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Abstract

A wavelet transform based method is proposed in the paper for harmonic analysis. The research is
motivated by the authors’ project about power quality monitoring. In the project, a classifier for
recognizing power quality disturbances has been developed. The classifier adopts wavelet transform to
extract features of various distorted waveforms including those containing harmonics. Obviously, it is
no longer necessary or economic to use Fourier transform for evaluating harmonics that are retrievable
from the transformed data. Thus a number of algorithms have been developed to estimate the distortion
contributions from different sub-band coefficients. By employing techniques of neural networks,
furthermore, each harmonic component is directly retrieved. Both the distortion estimation and the
harmonics evaluation have achieved a high accuracy.

1. INTRODUCTION

Electric power systems have been perplexed by
harmonic distortions due to wide scope applications of
power electronic equipment and varieties of other non-
linear loads. The problems brought about include
malfunction of control devices, data loss of computers,
interference to telecommunications, impulsive rotation
of induction motors, and extra power dissipation [1].
Before plotting any effective countermeasures to
alleviate the impacts of harmonic disturbances, it is
necessary to acquire an accurate and reliable evaluation
of harmonic components at different frequency ranges.
Fourier transform (FT) has long been adopted for this
application.

Harmonic distortion is one of the main power quality
disturbances frequently encountered in utilities. It would
be convenient and economic to use one scheme to
monitor all these disturbances as done in the project of
the authors. In developing a power quality monitoring
system, the wavelet transform (WT) has been utilized
for extracting disturbances such as impulsive and
oscillatory transients, sag and swell, voltage fluctuation
and notching, to name part of a long list [2]. The WT is
known as a special type of sub-band decomposition. The
transform coefficients thereby obtained contain the
information about different sub-band (or scale)
harmonic components of the original data [3,4].

Obviously, it is neither necessary nor economic to still
use the FT while the harmonics can be directly retrieved
form the transformed data, i.e., the approximation and
the detail coefficients. In the paper, the WT based
harmonic analysis algorithms are presented. The
algorithms evaluate distortion contributions from
components of different frequency sub-bands and
estimate the total harmonic distortion (THD).
Furthermore, each harmonic component is to be
calculated with the corresponding sub-band coefficients
by employing the artificial neural networks in the
architecture of Multi-Layer Perceptron (MLP). The
structure of the paper is as follows. After a brief
introduction to the digital wavelet transform (DWT), the
relationship between the transform coefficients and the
harmonic components is discussed in Section 2. Section
3 presents the neural networks designed for each
harmonic component evaluation and Section 4 provides
the simulation results. Section 5 is the conclusion.

2. WAVELETS AND HARMONICS

Discrete wavelet transform (DWT) defines a mapping of
l2(Z)àl2(Z+,Z), i.e. from square summable 1-D
sequence to 2-D sequence defined in the half scale-
temporal plan with Z as the set of integers. Stephane
Mallat developed a pyramidal algorithm for the
implementation of DWT. With the algorithms, a discrete



signal can be processed iteratively by a pair of
quadrature mirror filters (QMF). While the low-pass
filter approximates the signal, the high-pass filter
provides the details lost in the approximation. The
QMFs can be derived from the adopted wavelet. Figures
1(a) and 1(b) plot the magnitude responses of a pair of
filters derived from the cubic spline wavelet. It is seen
from that the QMFs will split the processed signal into
two sub-bands with the same bandwidth. Should the
low- pass and high-pass filtering be applied to a discrete
signal repeatedly, the signal would finally be
decomposed into a series of octave sub-band
components. Let the original signal v(n) be denoted by
CA0(n) (or CA0 when there is no need to indicate the
translation n) and the approximation and detail
coefficients at scale-j as CAj(n) and CDj(n) (or CAj and
CDj), the signal can then be expressed by a multi-

resolution representation: }}{  ,{ 1 JjjJ CDCA ≤≤

provided that a J-level WT decomposition is adopted.
To monitor the power quality, the sampling frequency in
capturing the waveforms is chosen as fs = 12.8 kHz or
256f1 in the project, with f1 as the fundamental
frequency. According to Shannon Sampling Theorem,
the captured waveform retains harmonic components in
the frequency range of 0~fs/2. Consequently, the
transform coefficients from a five-level WT (adopted in
the project) should contain the information about the
raw data with respect to the following octave sub-bands:

• CD1: 64f1~128f1;
• CD2: 32f1~64f1;
• CD3: 16f1~32f1;
• CD4: 8f1~16f1;
• CD5: 4f1~8f1;
• CA5: 0~4f1;

The distortion rate associated with the harmonics in the
above frequency ranges can then be estimated from the
relevant approximation and/or detail coefficients.
According to Stephane Mallat’s algorithms, the
approximation or the detail signal at each sub-band can
be reconstructed with the orthonormal basis (wavelet or
scaling function and their dilations and translations) by
using the transform coefficients. Thus a simple
arithmetic of the transform coefficients at each scale
directly provides the measure of the distortion owing to
the sub-band harmonic components. In addition, the
total harmonic distortion (THD) can be obtained by
summating the distortion measures of different scales. It
can be easily deduced that the distortion caused by each
sub-band harmonics is given by the RMS value of the
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the detail coefficients at scale-j) whilst the THD is
obtained by including each sub-band contribution
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Figure 1 (a) Magnitude response of low-pass filter
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Figure 1 (b) Magnitude response of high-pass filter

In the analysis above, only the detail coefficients have
been taken into account. The approximation coefficients
CA5 as described earlier contain the components in the
frequency range of 0~4f1. It is difficult, however, to
perform harmonics estimation directly using CA5

because of the fundamental component it contains. In
order to estimate this sub-band harmonics, say the 3rd

and the 4th order, the CA5 can be further split into CA6

and CD6 by adding one more level WT decomposition.
The CD6 contains the components in the range of 2~4f1.
Without doing this, the harmonics in the case studies are



assumed above the range of 4f1 at this stage. As a result,
the RMS of CA5 gives the fundamental component. For
harmonics analysis at the low sub-band, neural network
based algorithms have been designed. As to be described
in Section 3, the neural networks are trained to evaluate
each harmonic component from the DC component to
the 47th order harmonic.

3. HARMONICS CALCULATION WITH
WT COEFFICIENTS

It appears from the discussion of preceding section that
harmonics can be retrieved directly from the
correspondent transform coefficients. However a
detailed study discovers that it is impractical to assume a
very sharp splitting through WT decomposition using
QMFs and make the harmonics calculation based on this
assumption. As a result, the following mapping pairs are
made for a more accurate evaluation of harmonics:

•  CA5: à harmonics 0-1;
• CA5 & CD5 : à harmonics 2-5;
• CD5 & CD4 : à harmonics 6-11;
• CD4 & CD3 : à harmonics 12-23;
• CD3 & CD2 : à harmonics 24-47;

Except for the first group calculation, transform
coefficients at a pair of successive sub-bands are
exploited to retrieve a set of harmonics. Altogether, five
groups of harmonics are to be calculated, from DC
component to the 47th harmonic. The algorithms thereby
developed could satisfy most applications since the
higher-order harmonics (above the range of the 25th to
50th, depending on system) are negligible. Hence, the
highest frequency sub-band CD1 is discarded here (but
used for other applications [2]). The above mapping
pairs from the transform coefficients to the harmonics
have been arranged by taking into account the overlap in
the WT decomposition.

Consequently, five sets of neural networks are needed
for evaluating the five groups of harmonics. The neural
networks are chosen to take the architecture of MLP.
Typically, this kind of networks consists of a sensory
units (source nodes) that constitute the input layer, one
or more hidden layers of computation nodes, and an
output layer. Some preliminary experiments have been
carried out to determine the structure of the neural
networks in terms of the numbers of hidden layers and
the number of neurons at each layer. According to the
experiments, the neural networks are determined to
adopt two hidden layers in addition to one output layer

using linear neurons. The MLP is illustrated by Figure 2,
where X=[x1, x2, …xN]T represents the input vector
composed of the transform coefficients. The numbers of
neurons at the two hidden layers are determined
proportional to the dimensions of the input and output
respectively. The linear output layer is used to acquire
an appropriate scale.

Figure 2 Multi-layer Neural Networks
for Harmonics Evaluations

X=[x1, x2, …, xN]T approximation or detail coefficients

In most of the cases, the inputs comprise the coefficients
of two sub-bands. To prevent the predominant influence
from the higher valued sub-band, the inputs are
normalized into the range in –0.5~0.5, and the targets
are also scaled similarly. The activation function of the
hidden neurons is chosen as hyperbolic. Experiments
reveal that the neural networks learn faster when the
sigmoidal activation function built into the neuron
model of the network is asymmetric and the data of
training sets are scaled in small symmetric vicinity
around the zero. By doing these, extremely small
gradients can be avoided, at least at early stage of the
optimization.

Although the measures mentioned above are adopted,
convergence speed has become a problem in the training
phase of neural networks for evaluating harmonics of
the groups of 12~23f1 and 24~47f1. The slow
convergence is due to the large size of the neural
networks. To speed up the learning process, The above
two groups of harmonics are further divided into two
and three sub-groups respectively. The neural networks
are finally designed for each sub-group following the
arrangements below:

• CD4 & CD3 : à harmonics 12-17;
• CD4 & CD3 : à harmonics 17-23;
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• CD3 & CD2 : à harmonics 24-31;
• CD3 & CD2 : à harmonics 32-39;
• CD3 & CD2 : à harmonics 40-47;

4. SIMULATION RESULTS

A testing set is adopted to verify the performance of the
developed algorithms and neural networks in distortion
estimation and harmonics calculation. The training and
testing sets are composed of distorted waveforms
containing harmonics up to the 47th order. Figure 3 plots
such a distorted waveform used in the case study. By
using FT, each harmonic component and the total
distortion THD of the waveform are calculated first. The
THD so obtained is 25.45%. Then the wavelet transform
method is applied to the waveform. By using the
transform coefficients, the THD is estimated with the
developed algorithms. The result is 24.62%, close to that
by using FT method. Table 1 gives the details of the
distortions caused by each sub-band harmonics.

Table 1 Distortion estimation using
WT transform coefficients

Sub-band RMS
(pu)

Distortion
(100%)

CD1 0.0165 1.64
CD2 0.0597 5.92
CD3 0.1134 11.24
CD4 0.1140 11.31
CD5 0.1788 17.73
CA5 1.0087 -

THD 24.62%

In the waveform plotted in Figure 3, harmonics in the
frequency range of 0~4f1 are of very low magnitudes. As
a result, the RMS value calculated from CA5 gives the
fundamental component. The distortion owing to each
sub-band is then evaluated with the ratio between the
RMS of the sub-band harmonics and that of the CA5:
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Finally harmonic components are retrieved from the
approximation and detail coefficients using the neural
networks designed. The simulation results of the case
study (using the same waveform) is illustrated by Figure
4, where the left-side bars give the magnitude of the
actual harmonics (obtained using WT) whist the right-

side bars are the outlets of the neural networks. The
accuracy achieved is encouragingly high (5%).

Figure 3 Distorted waveform
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Figure 4 Harmonics evaluation using neural networks
Left bar: actual harmonics;

Right bar: evaluated by neural networks

5. CONCLUSIONS

The proposed wavelet transform based method provides
an alternative for harmonic analysis. With this method,
distortions due to different sub-band harmonics can be
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easily estimated and each harmonic component can be
evaluated from part of the transformed data. The
accuracy achieved is satisfactory with potential of
further improvement.
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