques,
this can be done in time O(nlogn), but it can also be
performed in nearly-optimal time O(n + hlog't¢ h) [3].
Let 7 denote the resulting triangulation; we fix 7 in the
following discussion. Let Gy denote the graph-theoretic
dual of 7. Then Gy is a planar graph having O(n)
nodes, O(n) arcs, and h + 1 faces.

We now perform the following operations on Gr.
First, we delete any degree-1 node of G7, along with its
incident edge; we continue doing this until there are no
degree-1 nodes. At this stage, Gy has h+ 1 faces and all
nodes are of degree 2 or 3. We assume from now on that
h > 2; the case h < 1 is easily handled separately (using
an extension to [11] that we prove in the full paper).
Thus, not all nodes are of degree 2, implying that there
are at least two degree-3 nodes (since there must always
be an even number of odd-degree vertices in a graph).
Next, for each degree-2 node, we delete it and replace its
2 incident edges with a single edge. The resulting graph,
call it G, is a 3-regular planar graph, possibly with loops
and possibly with multi-edges (2 edges joining the same
pair of nodes). Further, G has h+1 faces, 2h — 2 nodes,
and 3h — 3 arcs (by Euler’s formula). The nodes of G
correspond to triangles in 7, called junction triangles.
If we remove the junction triangles from P, we are left
with a set of polygons (one per arc of G), called the
corridors of P. The contraction process implies that
the corridors are in fact simple polygons.

Now, the boundary of a corridor C' consists of four
portions: (1) a polygonal chain along 01, from a vertex
a to a vertex b; (2) a diagonal bc from b to a vertex
¢ € 00, (possibly Oy = 04); (3) a polygonal chain
along 90s, from c to a vertex d; and (4) a diagonal da.
The segments ad and be are called the doors of C; they
separate C from adjacent junction triangles. (It may be
that a = b or that ¢ = d, if C' corresponds to a loop
arc in G7.) The (connected) region H C C bounded
by 7(a,b), be, (¢, d), and da is called the hourglass [11]
associated with C. The set difference C \ H consists
of a union of simple polygons called the pockets of C;
each pocket has a lid consisting of a subpath (possibly

a single segment) of one of the two shortest paths that
determine H. We let () denote the union of the junction
triangles and hourglasses of P.

Each H may be an open hourglass, if w(a,b) N
m(c,d) = 0, or a closed hourglass, if w(a,b) N w(c,d) =
m(u,v), the corridor path linking the apex u of a funnel
(with base ad) to the apex v of a funnel (with base
bc). An open hourglass has two associated convex
chains, 7(a,b) and 7(c,d). A closed hourglass has four
associated convex chains: m(a,u), m(u,d), 7(b,v), and
m(v,c). In total time O(n), after triangulation, we
can identify the corridors and compute their associated
hourglasses, pockets, and convex chains; this gives us
also a full description of the region Q.

We now introduce the notion of a coarsened short-
est path map, CSPM(z). In its most general form,
CSPM(z) is defined with respect to a partitioning of
a subset V' C V of the vertex set V: V' = V; UV, U
-+ UV,,. The cell, o(V;), corresponding to a set V;
of vertices is the locus of all points p € P for which
the last vertex along a shortest path 7(z,p) is a vertex
r € V;; we say that V; is the root of cell o(V;). Cells can
share boundary points but must have pairwise-disjoint
interiors. The cells o(V;), in general, will not cover P;
we let 0(z) = P\ U;o(V;). In the usual definition of
a shortest path map, V' = V and the sets V; are the
singleton vertices. Also, in general, the cells o(V;) may
be disconnected, consisting of many multiply-connected
components. However, for our method here we use a
particular choice of V' and its partitioning, which will
enable us to conclude that the cells are simply connected
and that they cover all of Q.

Consider a convex chain £. For a vertex v € &,
we say that a line segment pu, for p € P, is a left
tangency (rvesp., right tangency) if the £ lies in the
(closed) halfplane to the left (resp., right) of the oriented
line through pv. For a given source point z on some
convex chain, we say that v € £ is a left tangency
vertex (resp., right tangency vertex) if there exists a
point p € P such that po is a left tangency (resp., right
tangency) and pv C 7(z,p). It is not hard to see that

LEMMA 5.1. For a fized source point z on some convez
chain, each vertexr v € £ on convex chain £ is either a
right tangency vertex or a left tangency vertex, not both.

Furthermore, each convex chain ¢ can be split in
two according to the local direction of shortest paths
whose last vertex lies on the chain:

LEMMA 5.2. Consider a source point z on a convex
chain of P. Let £ = (v1,...,um) be a convex chain
of P, oriented so that & is rightward turning (v;11 lies
to the right of the oriented line through v;_1v;). Then,

there exists an index j € [0,m+1] such that {vi,...,v;}
are left tangency vertices and {vjt1,...,0m} are right
tangency vertices. (If j =0 (resp., j = m+ 1), then all
vertices are right (resp., left) tangency vertices.)

Thus, by the above lemma, for a fixed z we can
split each chain in at most two subchains according
to identity of the vertices as left or right tangencies.
How to perform this split is easily determined from the
shortest path map SPM(z) in linear time. Let C(2)
denote the resulting set of convex chains.

We now define a particular coarsened shortest path
map, CSPM(z), as follows. Let V' be the set of
obstacle vertices that lie on the convex chains C(z).
Partition V' according to the O(h) elements of C(z).
In the full paper we prove:

LEMMA 5.3. In the coarsened shortest path map
CSMP(z) based on the conver chains & € C(z), the
cells o (&) are simply connected and cover Q.

In order to construct CSPM(z), we first build
SPM(z). We then make a pass over the SPM (z) and
remove any bisector (extension segment) that bisects
between two root vertices that are on the same convex
chain or between two non-chain vertices (i.e., pocket
vertices). The cells in the resulting subdivision of
P correspond either to points having a root set V;
consisting of vertices along a single convex chain, or to
points lying within a subpocket, having a vertex on the
boundary of an adjacent cell that is rooted at a convex
chain.

Since there are only O(h) simply-connected cells,
we know that the CSPM(z) has only O(h) nodes of
degree greater than two in its set of edges. However,
the boundary between two cells of CSPM (z) may have
complexity (n), if the root chains have complexity
Q(n). It is important for our space bound that we
simplify the CSPM (z), into a new type of subdivision,
which we call a simplified coarsened shortest path map,
so that it can be stored using only O(h) line segments (in
addition to the O(n) boundary complexity of P, which
is constant over all choices of z). This is done as follows.
First, we note that the bisector in CSPM(z) between
two chains & and &' is, in general, a curve consisting
of many hyperbolic arcs joined end-to-end. We delete
all such bisecting curves (as they may have complexity
Q(n)), but add a line segment joining each of the O(h)
degree-3 nodes (that occur where three such bisecting
curves come together) to each of their three root vertices
along the three (distinct) convex chains that serve as
the common “root” of the node. We are left with O(h)
segments, S, that partition P into O(h) regions. By
deleting bisecting chains, we have created ambiguity:

By locating a point in the new simplified CSPM, we
no longer know the exact identity of the root chain of
that point there are two possible root chains. But
from the point of view of determining an optimal path
to a query point, this does not matter: We can compute
both paths and compare their lengths. When locating
a point in the resulting simplified CSPM, though, we
do have one more step to perform in order to compute
the shortest path length: We must find the point of
tangency from the query point to the root convex chain.
This is easily done in O(logn) time, by binary search.
(Further details are given in the full paper.)

THEOREM 5.2. One can compute a data structure of
size O(n + h®) supporting O(hlogn)-time two-point
shortest path queries in a polygonal domain having n
vertices and h holes.

6 Queries on Polyhedral Surfaces

One extension of our results is to the problem of two-
point shortest path queries on nonconvex surfaces. By
a generalization of our methods, we can construct data
structures that are a factor of n larger than those we
construct in a planar polygon, P, while achieving the
same polylogarithmic query times. The main idea is to
consider each of the n facets separately, and to construct
decompositions of each, using “virtual” vertex sources
that have been unfolded into the plane of the facet
(see [1]). Details will appear in the full paper.

7 Conclusion

We have offered some of the first algorithmic solutions to
the exact two-point shortest path query problem. It is
probably possible to improve some of our space and time
bounds. It would be most interesting to see if one can
achieve, for instance, sublinear query time, while using
only quadratic space (e.g., storing the set of shortest
path maps rooted at every vertex).

An interesting combinatorial question is also sug-
gested by our work: How many combinatorially distinct
shortest path maps are there for a polygonal domain hav-
ing n vertices? Our results have shown that this num-
ber is somewhere between Q(n*) and O(n'?), leaving a
rather large gap. A related open question is to deter-
mine the combinatorial complexity of the lower envelope
g9 = min; g;(x1,y1, T2,y2), for the functions g; defined in
Section 3; we know of nothing better than the O(n!?*¢)
upper bound implied by the fact that the lower envelope
has complexity O(n**€) for each of the O(n®) choices of
pairs of cells in ASPT.

Also, although our emphasis here has been on ezact
query methods, it would be most interesting to see if
one can perform O(1)-approximate two-point queries in

10

polylogarithmic time, using nearly linear storage.
Acknowledgements. We thank Sariel Har-Peled and
Micha Sharir for their input on the subject of this

paper.

References

1]

(2]

[4]

[5]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

P. K. Agarwal, B. Aronov, J. O’'Rourke, and C. A.
Schevon. Star unfolding of a polytope with applica-
tions. STAM J. Comput., 26:1689-1713, 1997.

S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M.
Smid, and C. D. Zaroliagis. Planar spanners and
approximate shortest path queries among obstacles in
the plane. 4th Annual European Symposium, Springer
LNCS Vol. 1136, 1996.

R. Bar-Yehuda and B. Chazelle. Triangulating disjoint
Jordan chains. Internat. J. Comput. Geom. Appl.,
4(4):475 481, 1994.

B. Chazelle. A theorem on polygon cutting with
applications. In Proc. 23rd Annu. IEEE Sympos.
Found. Comput. Sci., pages 339 349, 1982.

B. Chazelle and L. J. Guibas. Visibility and intersection
problems in plane geometry. Discrete Comput. Geom.,
4:551 581, 1989.

D. Z. Chen. On the all-pairs Euclidean short path
problem. In Proc. 6th ACM-SIAM Sympos. Discrete
Algorithms, pages 292 301, 1995.

D. Z. Chen, O. Daescu, and K. S. Klenk. On geomet-
ric path query problems. In Proc. 5th Workshop Al-
gorithms Data Struct., volume 1272 of Lecture Notes
Comput. Sci., pages 248-257. Springer-Verlag, 1997.
K. L. Clarkson. Approximation algorithms for shortest
path motion planning. In Proc. 19th Annu. ACM
Sympos. Theory Comput., pages 56—65, 1987.

H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM J.
Comput., 15(2):317-340, 1986.

M. Goodrich and R. Tamassia. Dynamic trees and
dynamic point location. In Proc. 23rd Annu. ACM
Sympos. Theory Comput., pages 523-533, 1991.

L. J. Guibas and J. Hershberger. Optimal shortest path
queries in a simple polygon. J. Comput. Syst. Sci.,
39:126-152, 1989.

S. Har-Peled. Approximate shortest paths and geodesic
diameters on convex polytopes in three dimensions. In
Proc. 13th Annu. ACM Sympos. Comput. Geom., pages
359 365, 1997.

P. J. Heffernan and J. S. B. Mitchell. An optimal
algorithm for computing visibility in the plane. STAM
J. Comput., 24(1):184 201, 1995.

J. Hershberger and S. Suri. An optimal algorithm for
Euclidean shortest paths in the plane. Manuscript,
Washington University, 1995.

S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell. An
efficient algorithm for Euclidean shortest paths among
polygonal obstacles in the plane. Discrete Comput.
Geom., 18:377-383, 1997.

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

24]

[25]

[26]

[27]

D. G. Kirkpatrick. Optimal search in planar subdivi-
sions. SIAM J. Comput., 12(1):28 35, 1983.

J. S. B. Mitchell. Shortest paths among obstacles in
the plane. In Proc. 9th Annu. ACM Sympos. Comput.
Geom., pages 308 317, 1993.

J. S. B. Mitchell. Shortest paths among obstacles in
the plane. Internat. J. Comput. Geom. Appl., 6:309—
332, 1996.

J. S. B. Mitchell. Shortest paths and networks. In
J. E. Goodman and J. O'Rourke, editors, Handbook
of Discrete and Computational Geometry, chapter 24,
pages 445 466. CRC Press LLC, Boca Raton, FL, 1997.
J. S. B. Mitchell. Geometric shortest paths and network
optimization. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, page 77 Elsevier
Science Publishers B.V. North-Holland, Amsterdam,
1998.

J. S. B. Mitchell and S. Suri. Separation and approxi-
mation of polyhedral objects. Comput. Geom. Theory
Appl., 5:95 114, 1995.

M. Pocchiola and G. Vegter. Computing the visibility
graph via pseudo-triangulations. In Proc. 11th Annu.
ACM Sympos. Comput. Geom., pages 248 257, 1995.
F. P. Preparata and R. Tamassia. Efficient point
location in a convex spatial cell-complex. STAM J.
Comput., 21:267 280, 1992.

N. Sarnak and R.. E. Tarjan. Planar point location using
persistent search trees. Commun. ACM, 29:669-679,
1986.

M. Sharir and P. K. Agarwal. Davenport-Schinzel Se-
quences and Their Geometric Applications. Cambridge
University Press, New York, 1995.

D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. Syst. Sci., 26(3):362-381,
1983.

S. Suri. Polygons. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Ge-
ometry, chapter 23, pages 429 444. CRC Press LLC,
Boca Raton, FL, 1997.

