
ARTICLE IN PRESS

J. Parallel Distrib. Comput. () –
www.elsevier.com/locate/jpdc

A self-organizing flock of Condors

Ali R. Butt∗, Rongmei Zhang, Y. Charlie Hu
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

Received 4 December 2003; received in revised form 27 June 2005; accepted 27 June 2005

Abstract

Condor enables high throughput computing using off-the-shelf cost-effective components. It also supports flocking, a mechanism for
sharing resources among Condor pools. Since Condor pools distributed over a wide area can have dynamically changing availability and
sharing preferences, the current flocking mechanism based on static configurations can limit the potential of sharing resources across
Condor pools. This paper presents a technique for resource discovery in distributed Condor pools using peer-to-peer mechanisms that are
self-organizing, fault-tolerant, scalable, and locality-aware. Locality-awareness guarantees that applications are not shipped across long
distances when nearby resources are available. Measurements using a synthetic job trace show that self-organized flocking reduces the
maximum job wait time in queue for a heavily loaded pool by a factor of 10 compared to without flocking. Simulations of 1000 Condor
pools are also presented and the results confirm that our technique discovers and utilizes nearby resources in the physical network.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Distributed resource discovery; Condor; Flocking; Peer-to-peer

1. Introduction

The complexity of today’s scientific applications and
their exponentially growing data sets necessitate utiliz-
ing all available resources. The economic constraints of
deploying specialized hardware entail leveraging off-the-
shelf equipment to satisfy the growing need for computing
power. Sharing of these resources poses design challenges
especially in resource management and discovery [3]. The
computational grid [16], popularized by systems such as
Globus [21,15] and Condor [29], provides ways for ap-
plications to be spread across multiple administrative do-
mains. Issues of access control, resource management, job
scheduling, and user management are addressed at great
length in these systems. On the other hand, the peer-to-peer
(p2p) overlay networks, motivated by file-sharing systems
such as Napster [34], Gnutella [18], and Kazaa [45], and
formalized by systems such as CAN [40], Chord [47],

∗ Corresponding author.
E-mail addresses:butta@purdue.edu(A.R. Butt),

rongmei@purdue.edu(R. Zhang),ychu@purdue.edu(Y.C. Hu).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.06.022

Pastry[44], and Tapestry [52], have demonstrated the ability
to serve as a robust, fault-tolerant, and scalable substrate for
a variety of applications. Examples of p2p applications in-
clude distributed storage facilities [43,10], application-level
multicast [6,54,17], and routing in mobile ad hoc networks
[24]. In this work, we develop a new p2p application that
utilizes p2p techniques to facilitate the discovery of remote
resources. Although the results that will be presented are
achieved via an innovative marriage of the flocking facility
[11] in Condor and the proximity-aware p2p routing sub-
strate offered by Pastry [44,5], the scheme is applicable to
other platforms.

Condor [29] enables high throughput computing using
off-the-shelf cost-effective components. It can be employed
to manage dedicated resources such as rack clusters as well
as to harness the idle cycles on desktop machines. Con-
dor also supports application checkpointing by providing
libraries that can be linked with the application. A Condor
pool is statically configured to use a selected machine as
the central manager. The task of the manager is to schedule
jobs to various idle resources in the pool, and to facilitate
the migration of running jobs. Under normal conditions,

http://www.elsevier.com/locate/jpdc
mailto:butta@purdue.edu
mailto:rongmei@purdue.edu
mailto:ychu@purdue.edu

2 A.R. Butt et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

a job waits in a queue until the central manager can find an
appropriate resource in the pool to run it on.

There are two constraints that can limit the potential of
Condor to share available resources. First, the size of indi-
vidual pools is limited by the resources available to an orga-
nization. There is an ever growing need to collaborate and
share resources with other organizations to support higher
throughput. Second, the failure of the central manager can
result in inability to process new jobs. For these reasons, it
is desirable to develop an automatic mechanism that mini-
mizes the downtime and provides continuity of service for
new jobs.

Condor supports a mechanism referred to as flocking[11]
that provides a way for sharing resources among multiple
pools. This mechanism is static and requires manual con-
figuration. In the dynamic situations of real world where
the availabilities and sharing preferences of individual pools
vary, a self-organizing, scalable, and robust mechanism is
needed to fully exploit the potential of resource sharing
across multiple administrative domains.

The p2p overlay networks can help in automating the dis-
covery of appropriate resource pools across administrative
domains. Although other means of discovering resources
such as those in Globus [15] can also be used, p2p sys-
tems have the added advantage that they are robust, scal-
able, and relatively simple to deploy. The p2p overlays are
ideal for situations where nodes often come and leave, jus-
tifying our choice of using them in this scenario. More-
over, Pastry—our choice of p2p overlay—is locality-aware,
implying that a resource location service based on it can
locate a resource close to the requesting node among all
available resources in the physical network. This proxim-
ity leads to saved bandwidth in data transfer and faster
job issue and completion. Besides resource discovery, p2p
overlays provide fault tolerance that can be leveraged to
provide automatic central manager replacement within a
pool.

The main contributions of this work are as follows:

• We describe a p2p-based flocking scheme that allows
distributed Condor pools to self-organize into a p2p over-
lay and locate nearby resource pools in the physical net-
work for flocking. Our approach provides a scalable and
flexible method of utilizing the flocking mechanism sup-
ported by Condor by increasing the opportunity to flock
via dynamic discovery of remote resources.

• We present a prototype implementation of the proposed
scheme which shows that the scheme can be easily in-
corporated into an existing platform.

• We evaluate the proposed scheme via measurements on
our prototype implementation running on several small
Condor pools distributed across the United States and
Europe, as well as through large-scale simulations in-
volving 1000 Condor pools. In this work, we leverage
PlanetLab[36] resources for more thorough experiments
than those reported in our earlier work [4].

The rest of the paper is organized as follows. Section2
gives an overview of Condor and structured p2p overlay
networks, which serve as building blocks for our approach.
Section 3 presents our proposed p2p scheme for creating a
self-organized flock of Condor pools. Section 4 presents the
architecture of the developed software. Section 5 presents an
evaluation and analysis of the proposed scheme. Section 6
presents a survey of work related to our proposed scheme.
Finally, Section 7 provides concluding remarks.

2. Enabling technologies

Since the proposed work leverages the idle-cycle sharing
facilities of Condor [29] and Pastry [44], a scalable, self-
reorganizing, p2p routing and object location infrastructure,
we first give a brief background on Condor, flocking in Con-
dor, and Pastry in this section.

2.1. Condor

Condor provides a way for users to solve scientific prob-
lems using the resources available to them rather than ex-
pensive special-purpose hardware. A Condor pool is created
by running the Condor software on all the resources where
compute cycles are available, for instance instructional lab-
oratory machines in an academic setting. The software mon-
itors the state of each resource and determines whether it
is idle or not. If the resource is idle, Condor can harness
its computing power by running computations on it. In this
way, resources that would otherwise be unused form a com-
puting cluster. Each pool has a central manager—a machine
in the pool chosen for collecting job requests and schedul-
ing jobs to run on the idle machines in the pool. When a
user submits a job, it is placed on a queue on the submission
machine. The job waits in the queue until an appropriate re-
source is found on which the job can be run. To facilitate
the search for a matching resource for the job, Condor uses
an extensive resource description language ClassAds [37]
that allows for specification of resources and the jobs they
can support, as well the specification of jobs and the nature
of resources they require to run. Using this language, the
submission machine provides a description of the job to the
central manager, which finds a match using a matchmaking
technique [39]. In addition, Condor provides checkpointing
facilities [31,30] which, when coupled with the migration
facility, allows a job to be transferred to a different resource
in case the one on which the job was already executing is
no longer free.

2.2. Manually configured flock of Condors

To allow multiple Condor pools to share resources by
sending jobs to each other, Condor employs a flocking mech-
anism [11]. A Condor pool can be statically configured to
allow job requests from a known remote pool to be for-

ARTICLE IN PRESS

A.R. Butt et al. / J. Parallel Distrib. Comput. () – 3

warded to it. Flocking works in the following manner. If a
poolA wants to allow jobs from users in another poolB to
be run on its resources, the central manager ofA is config-
ured to allow this sharing. Moreover, the Condor daemons
(condor_schedd) running on the submission machines
in B are also explicitly configured to use resources available
in A. The machines inB will only send jobs toA if the lo-
cal resources are unavailable or in use. The job scheduling
negotiations for a remote job occur between the submission
machine ofB and the central manager ofA. Finally, the ne-
gotiated job is executed on the remote resource. It should
be observed that this mechanism is static, and requires both
poolsA andB to be pre-configured for resource sharing.

2.3. Structured p2p overlay networks

Structured p2p overlay networks such as CAN[40], Chord
[47], Pastry [43], and Tapestry [51] effectively implement
scalable and fault-tolerantdistributed hash tables(DHTs),
where each node in the network has a unique node iden-
tifier (nodeId) and each data item stored in the network
has a unique key. ThenodeId s and keys live in the same
namespace, and each key is mapped to a unique node in
the network. Thus DHTs allow data to be inserted without
knowing where it will be stored, and requests for data to be
routed without requiring any knowledge of where the cor-
responding data items are stored.

The key aspects of these structured p2p overlays are self-
organization, decentralization, redundancy, and routing effi-
ciency. Self-organization promises to eliminate much of the
cost, difficulty, and time required to deploy, configure and
maintain large-scale distributed systems. The process of se-
curely integrating a node into an existing system, maintain-
ing its integrity invariants as nodes fail and recover, and scal-
ing the number of nodes over many orders of magnitude is
fully automated. The heavy reliance on randomization (from
hashing) in thenodeId and key generation provides good
load balancing, diversity, redundancy and robustness with-
out requiring any global coordination or centralized com-
ponents, which could compromise scalability. In an overlay
with N nodes, messages can be routed withO(log N) over-
lay hops and each node only maintainsO(log N) neighbors.

The functionalities provided by DHTs allow for selecting
pools in the presence of dynamic joining and departure of
Condor pools. While any of the structured DHTs can be
used, we use Pastry as an example in this paper. In the
following, we briefly explain the DHT mapping in Pastry.
Pastry: Pastry [44,5] is a scalable, fault resilient and self-

organizing p2p substrate. Each Pastry node has a unique,
uniform, randomly assignednodeId in a circular 128-bit
identifier space. Given a message and an associated 128-
bit key, Pastry reliably routes the message to the live node
whosenodeId is numerically closest to the key.

In Pastry, each node maintains a routing table that consists
of rows of other nodes’nodeId s which share different

prefixes with the current node’snodeId . In addition, each
node also maintains a leaf set, which consists ofl nodes with
nodeId s that are numerically closest to the present node’s
nodeId , with l/2 larger andl/2 smallernodeId s than
the current node’snodeId . The leaf set ensures reliable
message delivery and is used to store replicas of application
objects. Pastry routing is prefix-based. At each routing step, a
node seeks to forward the message to a node whosenodeId
shares with the key a prefix that is at least one digit longer
than the current node’s shared prefix. The leaf set helps to
determine the numerically-closest node once the message
has reached the vicinity of that node.

Pastry takes network proximity into account in building
routing tables. It selects routing table entries to refer to
nearby nodes, based on a proximity metric, subject to the
prefix-matching constraints imposed on the corresponding
entries. As a result of the proximity-awareness, a message
is normally forwarded in each routing step to a nearby node
that is chosen according to the proximity metric out of all
the candidate nodes for that hop. Moreover, the expected
distance traveled in each consecutive routing step increases
exponentially, because the density of nodes decreases expo-
nentially with the length of the prefix match, and the ex-
pected distance of the last routing step tends to dominate
the total distance traveled by a message. As a result, the av-
erage total distance traveled by a message exceeds the dis-
tance between the source and the destination nodes only by
a small fraction[5].

3. Design

We describe a p2p-based flocking technique that allows
a Condor pool to locate one or more dynamically changing
remote pools to utilize their resources, and to provide fault
tolerance within a pool against central manager failures.

3.1. Self-organizing Condor pools

The original flocking scheme has the drawback that the
knowledge about all the remote pools with which resources
can be shared is required prior to starting Condor, and this
information remains static. To overcome this limitation, and
to provide self-organization of Condor pools with minimal
initial knowledge, we organize the Condor pools using the
Pastry p2p overlay network as described in Section 2.3. Pas-
try arranges the pools on a logical ring—the p2p overlay’s
node identifier name space—and allows a Condor pool to
join the ring using only the knowledge about a single pool
that is already in the ring. Once a pool joins the ring, it can
reach any other pool on the ring via Pastry overlay routing.
The ability to automatically reach all other pools without
any initial knowledge about them is enabled by the p2p self-
organization of Condor pools.

Another advantage of using Pastry is the automatic cre-
ation and maintenance of the proximity-aware routing ta-

4 A.R. Butt et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

CM

Fig. 1. Interactions among Condor central managers of different pools.
The big circle on the right represents the managers arranged in a p2p ring
(i.e. the circular node identifier space). Each circle on the ring represents
a Condor pool. An enlarged version of a pool is shown on the left. The
resources in the pool are only aware of the central manager (CM), and
send job requests to it. The CM uses the locality-aware p2p mechanism
to determine nearby Condor pools and sends jobs to them if necessary.
In the figure, the gray circles indicate the potential remote Condor pools
where jobs of the pool on the left can be forwarded.

ble which can be used to sort available remote pools in or-
der of the network proximity. This allows a Condor pool
to announce its available resources to various pools in a
proximity-aware fashion.

Fig. 1 shows the overall layout of the proposed approach.
The enlarged node on the left shows the typical configura-
tion of a Condor pool. The central manager manages the
various resources in the pool. These resources can be com-
pute machines that provide computing power, or they can be
submit-only machines that act as access points to the shared
computing resources. The Condor pools that are interested
in sharing resources with other pools form a p2p overlay
network, and in doing so each pool is assigned a random
node identifier (nodeId) in the ring. ThenodeId is ran-
domly assigned, e.g., as the secure hashing (SHA-1 [12]) of
the IP address of the host, and thus nodes that are adjacent
in the node identifier space may be far apart in the physical
network proximity space and vice versa. For instance, the
gray nodes in Fig. 1 are physically close, but are not adja-
cent in the identifier space. It should be noted that only the
central manager needs to be part of this logical ring. Other
resources in a pool are not aware of the p2p organization of
the pool managers, and continue to interact with the central
manager.

The self-organization of the central managers may be af-
fected by high degree of disconnections and joins to the p2p
overlay. As only the central managers are part of the overlay,
node failures/joins within a pool does not effect the over-
lay. Such disconnections are managed by Condor and does
not pose a problem to the overlay management. Since the
central managers are usually chosen to be the machines that
are expected to be most stable, we also expect that they will
behave in a stable manner in the p2p overlay. That is, the

expected number of disconnections or failures will be low
for each central manager. Hence, the overlay management is
not expected to experience a high degree of nodes leaving or
joining the system. Moreover, techniques such as described
in [41] can be adopted to ensure acceptable behavior of the
p2p overlay in case the degree of failures increases.

3.2. Proximity-aware remote pool discovery

Once the pools are self-organized into a p2p overlay, var-
ious methods can be adopted to determine which remote
pools are most suitable to send jobs to. Without loss of gen-
erality, we will refer to the pool that is making this determi-
nation as the local pool in the following discussion.

One method is that the local pool broadcasts a query for
available resources to all remote pools in the p2p overlay,
and chooses to flock to a pool that replies with a willingness
to share its resources and is nearby. However, broadcast
generates unnecessary traffic if most of the time the available
resources can be found from a subset of the pools in the
overlay.

A more efficient method is to leverage the p2p overlay
for the selection of remote pools. The advantage of using a
p2p overlay is that it can help to efficiently locate remote
Condor pools. Moreover, utilizing the locality-aware p2p
routing guarantees that jobs will not be shipped across long
distances in the network proximity space if willing Con-
dor pools are available nearby. To achieve these goals, the
locality-aware routing table of Pastry as discussed in Sec-
tion 2.3 is exploited. We discuss a p2p-based method for the
selection of remote pools in the following.

3.2.1. Basic design
Each pool that has resources available sends a message

announcing the available resources to all the pools specified
in its routing table, starting from the first row and going
downwards. Thus a pool always contact nearby pools first.
On receiving such a message, a pool becomes aware of the
nearby free resources, which it can then select for flocking.
Such selection of nearby pools translates to saved bandwidth
in terms of data transfer that may happen between a job
submission machine and the job execution machine, and thus
a higher overall job throughput. For instance, Fig. 1 shows
the local pool utilizing resources from various gray nodes,
which are chosen as the Condor pools that are close to the
local pool.

The dynamic resource pool discovery is achieved via a
software layer. The software runs on each central managerM
and uses the resource announcements from other managers
MR to decide which resource pools to flock to. An announce-
ment fromMR contains information about the available re-
sources in its pool, and its desire to share the resources with
M. Note thatMR andM do not need to be statically aware
of each other to decide whether sharing with each other
should be allowed. They can individually maintain history

ARTICLE IN PRESS

A.R. Butt et al. / J. Parallel Distrib. Comput. () – 5

about pools with whom previous sharing was not beneficial,
or can dynamically learn of “black listed” pools from other
trusted pools. Finally, an expiration time is also contained
in the announcement to informM of the duration the in-
formation contained in the announcement is valid for. From
this information,M can create a list of resource pools that
are available to it, ordered with respect to the network prox-
imity. This list is referred to aswilling_list . It is an
array of sublists, with theith sublist containingMRs whose
ith row of the routing table containsM. Hence, due to the
proximity-awareness of Pastry’s routing table, the resources
in the first sublist of thewilling_list are exponentially
nearer compared to the resources in the second sublist, and
so on. If several resource pools in a sublist share the same
proximity metric, the order of these pools is randomized be-
fore configuring Condor to use them for flocking. Doing so
ensures that if many nearby pools discover the same set of
free resources simultaneously, any particular free resource
is not overloaded. Finally, the central manager pushes the
willing_list to the submission machines in the local
pool. The submission machines can use this information to
enable flocking with resources in remote pools.

3.2.2. Optimization
One potential drawback of the above approach is that

the Pastry routing table of a given central manager may
only contain information about a subset of all available and
nearby pools, i.e., those whosenodeId s match thenodeId
of the central manager in the respective prefixes. This can
limit the scope of p2p-based flocking: when all the pools
known to the routing table are unavailable due to either lack
of free resources or absence of access permissions, a Condor
poolM will not be able to flock to other pools whose Pastry
routing tables do not containM.

To address this problem, the p2p-based flocking can be
extended as follows. Instead of propagating the availability
information to only the nodes in the routing table, a time-
to-live (TTL) field is introduced in the announcement mes-
sage, so that the message can be propagated to pools several
hops away in the overlay network. The TTL is a system-
wide parameter, and can be adjusted dynamically to support
various load conditions of the whole system. On receiving
a message, a poolM decrements the TTL, and if the TTL is
greater than zero, poolM forwards the message to the pools
specified in its corresponding routing table row. In this way,
the TTL controls how far the resource availability announce-
ment will be propagated. The receiving node creates a list of
all the remote pools that are willing to share resources with
it. It then probes these pools to determine how far they are,
and use this information to generate thewilling_list
that is sorted with respect to the network proximity. Each
sublist in thiswilling_list contains nodes that initiated
resource announcements using the same row of their routing
tables though they may be several overlay hops away. Due
to the nature of how the announcements are forwarded, suc-

cessive sublists contains nodes that are increasingly farther
apart.

3.2.3. Discussion
The selection of a remote pool for flocking requires dis-

covering available remote pools with free resources, and
knowing the pool’s willingness and policy for sharing the
free resources. While the p2p-based technique automates
locating available remote pools, it retains each individual
pool’s control of access to its resources. This provides the
separation of the resource discovery mechanisms from the
sharing policies of individual pools, hence, giving pool own-
ers full control of how their resources are shared. In order
words, the p2p-based flocking scheme focuses on resource
discovery, and the policy specification is left to the individ-
ual central managers.

Same as in the original flocking mechanism, our proposed
p2p-based flocking mechanism also decouples the flocking
of jobs across different Condor pools from the matchmaking
process for scheduling jobs within each pool[37,39]. Match-
making provides a mechanism for a job to be sent to a suit-
able resource. Flocking, on the other hand, locates remote
pools to which such requests can be forwarded. Matchmak-
ing is locally employed in the remote pool to select a suit-
able resource. Our proposed scheme periodically receives
metrics such as queue lengths, average pool utilization, and
the number of resources available from remote pools, and
builds a list of available pools with whom flocking can be
done. The list is then sorted using the proximity informa-
tion about the remote pools, from nearest to farthest. This
dynamically ordered list is then utilized by Condor on each
submitting machine in the pool to select a remote pool to
flock to. This is in contrast to the original flocking scheme
where the order and number of pools to flock to are static
and configured manually.

Alternatively, a direct matchmaking technique can be em-
ployed in the following way. Remote pools propagate a set
of ClassAds describing the available resources in a pool,
in addition to the pool status metrics as described above.
The available remote pools are ordered by proximity as be-
fore. In this case, however, individual resource ClassAds are
also available, enabling matching of local jobs to remote re-
sources directly in the local (job submission) pool. This is
in contrast to flocking to remote pools followed by match-
making, which may require several iterations of flocking
and matchmaking before a suitable resource is found. Such
direct matchmaking can potentially yield a more efficient
scheme, and is a topic of our future research.

Another interesting issue to consider while using p2p
technology for resource discovery is how it compares to
centralized solutions. Besides the advantages of fault toler-
ance, scalability and locality awareness, employing a p2p
approach provides freedom from the hierarchical organiza-
tion of distributed resources that is required in most cen-
tralized approaches. This allows pools to interact with any

6 A.R. Butt et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

remote pool directly to provide more flexibility. Moreover,
the overhead of using the p2p approach is very small. The
locality-awareness of our p2p substrate ensures that the cost
of communication between two nodes over the overlay in-
curs only 30–40% extra overhead[44] compared to the di-
rect communication between the two nodes over the physi-
cal network.

Finally, in Grid environments, the nodes that are chosen
as central managers are expected to be quite stable. Such
nodes when organized in a p2p overlay will result in a rela-
tively stable system, requiring very little communication to
maintain the overlay. In case of the uncommon scenario of
instability in the system, techniques such as those described
in [41,32] can be employed to manage highly dynamic re-
sources while guaranteeing reliability with acceptable main-
tenance costs.

3.3. A fault-tolerant Condor pool

The existing design of Condor provides fault tolerance
against failure of resources in a Condor pool, but remains
susceptible to the failure of the central manager. The de-
pendence of the whole pool on one central manager can be
mitigated by utilizing fault tolerance of p2p overlay routing.
All the resources in a Condor pool can be arranged on a log-
ical ring, with thenodeId of the central manager known
to every resource. This ring is local to a pool and does not
interact with the logical ring for on-demand flocking. The
central manager is the only node that is on both rings. This
provides a hierarchical structure of control similar to that
of [20]. The central manager periodically informs every re-
source in the pool of its aliveness. In addition, replicas of
the pool configuration and other management information
of the central manager are maintained on theK immediate
neighbors of the central manager in the node identifier space
of the local p2p overlay. In case the central manager fails,
the clients detect its absence and send messages with the
central manager’snodeId as the message key in the p2p
overlay. These messages are guaranteed by the p2p routing
to arrive at one and only one of theK neighbors of the failed
manager, which then takes on the role of the central man-
ager. As a result, the client machines can continue to sub-
mit jobs and human intervention is not required, other than
correcting the problems with the failed central manager.

3.4. Security

Sharing resources across administrative domains pose se-
curity challenges which if not addressed can lead to the com-
promise of shared resources. In the following, we discuss
various mechanisms that provide security in this context, or-
dered by their complexity and effects on the performance of
the system.

The first security mechanism uses authentication for en-
suring that users are accountable for their actions. It has the

least overhead on system performance as only verification
of identity credentials is required. Condor employs authen-
tication of users as well as resources and provides security
policy specification[8]. In a single pool, Condor can be set
up to run jobs only from the users who have standard authen-
ticated accounts on the resources. In the presented scheme,
a policy manager can be used to authenticate remote pools
based on some out-of-band credentials. To protect against a
malicious remote Condor pool, we employ a policy file to
control a pool’s interactions. For example, interactions can
be limited to with only those remote pools that have been
pre-approved by the pool manager. An encryption layer can
also be added on top of this to ensure that a malicious re-
mote pool does not pose as a pre-approved pool. The ad-
ditional authentication features of systems such as Globus
[15,17,14,2] can also be leveraged in the proposed design to
ensure more secure operations. Although simple, authenti-
cation relies on accountability after the damage is done and
does not actually prevent malicious behavior [3].

A second security mechanism provides prevention by re-
stricting access of remote jobs to a safe limit. For example, in
UNIX-based systems, jobs from anonymous users and users
from remote pools can be executed as usernobody , hence
curtailing the capabilities of malicious users. This mecha-
nism provides better security, but reduces the capabilities of
legitimate programs as well. Such mechanisms do remain
susceptible to instrumentation attacks as shown in [3,33].

A third security mechanism is to provide a controlled
execution environment to overcome problems in previous
schemes. This mechanism is very secure. However, it poses
a significant performance overhead due to setting up of ex-
ecution environments. In case of flocking, the jobs from re-
mote pools can be sandboxed using either the Java Virtual
Machine [23] or system call tracing as proposed in [3,22],
giving a resource fine-grained control over the actions of the
jobs.

Finally, numerous previously proposed intrusion detection
schemes (for example, [28,27]) can be employed to detect
previously unknown malicious behavior. This can provide
tight security but at a significant running cost of security
monitors and analyzers.

In summary, pools have the freedom to choose mecha-
nisms that suit their security needs and act on these mecha-
nisms accordingly.

4. Implementation

We implemented the proposed scheme by adding a soft-
ware layer on top of Condor. The software is implemented
using the FreePastry [35] implementation of Pastry API [44],
and utilizes the flexible configuration control of Condor to
dynamically modify the flocking behavior of Condor.

The main software is divided into two independent com-
ponents:poolD which runs only on the central managers
to maintain the self-organized flock and to discover remote

ARTICLE IN PRESS

A.R. Butt et al. / J. Parallel Distrib. Comput. () – 7

Network
p2p

query services configuration query services configuration

C
on

do
r

R
em

ot
e

p2
p

ex
te

ns
io

n

Information
Gatherer

peer-to-peer Module

Flocking
Manager

Condor Module

Policy Manager

flocking

peer-to-peer Module

Flocking
Manager

Condor Module

Policy Manager

Gatherer
Information

Fig. 2. Architecture ofpoolD and interactions of various modules.poolD runs on the central manager of each pool that intends to participate in
the self-organizing flocking for sharing remote resources. The resource announcements from the localpoolD (shown on the left) are received at the
Information Gatherer in the remotepoolD (shown on the right). Note that the localpoolD does not directly interact with the remoteFlocking
Manager (shown in gray).

Condor pools, andfaultD which runs on all the resources
in a Condor pool to provide resilience to central manager
failures.

4.1. poolD

Fig. 2 shows the various modules ofpoolD, and how it
interacts with Condor to control the flocking behavior. It
runs on the central manager of each pool where sharing with
remote Condor resources is desired.

The peer-to-peer Module provides the self-
organization features of the scheme. It also takes care of p2p
routing and provides a communication facility for sending
and receiving messages between the central managers of
the pools in the overlay. Other modules inpoolD can then
use this facility to exchange information with their remote
counterparts. In addition, thepeer-to-peer Module
performs the task of forwarding resource announcements if
TTL is greater than one.

TheCondor Module provides an interface to the Con-
dor software running on the node. It uses the Condor query-
ing and configuration facilities to obtain runtime informa-
tion about the local pool and to dynamically configure its
behavior.

The periodic update of thewilling_list is performed
as follows. For this discussion, Condor central managers
that have joined the p2p ring are referred to as nodes, the

node on which thewilling_list is being constructed is
called the local nodeL, and the nodes that announce resource
information are called the remote nodes.

The Information Gatherer is responsible for
sending the resource availability announcements to in-
form nearby nodes, and also for updating the local
willing_list on receiving such announcements. Con-
sider a remote nodeR. Whenever resources become
available onR, an announcement is created as follows.
The Information Gatherer on R periodically con-
tacts its Condor Module to obtain the status of the
pool. Next, theInformation Gatherer consults its
Policy Manager —a module that implements pool shar-
ing preferences—to determine what resources can be shared
with which remote pools. ThePolicy Manager utilizes
a policy file for this purpose. The policy file itself is a list of
machines from which jobs are either permitted or denied.
This can be captured by either using explicit machine or do-
main names, or use of wild cards. After policy verification,
the next step is the selection of a TTL and a suitable expira-
tion interval for the availability announcement. Finally, the
Information Gatherer sends the pool status infor-
mation along with other bookkeeping information such as
announcement expiration time to all the nodes in the Pastry
routing table.

This information is received atL, and passed to its
Information Gatherer which first consults the lo-
cal Policy Manager . The Policy Manager ensures

8 A.R. Butt et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

that individual pools have control over the remote pools
of resources on which their jobs are run and from which
remote pools the remote jobs are allowed to run locally. If
thePolicy Manager onL permits information exchange
with R, the Information Gatherer on L updatesL’s
willing_list . Otherwise, there is no update toL’s
willing_list . In either case, the announcement is for-
warded in accordance with the TTL. Thewilling_list
is sorted with respect to proximity. This is done by ping-
ing the nodes on the list and determining their distances
from L.

Independent of the process for updating thewilling_
list , theFlocking Manager onL periodically queries
the local Condor Module to determine if the load on
the pool is exceeding the available resources, hence re-
quiring flocking in order to increase throughput. If flock-
ing is required, theFlocking Manager examines the
willing_list and uses the network proximity informa-
tion to create a sorted list of Condor pools with resources
that can be leveraged. If the proximity is the same for mul-
tiple pools, the number of free resources available in these
pools is taken into consideration, with the pool with more
resources given precedence over others. TheFlocking
Manager then uses theCondor Module to inform
the local Condor central manager of the machines with
whom to flock. Similarly, if flocking is enabled, but the
Flocking Manager determines that local pool is under-
utilized, it disables flocking. In this way, the various mod-
ules interact to maintain a self-organized flock of Condor
pools.

4.2. faultD

Fig. 3 depicts the architecture offaultD. It runs on each
resource that is part of a Condor pool, and ensures that the
central manager or one of its replicas is always reachable.
faultD creates another p2p ring comprising of the central
manager and all the resources in the pool. It has dual roles: on
the submit or compute machines it acts as a passiveListener,
whereas on the central manager it acts as an activeManager.
Fig. 4 shows the protocol followed for switching between
the two roles. The same software starts on all the resources
and the central manager as aListener. Whether afaultD is
running on the original central manager is determined from
a command line configuration parameter. For the original
central manager it is specified astrue , and for every other
resource it is either specified asfalse or not specified.
The respective roles on various resources are then adopted
according to the protocol.

The Communication Module is responsible for all
the communication between the nodes. It utilizes the Pastry
API to route messages between the nodes.

As aManager, faultD uses theReplication Module
to maintain replicas of necessary files on its immediate
neighbors in the node identifier space. TheReplication

p2p
Network

replication

communication
Module

Replication
Module

Condor Module

peer–to–peer node

Fig. 3. Architecture offaultD. It runs on all the resources in a Condor
pool, and provides resilience to central manager failures.

Module periodically pushes the up-to-date information to
the neighboring nodes to ensure that a backup node with
the necessary information is available in case of failure of
the central manager. Another task offaultD as aManageris
to periodically broadcast analive message to all the re-
sources in the pool. The message also contains bookkeeping
information such as thenodeId of theManager, a mono-
tonically increasing sequence number to detect duplication,
and the expected time till the nextalive message. This in-
formation is used by the resources to detect a failure at the
central manager. If the original central manager is brought
on-line, i.e., it rejoins the local p2p ring, in the presence of
an active replacement central manager, the original manager
will receive the broadcastalive from the replacement and
learn the replacement’snodeId . The original manager then
uses thisnodeId to send apreempt_replacement
message to the replacement manager. On receiving this mes-
sage, the replacement manager transfers the up-to-date pool
configuration to the original manager, forfeits its role as the
central manager, and becomes aListener.

As aListener, faultD passively listens to thealive mes-
sages from the central manager. Each message is processed
to determine whether it is coming from the known central
manager or not. In case it does, no further action is re-
quired. However, if the message is from a new node, the
Condor Module is used to update the local Condor to
use the new node as the central manager. If the messages

ARTICLE IN PRESS

A.R. Butt et al. / J. Parallel Distrib. Comput. () – 9

send
aliveno

no

no no

yes

send
preempt_replacement

to the replacement
manager identifier

no

The Listener

no

yes

The Manager

no

yes

wait for
events

no

yes

send
manager_missing

to the central
manager identifier

am i
the orig.
central

manager?

central
manager
changed?

yes

yes

yes

Listen for
messages

timeout?

am i
the orig.
central

manager?

yes

msg =
alive?

msg =
manager_
missing?

become
Manager

become
Manager

set local
Condor to use
new manager

prempt_
replacement
received?

time
for

replication?

transfer
up-to-date

information to
central manager

become
Listener

Perform
replication of

configuration etc.
on neighbors

time
for

sending
alive?

no

yes

Start Start

Fig. 4. The protocol followed byfaultD module to switch between the roles ofListenerandManager.

stop, the node sends amanager_missing message to
the previously knownnodeId of the central manager in
the p2p overlay. The p2p routing guarantees that this mes-
sage will be delivered to either the central manager (if it
is alive) or one of its immediate neighbors whosenodeId
is closest to the central manager’snodeId in the node
identifier space (if the central manager is no longer avail-
able). The detecting node then goes back to the listening
state.

If a Managerreceives amanager_missing message,
suggesting itsalive message to a specific node was lost, it
simply ignores this message and continues to sendalive

messages. The node that could not receive the message pre-
viously will receive this message and will continue to oper-
ate normally as described above.

If a Listener receives amanager_missing message,
it implies that the central manager has failed, and that the
receiving node is the nearest node to the failed manager in
the node identifier space of the p2p overlay. Consequently,
the receiving node is the replacement manager. In this event,
faultD takes on the role of theManager. There are two as-
pects that allow the node to assume the role of a central
manager. One, it already has the replicated pool configura-
tions which allows it to perform the duties of the central

10 A.R. Butt et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

manager. Second, job queues are maintained on the submis-
sion nodes (not on central manager) and once matchmaking
is done and the job starts to execute, the central manager is
out of the submission-execution loop till either the job com-
pletes or is checkpointed and needs to be migrated to a new
resource. Therefore, failure of central manager does not af-
fect the running jobs. The failure does affect the job requests
for which the matchmaking is in progress at the time of the
failure. This is not a problem because of the following se-
quence of events. Once the replacement manager becomes
active it informs all the resources in the pool about itself.
The resources now send their ClassAds to the replacement
manager. Similarly, the submission machines resend the job
requests to the replacement manager. Finally, with the in-
formation about resources and outstanding job requests, the
replacement manager can restart the matchmaking. Hence,
transition to a replacement manager does not cause loss of
jobs.

5. Evaluation

We have extended Condor Version 6.4.7 with the self-
organization capability described in this paper. In the fol-
lowing, we report both the experimental results of our ex-
tended Condor system on PlanetLab[36] as well as the re-
sults from simulating a large number of Condor pools over
the Internet. Note that compared to the results presented in
our earlier work [4] where we utilized pools in a local area
setting, this work presents more thorough experiments con-
ducted over the Internet using PlanetLab.

5.1. Measured performance results

The purpose of the measurements is to determine:

• The effect of flocking on job throughput compared to
without flocking.

• The job throughput achieved by flocking among sev-
eral pools compared to an integrated pool containing the
same number of compute machines as in the distributed
pools. The performance of the integrated pool gives an
upper bound on the job throughput of a fixed set of ma-
chines.

5.1.1. Methodology
In order to perform the measurements, we utilized the

wide-area testbed provided by PlanetLab[36]. We chose
four sites across the United States and Europe to host four
Condor pools. Table 1 shows the chosen sites and their geo-
graphic locations. At each site there are three machines each
available for computations. The configurations are shown in
Fig. 5.

In order to drive our measurements, we required a trace
that provides the issue time of individual jobs. In Condor, the
jobs are queued and maintained on the submission machines

Table 1
The PlanetLab sites chosen to run the Condor pools, and their locations

Site letter Location IP address (CM) Num. of
machines

A Interxion, Germany 80.253.103.41 3
B University of California, 169.229.51.250 3

Berkeley
C Columbia University, NY 128.42.6.145 3
D Rice University, TX 128.59.67.202 3

and the central manager is only informed of the queued jobs
when a resource is required to run these jobs. A job may stay
on a local queue for some time before the central manager
becomes aware of its existence. No central job issue time
statistics are maintained, and it would require modifying
Condor on all submission machines to collect such a trace.
Because of these challenges in collecting a real job trace,
our attempt to do so was unsuccessful.

Alternatively, to measure the effects of various configura-
tions on the scheduling of jobs and the resulting throughput,
we created a synthetic job that would consume resources for
any specified amount of time. The simple idea of using the
standard busy-wait loop that can be used to consume time on
a standard pool cannot be utilized in the context of Planet-
Lab, as that would unnecessarily load the remote machines
and violate the PlanetLab acceptable-use policy. Therefore,
our synthetic job simply uses thesleep() system call and
consumes time while avoiding actually over-loading the ex-
ecution resource.

We then created a sequence of 100 submissions of the
synthetic job, each with a random duration between 1 and
17 min, issued with a random interval between 1 and 17 min,
with an average of 9 min. The choice of these ranges is ar-
bitrary with the objective of creating jobs that are not un-
necessarily long for the experiments, yet exhibit interest-
ing behavior. We created 12 such job sequences, enough to
keep 12 machines busy all the time. For the case of four
separate Condor pools, the 12 job sequences are merged
into four different job traces, one for each pool. A job trace
with n job sequences merged together implies that it on av-
erage hasn job requests issued simultaneously. The num-
ber of sequences in the four job traces were 2, 2, 3, 5 for
pools A, B, C, and D, respectively. For the case of a single
integrated pool, we merged all 12 sequences into a single
trace.

In order to use the generated job traces, we implemented
a job driver which takes as input the traces, and submits
the specified length synthetic jobs to the respective Con-
dor pools at specified times. The pools were set up so that
jobs would start running on any of the compute machines
or the central manager if available, hence giving a total of
three compute resources per pool. The machines were ded-
icated to these jobs, therefore the effects of checkpointing
because of an owner returning to the desktop were avoided.
The TTL parameter and the expiration interval in availabil-

ARTICLE IN PRESS

A.R. Butt et al. / J. Parallel Distrib. Comput. () – 11

DC

BA

on demand
flocking

A

B
C

D

Configuration I Configuration II Configuration III

Fig. 5. The various configurations of Condor pools used for making performance measurements. (I) Individual pools driven by local job traces, (II) Pools
in Configuration I connected via on-demand flocking, and (III) All machines arranged in a single pool across administrative domains. Each ring represents
a p2p overlay network of nodes. The gray nodes are the central managers and the white nodes are the compute machines.

ity announcement messages were set to one and 1 min, re-
spectively. The interval at which theFlocking Manager
queries the localCondor Module in poolD was also set
to 1 min.

5.1.2. Results
Tables2 and 3 show the wait times of jobs in the queue

for the configurations in Fig. 5. In Configuration I, we fed
the traces to individual pools without flocking. The number
of sequences in the job traces varied from 2 to 5, whereas
the number of computing machines in each pool was fixed
at 3. It was observed that jobs have to wait in queue for
as long as 284.91 min on average in pool D, during which
time machines in pool A were idle. Also note that at least
one job in pool D was in queue for a huge period of
557.55 min.

Next, we measured how on-demand flocking can utilize
the multi-pool resources with Configuration II. Here we used
the same individual pools of Configuration I, but ran the
p2p flocking software on each central manager to facilitate
self-organized flocking. The pools were driven with respec-
tive job traces as in Configuration I. It was observed that
compared to 284.91 min in Configuration I, the average wait
time for pool D was reduced to 28.37 min. In addition, the
maximum wait time with flocking is reduced by a factor of
9.55 compared to without flocking. Pool C has a small im-
provement in wait time over that in Configuration I. The rea-
son for this is that pool C has three machines and is driven
by a job trace with an average issue of three jobs at a time.
Therefore, pool C does not provide its resources to other
pools. The improvement in average job wait time of pool C

is due to the fact that at peak loads, it was able to utilize
the machines in other pools. The effect on pools A and B
is an increase in average queue wait times. This is because
pools A and B are now sharing resources with heavily loaded
pools, such as pool D. At times, Pool A would be idle and
jobs from pool D would start running on it. Then if a job
is issued at pool A, it had to wait for the jobs from pool
D to finish, since in these experiments pools are configured
not to suspend and move a job once that job has started ex-
ecuting. Note, however, this is a matter of policy, and the
local pool can be set up with difference policies. Compared
to Configuration I, the overall mean wait time is reduced by
100.9 min, whereas in pools A and B, it is increased by only
18.39 and 29.38 min, respectively.

Next, we determine how the wait times of jobs will change
if all the machines were available in a single pool. For this
purpose, we merged the machines into a single pool with 12
compute machines (Configuration III), and loaded the pool
with a trace with all 12 sequences. In this configuration, the
average amount of time the jobs had to wait in the Condor
wait queue before being scheduled was only 27.47 min. This
shows the efficiency of a combined large pool in schedul-
ing jobs. However, merging the machines across adminis-
trative domains is not a desirable approach to improving the
throughput, as such merging requires administrative privi-
leges across organizational boundaries[11].

To determine how flocking affects the wait times of jobs
when compared to the single integrated pool, we loaded
Configuration II at one of the pools (D) with the same job
trace with 12 sequences as used to load the single pool of
Configuration III. The results show that the wait times in

12 A.R. Butt et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

Table 2
Wait times for jobs in queue for Configurations I and II

Pool No. of seq. Without flocking (Conf. I) With flocking (Conf. II)

in job trace mean min max stdev mean min max stdev

A 2 1.76 0.03 14.32 2.65 20.15 0.03 72.10 23.84
B 2 3.30 0.08 19.85 3.84 32.68 0.13 63.70 17.74
C 3 46.58 0.03 97.17 23.00 38.68 0.10 64.48 16.58
D 5 284.91 0.25 557.55 178.94 28.37 0.10 58.38 25.38
Overall 12 131.20 0.03 557.55 175.01 30.30 0.03 72.10 23.19

All numbers are in minutes. One job sequence contains 100 jobs of random length of 1–17 min, issued at random intervals between 1 and 17 min.

Table 3
Wait times for jobs in queue for Configurations III and II with loading at D

No. of sequences mean min max stdev
in job trace

Single Pool (Conf. III) 12 27.47 0.03 55.62 18.40
Conf. II (all load at D) 12 27.40 0.03 54.80 18.51

All numbers are in minutes. One job sequence contains 100 jobs of random length of 1–17 min, issued at random intervals between 1 and 17 min.

the two scenarios are almost the same. The few seconds
difference is due to the fact that in case of flocking, jobs are
first sent to local resources, and then to nearby pools, hence
leveraging locality. On the other hand, for a single pool, jobs
are distributed to any available resource regardless of its
proximity to the issuing machine. This introduces overhead
due to shipping a job to far away nodes.

We further compare concurrent job loading at multiple
pools versus job loading at a single pool on job wait times
with flocking (Configuration II vs. Configuration II, all load
at D). Tables2 and 3 show that the difference is insignifi-
cant. The 2.90 min difference in the mean times can be ex-
plained by the observation that when individual pools are
loaded, preference is given to local jobs for scheduling,
which may not be the best method for global scheduling
of jobs over all the pools. Moreover, in individually loaded
pools, four jobs may be processed simultaneously (one each
by each Condor manager) compared to just a single job pro-
cessed by the single Condor manager. This adds to the pro-
cess of job negotiation between multiple negotiators, i.e.,
jobs are first sent to local managers, which then negotiate
the jobs with remote managers (which may be processing
their local jobs and hence do not reply immediately), and
finally the job are sent to the chosen remote resource. This
potentially lengthens the overall submission to execution
time.

In summary, these results show that without requiring
resource merging, the self-organizing flocking mechanism
presented in this paper cannot only achieve a significant im-
provement in job throughput over without flocking, but also
achieve a comparable performance to that of a single inte-
grated pool, which is not practical because of issues involved
with crossing multiple administrative domains.

5.2. Simulation results

This section presents results of simulating a large number
of distributed Condor pools that implement the proposed
p2p-based flocking scheme.

5.2.1. Methodology
For the purpose of these simulations, a router network

was generated by GT-ITM using the transit-stub model[50].
The IP network consists of 1050 routers, 50 of which are
used in transit domains and the rest 1000 in stub domains.
The routing policy weights generated by the GT-ITM gen-
erator are used to calculate the shortest path between any
two nodes. The length of this path allows us to determine
the physical “closeness” of the two nodes.

We assume that there is one Condor pool attached to each
stub domain router, giving us a total of 1000 pools. The sizes
of simulated Condor pools are uniformly distributed be-
tween 25 and 225 machines. Following the proposed flock-
ing scheme, the 1000 central managers from these simulated
pools form a p2p overlay network using Pastry.

As in the case of prototype measurements, a synthetic
job trace is created to drive the simulations. As before, a
single job sequence consists of 100 jobs. The inter-arrival
time between any two consecutive job requests follows
a random uniform distribution between 1 and 17, giv-
ing an average of 9 time units. The lengths of jobs also
follow a random uniform distribution between 1 and 17
time units. At each Condor pool, one job trace is created
to drive the simulations by merging a random number of
such single job sequences. The number of single sequences
per job trace follows a uniform distribution between 25
and 225.

ARTICLE IN PRESS

A.R. Butt et al. / J. Parallel Distrib. Comput. () – 13

0.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

pe
rc

en
ta

ge
 o

f j
ob

s

normalized network distance

Fig. 6. Cumulative distribution of locality for scheduled jobs when flocking
is enabled. Thex-axis stands for the ratio between the network distance
from the job submission pool to the actual execution pool and the diameter
of the underlying IP network. Locality zero means that the jobs are
scheduled inside local Condor pools.

A Condor manager attempts to schedule a job request
to the machines in the local pool and invokes the flocking
mechanism only if all the local machines are busy. Job re-
quests are queued if they cannot be scheduled immediately
and each queue is maintained as a FIFO. The simulations
are considered complete when all the job requests have been
issued and the queue at every central manager is emptied.
As in the prototype measurements, the TTL parameter and
the expiration interval in the availability announcement mes-
sages were set to one and one time unit, respectively, and
the interval at which theFlocking Manager queries the
local Condor Module in poolD was also set to one time
unit.

5.2.2. Results
Three sets of simulation results are presented. First, we

measured the effectiveness of locality-aware p2p routing in
discovering nearby resources to execute jobs. Fig.6 shows
the cumulative distribution of the locality for the jobs sched-
uled by self-organized flocking. The distance was measured
as the network routing delay between the pool where the
job is submitted and the pool where the job is scheduled
to execute, and represents the locality of a scheduling. This
distance is further normalized by the diameter of the under-
lying IP network (from the GT-ITM generator). The simu-
lations show that more than 70% jobs are scheduled inside
local Condor pools and the rest of the jobs are flocked to
pools that are close in terms of network proximity. For in-
stance, over 80% jobs are scheduled to pools that are within
20% of the network diameter, over 95% are scheduled to
pools that are within 35% of the network diameter, and no
jobs travel more than a distance of 70% of the diameter of
the underlying network.

In the second set of results, we measured the effects of
flocking on the total completion time for all the jobs. We

1000

10000

0 200 400 600 800 1000

to
ta

l t
im

e
us

ed

pool

Fig. 7. Total completion time at each Condor pool without flocking.

1000

10000

0 200 400 600 800 1000

to
ta

l t
im

e
us

ed

pool

Fig. 8. Total completion time at each Condor pool when flocking is
enabled.

measured the total time units used to complete executing all
the jobs. Fig.7 shows the total time that it takes to com-
plete all the jobs without flocking, observed at each Condor
pool. Similarly, Fig. 8 shows the total completion time when
self-organizing flocking is enabled. As the figures show, in
the absence of flocking, the time required to complete ex-
ecuting jobs at individual Condor pools may vary signifi-
cantly, and some Condor pools need much more time than
others. On the other hand, flocking can evenly distribute
workloads among all the available resources, and hence ex-
ecuting jobs at each Condor pool takes about the same
amount of time and all the job queues are emptied almost
f simultaneously.

In the third set of results, we measured the effects of flock-
ing on the average wait time of jobs in the job queue. The
wait time in the job queue is the duration between the time
unit that a job is issued and the time unit that the job is dis-
patched from the queue. Fig. 9 shows the average wait time
in queue without flocking, and Fig. 10 shows the same when
self-organized flocking is utilized. The simulation shows that

14 A.R. Butt et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000

w
ai

t t
im

e
in

 q
ue

ue

pool

Fig. 9. Average wait time in the job queue at each Condor pool without
flocking.

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000

w
ai

t t
im

e
in

 q
ue

ue

pool

Fig. 10. Average wait time in the job queue at each Condor pool when
flocking is enabled.

flocking can significantly reduce the average wait time of a
job request in the job queue. Without flocking, jobs in heav-
ily loaded pools have to wait in the queue for a long period,
while at the same time machines are idle in lightly loaded
pools. This wait time is as high as 3500 time units. When
flocking is employed, the maximum wait time remains un-
der 500 time units.

In summary, we have shown that the self-organization
of Condor pools provides a scalable and flexible method
of utilizing the flocking mechanisms supported by Condor.
Our approach increases the opportunity for flocking in a
decentralized manner, which results in an increased number
of available resources for running the submitted jobs.

6. Related work

In this section, we review related work on resource dis-
covery and management within and across multiple admin-

istrative domains, and recent p2p approaches to resource
discovery and management.

6.1. Resource discovery and management

Resource discovery is concerned with location, allocation,
and authentication of resources. Resource management im-
plies preparation of a resource for use, monitoring for per-
formance, and eventual tear down of execution environment
when the job completes or migrates to some other resource.
Note that the scheduling, decomposition, assignment, select-
ing execution order of tasks, and management of low-level
resources such as memory, disk, and networks, are not part
of resource discovery and management components and are
handled separately as needed.

LoadLeveler[26] is a resource management system that
handles homogeneous resources in a parallel computer. It is
centralized, but does support co-allocation, which is the ca-
pability to allocate multiple resources simultaneously while
satisfying multiple resource requirement constraints.

In contrast, NQE [9], LSF [53], I-SOFT [13], and portable
batch system (PBS) [1], propose network batch queuing sys-
tems that focus on a set of network connected computers
rather than a parallel computer. In general, these systems
rate poorly in handling heterogeneous substrates, and pro-
vide only limited on-line control and resource co-allocation.
They do not support dynamic extensibility to resource shar-
ing and utilization policies. Typically, these systems pro-
cess user-submitted jobs by finding resources that have been
identified either explicitly through a job control language or
implicitly by submitting the job to a particular queue that is
associated with a fixed set of resources. Load-balancing is
not done automatically across queues, and manual specifi-
cation hinder the dynamic resource discovery.

Resource discovery in Condor [29] is based on theClassi-
fied Advertisement(ClassAd) mechanisms [37]. As the sys-
tem is centralized in nature, each resource is aware of the
central manager responsible for resource management in the
pool. The resource generates a ClassAd, specifying its na-
ture, preferences, as well as constraints under which a remote
job can be executed on it. The ClassAd is received at the cen-
tral manager, which then acts as a matchmaker for queued
jobs and the available resources. Once a suitable match is
made, the matched entities are informed of the match, and
the resource matching completes. The actual allocation of
the resource is then done by Condor, and is followed by job
execution. This scheme allows Condor to leverage a variety
of matchmaking policies as discussed in [38].

Compared to local-area network schemes discussed so far,
resource discovery and management are more challenging
in wide-area networks, where resources may span multiple
administrative domains. Legion [7] provides a resource dis-
covery infrastructure that supports heterogeneous resources
distributed over such a wide-area setup. It utilizes a static
task graph for resource allocation, and can provide advance

ARTICLE IN PRESS

A.R. Butt et al. / J. Parallel Distrib. Comput. () – 15

reservations of resources. An important contribution of Le-
gion is that it decouples local resource management from
global management. Hence it supports resource discovery,
dynamic resource status monitoring, resource allocation, and
job control. However, the features are available to only those
applications that can access the Legion object-oriented pro-
gramming model. Legion can also provide management for
PVM [48] message passing library based programs. Another
example of a similar system is Gallop [49] which is also
capable of managing resources in a wide-area network.

A more formal wide-area resource sharing model is
adopted in the computational grid [16], which is a collec-
tion of geographically distributed hardware and software
resources (typically spanning multiple administrative do-
mains) that are made available to groups of remote users.

Globus [15] provides a grid infrastructure to support re-
source sharing across multi-administrative domains. It has
extensive security support for resource and user authentica-
tion. Globus utilizes a hierarchical system to discover re-
sources, and to assemble the resources for use as collections
of computational nodes on as-needed basis. A prime objec-
tive in grid systems such as Globus is to make the physical
location of resources transparent to the user. It employs an
extensible resource specification language (RSL) and dis-
tributed resource allocation managers (GRAMs) to match
jobs to resources.

6.2. p2p approaches to resource management

Recently, several efforts have looked at decentralizing
grid services using unstructured overlay networks. In [25],
Iamnitchi et al. argued for a decentralized solution to re-
source discovery in grid environments that organizes re-
source management nodes into an unstructured p2p overlay
network and resource requests are forwarded among the
nodes if they cannot be satisfied by a given node. They
also presented and evaluated different non-flooding-based
request forwarding strategies in various resource sharing
environments. In [42], Ripeanu and Foster described a
decentralized, adaptive mechanism for replica location in
wide-area distributed systems. Unlike traditional, hierarchi-
cal and more recent p2p distributed search and indexing
schemes, replica location nodes in this mechanism do not
route queries. Instead, they organize into an unstructured
p2p overlay network and replicate location information.
The authors argued that this approach generates compara-
ble traffic as structured-overlay-based approaches for data
intensive applications with a few thousand location nodes
and with query rates being an order of magnitude higher
than replica addition/deletion rates.

Several recent works utilize structured p2p systems for
resource discovery. Similar to our approach, XenoSearch
[46] also utilizes p2p facilities of Pastry [44] for location
of resources. Here, the nodes form a self-organized system,
and information about resources is partitioned among nodes.

Queries for specific resources are directed to the node re-
sponsible for the partition. Replication of resource data is
also employed, and the most appropriate replica according
to the policies of the searching node is utilized. The use of
multi-dimensional search to simultaneously match multiple
required resource attributes with those in the job specifica-
tion provides an efficient means for locating resources.

A ticket-and-leasebased advance reservation of resources
layered on p2p mechanisms is proposed in SHARP[19]. It
manages a set of constrained resources in an efficient way
similar to the airline reservation system. Users can reserve
resources in advance by obtainingtickets, which are proba-
bilistic guarantees that resource will be available when de-
sired. However, when a resource is available, the user is is-
sued alease, which provides a hard guarantee of resource
availability. In this way, users can overbook resources, but
will only have access to those for which they holdleases.
SHARP is more focused on managing available resources
than on discovering new ones. The goal of this work is to
develop a simple, robust, and decentralized technique for
sharing (discovery and allocation) resources using the p2p
technology. It can be extended into the grid platforms for
scalable, distributed resource discovery.

7. Conclusions

We have presented a locality-aware peer-to-peer based
approach to remote Condor pool discovery, which yields a
self-organizing flock of Condor pools. The previous static
flocking mechanisms available in Condor provide a means
for sharing resources across pools, but are not suitable in a
dynamic and large-scale scenario where different pools have
different sharing and utilization preferences. The p2p tech-
nology provides a suitable substrate for resource discovery,
as it is well suited to a dynamic environment. Moreover,
p2p mechanisms are scalable, robust, and fault-tolerant. The
locality-aware routing used in the proposed scheme has an
added advantage that resources nearby in the physical net-
work are utilized. This translates to saved bandwidth by
avoiding data transfer to far away locations, and thus yields
a higher job throughput. The self-organization of Condor
pools provides a scalable and flexible method of utilizing
Condor flocking via dynamic discovery of remote Condor
pools. Measurements of our prototype implementation run-
ning on four Condors pools with a total of 12 computing
machines on PlanetLab, driven by a synthetic job trace,
have shown that for heavily loaded pools, the self-organizing
flocking can reduce the maximum job wait time in the queue
by a factor of 10 compared to without flocking. Simulations
of 1000 Condor pools have shown that locality-aware rout-
ing indeed leads to flocking with physical nearby pools most
of the time. These results show that p2p technology offers a
promising approach to dynamic resource discovery essential
to high throughput computing.

16 A.R. Butt et al. / J. Parallel Distrib. Comput. () –

ARTICLE IN PRESS

Acknowledgments

We thank Miron Livny for his many helpful comments on
the project. This work was supported by an NSF CAREER
award (ACI-0238379).

References

[1] A. Bayucan, R.L. Henderson, C. Lesiak, B. Mann, T. Proett, D.
Tweten, Portable batch system: external reference specification,
Technical Report, MRJ Technology Solutions, 2672 Bayshore
Parkway, Suite 810, Mountain View, CA 94043,〈http://pbs.mrj.com〉
July 2005.

[2] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, V.
Welch, A national-scale authentication infrastructure, IEEE Comput.
33 (12) (2000) 60–66.

[3] A.R. Butt, S. Adabala, N.H. Kapadia, R.J. Figueiredo, J.A.B.
Fortes, Grid-computing portals and security issues, J. Parallel Distrib.
Comput.: Special issue Scalable Web Services Archit. 63 (10) (2003)
1006–1014.

[4] A.R. Butt, R. Zhang, Y.C. Hu, A self-organizing flock of Condors,
in: Proceedings of the ACM/IEEE SC2003, Phoenix, AZ, 2003.

[5] M. Castro, P. Druschel, Y.C. Hu, A. Rowstron, Exploiting network
proximity in peer-to-peer overlay networks, Technical Report MSR-
TR-2002-82, Microsoft Research, 2002.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, A. Rowstron,
Scribe: a large-scale and decentralised application-level multicast
infrastructure, IEEE J. Selected Areas Commun. (JSAC) (Special
issue Network Support Multicast Commun.) 20 (8) (2002) 100–110.

[7] S. Chapin, D. Katramatos, J. Karpovish, A. Grimshaw, Resource
management in legion, in: Proceedings of the Fifth Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP’99), San
Juan, Puerto Rico, 1999.

[8] Condor Team, Condor Version 6.4.7 Manual, Technical Report,
Computer Sciences Department, University of Wisconsin-Madison,
Madison, WI, 2003.

[9] Cray Research, NQE User’s Guide, Technical Report 007-3794-
001, Cray Research,〈http://www.cray.com/craydoc/20/manuals/
2148_3.3/2148_3.3-manual.pdf〉 July 2005.

[10] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica, Wide-
area cooperative storage with CFS, in: Proceedings of the 18th ACM
Symposium on Operating System Principles (SOSP’01), Chateau
Lake Louise, Banff, Canada, 2001, pp. 202–215.

[11] D.H.J. Epema, M. Livny, R. van Dantzig, X. Evers, J. Pruyne,
A worldwide flock of Condors: load sharing among workstation
clusters, Future Generation Comput. Systems 12 (1) (1996) 53–65.

[12] FIPS 180-1, Secure Hash Standard, Technical Report Publication
180-1, Federal Information Processing Standard (FIPS), NIST, US
Department of Commerce, Washington DC, April 1995.

[13] I. Foster, J. Geisler, B. Nickless, W. Smith, S. Tuecke, Software
infrastructure for the I-WAY high-performance distributed computing
experiment, in: Proceedings of the Fifth IEEE Symposium on High
Performance Distributed Computing (HPDC-5), Syracuse, NY, 1996.

[14] I. Foster, N.T. Karonis, C. Kesselman, S. Tuecke, Managing security
in high-performance distributed computations, Cluster Comput.: J.
Networks Software Tools Appl. 1 (1) (1998) 95–107.

[15] I. Foster, C. Kesselman, Globus: a metacomputing infrastructure
toolkit, Internat. J. Supercomput. Appl. High Perform. Comput. 11
(2) (1997) 115–128.

[16] I. Foster, C. Kesselman (Eds.), The GRID: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publishers, Los Altos,
CA, 1999.

[17] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A security architecture
for computational grids, in: Proceedings of the Fifth ACM Conference

on Computer and Communication Security (CCS 98), San Francisco,
CA, 1998, pp. 83–92.

[18] J. Frankel, T. Pepper, The Gnutella protocol specification v0.4 (2000),
〈http://cs.ecs.baylor.edu/∼donahoo/classes/4321/GNUTellaProtocolV
0.4Rev1.2.pdf〉 July 2005.

[19] Y. Fu, J. Chase, B. Chun, S. Schwab, A. Vahdat, SHARP: an
architecture for secure resource peering, in: Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP’03),
Bolton Landing, NY, 2003.

[20] P. Ganesan, K. Gummadi, H. Garcia-Molina, Cannon in G major:
designing DHTs with hierarchical structure, in: Proceedings of the
24th International Conference on Distributed Computing Systems
(ICDCS’04), Tokyo, Japan, 2004.

[21] Globus Team, The Globus Project,〈http://www.globus.org/〉 July
2005.

[22] I. Goldberg, D. Wagner, R. Thomas, E.A. Brewer, A secure
environment for untrusted helper applications: confining the Wily
Hacker, in: Proceedings of the Sixth USENIX Security Symposium,
San Jose, CA, 1996, pp. 1–13.

[23] L. Gong, M. Mueller, H. Prafullchandra, R. Schemers, Going beyond
the sandbox: an overview of the new security architecture in the Java
development kit 1.2, in: Proceedings of the USENIX Symposium
on Internet Technologies and Systems (USITS’97), Monterey, CA,
1997.

[24] Y.C. Hu, S.M. Das, H. Pucha, Exploiting the synergy between peer-
to-peer and mobile ad hoc networks, in: Proceedings of the Ninth
Workshop on Hot Topics in Operating Systems (HotOS IX), Lihue,
Hawaii, 2003.

[25] A. Iamnitchi, I. Foster, D.C. Nurmi, A peer-to-peer approach to
resource location in grid environments, in: Proceedings of the 11th
Symposium on High Performance Distributed Computing, Avon
Books, New York, 2002.

[26] IBM Corporation, IBM Load Leveler: User’s Guide, Technical Report
SH26-7226_00, IBM Corporation, 1993.

[27] S. Kenny, B. Coghlan, Towards a grid-wide intrusion detection
system, in: Proceedings of the European Grid Conference
(EGC2005), Amsterdam, The Netherlands, 2005.

[28] G.H. Kim, E.H. Spafford, The design and implementation of
Tripwire: a file system integrity checker, in: Proceedings of
the Second ACM Conference on Computer and Communications
Security (CCS’94), Fairfax, VA, 1994.

[29] M.J. Litzkow, M. Livny, M.W. Mutka, Condor—a hunter of idle
workstations, in: Proceedings of the Eighth International Conference
on Distributed Computing Systems (ICDCS 1988), San Jose, CA,
1988, pp. 104–111.

[30] M. Litzkow, M. Solomon, Supporting checkpointing and process
migration outside the UNIX kernel, in: USENIX Conference
Proceedings, San Francisco, CA, 1992, pp. 283–290.

[31] M. Litzkow, T. Tannenbaum, J. Basney, M. Livny, Checkpoint and
migration of UNIX processes in the condor distributed processing
system, Technical Report 1346, Computer Sciences Department,
University of Wisconsin, Madison, WI, 1997.

[32] R. Mahajan, M. Castro, A. Rowstron, Controlling the cost
of reliability in peer-to-peer overlays, in: Proceedings of the
Second International Workshop on Peer-to-Peer Systems (IPTPS’03),
Berkeley, CA, 2003.

[33] B.P. Miller, M. Christodorescu, R. Iverson, T. Kosar, A. Mirgorodskii,
F. Popovici, Playing inside the black box: using dynamic
instrumentation to create security holes, Parallel Process. Lett. 11
(2–3) (2001) 267–280.

[34] Napster, Napster file sharing tools,〈http://www.napster.com/〉 July
2005.

[35] Pastry Project Team, FreePastry,〈http://freepastry.rice.edu/
FreePastry/〉 July 2005.

[36] L. Peterson, T. Anderson, D. Culler, T. Roscoe, A blueprint for
introducing disruptive technology into the internet, in: Proceedings

http://pbs.mrj.com
http://www.cray.com/craydoc/20/manuals/2148protect LY1	extunderscore 3.3/2148protect LY1	extunderscore 3.3-manual.pdf
http://www.cray.com/craydoc/20/manuals/2148protect LY1	extunderscore 3.3/2148protect LY1	extunderscore 3.3-manual.pdf
http://cs.ecs.baylor.edu/donahoo/classes/4321/GNUTellaProtocolV0.4Rev1.2.pdf
http://cs.ecs.baylor.edu/donahoo/classes/4321/GNUTellaProtocolV0.4Rev1.2.pdf
http://www.globus.org/
http://www.napster.com/
http://freepastry.rice.edu/FreePastry/
http://freepastry.rice.edu/FreePastry/

ARTICLE IN PRESS

A.R. Butt et al. / J. Parallel Distrib. Comput. () – 17

of the First ACM Workshop on Hot Topics in Networks (HotNets-I),
Princeton, NJ, 2002.

[37] R. Raman, M. Livny, M. Solomon, Matchmaking: distributed resource
management for high throughput computing, in: Proceedings of
the Seventh IEEE International Symposium on High Performance
Distributed Computing (HPDC-7), Chicago, IL, 1998, pp. 140–146.

[38] R. Raman, M. Livny, M. Solomon, Matchmaking: an extensible
framework for distributed resource management, Cluster Comput.:
J. Networks Software Tools Appl. 2 (2) (1999) 129–138.

[39] R. Raman, M. Livny, M. Solomon, Resource management through
multilateral matchmaking, in: Proceedings of the Ninth IEEE
Symposium on High Performance Distributed Computing (HPDC-9),
Pittsburgh, PA, 2000, pp. 290–291.

[40] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker,
A scalable content-addressable network, in: Proceedings of the
ACM SIGCOMM 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM’01), San Diego, CA, 2001, pp. 161–172.

[41] S. Rhea, D. Geels, T. Roscoe, J. Kubiatowicz, Handling churn in
DHT, in: Proceedings of the USENIX Annual Technical Conference
(USENIX’04), Boston, MA, 2004.

[42] M. Ripeanu, I. Foster, A decentralized, adaptive, replica location
service, in: Proceedings of the 11th Symposium on High Performance
Distributed Computing, 2002.

[43] A. Rowstron, P. Druschel, Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility, in: Proceedings
of the 18th ACM Symposium on Operating System Principles
(SOSP’01), Chateau Lake Louise, Banff, Canada, 2001, pp. 188–
201.

[44] A. Rowstron, P. Druschel, Pastry: scalable, decentralized object
location, and routing for large-scale peer-to-peer systems, in:
Proceedings of the Middleware 2001, IFIP/ACM International
Conference on Distributed Systems Platforms, Heidelberg, Germany,
2001, pp. 329–350.

[45] Sharman Networks, Kazaa Media Desktop,〈http://www.kazaa.com/〉
July 2005.

[46] D. Spence, T. Harris, XenoSearch: distributed resource discovery
in the XenoServer open platform, in: Proceedings of the 12th
IEEE International Symposium on High Performance Distributed
Computing (HPDC’03), Seattle, WA, 2003.

[47] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan,
Chord: a scalable peer-to-peer lookup service for internet
applications, in: Proceedings of the ACM SIGCOMM 2001
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM’01), San Diego,
CA, 2001, pp. 149–160.

[48] V. Sunderam, PVM: a framework for parallel distributed computing,
Concurrency: Practice Exp. 2 (4) (1990) 315–339.

[49] J.B. Weissman, Gallop: the benefits of wide-area computing for
parallel processing, J. Parallel Distrib. Comput. 54 (2) (1998) 183–
205.

[50] E. Zegura, K. Calvert, S. Bhattacharjee, How to model an
internetwork, in: Proceedings of the IEEE INFOCOM’96—The
Conference on Computer Communications, San Francisco, CA, 1996,
pp. 594–602.

[51] R. Zhang, Y.C. Hu, Borg: a hybrid protocol for scalable application-
level multicast in peer-to-peer networks, in: Proceedings of the 13th
International Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV 2003), Monterey, CA, 2003,
pp. 172–179.

[52] B.Y. Zhao, J.D. Kubiatowicz, A.D. Joseph, Tapestry: an infrastructure
for fault-resilient wide-area location and routing, Technical Report
UCB//CSD-01-1141, University of California, Berkeley, CA, 2001.

[53] S. Zhou, LSF: load sharing in large-scale heterogeneous distributed
systems, in: Proceedings of the Workshop on Cluster Computing,
Orlando, FL, 1992.

[54] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, J. Kubiatowicz,
Bayeux: an architecture for scalable and fault-tolerant wide-area data
dissemination, in: Proceedings of the 11th International Workshop
on Network and Operating System Support for Digital Audio and
Video (NOSSDAV 2001), Port Jefferson, NY, 2001, pp. 11–20.

Ali R. Butt received his B.Sc. (Hons.)
degree in Electrical Engineering from Uni-
versity of Engineering and Technology
Lahore, Pakistan in 2000. He is currently a
Ph.D. candidate in Computer Engineering
at Purdue University, where he also served
as the president of Electrical and Computer
Engineering Graduate Student Association
for 2003 and 2004. His research inter-
ests include distributed resource sharing
systems spanning multiple administrative
domains, applications of peer-to-peer over-
lay networking to resource discovery and

self-organization, and techniques for ensuring fairness in sharing of such
resources. His recent work includes design and implementation of buffer
cache management techniques for improving file system performance in
modern operating systems. He is a member of USENIX, ACM, and IEEE.

Y. Charlie Hu is an Assistant Professor of
Electrical and Computer Engineering and
Computer Science at Purdue University.
He received his M.S. and M.Phil. degrees
from Yale University in 1992 and his Ph.D.
degree in Computer Science from Harvard
University in 1997. From 1997 to 2001, he
was a research scientist at Rice University.
Dr. Hu’s research interests include operating
systems, distributed systems, networking,
and parallel computing. He has published
more than 50 papers in these areas. Dr. Hu
received the NSF CAREER Award in 2003.

He served as a TPC vice chair for the 2004 International Confer-
ence on Parallel Processing (ICPP-04), and a co-founder and TPC
co-chair for first International Workshop on Mobile Peer-to-Peer Com-
puting (MP2P’04). Dr. Hu is a member of USENIX, ACM, and IEEE.
For more information about Dr. Hu’s current activities, please see
http://www.ece.purdue.edu/∼ychu.

http://www.kazaa.com/
http://www.ece.purdue.edu/~ychu

