
COMBINING MACHINE LEARNING AND HIERARCHICAL STRUCTURES

FOR TEXT CATEGORIZATION

by

Miguel Enrique Ruiz Ruiz

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Interdisciplinary Studies-Ph.D.

degree in Information Retrieval and Intelligent Systems (sponsoring
department-Computer Science) in the Graduate College of

The University of Iowa

December 2001

Thesis supervisor: Associate Professor Padmini Srinivasan

1

ABSTRACT

Text categorization is the process of algorithmically analyzing an electronic

document to assign a set of categories (or index terms) that succinctly describe the

content of the document. This assignment can be used for classification, filtering,

or information retrieval purposes. Machine learning methods such as decision trees,

inductive learning, neural networks, support vector machines, linear classifiers, k-

nearest neighbor, and Bayesian learning have been applied to solve this problem but

most of these applications ignore the hierarchical structure of the underling classifi-

cation vocabulary.

This dissertation focuses on the use of hierarchical classification structures,

such as the UMLS Metathesaurus or the Yahoo! hierarchy of topics, to build and

train machine learning algorithms for text categorization. For this purpose we use

a variation of the Hierarchical Mixtures of Experts (HME) model adapted for text

categorization. We evaluate the HME model using neural networks, and linear clas-

sifier as the nodes of the hierarchy. We explore in detail the use of different feature

and training set selection methods. Experimental results are reported using a large

collection of MEDLINE documents (OHSUMED collection) to assess the effectiveness

of the HME model for in text categorization.

2

Abstract approved:

Thesis supervisor

Title and department

Date

COMBINING MACHINE LEARNING AND HIERARCHICAL STRUCTURES

FOR TEXT CATEGORIZATION

by

Miguel Enrique Ruiz Ruiz

A thesis submitted in partial fulfillment of the
requirements for the Interdisciplinary Studies-Ph.D.

degree in Information Retrieval and Intelligent Systems (sponsoring
department-Computer Science)

in the Graduate College of
The University of Iowa

December 2001

Thesis supervisor: Associate Professor Padmini Srinivasan

Copyright by
MIGUEL ENRIQUE RUIZ RUIZ

2001
All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Miguel Enrique Ruiz Ruiz

has been approved by the Examining Committee for the
thesis requirement for the Interdisciplinary Studies-Ph.D.
degree in Information Retrieval and Intelligent Systems
(sponsoring department-Computer Science) at the De-
cember 2001 graduation.

Thesis committee:

Thesis supervisor

Member

Member

Member

Member

To my wife Kenya, and my daughters Mariana and Andreina

ii

ACKNOWLEDGEMENTS

I would like to thank to all the people who made my stay in Iowa one of the

most cherish experiences of my life. To my advisor Padmini Srinivasan whose advise

and support have been invaluable. To the members of my PhD Committee David

Eichmann, Ted Herman, Gregg Oden and Alberto Segre for their support and helpful

comments on my research. To all the faculty from the Department of Computer

Science and the School of Library and Information Science specially Sriram Pemaraju,

Don Alton, and Steve Bruell who have always been so helpful and supportive. To

the people of the OISS specially Stephen Arum and Cherryl Mason for their support

and kindness to me and my family. To my friends Herbert Hoeger, Sclaudina Vargas,

Patricio Jarpa, Oswaldo Cadenas, Liana Marmol, Daŕio Almarza, Ramón Torres-Isea

and Ethel Bontrager for their solidarity and support even during the most difficult

times. I also would like to thank to the people from TextWise Labs at Syracuse,

specially Edmund Yu and Páraic Sheridan for their support and encouragement.

Thanks also to Fabrizio Sebastiani, Isabel Moulinier and Douglas Oard for their

comments of my research during these years.

Finally, I would like to thank to my parents, the Esteva family especially

Emperatriz and Bartolomé for their love and support and to my wife Kenya and my

daughters Mariana and Andreina to whom this dissertation is dedicated.

iii

ABSTRACT

Text categorization is the process of algorithmically analyzing an electronic

document to assign a set of categories (or index terms) that succinctly describe the

content of the document. This assignment can be used for classification, filtering,

or information retrieval purposes. Machine learning methods such as decision trees,

inductive learning, neural networks, support vector machines, linear classifiers, k-

nearest neighbor, and Bayesian learning have been applied to solve this problem but

most of these applications ignore the hierarchical structure of the underling classifi-

cation vocabulary.

This dissertation focuses on the use of hierarchical classification structures,

such as the UMLS Metathesaurus or the Yahoo! hierarchy of topics, to build and

train machine learning algorithms for text categorization. For this purpose we use

a variation of the Hierarchical Mixtures of Experts (HME) model adapted for text

categorization. We evaluate the HME model using neural networks, and linear clas-

sifier as the nodes of the hierarchy. We explore in detail the use of different feature

and training set selection methods. Experimental results are reported using a large

collection of MEDLINE documents (OHSUMED collection) to assess the effectiveness

of the HME model for in text categorization.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Categorization in Psychology . 2
1.1.1 Hierarchies . 4
1.1.2 Properties of a Hierarchical Structure 5
1.1.3 Psychological Status of Hierarchies 7

1.2 Categorization in Linguistics . 8
1.3 Categorization in Cultural Anthropology 11

2 BACKGROUND . 13

2.1 Text Categorization . 13
2.2 Machine Learning and Text Categorization 14
2.3 Document Representation . 16
2.4 Standard Test Collections . 17

2.4.1 Reuters-1987 Collection 17
2.4.2 OHSUMED Collection . 20
2.4.3 AP-TREC Collection . 23

2.5 Evaluation Measures . 25
2.6 Applications of Text Categorization 29

2.6.1 Document Indexing . 29
2.6.2 Document Filtering . 31
2.6.3 Other Applications . 32

3 TEXT CATEGORIZATION METHODS 34

3.1 Classical IR Based Classifiers . 35
3.2 Statistical Learning Classifiers 37
3.3 Linear Classifiers . 40

v

3.4 Instance-Based Classifiers . 43
3.5 Decision Trees . 45
3.6 Inductive Rule learning . 46
3.7 Expert Systems . 48
3.8 Neural Networks . 49
3.9 Support Vector Machines . 51
3.10 Hierarchical Approaches . 53
3.11 Summary . 57

4 HIERARCHICAL MIXTURES OF EXPERTS MODEL 59

4.1 Mixtures of Experts Model . 60
4.2 Hierarchical Mixtures of Experts 64
4.3 HME Model for Text Categorization 68

5 IMPLEMENTATION OF THE HME MODEL FOR TEXT CATEGO-
RIZATION . 73

5.1 Feature Selection . 75
5.1.1 Correlation Coefficient . 77
5.1.2 Mutual Information . 78
5.1.3 Odds Ratio . 80

5.2 Training Set Selection . 82

6 ASSESSING THE NEURAL NETWORK BASED HME MODEL . . 85

6.1 Experimental Collection . 85
6.2 Baselines . 87
6.3 Rocchio Classifier . 89
6.4 Hierarchical Mixture of Experts 90
6.5 Flat Neural Network Classifier 93
6.6 Results . 93

6.6.1 Feature Selection and Neural Network Architecture 93
6.6.2 Comparing the Category Zoning Methods 96
6.6.3 HME, Flat NN, and Optimized Rocchio Classifiers 101
6.6.4 Comparing Results with other Published Works 103

6.7 Comparison with Related Work in Hierarchical Categorization . 109

7 EXPERIMENTS WITH THE HME MODEL BUILT ON OTHER CLAS-
SIFIERS . 114

7.1 Experiments with the HME Model Using Linear Classifiers . . . 114

vi

7.2 Ensembles of Classifiers and the HME Model 118

8 CONCLUSIONS AND FUTURE WORK 127

8.1 Conclusions . 127
8.2 Future Research . 130

APPENDIX

A HEART DISEASES SUB TREE OF THE UMLS METATHESAURUS 132

B LIST OF STOPWORDS . 139

REFERENCES . 145

vii

LIST OF TABLES

Table Page

2.1 Collections used for text categorization research 20

2.2 Contingency table for binary decision classification 26

2.3 Measures for binary classification defined in Information Retrieval (IR)
and Artificial Intelligence (AI) communities 26

6.1 Effect of the number of input nodes to the gating networks and the feature
selection methods for the expert networks 97

6.2 Effect of the number of hidden nodes on the expert networks 97

6.3 Effect of the number of hidden nodes on the gating networks 98

6.4 Comparison of categorization performance using the centroid-based and
Knn-based category zones . 100

6.5 Comparison between the flat NN, HME NN and the optimized Rocchio
classifiers . 102

6.6 Number of documents that pass each HME NN gate in the test set . . . 104

6.7 Performance comparison between the flat NN, HME and Rocchio classi-
fiers, and classifiers published in other works 107

7.1 Comparison between the flat EG and WH classifiers and the corresponding
HME classifiers using EG and WH gating nodes 115

7.2 Comparison between the flat WH and Rocchio classifiers and the corre-
sponding hybrid HME classifiers using NN gating nodes 116

7.3 Number of documents that pass each HME WH gate in the test set . . . 119

7.4 Number of documents that pass each HME EG gate in the test set . . . 120

viii

7.5 Performance of ensembles of classifiers using a simple majority 123

ix

LIST OF FIGURES

Figure Page

1.1 Example of a categorization hierarchy . 6

2.1 Example record from OHSUMED . 24

4.1 Example of a Mixtures of Experts (ME) model with two experts, ε1 and
ε2 and a gate G . 63

4.2 Belief Network for the Mixtures of Experts model 64

4.3 Hierarchical Mixtures of Experts model 65

4.4 Modified Hierarchical Mixtures of Experts model 69

4.5 Example of a backpropagation network with 5 input nodes 72

5.1 A part of the UMLS hierarchy for the heart diseases subtree 75

5.2 Graph of Odds Ratio . 81

6.1 Tree for the 119 categories of the heart diseases sub-tree 88

7.1 Ensemble classifier . 124

7.2 Gate with two experts in the HME ensemble classifier 125

x

1

CHAPTER 1
INTRODUCTION

Classification is a task performed quite naturally by human beings. Classifi-

cation was not invented, but is rather an innate human capability. It is related to our

memory which is so essential for our adaptive behavior. Memory is organized in ways

that make information gained from past experiences available for present situations.

Although we experience only individual events, we remember them and identify them

as instances of classes or categories. In consequence, the essence of memory organi-

zation is classification. How difficult will our lives be if we did not have classification

skills? How many varied human activities have classification at their foundation?

Even simple acts such as recognizing an entity as a human being and another as a

bumble bee requires the ability to classify based on our perceptions. As mentioned

by Estes [30] classification is indeed basic to all our intellectual abilities.

Categorization and classification are two terms that are used interchangeably

by many authors, but as Estes [30] notes there are subtle differences between them.

Classification implies that the collection of objects is partitioned into groups, but

categorization carries a further implication that knowledge of the category to which

an object belongs reveals something about the object’s properties.

Categorization, which is the main concept of interest of this research, has been

2

a major area of study in psychology, linguistics, and cultural anthropology. It is also

important in biology, as for example in the area of taxonomy. Categorization is the

process of assigning objects (of whatever kind) to categories (which are collections of

objects that are grouped together for some purpose) [68].

My goal in this dissertation is to contribute to research on the automatic cat-

egorization of documents to conceptual categories. In particular I explore automatic

categorization when the possible categories exhibit an inner hierarchical structure.

This chapter presents a brief review of categorization in psychology, linguistics,

and cultural anthropology. My goal is to give a general background for categorization

pointing out the similarities and the differences of this concept in different areas of

study, as well as the connections between them.

1.1 Categorization in Psychology

Categorization can be viewed as a process, and also as the result obtained

by this process. In psychology, categorization is believed to be an important part

of concept formation. Two approaches have been developed in this area of concept

formation:

• Hypothesis testing:

In hypothesis-testing, concept formation is treated as a form of problem solv-

ing. This approach assumes that the problem for the learner is to formulate

a hypothesis about the critical features and test the hypothesis against obser-

vations of a sequence of exemplars until an adequate hypothesis is discovered.

3

Solutions of categorization problems by trial-and-error hypothesis testing are

quite characteristic of the kind of experience that a person has when learning

to use a personal computer, a fax machine, or any other complex device. In

these experiences the user faces problems that he/she cannot solve by reference

to the cryptic instructions which are usually written in a technical terminology

or style that is not familiar to the user. Therefore, the user tries to learn the

operation of the device by using it, formulating mental hypothesis of the role

of the components (probably following the instructions), and learning from the

successes or failures until he/she familiarizes with the correct sequence of steps

to operate the new device.

• Category learning:

According to Estes [30], the definition of what constitutes category learning de-

pends on the nature of the learning situation. There are two important aspects

of category learning: a) whether the categories to be learned are finite or infi-

nite, and b) if the learning situation may be expressed as a distinction between

taxonomic (binary) and statistical (probabilistic) classifications. In taxonomic

classifications, category membership is defined by critical features or attribute

values, and all objects having the same description belong to the same category.

For example classification of compounds according to their chemical properties

as acid, base, or salt1 and animals by species. In probabilistic categorizations,

1In chemistry an acid is defined as a proton (Hydrogen ion, H+) donor, a base is a proton
acceptor, and a salt is the product of the reaction between an acid and a base.

4

rigid distinctions are not available, but there are statistical relations between

features and categories with the property that the degree of some features or

combinations of features makes an object more likely to belong to one category

or another. Examples include medical diagnosis categories representing differ-

ent varieties of schizophrenia. Probabilistic categorizations are learnable to the

degree that the probability distributions differ between the categories.

1.1.1 Hierarchies

Even informal observation of every day categorization reveals that many ob-

jects fit into a number of categories. A single object might be called wire-haired

terrier, terrier, dog, mammal or animal. On other occasions it might be called pet,

friend, guard dog, or brute. Part of the power of human thought and reasoning arises

from the ability to view the same concept in different ways, thereby allowing us to

access different kinds of knowledge about it [95].

The hierarchical organization has been suggested as a particularly important

method for organizing concepts. In fact, when people are asked to categorize an

object in a neutral setting, without further instructions, they are very likely to provide

one of the hierarchically-organized categories, such as terrier or dog, rather than a

relatively stand alone category such as furry thing or something to be rescued from a

fire. Thus, taxonomic categories, which are generally hierarchies, may be particularly

important ones for thought and communication. In addition to the importance of

the hierarchical organization, psychologists have long noted that a particular level of

5

specificity of categories seems to be important. For example, people will normally refer

to a wire-haired terrier as a “dog” rather than calling it a “terrier” or an “animal”.

There seems to be something about the specific category dog that makes it just right

for identification.

1.1.2 Properties of a Hierarchical Structure

Hierarchical structures possess several properties that make them ideal for

representing categories. In general a hierarchy may be viewed as an upside down

tree as shown in Figure 1.1. Categories that are higher in the hierarchy dominate

or are “superordinate” to the lower level categories; the lower level categories are

“subordinate” to the higher level ones.

A hierarchy is a kind of network. That is, it has nodes (categories) connected

by relations. However, a hierarchy is a special kind of network. The only relation

allowed between category members is the “set inclusion” relation. For example, the

set of animals include the set of fish which includes the set of trout which includes

the set of rainbow trout. The set inclusion relation is also called the IS-A relation.

The nature of the IS-A relation is also important in determining the properties of

hierarchies. First, the IS-A relation is “asymmetric”: all dogs are animals, but not all

animals are dogs. Secondly, the category relation is transitive: all pines are evergreen,

and all evergreens are trees; therefore all pines are trees. The transitivity of category

membership generates a similar transitivity property ascription. Every property true

of the members of a category is also true of the category’s subordinates. For example,

6

plants

mammals

animals

living things

pine dog cat tuna

fish reptiles

troutoak

trees bushes

terrier colie brook trout rainbow traout

Figure 1.1: Example of a categorization hierarchy

7

suppose that all animals have blood, and therefore all dogs have blood, and therefore

all terriers have blood.

1.1.3 Psychological Status of Hierarchies

Conceptual structures in humans are widely believed to have the general prop-

erties of hierarchies that we have just described. There is evidence that hierarchical

structure appears to be a universal property of all cultures’ categories of the natural

world [3]. However, what is not clear is how hierarchies are mentally represented.

There are two main possibilities that are not mutually exclusive. One possibility is

that people’s concepts are structured in memory like the diagrams in Figure 1.1. That

is, perhaps concepts are connected in hierarchical networks, and the connections are

used in order to make inductive inference and categorization judgments as described

in the previous section. The second possibility is that the hierarchy results from a

kind of reasoning process rather that being explicitly stored in memory. Suppose

that you know that all Xs are Ys, and that all Ys are Zs. Now if you learn that all

Zs have six fingers, what does it tells about Xs? A little thought will reveal that

all Xs must also have six fingers, since all of them are Zs. Thus, even though the

hierarchy may not have been stored in memory (before reading the paragraph), one

could use the information about category inclusion to come to the correct answer.

This suggests that people may not have a hierarchy stored in memory but may be

able to infer category inclusion and then draw the appropriate inference. In other

words, the category hierarchy could be pre-stored or it could be computed. If it is

8

pre-stored, then the links in memory correspond to the IS-A links in Figure 1.1. If

it is computed, then hierarchical relations are not stored in memory but calculated

based on the properties of each pair of categories.

In the 1970’s, many experiments were conducted to discover which of these

accounts of conceptual structure was most accurate. Unfortunately, these experiments

were not entirely conclusive. The main problem faced in any experiment that aims to

prove either hypothesis is the set of assumptions about the memory structures and

processes that are used in any particular task [95]. Since neither theory completely

accounts for all of the observed data, each was modified in order to be more complete.

The result was that it became difficult to tell the two views apart.

1.2 Categorization in Linguistics

Categorization in linguistics is considered an important process related to

meaning. Linguists recognize that any cognitive activity includes categorization and

conceptualization. To distinguish an object or event as such we need to identify it

as similar or different from another object. Only then can we proceed to name it.

Cognitive development of a child always involves an attempt to master the idea of

same/different via some comparison of words and objects. For example, a child will

ask questions such as: “a purse is a sort of a little bag, isn’t it?”; “My teddy-bear -

is he a bear?”. These questions allow us to see the attempts of a child to structure

his/her environment by finding for each object and its name an appropriate place in

some naive taxonomy [35]. The same strategy is also commonly used in dictionaries

9

to give definitions of words, i.e., “machete: a heavy knife or cleaver used to cut down

sugar canes, and as a weapon”.

When we conceptualize our view of the real world, we reveal various types

of relations between objects. Many of the most important ones seem to be cultural

universals. We cannot discuss any categorization problem without resorting to lan-

guage. When we speak of the ontology of categorization, that is discussing the actual

content of our mental activities, we cannot proceed without linguistic examples. Our

ability to make generalizations is reflected in all languages, for example the opposition

“general-specific” is present in all languages, thought their linguistic form varies from

one language to another.

In the 1970’s the problem of general specific as well as its close relative

“supercategory-category” was extensively researched in humanities. Probably the

most relevant works to our review of categorization in linguistic are the experiments

presented by E. Rosch and her collaborators [104]. Rosch’s approach to categorization

in linguistic shows three basic hypotheses:

• Our environment is not chaotic but well structured. It is based on similarities

and differences which belong to its ontology and not to our ability or inability

to perceive and conceptualize. Hence categorization is conceived as mental

activities that we develop to account for this ontology. Categorization helps

us to assimilate this variety by conceptualizing some items as belonging to the

same category, and others as those which belong elsewhere. According to Rosch

10

there are two types of categories: natural categories, and semantic categories.

Natural categories are those that depend on our perception, e.g., size, color, or

shape. Semantic categories are conceptual, they are related to items that could

be conceived as belonging to the same/different category on a non perceptual

basics.

• Each category has an internal structure. According to Rosch, some members

of a category may be better examples of that category than others. Rosch

considers that the mentioned differences among members are ontologically based

(based upon being or existence of the objects). That means that psychologically

there are some members within each category that are more naturally identified.

Those members that are more typically are called “salient” by Rosch.

• Any category has a member called the “prototype”. This hypothesis is derived

from the second hypothesis. The concept of a prototype presumes that the

prototype includes the most typical features of a category, which enable us to

identify the whole category starting from the prototype.

Rosch’s experiments aimed to give support to these three basic hypotheses.

Although the detailed discussion of her results is out of the scope of this work, we note

the parallels between these hypotheses and the principles underlying feature selection

and subset training set selection in machine learning algorithms.

11

1.3 Categorization in Cultural Anthropology

Cultural anthropologists have done extensive work studying categorization (or

classification) in different cultures. Particularly works by Berlin and his collabora-

tors [3] try to find the general principles of classification and nomenclature in folk

biology. Berlin’s major claim is that the observed structural and substantive topolog-

ical regularities found among systems of ethnobiological classification of traditional

people from many different parts of the world can be explained in terms of the human

beings’ similar perceptual and largely unconscious appreciation of the natural affini-

ties among grouping of plants and animals in their environment. According to Berlin

this groupings are recognized and named independently of their actual or potential

usefulness or symbolic significance to humans.

There are two major approaches in ethnobiology the relativist approach and

the comparativist approach. The relativist view adopts the position that cultures

are different in many ways and that description of them provides only an imperfect

and biased collection of facts that is highly influenced by the cultural preconceptions

of the observer [29]. The comparativist approach, while recognizing the broad range

of inter- and intra-cultural variation in human societies, seeks to discover and doc-

ument general features of cross-cultural similarities that are widely shared and to

develop theoretical explanations that underline the empirical generalizations one ob-

serves. Berlin’s work [3] represents the comparativist approach while Ellen’s work [29]

represents the relativist approach.

12

The most significant account that Berlin reports in his work, is that hierarchi-

cal classifications are common in many cultures. Berlin reports the existence of the

concept of higher-order and intermediate categories in cultures such as Maya, Kalam

(from new Guinea), Tzeltal (from Mexico), Wayampi (from Brazil), Aguaruna (from

the Peruvian Amazon), Ndumba (from New Guinea). Showing that even though all

those cultures have been separated in distance and time they all share similar con-

cepts and strategies in classifying animals and plants from their own regions. The

reader is referred to Berlin [3] chapter 4 and Ellen [29] for a more detailed account of

their approach.

The intent behind this brief overview is only to illustrate the attention given to

the phenomenon of categorization by researchers representing different disciplines and

viewpoints. In the following chapters I explore categorization in the context of ma-

chine learning algorithms developed to automatically categorize objects (documents)

using a hierarchical collection of categories.

13

CHAPTER 2
BACKGROUND

2.1 Text Categorization

Text categorization, also known as text classification and occasionally as topic

spotting, is the process of algorithmically analyzing an electronic document to assign a

set of categories (or index terms) from a predefined vocabulary to succinctly describe

the content of the document. This assignment can be used for classification, filtering,

and retrieval purposes. Manual classification commonly referred to as indexing has

been applied since the invention of writing to facilitate access to information. For

years librarians have indexed documents using controlled vocabularies such as the

Library of Congress Subject Headings, and the Medical Subject Headings (MeSH).

The increasing amount of information available in different areas of knowledge creates

the need to automate this process.

The origins of text categorization date to the 1960’s when Luhn [80] proposed

the use of statistical patterns of word occurrences in the title or abstract of documents

to select predefined categories for indexing documents. The early literature in infor-

mation retrieval also reveals the use of the term “automatic document classification”.

In general that was used to name three different tasks: (i) the automatic assignment

of documents to a predefined set of categories [81], (ii) the automatic definition of

14

document categories (currently known as clustering) [24], and (iii) the automatic as-

signment of uncontrolled vocabulary to documents, i.e., vocabulary extracted from the

free text of documents (currently known as indexing) [6, 31]. During the 1980’s most

research efforts in text categorization concentrated on building categorization systems

based on manually crafted decision trees and expert systems [4, 38, 43, 51]. Since the

early 1990’s researchers have explored a variety of machine learning methods for au-

tomatic text categorization [2, 5, 16, 26, 54, 63, 65, 66, 72, 78, 82, 84, 94, 96, 130, 141]

generating most of the current literature in the field.

This chapter reviews the work in automatic text categorization and introduces

the terminology, collections and performance measures used in this area.

2.2 Machine Learning and Text Categorization

Since computers were invented, we have wondered whether it is possible for

them to learn how to perform specific tasks. Machine learning is an area of artificial

intelligence that has been dedicated to this goal. Although it is not yet known how to

program computers so that they can learn as well as people do, algorithms have been

invented for certain types of learning tasks. Machine learning algorithms have proven

to be very successful in solving many problems, for example, the best results in speech

recognition have been obtained with such algorithms. Machine learning algorithms

learn by performing a search on the solution space of the problem to be solved. For

example, these algorithms use the means/ends principle in which at each step of the

process the algorithm evaluates the different options (reachable states) and selects

15

the one that moves it closer to the desired goal. Machine learning algorithms can be

divided into two types supervised and unsupervised learning algorithms. Supervised

learning algorithms operate by learning the objective function from a set of training

examples and then applying the learned function to the target set. Unsupervised

learning operates by trying to find useful relations between the elements of the target

set. Our goal is to contribute to research on text categorization using supervised

learning algorithms. In the next chapter alternative supervised learning methods are

presented. In this chapter we consider this family of text categorization solutions

more generally.

Text categorization can be characterized as a supervised learning problem.

We have a set of examples (documents) that have been correctly categorized (usually

by human indexers). This set is then used to train a classifier based on a machine

learning algorithm. The trained classifier is then used to categorize the target set.

More formally, let C = {c1, . . . , cn} be a set of categories andD = {d1, . . . ,dN}

be a set of documents. Given a set of examples of the form 〈di, yj〉, where di ∈ D,

and if di ∈ cj then yj = 1, otherwise yj = 0, the objective is to learn a function f such

that f(x) = 1 if x ∈ cj and f(x) = 0 if x /∈ cj . This function is called the classifier.

This definition views a classifier as a single-label assignment function. Multi-

label categorization with n categories {c1, . . . , cn} can be transformed into n in-

dependent problems of single-label categorization with categories {ci, ci}, for each

i = 1, . . . , n. This assumes that the categories are statistically independent, i.e.

16

f(dj, ck) does not depend on f(dj, ck′), for k = 1, . . . , n; k′ = 1, . . . , n, and k �= k′.

2.3 Document Representation

In order to generate a classifier for text categorization using a training set

one must first derive a representation for each document. We represent documents

using the vector space model as described by Salton [115]. First, all the words in the

document are tokenized, filtered using a stop list (to remove common words such as

articles, prepositions, common verbs, etc.), and stemmed. We use Lovins’ stemmer for

this [79]. Unique stems with their corresponding frequencies are kept. Each document

is then represented by a vector:

d = (x1, . . . xm)

where xi = tfi × idfi

and idfi = logN
ri

Here m is the total number of unique stems (terms) in the training collection,

xi is the weight of the ith term in d, tfi is the ith term’s frequency within d, idfi is its

inverse document frequency1, N is the total number of documents in the training set,

and ri is the number of documents in the training set that contain the term i. The

vector space model allows us to represent a document as a real-valued vector that

can be presented as an input to the machine learning algorithms. It should be noted

that tfi represents the importance of the term in the document while idfi represents

the importance of the term in the collection. Weighting strategies and their impact

1Note that there are several variations of idf . The formula presented here is used by the
SMART retrieval system which is the tool we selected for preprocessing the documents.

17

on retrieval have been reviewed in [113].

2.4 Standard Test Collections

Experiments have been performed using several text collections of which three

are now regarded as standard data sets for text categorization research: Reuters-1987

collection, OHSUMED collection, and AP TREC collection.

2.4.1 Reuters-1987 Collection

The Reuters-1987 collection2 is a set of more that 20, 000 news wires stories

from 1987. It is the most commonly used collection in text categorization research [2,

16, 43, 63, 65, 72, 96, 130, 136]. However, the different studies have not used the same

criteria to split the collection into training and testing subsets, or the same criteria

to treat the unlabeled data. They also differ in the number of categories used for

evaluation. Four different versions of the Reuters-1987 collection have been used and

the differences are shown in Table 2.1. The original Reuters-1987 collection (version

1 in Table 2.1) consisting of 22, 173 documents was provided by the Carnegie Group,

Inc (CGI) who used it to evaluate the CONSTRUE system [43]. These documents

are manually tagged with categories by personnel from Reuters Ltd. and Carnegie

Group Inc. For this set, there are five content related types of categories: Exchange

(39 categories), Organizations (56 categories), People (267 categories), Places (175

2In November 2000 Reuters released the first volume of a new large data collection of
Reuters News stories for use in NLP and IR research. This first volume includes about
810, 000 English documents from August 20, 1996 to August 19, 1997. This collection has
been used in the TREC-10 filtering track that took place from February to September 2001
while I was writing my dissertation.

18

categories), Topics (135 categories). The Topics categories represent economic subject

categories. Examples include coconut, gold, inventories, and money-supply. This set

of categories is the one that has been used in almost all the research with the Reuters-

1987 data [2, 16, 43, 63, 72, 96, 130, 136]. Hayes et al. [43] used these 135 categories

for evaluation, with only 723 documents in the test set and the remaining 21, 450

documents in the training set. This version has been used in [43].

Version two was prepared by Lewis [72] and contains 21, 450 documents. As

noted by Lewis, the original test collection (Version 1) had been chosen without

attention to certain properties of the data. In particular, there was some overlap

between the training and test sets used in the CONSTRUE study because the same

article was sometimes sent to Reuters in several slightly different versions on the same

day. For this reason, the 723 documents from CONSTRUE’s test set were set aside

in Lewis’ study. The remaining documents were split into two chronological groups.

All the stories which originally appeared before April 7, 1987 were used for training

(14, 704 documents), and the stories from April 8, 1987 or later were in the test set

(6, 746 documents). This version has a set of 112 categories with at least one example

in the training set. Of these categories 94 have one or more occurrences in the test

set while 90 have one or more occurrence in both. The average number of categories

per document is 0.64. 53% of the documents in the training set and 42% in the test

set have more than one category, but many have none at all. This collection was used

by [16, 63, 72, 78, 140].

19

Apte, Damerau & Weis [2] created version 3 of the Reuters-1987 collection

by discarding from the Lewis’ version 1 all those documents with “empty” topic

assignments and selecting only those categories that have at least one example in the

training set. This version has 10, 645 documents for training, 3, 672 documents for

testing, and 93 categories. This collection has been used in [2, 140, 141].

The fourth version of the Reuters-1987 collection was build by Wiener et al.

from the original Reuters-1987 collection [130]. They eliminated repeated stories,

and selected those that have at least one assigned topic. The training and test set

were selected by chronologically dividing the collection into many small chunks that

do not overlap, numbering these chunks, and selecting the odd numbered chunks for

training and the even numbered chunks for testing. This resulted in the collection

being divided into 9, 610 documents for training and 3, 662 documents for testing.

They use the 92 categories that have at least one example in the training collection

for evaluation. This collection has been used in [129, 130, 140].

During the 1996 ACM SIGIR Conference, a group of researchers recognized

the problems that all these variants had caused and the need to build a standard

Reuters-1987 collection [75]. The goal was to fix several problems present in the

original collection. Duplicate stories as well as unclassified stories (stories with no

topic assignment) were marked explicitly and excluded from the splits defined. Such

a collection was released at the end of 1997 and has been used for text categorization

experiments since 1998 [25, 65, 118]. The new standard Reuters-21578 collection has

20

Table 2.1: Collections used for text categorization research
Collection (version) Prepared by # categ # Train Doc. # Test Doc. Unused Docs. partition

(Training set)
Reuters-1987 (1) CGI 135 21,450 723 0 random

Reuters-1987 (2) Lewis 112 14,704 6,746 723 Chronological
(up to 4/7/87)

Reuters-1987 (3) Apte 93 10,645 3,672 7,856 Chronological
et al. (up to 4/7/87)

Reuters-1987 (4) Wiener 92 9,610 3,662 7,856 Random chunks
et al. (odd numbered sets)

Reuters standard Lewis 135 13,625 6,188 1,765 Chronological
(Reuters-21578) (Lewis split) (up to 4/7/87)

9,603 3,299 8,616 Chronological
135 (Apte split) (up to 4/7/87)

OHSUMED Lewis 119 183,229 50,216 Chronological
(years 1987-1990)

AP TREC Lewis 20 142,791 66,992 Chronological
(years 1988-1989)

21, 578 documents and includes five sets of categories topics described before. This

standard collection also defines two training-testing splits: the modified-Lewis split

and the modified-Apte split. These splits follow the training and testing data set

definition of the previously mentioned studies, for example the Lewis split uses all

the stories from April 7 and before for the training set while stories from April 8 and

after for the test set. However, because of the elimination of duplicate stories and

correction of many spelling errors in the categories the results of text categorization

experiments conducted with this collection are not comparable with those conducted

using the previous versions of the Reuters-1987 collection.

2.4.2 OHSUMED Collection

The OHSUMED test collection prepared by Hersh et al. was the first publicly

available large collection for information retrieval research [46]. It was prepared by

selecting all the articles published in 270 medical journals between 1987 and 1991.

21

The collection contains 348, 566 MEDLINE records. A MEDLINE record has several

fields such as title (.T), abstract (.W), source (.S), author (.A), etc., (see Figure 2.1).

These records are indexed with MeSH (Medical Subject Headings) categories (the

.M field) that have been manually assigned by indexers at the National Library of

Medicine (NLM). A subset of 233, 445 OHSUMED records have title, abstract and

MeSH categories and was selected by Lewis et al. for text categorization research

[78]. The records from the years 1987 to 1990 (183, 229 documents) were used for

training, and the documents from the year 1991 (50, 216 documents) were used for

testing. Relative to Reuters, OHSUMED has been used by fewer researchers to

explore text categorization [65, 67, 78, 143]. The main reason seems to be the size of

the collection and the large number of associated categories. The text categorization

subset of OHSUMED has 14, 626 different categories in contrast to Reuters which has

between 90 to 675 depending on what set of categories is used. A subset of MeSH,

specifically the Heart Diseases subtree consisting of 119 categories, has been used by

several researchers [65, 67, 78, 135] and is now a de facto standard comparison set.

However, as with the Reuters collection, not all these studies agree on the test set

used. For example Yang [135] reported results on the same subset of Heart Diseases

categories but using only those documents that are positive examples of any of the

119 categories. This reduced the raining set to 12, 267 documents for training and

3, 267 documents for testing. Lam and Ho [65] use the same category subset but limit

the documents to the year 1991 (50, 216 documents). Their test set includes only

22

the last 16, 738 documents of 1991 while the remaining 33, 478 documents are used

for training. Given the differences, comparisons between studies are to be made with

caution.

The OHSUMED collection has also been used in the context of the TREC-9

filtering track [101]. The filtering track assumes that a stream of incoming documents

has to be processed by the system to find documents relevant to the user’s interests

represented by profiles which reflect long term information needs. There are three

tasks in TREC filtering: adaptive filtering, batch filtering and routing. In the adaptive

filtering task the system starts with a user profile and a few positive examples (two or

four). Each document that is retrieved is immediately judged for relevance and the

system can use this information to change the profile. In batch filtering and routing

the system has access to a large set of training documents that can be used for tuning

the search profiles. In batch filtering the system must decide which documents should

be marked as relevant3, while in routing the system should return a ranked list of

documents. For TREC-9 all the 348, 566 documents of the OHSUMED collection

were used. For batch and routing the documents of 1987 were used as training

and the remaining four years as testing. A subset of 63 of the original OHSUMED

queries was selected for filtering. In addition, a set of 4, 903 MeSH headings were

selected by choosing those headings that had at least 4 relevant documents and had

at least one example in the last year of the test set4. Each MeSH topic forms a

3This is similar to the text categorization task that we have described before.

4Excluding MeSH headings not represented in the final year warranties that headings

23

corresponding profile and the documents assigned to the OHSUMED categories are

regarded as relevance judgments for each topic. This set of 4, 903 profiles proved to be

computationally demanding5 and only 4 groups out of the 14 participants submitted

results on this set. For this reason a smaller subset of 500 randomly selected profiles

was defined to allow participation of all the groups in the track.

An important feature of the MeSH categories is that they are organized around

a hierarchical structure. Interestingly this organization has been ignored in all text

categorization studies published so far. In other words researchers have not tried to

exploit the fact that some categories are more general or that others are highly special-

ized etc. Since our goal is to test the effectiveness of hierarchical text categorization

methods, OHSUMED is the best suited collection for our experiments.

2.4.3 AP-TREC Collection

The AP TREC collection contains 242, 918 Associated Press news stories from

1988 to 1990. This collection has been used as part of the data set for the Text

that have been dropped out of MeSH (which undergoes continual modification) are not
considered in the evaluation.

5Observe that if we use a classifier for each category that requires a total of 10 minutes
to train and process the test set we would need about 34 days to process the entire set of
4903 classifiers on a single processor. Using multiple processors we could reduce this time
significantly but this reduction is bounded by the amount of resources that can be dedicated
to the task. During the TREC-9 conference most of the groups that completed this task
said that they needed nearly 15 days to obtain a complete set of results.

24

.I 55402

.S
Heart Lung 8801; 16(5):584-9
.M
Adult; AIDS-Related Complex/*DI; Cardiac Tamponade/DI/ET;
Case Report; Electrocardiography; Endocarditis, Subacute
Bacterial/DI/ET; Female; Heart Diseases/DI/*ET/RA; Heart
Failure, Congestive/DI/ET; Heart Valve Diseases/DI/ET;
Human; Male; Myocardial Diseases/DI/ET; Support, Non-U.S.
Gov’t.
.T
The Miami vices in the CCU. Part II. Cardiac manifestations
of AIDS.
.W
Cardiac manifestations of AIDS probably occur more frequently
than is appreciated --despite autopsy reports indicating that
more than 50\% of deceased AIDS patients had myocarditis.
A high index of suspicion and the echocardiogram will help in
revealing the true incidence of cardiac involvement in AIDS.
.A
Valle BK; Lemberg L.

Figure 2.1: Example record from OHSUMED

25

Retrieval Conference (TREC) for ad-hoc retrieval6, routing and information filtering7

tasks. Lewis et al. [78] selected a subset of 209, 783 AP stories that contain exactly

one HEAD field (i.e., title) and TEXT field (i.e., the body of the article). A set of

20 categories was selected by combining two sets of 10 topics that had been used in

several works previously published (10 topics used in [14, 16, 76], and another set of 10

topics used in [73]). Examples of these categories include tickertalk, boxoffice, bonds,

gulf, Israel, and Japan. The documents from 1988 and 1989 (142, 791 documents) are

used for training and the year 1990 (66, 992 documents) are used for testing. This

collection has been used in [78, 118].

2.5 Evaluation Measures

A common strategy for evaluating the performance of machine learning meth-

ods is to use human performance as a gold standard. However, with text categoriza-

tion a problem is that the manual assignment of categories to a given document is

essentially a subjective task. Thus human indexers tend to disagree in their decisions.

This well known phenomenon called inter-indexer inconsistency has been recognized

in several studies (see for example [12, 42]). Nevertheless the performance of auto-

6The ad-hoc retrieval task of TREC is the classical IR task in which the document
collection is known and relatively stable but the questions likely to be asked are not known.

7In a routing task the queries are known in advance while the documents are not known.
This is similar to a situation in which a user has a topic to follow and receives a stream
of news from which the system should rank documents according to the relevance to the
user’s interest. Routing can be seen as an inverted ad-hoc retrieval problem. Filtering is a
more complex version of routing in which the system must perform a binary decision and
report only those documents relevant to the user’s interest.

26

Table 2.2: Contingency table for binary decision classification
Class Positive (C+) Class Negative (C−)

Assigned positive (R+) a b
(True Positives) (False Positives)

Assigned negative (R−) c d
(False Negatives) (True Negatives)

Table 2.3: Measures for binary classification defined
in Information Retrieval (IR) and Artificial Intelli-
gence (AI) communities

IR AI Formula
Recall (R) Sensitivity a

a+c

Precision (P) Predictive value(+) a
a+b

Fallout Predictive value(−) b
b+d

Accuracy a+d
a+b+c+d

Specificity d
b+d

Error rate b+c
a+b+c+d

matic text categorization is evaluated against results generated by human intellect.

In general, to evaluate a binary decision task we use a contingency matrix

that represents all possible outcomes of the classification task (see Table 2.2). The

information in this table underlines several evaluation measures. As Table 2.3 shows

some of these measures are more commonly used in AI research while others are more

dominant in IR.

None of these measures alone are appropriate to measure performance of text

categorization algorithms. Recall (Sensitivity), and precision (Predictive value(+))

if used alone might show deceiving results, i.e. a system that assigns the category

27

to every document (trivial acceptor) will show perfect recall (1.0). Accuracy, on the

other hand works quite effectively if the number of positive and negative examples

are balanced. However, it can also be deceiving in text categorization because the

number of negative examples is typically overwhelming compared to the number of

positive examples. In such situations, a system that assigns no documents to the

category (trivial rejector) will obtain an accuracy value close to 1.

Measures that combine recall and precision have been defined in IR: break-

even point, and Fβ measure. Break-even point proposed by Lewis [72] and used in [63,

65, 72, 140] is defined as the point at which recall equals precision. van Rijsbergen’s

Fβ measure [127] combines recall and precision into a single score according to the

formula:

Fβ =
(β2 + 1)P × R

β2P +R
(2.1)

F0 is the same as precision, F∞ is the same as recall. Intermediate values

between 0 and ∞ apply different weights assigned to recall, and precision. The most

common values assigned to β to evaluate performance in IR are 0.5 (recall half as

important as precision), 1.0 (recall and precision equally important), and 2.0 (recall

twice as important as precision). The F measure has been used in [64, 78, 89, 143].

Break-even point (BEP) has some disadvantages. Usually the value of the

break-even point has to be interpolated. Thus if the values of recall and precision are

too far then BEP will show values that are not achievable by the system. Also the

28

point where recall equals precision is not necessarily desirable nor informative from

the user’s perspective.

van Rijsbergen’s F measure is the most suited measure, but still with the

drawback that it might be difficult for the user to define the relative importance of

recall and precision. In this dissertation we will report results using F1 values because

it will allow us to compare results with other works that use the same dataset [78, 143].

In general the F1 performance is reported as an average value. There are

two ways for computing this average: macro average and micro average. With macro

average the category perspective is used, therefore the method computes the F1 values

for each category and averages them to get the final macro averaged F1. Another

approach is to use the document perspective. In this case each categorization decision

is equally important. We first obtain the global values for the true positive, true

negative, false positive, and false negative scores and then compute the micro averaged

F1 value using the recall and precision computed with the global values.

Two other measures have been used in the context of TREC evaluation for

measuring performance of filtering systems T9P and T9U. T9P is a precision oriented

measure defined as:

T9P = R+

Max(Target,(R++N+))

where R+ is the number of relevant documents retrieved, N+ is the number of non

relevant and Target = 50 documents. T9U is a linear utility function that gives

a credit of 2 for every relevant document retrieved and a penalty of 1 for a non-

29

relevant document retrieved. This is equivalent to filtering documents with estimated

probability of relevance above 0.33. Because the scores of the utility function can be

unbounded, T9U also defines a lower bound for the minimum score that can be applied

to a topic. The formula for T9U is:

T9U = Max(2 ×R+ −N+,MinU)

where MinU is a minimum negative value defined as -100 for the OHSUMED topics

and -400 for the MeSH topics.

2.6 Applications of Text Categorization

As we stated in Chapter 1, classification is a core task in many human activi-

ties. For this reason we can find applications of text categorization in many practical

problems. In this section we will describe some of the most common applications for

text categorization.

2.6.1 Document Indexing

Document indexing has been traditionally a manual task performed by li-

brarians to facilitate access to the books in the library. However, it also can be

automatic. Automatic indexing, proposed in the early 1960’s in Maron’s [81] seminal

work, is the application that motivated most of the early research in text catego-

rization [6, 31, 32, 40, 41, 42, 44, 47, 62, 81]. In these early studies the goal was

to perform automatic indexing to improve retrieval performance in Boolean infor-

mation retrieval systems. In these systems each document is assigned one or more

30

keywords that describe the content of the document. These keywords are terms from

a controlled vocabulary such as the MeSH or ERIC thesaurus. The motivation for

automatic indexing research derived from the fact that manual indexing performed

by trained human indexers is an extremely costly activity. In this application the en-

tries from the thesaurus are viewed as categories, and document indexing becomes a

multi-label text categorization problem. Several automatic document classifiers have

been described in the literature [4, 36, 38, 102, 125].

Automatic indexing is closely related to the emerging domain of automatic

metadata generation [120]. This application is particularly useful in digital libraries

where we are interested in tagging documents with metadata representing several

aspects, for example creation date, author, document format, etc. Metadata such as

bibliographic codes, or keywords may also describe the semantic of the document. The

generation of metadata can be accomplished by using automatic text categorization.

Another example of this kind of application is the classification of patents.

Every year the U.S. Patent and Trademark Office as well as the European Patent

Office receive an increasing number of patent applications that must be channeled

to the appropriate experts for study leading to a decision about whether to grant

the patent or not. A recent paper published by Larkey [70] shows a solution using

text categorization. Observe that this application can be viewed as a special case of

document indexing in which each patent must be assigned to a single category.

Automatic text categorization has recently been used to index and organize

31

information on the World Wide Web. It has been used to organize results from a

search engine, which is a method used by Northern Light and Google, with the goal

of facilitating the browsing of large numbers of documents. The WebKB project

at Carnegie Mellon University uses text categorization to classify web pages into

hierarchies such as Yahoo! topics [20, 21, 58, 84, 100].

2.6.2 Document Filtering

Document filtering refers to the task of classifying a dynamic collection of doc-

uments, for example a stream of incoming news wire stories. Filtering may be viewed

as a single-label categorization problem. Given a description of a topic (generally

called a profile), an information filtering system checks whether or not an incoming

news article is relevant to the topic. Additionally, a filtering system may perform

a further categorization step by organizing the relevant documents into topical cat-

egories. The described framework could also be used to filter and organize e-mail

[16].

As mentioned before the Text Retrieval Conference (TREC) has a research

track dedicated to the study and evaluation of filtering strategies. The most popular

task is that of adaptive filtering [50]. In this task the filtering system starts with

an initial profile (derived from very few documents) and receives feedback from the

user on the relevance of documents as they are presented to the user. The goal of

the system is to learn the characteristics of those documents deemed relevant by the

user and use them to adapt the user profile. A similar categorization task is studied

32

within the Topic Detection and Tracking (TDT) conference but here the incoming

stream is of audio format or the close caption text from TV/radio broadcasts news.

The TREC filtering track, as well as the topic detection task assume that a small set

of positive examples (usually 4 examples) is given to the system. The goal is to track

the development of the event [137] in the stream of news received by the system.

Text categorization has been applied to filter unsolicited bulk e-mail, also

known as spam. Spam messages are annoying to most users because of the waste

of space and time invested in deleting them. A 1997 study found that spam consti-

tutes approximately 10% of the incoming messages to a corporate network [19]. Two

studies have been published regarding the application of text categorization to build

anti-spam filters [1, 112]. These works evaluate the performance of naive Bayesian

classifiers as anti-spaming filters. One would expect that filtering spam messages us-

ing keywords will not work very well because in general spam messages do not have

an actual content or domain (many legitimate messages share the vocabulary of spam

messages). However both studies have showed that the naive Bayesian classifiers are

quite effective for filtering spam messages obtaining between 85 to 88% recall and 95

to 97% precision.

2.6.3 Other Applications

Word sense disambiguation is one of the most challenging problems in compu-

tational linguistics. It can be defined as the task of finding the “correct” sense that

an ambiguous (i.e. a polysemous or homonymic) word has in a text. For example,

33

the word bank has at least two different senses, as in the Bank of America or

the bank of the Mississippi river. Word sense disambiguation can be viewed

as a text categorization problem in which the context of the word occurrence is the

document and the different senses are the categories. Several works in the literature

[39, 45] have used text categorization strategies to solve the problem of word sense

disambiguation.

The most unusual application of text categorization that we have found is an

automatic essay grading system presented by Larkey [69]. In this application several

classifiers were trained to assign scores using a training set of manually-graded essays.

These scores were combined with several other summary text measures using linear

regression. When tested on a new set of essays the agreement between the automated

grader and the final manual grades was as good as the agreement between human

graders.

In this chapter we provided a general review of supervised learning algorithms

for text categorization with particular emphasis on document representation. We also

described evaluation measures and some of the recognized variations across studies

in using the standard test collections. Finally we illustrated some of the application

contexts that embed text categorization research.

34

CHAPTER 3
TEXT CATEGORIZATION METHODS

This chapter presents a survey of the supervised machine learning methods

that have been used in text categorization. Different approaches based upon Decision

trees (ID3) [37, 77, 92], inductive rule learning [2, 14, 15, 17], neural networks [105,

119, 130], Linear Classifiers [5, 49, 78], K-nearest-neighbor (KNN) algorithms [22,

56, 67, 134, 135], support vector machines (SVM) [26, 54, 56, 136], and Naive Bayes

[63, 77, 81, 84] have been explored. We will show that most of the research in text

categorization has focused on building classifiers without regard to the hierarchical

structure of the classification scheme. Only recently some works [63, 84, 90, 96] have

tried to take advantage of the hierarchical structure in certain classification schemes.

Automatic text categorization approaches can be classified according to their

theoretical foundations into:

• Classical IR based classifiers

• Statistical learning classifiers

• Linear classifiers

• Instance-based classifiers

• Decision trees

35

• Inductive rule learning

• Expert systems

• Neural networks

• Support vector machines

In general, the text categorization problem is framed as a supervised learning

task where the classifier learns the unknown target classification function from a

training set of examples. The classifier is then assessed by applying it to new instances

in a test set.

The following sections will describe some of these approaches and present

their major results. We will use the following notation (as specified in chapter 2):

C = {c1, . . . , cn} is the set of categories andD = {d1, . . . ,dN}is the set of documents,

d = (x1, . . . xm) is the vector that represent the document in the m dimensional term

space.

3.1 Classical IR Based Classifiers

This group includes several algorithms for categorization such as Rocchio’s

algorithm [103], and retrieval-threshold based algorithms (WORD) [135, 136]. The

retrieval threshold algorithm is a simple classifier that learns by ranking all the doc-

uments of the training collection according to the similarity to the name and/or the

description of the category and selecting an optimal similarity threshold that max-

imizes the performance measure. The learned classifier is then applied to the test

36

set where all documents above the threshold are categorized as positive instances of

the category. The retrieval threshold algorithm usually performs poorly and in some

studies has been used as a baseline value [136].

Rocchio’s algorithm was developed in the mid 60’s to improve a query using

relevance feedback. It has proved to be one of the most successful relevance feedback

algorithms. Rocchio [103] showed that the optimal query vector is the difference vector

of the centroid vectors for the relevant and the non-relevant documents. Salton &

Buckley [114] included the original query in the computation of the optimal query

so as to retain the focus of the query. They also added coefficients to control the

contribution of each component as shown below:

�Qnew = α�Qorig + β
1

R

∑
dj∈rel

dj − γ
1

N − R

∑
dj /∈rel

dj (3.1)

where dj is the weighted document vector, R = |rel| is the number of relevant

documents, and N is the total number of documents. All the negative components

of the final vector �Qnew are set to zero. Several techniques have been proposed to

improve the effectiveness of Rocchio’s method: better weighting schemes [122], query

zoning [123], and dynamic feedback optimization [10].

For text categorization the first term of Rocchio’s formula is zero because

we do not have an initial query. The other two terms represent the centroid of the

positive examples, and negative examples respectively and the classifier is the vector

of the difference between these centroids. For a given category ci ∈ C we compute a

37

vector w (which represents the classifier) using the formula:

wi = β
1

R

∑
dj∈ci

dj − γ
1

N − R

∑
dj /∈ci

dj (3.2)

Classification of a new document d consist in computing f(d) = wi · d . For

binary classification a threshold t is selected (usually by optimizing a performance

metric such as F1) using the training set and the category ci is assigned if f(d) > t.

Text categorization based on Rocchio’s algorithm was first proposed by Hull

[49] and since then it has been used as a base line in most text categorization stud-

ies [17, 54, 65, 78, 118, 119, 134, 140]. Several researchers have explored Rocchio’s

algorithm specifically to study its characteristics and behavior for categorization

[53, 99, 109]. Its performance is highly dependent on document the weighting scheme

but when properly tuned it is usually equivalent to other methods that are more

complex [118]. We will explore this classifier in more detail later in this dissertation

and compare its performance with other classifiers.

3.2 Statistical Learning Classifiers

These are classifiers that are based on statistical learning methods. The first

text classifier reported in the literature used a probabilistic approach [81]. We present

two members of this group: Bayesian learning and regression models for text catego-

rization.

The most common statistical method for text categorization is the naive Bayes

classifier [63, 77, 84, 88]. In general, the Bayesian approach to classify a new instance is

38

to assign the most probable target value, given the set of attributes A = (a1, . . . , am)

that describe the instance and the set of classes C = (c1, . . . , cn):

vNB = argmaxcj∈CP (cj)
∏
i

P (ai|cj) (3.3)

where vNB is the target value output by the naive Bayes classifier, and ai ∈ A. In

the learning step the different terms P (cj) and P (ai|cj) are estimated based on their

frequencies in the training set. The set of these estimates is the learned hypothesis.

This hypothesis is then used to classify a new instance using formula 3.3. This

formula is obtained under the assumption that the attribute values are conditionally

independent given the target value.

In text categorization the attributes are the terms (stems and/or phrases) in

the text that we want to classify. The naive Bayes classifier maximizes the proba-

bility of observing the terms that are in the text, subject to the Bayes independence

assumption. Observe that the independence assumption is often violated in natural

language. For example, the probability of observing the word “intelligence” is greater

if it is preceding by the word “artificial”. Despite the violation of the independence

assumption the naive Bayes classifier has performed very well in text categorization

of web pages [84, 85, 88, 91]. Bayesian classifiers have been tested in several standard

collections including Reuters (versions 2 and 3) [77, 92], news groups postings [84, 85],

and web pages [84, 85, 88, 91]. The results on the Reuters collection are 0.65 and

0.71 micro-averaged BEP on versions 2 [77] and 3 [92] respectively. A comparative

39

study by Yang shows that the naive Bayesian classifier has the lowest results of all

the learning methods reported in the Reuters collection.

Regression is another statistical learning method that has been used in text

categorization [52, 76, 119, 139]. Regression refers to the problem of approximating

a real-valued function f by means of a function ŷ that fits the training data [88, 120].

The most successful regression method for text categorization is the Linear Least

Square Fit (LLSF) method which was proposed by Yang and Chute [138, 139]. In

LLSF a multivariate regression model is automatically learned from the training set of

documents and categories. Each document dj has two vectors associated with it: an

input vector I(dj) (i.e., the standard document vector of m components one for each

term) and an output vector O(dj) which defines the weight of the n possible classes.

A matrix (M̂) of linear regression coefficients is obtained by solving a linear least

square fit on the training pairs of vectors. This matrix defines a mapping from the

words of an arbitrary document to the set of categories. The categorization of a new

instance is performed by multiplying the regression matrix by the document’s input

vector, obtaining a ranked list of categories that can be assigned (M̂I(dj) = O(dj)).

LLSF computes the matrix M̂ from the training set by computing the linear least

square fit that minimizes the error of the training set according to the formula:

M̂ = argminM ||MA− B||F (3.4)

where ||V ||F =
∑r

i=1

∑s
j=1 vij represents the Frobenius norm of an r×smatrix,

40

A is the m×N matrix whose columns are the input vectors of the training documents,

and B is the n × N matrix whose columns are the output vectors of the training

documents. M is an n × m matrix obtained by performing singular decomposition

on the training set.

LLSF is one of the most effective classifiers reported in the literature. It has

been tested using the Reuters collection (Version 3) obtaining 0.85 micro-average BEP

[140]. Despite its success in relatively small and medium size sets of categories, the

high computational cost associated with the computation of singular decomposition

makes it difficult to use LLSF in large dimensional problems.

3.3 Linear Classifiers

Linear classifier algorithms use a vector to represent a category in the same

dimensional space as the documents and a linear function f(d) to estimate the simi-

larity between the category and the document. Documents with the largest values of

f(d) are likely to be members of the class. The linear function may be expressed as:

f(d) = w · d =

m∑
j=1

wjxj (3.5)

where d = (x1, x2, . . . , xm) is the document vector that represents the text, w =

(w1, w2, . . . , wm) is the vector that represents the classifier, and m is the number of

features that represent a document from the collection.

Linear classifiers are also called profile-based classifiers because they rely on

the extraction of an explicit profile from the training set to represent a category [120].

41

The Rocchio classifier is an example of a linear classifier that presents the profile of

a class as the difference between the centroids of its positive and negative examples.

Several linear classifiers have been used for text categorization: linear discrimi-

nant analysis [5, 48, 119], perceptron algorithm [96, 119, 130], Widrow-Hoff algorithm

[65, 78], and Kivinen & Warmuth’s EG algorithm [78].

Linear discriminant analysis is based on finding the linear combination of the

variables that maximizes the separation between categories. The method character-

izes each class by its estimated mean vector (di) and covariance matrix (Si) measured

over the training set. The mean vector and covariance matrix are defined as:

di =
∑
dj∈ci

dj
|ci| (3.6)

Si =
1

|ci| − 1

∑
dj∈ci

(dj − di)(dj − di)
T (3.7)

where |ci| is the number of documents that contain this class. A new document d

is classified into the class with the nearest mean vector, scaled for the shape of the

covariance matrix, based on the Mahalanobis distance metric:

dist(d) = (d − di)
TS−1

i (d− di) (3.8)

This method has been successfully used in routing1 by Hull [49]. Blosseville et
1To remind the reader, in routing the classifier has to return a ranked list of documents

related to a given topic.

42

al. used linear discriminant classifiers to classify projects into disjoint categories [5].

The Widrow-Hoff algorithm (WH) runs through the training set for each cat-

egory one example at a time updating the weight vector at each step. Initially the

vector is set to zeros. At each step the new weight vector wi+1 is computed from the

old weight vector using the training example xi with label yi. The jth component of

the new weight vector is computed as:

wi+1,j = wi,j − 2η(wi · xi − yi)xi,j (3.9)

The parameter η > 0, which is usually called the learning rate, controls the

extent to which w is allowed to change and how much influence each new example

has on it. Observe that the second term of the formula 2(w · x − y)x is the gradient

with respect to w of the square loss (w · x − y)2. Thus the WH algorithm tries to

move in the direction that maximizes the loss.

The Kivinen & Warmuth’s exponentiated-gradient algorithm (EG) is similar

to WH in that it also uses a weight vector wi for each category and runs through

the training set one example at a time. The EG differs from WH in that all the

components of the weighting vector are nonnegative and must sum to one. Usually

the initial vector is set to w1 = (1/m, . . . , 1/m). The EG rule for updating weights

with each new example is:

43

wi+1,j =
wi,j exp(−2η(wi · xi − yi)xi,j)∑d
j=1wi,j exp(−2η(wi · xi − yi)xi,j)

(3.10)

Observe that each component wi,j is multiplied by exp(−2η(wi·xi−yi)xi,j), and

then the entire vector is renormalized. As before, the learning rate η > 0 controls

the impact of the new training examples. According to Kivinen & Warmuth each

new weight vector wi+1 can be shown to maximize a formula which trades off two

conflicting goals: (i) maximizing the loss (wi+1 · xi − yi)
2 of the vector wi+1 on the

current example xi, and (ii) penalizing a new vector wi+1 which is “too far” from the

old vector wi. The different rules of EG and WH are derived using different choices of

distance functions in (ii). The parameter η determines the relative importance given

to goals (i) and (ii).

WH and EG algorithms have been tested on the AP collection, and the

OHSUMED collection by Lewis et al.[78]. They report that WH and EG achieve

F1 performance values of 0.55 and 0.50 respectively which is significantly better than

the 0.44 obtained by them using a simple non optimized version of Rocchio classifier.

3.4 Instance-Based Classifiers

Instance-based methods such as nearest neighbor and locally weighted regres-

sion are learning algorithms that simply store the presented training data, in contrast

to methods that construct a general, explicit description of the target function when

training examples are provided. Generalizing beyond these examples is postponed

until a new instance is classified. Every time a new document needs to be classified,

44

its relationship to the previously stored examples is examined in order to assign the

target categories for the new document. Instance-based methods are also known as

lazy learning methods because they delay processing until a new instance must be

classified [88, 120].

Described in the mid 1960’s by Cover & Hart [18], the K-Nearest Neighbor

(KNN) algorithm is one of the most basic instance-based methods for pattern recog-

nition. Given an object represented in the multi-dimensional term space, its k-nearest

neighbors are defined in terms of the standard Euclidean distance. The application

of the KNN algorithm to text categorization was initially proposed by Creecy and

Masand in the early 1990’s [22, 82]. They used a KNN based classifier to catego-

rize stories for the Dow Jones in a CM-5 machine. A weighted-distance version of

KNN for text categorization has been used by Yang obtaining very good results in

the Reuters collection and in the OHSUMED collection [135, 136, 141]. The cate-

gorization of a new document in the test set is based on the categories assigned to

the k closest documents from the training collection. Given a new document from

the test set, the algorithm finds the k nearest documents from the training collec-

tion and ranks them by similarity value. The similarity of each neighbor to the new

document is used to weight each category of the neighbor, and the sum of category

weights over the k nearest neighbors are used for category ranking. Those categories

above a threshold are assigned to the document. Observe that in contrast to other

methods that perform a binary assignment for each single class, such as Bayesian

45

classifiers, the KNN algorithm can assign multiple categories to a document. Despite

its simplicity, KNN has proven to be one of the most effective algorithms for text

categorization. Yang [136] has reported results on the Reuters collection versions 2,

3, and 4 obtaining micro-averaged BEP of 0.69, 0.85, and 0.82 respectively. These

values are comparable to the performance achieved by neural networks, and LLSF.

3.5 Decision Trees

Decision trees have also been applied to text categorization by several authors

[77, 92, 93]. Lewis and Ringuette [77] used the IND package developed by Buntine

[11] to implement a decision tree (DT-min-10) for the Reuters (version 3) collection.

For each category they build a decision tree using the recursive partitioning algorithm

with information gain split rule. A leaf is forced whenever a node has less than 10

examples. No pruning was done on the final tree. Lewis and Ringuette report a

micro-averaged BEP of 0.67 which is a low performance for the Reuters collection

(version 2).

Moulinier [92] uses an implementation of ID3 with the Reuters collection (ver-

sion 3) reporting a good performance (micro-averaged F1=0.78).

The most significant application of decision trees to text categorization was

done in the AIR/X project developed at Dortmund University [4, 36, 37, 38]. This

was a project spanning more than 10 years that produced an operative system for

the classification of scientific literature. The text categorization approach employed

in AIR/X is known as the Darmstadt Indexing Approach (DIA). The DIA is based

46

on the computation of association factors called z(tk, ci) between free text terms tk

and categories ci, where z(tk, ci) = P (tk,ci)
P (tk)

. This is simply the conditional probability

P (ci|tk), i.e. the portion of training documents containing tk that are classified under

ci. After computing these factors, the DIA trains a decision tree in two steps. In

the first step (called the description step), for every occurrence txkj of the term tk in

training document dj, a relevance description vector rd(ci, dj) is updated by using

z(tk, ci) and the characteristics of occurrence txkj (i.e. the section of dj that contains

txkj). In the second step (called decision step), the relevance description rd(ci, dj) is

transformed into a discrete-valued vector rd(ci, dj). At this point, the ID3 decision

tree algorithm is invoked. The ID3 algorithm selects one attribute of the vector

representation at a time using a χ2 criterion to partition the training vectors into

equivalence classes of identical vectors. to categorize a new test document d the

decision and description steps are applied to d. The percentage of training vectors

rd(ci, dj) assigned to the equivalence class of rd(ci,d) (which corresponds to the

probability that the assignment is correct) determines the final assignment assignment

of categories to the document d.

3.6 Inductive Rule learning

This group includes algorithms that automatically generate a set of rules for

text categorization [2, 13, 15, 17, 93, 94]. This is an attractive solution because the

set of rules can be interpreted directly by human indexers thereby supporting validity

checks.

47

Apte, Damerau & Weiss used a technique called Swap-1 to generate induction

rules for classifying the Reuters collection (version 3)[2]. This rule induction method

attempts to find a “compact” covering rule set that completely partitions the examples

into their correct classes. The set of rules is found by heuristically searching for a

single best rule that covers cases in a class. This rule is the added to the set of

existing rules, and the covered cases are removed from further consideration. The

process is repeated until all the cases are covered. Once a covering set is found for

all the categories, it is refined by pruning or statistical techniques. Using training

and test evaluation methods, the initial covering rule set is then scaled back to the

most statistically accurate subset of rules. For each category a set of features is

selected from a local dictionary build from the words of all the positive examples of

the category. The words in the local dictionary are ranked by document frequency

and the top few are used as features by Swap-1.

RIPPER [16] uses a similar approach by repeatedly adding rules to an empty

rule set until all positive examples are covered. Rules are formed by splitting the

training set in two subsets a “growing set ” and a “pruning set”, and greedily adding

conditions to the antecedent of a rule (starting with an empty antecedent) until no

negative examples are covered; after such a rule is found, the rule is simplified by

greedily deleting conditions so as to improve the rule’s performance on the “pruning

set”. After covering all the positive examples, an optimization phase modifies the

rule set and improves its fit on the whole training set.

48

RIPPER and Swap-1 methods have been tested on the Reuters collection

(version 3) and yielded similar performance (0.79 and 0.80 micro-averaged BEP)

[2, 16]. RIPPER has also been tested in the new Reuters standard collection (Reuters-

21578) obtaining 0.696 in the ModeLewis split and 0.820 in the ModApter split [17].

3.7 Expert Systems

During the late 80’s several papers reported expert systems for text catego-

rization such as CONSTRUE [43] and MedIndex [51]. In general, these systems rely

on a set of manually constructed rules, which is stored in a knowledge based, and

one or more inference mechanisms that use the rules stored in the knowledge base

to infer the correct classification of a document presented to the system. MedIndex

is an expert system built at the National Library of Medicine for computer assisted

document indexing of medical literature using MeSH headings [51]. The system uses

manually constructed rules to select a set of candidate MeSH categories that could

be assigned to a document. It is not a fully automated text categorization system

because the final categorization decision is taken by human indexers who can expand

or reduce the proposed set of categories. However, it is an example of a set of care-

fully constructed rules for text categorization. The CONSTRUE system is an expert

system built specifically for text categorization of Reuters articles. It was the first

work that used the Reuters collection (version 1). Hayes et al. report that it took

about 1.5 person-years to develop the rules for text categorization in CONSTRUE

[43]. The system shows an impressive performance (0.90 micro-averaged BEP) over

49

a small subset of about 3% of the Reuters collection. Despite their initial success,

expert systems for text categorization have not been further developed possibly be-

cause the adaptation to other domains as well as the expansion of the system to use

new categories have proven to be extremely costly and labor intensive.

3.8 Neural Networks

Neural networks are machine learning methods that provide a robust approach

to approximating real-valued, discrete-valued, and vector-valued functions [88, 107].

Neural networks are inspired by the observation of biological organisms and their

large interconnected webs of neurons. They are a rough approximation of biological

organisms in the sense that they are built out of small units (neurons) that are

interconnected to form a web. Each neuron receives one or more real-valued inputs

and produces a single real-valued output, which may become the input of another

unit. Despite the similarity, there are many complexities in the biological systems

that are not captured by the neural network models. The most successful method for

supervised learning in neural networks is the backpropagation algorithm which was

introduced by Rumelhart and his collaborators [107, 108].

Neural networks were introduced to text categorization in 1995 [119, 130] and

several studies have used them since then [23, 96, 105, 106, 129, 140]. A neural net-

work classifier consist of two or more layers of interconnected units. The input units

represent the terms of the document, while the output units typically represent the

categories that can be assigned to the document. The units are interconnected and

50

the weights associated to the connection edges represent conditional dependence rela-

tions. Since this dissertation proposes the use of neural network classifiers using the

hierarchical structure of the vocabulary, we will describe them in detail in subsequent

chapters.

Wiener, Pedersen & Weigend [130] use a backpropagation neural network per

category using two kinds of architectures: a flat architecture, and a modular archi-

tecture. The flat neural networks are backpropagation neural networks trained for

each category on the entire training set. They use simple neural networks with a

single hidden layer of six logistic sigmoid units. Their modular neural network archi-

tecture has two levels. The first level represents meta-topics while the second level

represents specific sub-topics. The first level is a network trained on the full training

set to estimate the probability that each of the five meta-topics (agriculture, energy,

foreign exchange, government, and metals) is present in the document. A meta-topic

is present if any of its subtopics is present. The second level contains specific topics.

Each topic is represented by a neural network which is trained only on the documents

that are positive examples of the meta-topic. The meta-topic network use fifteen

hidden units and five outputs (corresponding to the five meta-topics). The topic net-

works use six hidden units and a single output. A document is classified by presenting

it to the meta-topic network and to each of the topic networks. The outputs of the

meta-topic network are then multiplied by the output of their corresponding topic

networks to obtain a final estimate. The performance reported on Reuters collection

51

(version 4) is 0.82 micro-averaged BEP which is one of the best results reported for

this collection.

3.9 Support Vector Machines

Support vector machines for text categorization have been recently proposed

by Joachims [54, 56, 57] and subsequently used by other researches [26, 124, 136]. In

geometrical terms, this method can be seen as the attempt to find the best surface

σi that separates the positive and negative examples. “Best” here means that σi sep-

arates the positive and negative examples by the widest margin. This method is an

application of the structural risk maximization principle, according to which the deci-

sion surface should minimize the true error, i.e., the probability of misclassification of

randomly selected, yet unseen test examples. The best decision surface is determined

by only a small set of training examples called the support vectors.

Support vector machines offer important advantages for text categorization

[54]:

• There is no need for term selection because support vector machines do not

suffer from over-fitting and can scale up to considerably large dimensions.

• There is no need for parameter tuning on a validation set because there is a

theoretically motivated “default” choice of parameter settings which has also

been shown to provide the best effectiveness.

Joachims [55, 57] has published results for the Reuters collection and for the

52

OHSUMED collection using support vector machines. The SVM performance on new

standard Reuters collection (Reuters-21578) using the ModApte split is 0.864 micro-

averaged break-even point, which is the best results published for this collection. For

the OHSUMED collection Joachims uses the 23 “Disease” categories of the MeSH

classification and the first 20, 000 documents of the year 1991 dividing it into two

sets of 10, 000 documents each that are used for training and testing respectively. He

reports a macro-averaged break-even point of 0.660 on the 23 “Disease” categories.

We have to note that the text categorization task is very different from the one

described in any of the previously discussed works. Joachims uses only the high level

disease categories and assumes that if a descendant in the UMLS tree is assigned

then the general category is present. This assumption simplifies the problem to a

general level of categorization and might be the reason for the high performance

values reported in his SVM experiments, because general categories are easier to tell

apart while more specific categories tend to be harder to separate. This assumption

as well as the training-test split used prevents comparison of Joachims’ results with

any of the previously published results. Dumais et al. [26] have shown that support

vector machine achieve training speeds comparable to computationally easy methods

such as Rocchio. Recently, Dumais and Chen have explored the use of SVM for

classifying very heterogeneous web content [25].

53

3.10 Hierarchical Approaches

One structural characteristic of many classification schemes is the presence of

a hierarchical framework. In such schemes the more general categories (at high levels)

typically lead to more specific categories (at lower levels). Interestingly only four of

the works presented in previous sections explicitly use the hierarchical structure of the

corresponding classification scheme [63, 84, 90, 96]. Three of them Mladenić [90, 91],

Koller & Sahami [63, 111], and McCallum et al. [84] use Bayesian classifiers, while

Ng, Goh, & Low [96] use perceptrons.

Koller & Sahami [63, 111] proposed a hierarchical approach that trains inde-

pendent Bayesian classifiers for each node of the classification hierarchy. They use

the Reuters collection and three simple hierarchies that are built by using as high

level nodes those categories that tend to subsume other categories. The classification

method starts at the root and selects the best link to a second level classifier. This

process is repeated until a leaf is reached or until it is determined that none of the

children is a good candidate. The system assigns the categories of the activated nodes.

According to the authors, the hierarchical structure is used as a filter that activates

only the best classification path. Observe that errors in classification at the higher

levels are irrecoverable in the lower levels. Koller and Sahami report classification

accuracy on each of the three small hierarchies and compare performance against a

naive Bayes classifier. The best classification results for the first two hierarchies do

not show significant differences between the hierarchical and flat classifiers (94.1 for

54

both classifiers in Hier1, 90.0% accuracy for the hierarchical vs 87.7% accuracy for the

flat classifier on Hier2). The third hierarchy shows a significant difference in accuracy

between the hierarchical (98.6%) and the flat (95.7%) classifier.

Mitchell and his collaborators in CMU have been working on text categoriza-

tion specifically targeting the problem of classifying web pages and the problem of

extracting knowledge from the World Wide Web [20, 21, 58, 84, 100]. Their approach

is also based on Bayesian classifiers. They use the hierarchical structure (such as

the Yahoo! Hierarchy, and the Industry Sector Hierarchy) to improve the accuracy

of Bayesian classifiers using a statistical technique called shrinkage that smoothes

parameter estimates of a child node with its parent in order to obtain more robust

estimates. The Bayesian classification schemes consists in estimating the parameters

of the model from the training collection, and then applying the shrinkage method to

improve these estimates using the predefined vocabulary hierarchy. The classification

of the test set is performed by computing the posterior probability of each class given

the words observed in the test document, and selecting the class with the highest

probability. The performance of the flat classifier on the Yahoo! categories is 36.4%

for the flat classifier and 39.5% for the hierarchical classifier. Their experiments show

that shrinkage improves the performance when the training data is sparse, reducing

the classification error by up to 29%.

Mladenić [90, 91] also explored hierarchical classification structures using the

Yahoo hierarchy to classify web pages. Her approach also uses a Bayesian classifier.

55

For each node in the Yahoo subject hierarchy a classifier is induced. To train each

of the non-leaf classifiers a set of positive examples is defined as consisting of all the

positive examples of the node plus the positives examples of the descendants. These

examples are weighted according to their position in the tree. The classification

process on the test set works as described before for the Bayesian classifiers but only

the set of categories with predicted probability ≥ 0.95 are assigned. The results

reported on three domains (sub-trees) of the Yahoo! hierarchy are 0.33, 0.44 and 0.42

F2.

Ng et al. [96] build their hierarchical classifier using perceptrons. Each node

of the hierarchical classification tree is represented by a perceptron. They distinguish

two types of nodes, leaf nodes and non-leaf nodes. They apply this to the Reuters

corpus (version 3) where the categories reflect a 3-level geographical/topical hierarchy.

The root node of their hierarchy is connected at the first level to nodes representing

all the possible countries, and for each country different topics are defined, i.e. eco-

nomics and politics. The leaf nodes are specific categories of the second level (e.g.,

for economics they have communications, industry, etc.). The hierarchical classifier

receives a document and checks whether it belongs to any of the first level nodes (any

of the different countries). If the tested document belongs to a country according to

the classifier built for that country category, then the system checks for membership

in the categories of the subtree rooted at that country category. If at any of the

non-leaf nodes the process finds that none of its children is a good candidate, then

56

the categorization stops at that branch of the recursion. The output of the classifier

is the final set of leaf nodes reached in the recursion (zero, one or more). Observe

that the system makes the underlying assumption that the categories in the path of

the leaf node are also assigned. This methods is similar to the Pachinko machine

proposed by Koller and Sahami, but with multiple outputs instead of a single output

[63].

In general all of these studies have found improvements when the hierarchical

structure information is used for building the classifiers. However, Koller & Sahami

report some mixed results where, depending on the hierarchy used, the flat classifier

outperforms the hierarchical classifier. This might be explained by the way they per-

formed the binary decisions in the hierarchical approach, since with the high level

nodes they select only the most probable branch. The errors at internal nodes com-

pound, and as a consequence the incorrect decision cannot be recovered on the lower

level nodes. In their approach the intermediate nodes must have a very high accuracy

in order to obtain a performance higher than the flat classifier.

Unfortunately, the results of the four studies are not comparable because they

use three different test collections (Yahoo! web pages, Reuters (version 3), and news

group articles). Furthermore although Koller & Sahami, and Ng, Goh, & Low use

the same Reuters collection (version 3), the results reported with the hierarchical

classifier are not obtained for the same set of categories. Moreover the two studies

report results with different performance measures (accuracy, and BEP respectively)

57

which are not comparable.

Theoretically we observe that as shown by Mitchell [87] under certain con-

ditions a hierarchical classifier like the Pachinko machine is equivalent to the non

hierarchical classifier. His proof makes three assumptions: (1) each classifier is based

on the same method (e.g. naive Bayes) used in the non-hierarchical approach, (2)

the probabilities of terms are estimated using a maximum likelihood estimator, and

(3) each document is represented using a constant length feature vector employed

uniformly at each level in the hierarchy.

The work on topic spotting by Wiener et al. [130] (which was explained in

detail in section 3.8) inspired us to try our approach using a hierarchical mixture of

experts (HME) model that will be explained in detail in the following chapters. Dur-

ing the development of this dissertation they published a sequel of their work applied

to hierarchical classifiers [129]. Their model uses a meta-topic network that could be

equivalent to the gating network in the HME model. They have published results

using a two level hierarchy on the Reuters collection. Their results are competitive

with other methods.

3.11 Summary

This chapter has presented a detailed survey of the different methods that have

been applied in text categorization. We can generalize that all these methods are

based on supervised learning techniques, most of them taken from machine learning.

Most of these approaches have explored the problem of text categorization without

58

taking into account the hierarchical structure of the classification vocabulary. The

few attempts in using this hierarchical structure have unfortunately concentrated

on the Reuters collection which does not have a well defined hierarchical structure.

On the other hand OHSUMED, which has a nice hierarchical structure based on

the Medical Subject Headings (MeSH), has been explored by very few researchers

possibly due to both the size of the collection, as well as the large number of categories

(more than 14, 000) and scalability limitations of many of the proposed techniques.

Moreover, none of the previous studies have used the hierarchy of MeSH categories, a

classification scheme that has a rich knowledge structure. This leads us to conclude

that the exploration of hierarchical methods for text categorization is an open issue

that can be addressed in this dissertation.

Text categorization is an area of research that has captured the attention of

many researchers because it is a challenging high dimensional problem that calls for

effective techniques capable of efficiently handling a high volume of data. It is still a

growing research area. Only recently a survey on text categorization was published

by Sebastiani [120]2.

The next chapter will present a detailed description of our approach to text

categorization, emphasizing the use of the hierarchical structure of the classification

vocabulary, and experimental results using this method and different text categoriza-

tion algorithms.

2We thank Dr. Fabrizio Sebastiani for making available his compiled bibliography[120].

59

CHAPTER 4
HIERARCHICAL MIXTURES OF EXPERTS MODEL

The goal of this dissertation is to build a classifier that exploits the hierarchical

structure of the classification scheme. As we mentioned before, a few researchers have

explored hierarchical text categorization [63, 84, 90, 96, 129]. Most of these methods

use the high level nodes as filters that control the activation of low level nodes. Weiner

et.al. [130] proposed a method in which the high level filter (which is represented by

a multi-layer perceptron) computes the probability that a group of topics is present

in a document. Although their research involves a shallow classification hierarchy,

their approach uses a mixture model where the high level filter learns the best way

of combining the lower level categories to obtain the best categorization result. This

work inspired us to explore the use of the mixtures of experts (ME) model for text

categorization. In particular we are interested in using a hierarchical version of the ME

model. This chapter presents the theoretical basis of the Mixtures of Experts model,

and their natural extension the Hierarchical Mixtures of Experts (HME). We present

the connection between the HME and the hierarchical indexing structure, concluding

with the presentation of our adaptation of the HME model for text categorization

that will be used in this thesis to build the hierarchical classifiers.

60

4.1 Mixtures of Experts Model

The mixtures of experts (ME) model is based on the “divide and conquer”

principle in which a large problem is divided into many smaller, easier to solve prob-

lems whose solutions can be combined to yield a solution to the complex problem.

The mixtures of experts model consists of a set of experts, which model conditional

probability processes, and a gate which combines the probability of the experts (see

Figure 4.1).

The ME model is based on the classical decomposition of target under the

assumption that there is an intermediate process Z that relates the inputs X with the

outputs Y. This decomposition can be expressed in probabilistic terms as follows:

P (Y |X) =
∑
Z

P (Z|X)P (Y |X,Z) (4.1)

where Z is a set of hidden or missing data, and the sum is over all configurations of

Z. The hidden data indicates which expert is responsible for generating each point.

In a training set of N points, Z is made up of vectors z(n), for n = 1, . . . N , that have

binary values of 0 or 1. When an expert εi (i = 1, . . . , I where I is the number of

experts) is responsible for generating the example, the corresponding component z
(n)
i

is set to 1 otherwise it is set to 0.

z
(n)
i =

⎧⎪⎪⎨
⎪⎪⎩

1 if expert εi generated y(n) from x(n);

0 otherwise

(4.2)

61

This decomposition implies that each pair (x(n),y(n)) is generated by a single

specific process, indicated by the state of the vector z(n), generating the output y(n)

given the input x(n). The modeling of this decomposition needs two tasks to be

addressed: 1) to model the processes Z, given X; and 2) to model the assignment

of the output Y, given X and specific process Z. In the ME model these tasks are

performed by two basic components: a gate node and two or more experts nodes. The

gate models the probabilistic assignments of inputs to processes, P (z(n)|x(n),v) given

parameter v. For each process i an expert node models the probabilistic generation

of outputs P (y(n)|x(n), z
(n)
i = 1,wi) given the inputs and the parameter wi.

In a general mixtures of experts architecture there are I experts {εi}I1 and a

gate G. Together they model the conditional density of targets Y = {y(n)}N1 given

inputs X = {x(n)}N1 as:

P (Y |X, θ) =
N∏
n=1

I∑
i=1

P (z
(n)
i = 1|x(n),v)P (y(n)|x(n), z

(n)
i = 1,wi) (4.3)

where θ is the overall set of parameters θ = {v, {wi}I1}. To improve readability

of formulas from here on we will use the following shorthand notation proposed by

Waterhouse [128]:

P (εi|x(n),v) ≡ P (z
(n)
i = 1|x(n),v) (4.4)

62

P (y(n)|x(n), εi,wi) ≡ P (y(n)|x(n), z
(n)
i = 1,wi) (4.5)

The expected value of the probability density function of equation 4.3 is used

for predicting the values of target y(n) given x(n) according to the following model:

ŷ(n) = E(y(n)|x(n), θ) =
I∑
i=1

P (εi|x(n),v)E(y(n)|x(n), εi,wi), (4.6)

=

I∑
i=1

g
(n)
i ŷ

(n)
i

where the short-hand notation g
(n)
i = P (εi|x(n),v) and ŷ

(n)
i = E(y(n)|x(n), εi,wi).

In other words, given an input x(n), each expert εi makes a prediction ŷ
(n)
i of

the target y(n). The gate combines these predictions with its outputs {g(n)
i }I1 to give an

overall prediction of the model (4.6). Figure 4.1 shows an schematic representation

of a ME model. The gate outputs {g(n)
i }I1 can be interpreted as estimates of the

probabilities of selecting each of the experts I given the input x(n). An appropriate

parameterization of the gate is a probabilistic classifier, e.g., a logistic regression

model:

P (εi|x(n),v) =
1

1 + exp(−(vTx(n)))
(4.7)

in which the gate consist of a d+ 1 dimensional parameter vector v.

The form of the experts is chosen in such a way that it fits the particular

problem at hand, for example a linear regression model, multi-layered perceptrons or

63

Expert
Network

y
2

(n)

Expert
Network

y
1

(n)

Σ

y (n)

x (m)x (m)

Gating
Network

g

g 1

2

x (m)

Figure 4.1: Example of a Mixtures of Experts (ME) model with two experts, ε1 and
ε2 and a gate G

radial basis functions. The experts can take a form such that the expected value of

their probability density is consistent with the form of the problem, although it is

desirable to use experts which have simple form since their optimization is easier and

they may be easily interpreted.

Waterhouse [128] gives a nice interpretation of the mixtures of experts model

using belief networks. A belief network, also called Bayesian network, is a graphical

representation of the joint probability statements. These graphical models are ap-

pealing because they allow us to represent different models within a unified scheme.

Bayesian networks are an active focus of current research, and a variety of algorithms

have been proposed for learning and using them for inference [88]. The believe net-

work from Figure 4.2 expresses the assumption that the target Y is dependent on the

input X and the multinomial random variable Z.

64

Y

Z

X

Figure 4.2: Belief Network for the Mixtures of Experts model

4.2 Hierarchical Mixtures of Experts

The Hierarchical Mixtures of Experts(HME) model is a supervised feedforward

network that may be used for classification or regression [60]. As the ME model, it is

based on the principle of “divide and conquer” and can be considered a generalization

of the ME model in which the children nodes can also be mixtures models. Figure

4.3 shows an example of an HME model with two levels and binary branching nodes.

An intuitive interpretation of the HME model is that each process is itself composed

of a decomposition into processes that are selected stochastically.

Various methods have been proposed for decomposing large problems using the

“divide and conquer” approach. The simplest approach is to divide the problem into

sub-problems that have no common elements, also called a “hard split” of the data.

The optimum solution of the smaller problems can then be chosen on a “winner-takes-

all” basis. Classification and Regression Trees (CART) [8] are based on this principle.

Stacked Generalization [132] also uses a hard split of the data and a weighted sum

with weights derived from the performance of the smaller problems in their partition

space. In contrast, HME divides the large problem into sub-problems that can have

65

Expert
Network

Expert
Network

Expert
Network

Expert
Network

y (n)
1.1

Gating
Network

Gating
Network

Gating
Network

x x x

y (n)

Σ

Σ

Σ

g

g

g

g

1.1

g

g

1.2

2.1

2.2

2

1

x

y (n) y (n) y (n)

1.2
2.12.2

y (n)
y (n)

1
2

x (m)

x (m)

(m) (m) (m) (m)

x (m)

Figure 4.3: Hierarchical Mixtures of Experts model

common elements – a “soft split” of the elements into a series of overlapping clusters.

The outputs of the simple problems are combined stochastically to obtain a global

solution.

The HME presented in Figure 4.3 may be seen as a cascade of networks that

works in a “bottom-up” fashion: the input is presented to the experts that generate

an output, then the output of the experts are combined by the second level gates,

generating a new output. Finally the outputs of the second level gates are combined

by the root gate to produce the appropriate result y(n).

To obtain the conditional probability density of the HME model shown in

66

Figure 4.3 we define an indicator variable z
(n)
i for each intermediate node in the tree.

z
(n)
i is 1 if the node i is in the path from the root node to the terminal node that

was considered to generate the data at time n, and 0 otherwise. We use individual

gates Gj with parameter vj to model each conditional probability at the intermediate

nodes and an expert εi with parameter wi to represent each terminal node. Given

independent identically distributed data, we can write the conditional probability of

the HME model with two levels (shown in Figure 4.3) as:

P (Y|X, θ) =

N∏
n=1

∑
i

P (z
(n)
i = 1|x(n),v0)

∑
j

P (z
(n)
j = 1|z(n)

i = 1,x(n),vi)P (y(n)|x(n), z
(n)
i = 1, z

(n)
j = 1,wj)

(4.8)

where the indices i and j represent the first, and second levels respectively. Using

a shorthand notation similar to the one presented for the ME model we write the

prediction of the expert εj as ŷ
(n)
j and th jth prediction of a gate as g

(n)
j . The

expected value of y(n) is:

ŷ(n) = E(y(n)|x(n), θ)

=
∑
i

P (z
(n)
i = 1|x(n),v0)

∑
j

P (z
(n)
j = 1|z(n)

i = 1,x(n),vi)E(y(n)|x(n), z
(n)
i = 1, z

(n)
j = 1,wj)

=
∑
i

g
(n)
i

∑
j

g
(n)
j y

(n)
j (4.9)

67

In the original HME model proposed by Jordan and Jacobs all the networks

in the tree are linear (perceptrons). The gating networks are also generalized linear

functions. The ith output of the top level gating network is the “softmax” function

of the intermediate variable ψi [9, 86]:

gi =
eψi∑

j=1,...,I e
ψj

(4.10)

where I is the number of child nodes of the gating network, and the intermediate

variable ψi is defined as:

ψi = vTi x (4.11)

where T is the transpose operation. The gis are positive and sum to one for each x.

They can be interpreted as providing a “soft” partitioning of the input space.

Similarly, the gating networks at the lower levels are also generalized linear

systems. The output of the jth unit in the ith gating network at the second level of

the architecture, denoted by gj|i, is defined as:

gj|i =
eψij∑

j=1,...k e
ψij

(4.12)

where k is the number of child nodes of the gating network, and the interme-

diate variable ψij is defined as follows:

68

ψij = vTijx (4.13)

Note that since both the g’s and the y’s depend on the input x, the output is

a nonlinear function of the input.

4.3 HME Model for Text Categorization

We build a variation of the HME model that is adapted to text categorization.

In general, the classification task can be a 1-of-K (multinomial classification) task

or a k-of-K (multi-way classification) task. 1-of-K classification tasks can be viewed

as a competition problem. Text categorization is a k-of-K task since a document

could be assigned to one or more categories simultaneously. k-of-K classifications are

equivalent to K independent 1-of-2 classifications [86, 107]. In our model, a gate has

a single output that behaves like a binary switch. It will have value 1 if any of the

categories of its descendants have been assigned to the training document.

This can be interpreted in terms of a hierarchical classification as the fact that

a general concept is present in the document, e.g., the concept “Heart diseases” is

present in a document that talks about the specific concept “Coronary Thrombosis”.

Figure 4.4 shows an example of our hierarchical classifier.

Our categorization task starts at the root node and the gate decides whether

the most general concept is present in the document. If this is true, then all the

second level nodes are activated and the process repeats again until it reaches the

leaf nodes. Observe that only the experts connected to gates that have value 1 are

69

Expert
Network

Expert
Network

Expert
Network

Expert
Network

y (n)
1.1

Gating
Network

Gating
Network

Gating
Network

x x x

y (n)

(n)

Σ

Σ

Σ

x

y (n) y (n) y (n)

1.2
2.12.2

y (n)
y (n)

1
2

x (m)

(m) (m) (m)

x

x

(m)

(m)

Figure 4.4: Modified Hierarchical Mixtures of Experts model

activated. This is equivalent to have a HME model in which the output of the gates is

a threshold function. Observe that since gates and experts depend only on the input

x we can compute their output in a “bottom up” or “top down” fashion, however

training the HME is usually done in a top down fashion. Since our model takes a

binary decision on the upper level nodes, proceeding in a “top down” fashion would

reduce the number of nodes activated reducing the response time for classification.

To give a statistical interpretation of our model we define Z0, . . . , Zj as the

path of gates from the root node to the gate j that is the parent of an expert εk that

assigns category k. Let x(n) be the input features that represent a document, and

70

y(n) the output vector of the categories assigned to the document. The probabilistic

interpretation of our hierarchical model is as follows:

ŷ(n) = E(P (y(n)|x(n), θ))

=
I∑

k=1

P (Z0 = 1|x(n),v0)P (Z1 = 1|Z0 = 1,x(n),v1) . . .

P (Zj = 1|Z0 = 1, . . . , Zj−1 = 1,x(n),vj)E(y
(n)
k |x(n), Z0 = 1, . . . , Zj = 1,wk)

(4.14)

The hierarchical structure in a HME model is predefined1, and generally de-

fined in terms of the number of classes that are present in the training set. In the

case of a classifier for text categorization we will use the hierarchy of the classification

vocabulary. This allows us to integrate information about the relationships between

the different categories of the domain which in flat classifiers are ignored.

There are several alternatives for training a HME model. Jordan and Jacobs

[60] and Waterhouse [128] use a method based on expectation maximization. They

assume that the classification follows a multinomial model, which implies that an

object can be assigned to one and only one of the multiple categories available for

classification. To allow for multi-way classification we will use backpropagation neural

networks in both gates and experts and use a gradient descent method for training.

The gates are trained to recognize whether or not any of the categories of its descen-

1We must note that Waterhouse [128] has proposed a HME model that dynamically
generates the hierarchical structure.

71

dants is present in the document. The experts are trained to recognize the presence

or absence of particular categories.

The backpropagation networks that we use have three layers. We have tested

several configurations and these results will be discussed in detail later. Figure 4.5

shows an example of the neural networks used in this work. In general, our neural

networks have m nodes in the input layer corresponding to the set of m features

selected for each expert (or gate), the middle layer has n nodes, and the output layer

is a single node.

Given an appropriate set of features and a training set of manually categorized

documents, the backpropagation network learns to assign the category (or concept in

the case of gates). Observe that for experts and gates the set of positive examples

is different. The set of positive examples for the experts is a subset of the posi-

tive examples of any ancestor gate. As a consequence, two identical neural networks

trained with these different subsets learn different probabilistic functions. The back-

propagation neural network as an expert node learns to use the input to estimate the

desired output value (category), while as a gate it computes the confidence value of

the combined outputs of its children.

This chapter presented the ME and HME models that form the foundation of

our hierarchical text categorization approach. In the next chapter we describe the

application of our approach to the particular categorization problem selected for this

dissertation.

72

1 x 2 x 3 x 4
x 5x

y

Figure 4.5: Example of a backpropagation network with 5 input nodes

73

CHAPTER 5
IMPLEMENTATION OF THE HME MODEL FOR TEXT

CATEGORIZATION

This chapter describes the implementation of our hierarchical classifier in the

context of the Unified Medical Language System (UMLS) Metathesaurus [97] and

the OHSUMED collection. The classifier is an implementation of the HME model

configured with backpropagation neural networks at each expert and gate node as

described in the previous chapter.

We are interested in the UMLS Metathesaurus because of its hierarchical inter-

concept links. The UMLS is a vocabulary system created by combining 79 vocabu-

laries from the health science1. The metathesaurus is one major part of the UMLS. It

consists of about 350, 000 concepts with various types of inter concept relationships

represented. In this study we limit ourselves to MeSH (Medical Subject Headings)2

subset of UMLS which is one of the 79 component vocabularies. This is because doc-

uments in the OHSUMED test collection are a subset of MEDLINE, and thus have

been manually categorized with MeSH terms. Each MEDLINE document is assigned

between 8 and 10 MeSH concepts by indexers at the National Library of Medicine.

1We use the 1999 version.

2Observe that we could have used the MeSH hierarchy directly. We decided to use the
UMLS hierarchy because it provides a conceptual mapping that has been extended to many
areas of the health sciences.

74

Thus our categorization task is a multi-way classification problem with gold standard

being manual indexing.

Interestingly, the manual assignment of a high level MeSH category is not auto-

matically determined by the assignment of its lower level categories. That is, the fact

that a document is assigned the category “angina unstable” does not automatically

grant it the assignment of any of the ancestors in the tree (“Heart diseases”, “My-

ocardial Ischemia”, “Coronary Diseases”, or “Angina Pectoris”). In fact the manual

assignment of such high level categories is usually done when the MEDLINE docu-

ment is about the topic at the associated level of generality or abstraction. Therefore

in our model, each nonterminal node is represented by two networks. The first is the

expert network for the node’s category while the second is a gating network repre-

senting the general concept at that level of the classification scheme. Thus at the

“Heart Diseases” node there is a gate that learns to recognize the general concept

(representing all the documents that are about any of its descendants), and an expert

network that learns to assign this specific category “Heart Diseases”. Note that from

this point on unless explicitly specified, we mean both categories and concepts when

we use the word ‘category’.

For the purpose of comparing results with other studies we will show the results

obtained using only the MeSH subtree of “Heart Diseases” (Figure 5.1 shows a part

of this hierarchy). However, our method especially given its top-down processing, is

general and can be applied to the whole set or to any other subset of the UMLS.

75

Heart Diseases

Coronary
Aneurysm

Pectoris, Variant
Angina

ArrhythmiaMyocardial
IschemiaEndocarditis

Myocardial
Infarction

Cardiogenic
Shock,

Coronary
Vasopasm

Coronary
ThrombosisPerctoris

AnginaCoronary
Arteriosclerosis

Myocardial
Stunning

Coronary
Desease

Carcinoid
Heart Disease

Angina, unstable

...

...

Figure 5.1: A part of the UMLS hierarchy for the heart diseases subtree

The “Heart Diseases” subset consists of 119 categories and is organized as a five level

hierarchy. Appendix A shows the complete schema of the Heart Diseases subtree.

5.1 Feature Selection

In text categorization the set of possible input features consists of all the

different words that appear in a collection of documents. This is usually a large

set since even small text collections could have hundreds of thousands of features.

Reduction of the set of features to train the neural networks is necessary because the

performance of the network and the cost of classification are sensitive to the size and

quality of the input features used to train the network [133]. A first step towards

76

reducing the size of the feature set is the elimination of stop words, i.e., words that

do not carry meaning by themselves such as articles and prepositions [115], and the

use of stemming algorithms [33, 115]. Even after that is done the set of features is

typically too large to be useful for training a neural network.

Two broad approaches for feature selection have been presented in the liter-

ature: the wrapper approach, and the filter approach [59]. The wrapper approach

attempts to identify the best feature subset to use with a particular algorithm. For

example, for a neural network the wrapper approach selects an initial subset and

measures the performance of the network; then it generates an “improved set of fea-

tures” and measures the performance of the network. This process is repeated until it

reaches a termination condition (either a minimal value of performance or a number of

iterations). The filter approach, which is more commonly used in text categorization,

attempts to assess the merits of the feature set from the data alone. The filtering ap-

proach selects a set of features using a preprocessing step, based on the training data.

In this dissertation we use the filter approach applying three methods that have been

reported in previous works: correlation coefficient, mutual information, and odds ra-

tio. During feature selection we first delete all instances of 571 stop words from the

MEDLINE records (this list is shown in appendix B), and then use a variation of

Lovins’ algorithm to stem the remaining words [33, 79, 115]. Lovins’ stemming algo-

rithm is an iterative longest match stemmer which consists of a set of rules, which

are iteratively applied to reduce a word to its stem, and a set of conditions under

77

which stemming cannot be applied (called exception rules). The algorithm finds the

longest suffix that satisfy the set of restrictions specified by the exception rules. The

longest valid suffix is removed from the word to obtain its stem which is converted to

a standard form (e.g. “believes” is stemmed to “belief”). We eliminate those stems

that occur in less than 5 documents in the training collection. Since feature selection

is done for each category, based on its zone (explained later) we also remove stems

that occur in less than 5% of the positive example documents. We then rank the

remaining stems by the feature selection measure and select a pre-defined number of

top ranked stems as the feature set.

5.1.1 Correlation Coefficient

Correlation coefficient C is a feature selection measure proposed by Ng et al.

[96] and is defined as:

C(w, c) =
(Nr+Nn− −Nr−Nn+)

√
N√

(Nr+ +Nr−)(Nn+ +Nn−)(Nr+ +Nn+)(Nr− +Nn−)
(5.1)

where Nr+(Nr−) is the number of positive examples of category c in which feature

w occurs(does not occur), and Nn+(Nn−) is the number of negative examples of

category c in which feature w occurs(does not occur). This measure is derived from

the χ2 measure presented by Schütze et al. [119], where C2 = χ2. The correlation

coefficient can be interpreted as a “one-side” χ2 measurement. The χ2 measure has

been reported as a good measure for text categorization by Yang and Petersen [142].

The correlation coefficient promotes features that have high frequency in the relevant

78

examples but are rare in the non relevant documents. When features are ranked by

this method, the positive values correspond to features that indicate presence of the

category while the negative values indicate absence of the category. In contrast, the

χ2 ranks features higher if they more strongly indicate the presence or the absence of

a category. That is, more ambiguous features are ranked lower. We compared the χ2

and correlation coefficient for feature selection using neural networks with the same

architecture. We found that the neural networks trained with features selected using

correlation coefficient outperformed those trained using χ2 in 78 out of 103 categories.

This confirms similar results reported by Ng et al. [96]. Note that Yang and Pedersen

[142] use an average of the χ2 value across categories to measure the goodness of a

term in a global sense, while we use it for local (category-level) feature selection.

In contrast with mutual information, both χ2 and correlation coefficient pro-

duce normalized values because they are based on the χ2 statistic. However, the

normalization does not hold for low populated cells in the contingency table. This

makes the scores of χ2 and correlation coefficient for low frequency terms unreliable.

This is one reason for removing rare features as described before.

5.1.2 Mutual Information

Mutual information is a measure that has been used in text categorization

by several researchers [119, 142]. This method is based on the mutual information

concept developed in information theory. For a feature w and a category c it is defined

as:

79

I(w, c) = log
P (w ∧ c)

P (w) × P (c)
(5.2)

where P (w) is the probability of the term w occurring in the whole collection, P (c)

is the probability of the category c occurring in the whole collection, and P (w ∧ c) is

their joint probability.

Yang and Pedersen [142] used mutual information3 to measure the goodness

of a term in a global feature selection approach by combining the category specific

scores of a term in two ways:

Iavg(w) =

n∑
i=1

P (ci)I(w, ci) (5.3)

Imax(w) =
n

max
i=1

{I(w, ci)} (5.4)

where n is the number of categories.

In contrast, we use feature selection to evaluate the goodness of a term with

respect to individual categories. In other words, we do not average the values of

mutual information over multiple categories. This variation may be sufficient to

produce the different results that we obtain (described later). Yang and Pedersen

also point out that the score produced by mutual information is strongly influenced

3There is some confusion with the term “mutual information”. For instance, it has been
used by other researchers [83] to refer to the measure that Yang and Pedersen [142] present
as “information gain”.

80

by the marginal probabilities of terms. This is evident from the following equivalent

formula:

I(w, c) = logP (w|c)− logP (w) (5.5)

For terms with equal conditional probability P (w|c), rare terms will have

higher scores than common terms. This implies that the scores of terms with ex-

tremely different frequencies might still not be comparable. Our frequency threshold

described earlier, compensates for this effect.

5.1.3 Odds Ratio

Odds ratio was proposed originally by van Rijsbergen et al. [126] for selecting

terms for relevance feedback. Odds ratio is used for the binary-valued class problem

where the goal is to make a good prediction for one of the class values [127]. It

is based on the idea that the distribution of features on the relevant documents is

different from the distribution of features on the non-relevant documents. It has been

recently used by Mladenić [90] for selecting terms in text categorization. The odds

ratio of a feature w, given the set of positive examples c and negative examples c̄ for

a category c, is defined as follows:

OddsRatio(w, c) = log
P (w|c)(1 − P (w|c̄))
(1 − P (w|c))P (w|c̄) (5.6)

Observe that this formula can also be interpreted as the sum of the logarithm

81

Figure 5.2: Graph of Odds Ratio

of the ratios of the distribution of the feature on the relevant documents (log P (w|c)
(1−P (w|c)))

and on the non-relevant documents (log (1−P (w|c̄))
P (w|c̄)). If a document appears in more

than half of the relevant documents the logarithm of the ratio on the relevant docu-

ments is positive. In contrast a feature is penalized if it appears in more than half of

the non-relevant documents. In other words, a feature that appears frequently in the

relevant documents and infrequently in the non relevant documents will have a high

score. Figure 5.2 shows a graph of the odds ratio4. The function presents singularity

points when P (w|c) = 1 or when P (w|c̄) = 0 (we map this case to the highest positive

value). Also the logarithm is not defined when P (w|c) = 0 or when P (w|c̄) = 1 (we

map this case to the smallest negative value).

Mladenić [90] report that odds ratio was the most successful feature selection

method for a hierarchical Bayesian classifier compared to mutual information, cross

4The x axis represents P (w|c), while the y axis represents the P (w|c̄)

82

entropy, information gain, and weight of evidence.

In this study we select features for both expert and gating networks using

correlation coefficient, mutual information and odds ratio methods.

5.2 Training Set Selection

A supervised learning algorithm requires the use of a training set in which

each element has already been correctly categorized. One would expect that the

availability of a large training set (such as OHSUMED) will be beneficial for training

the algorithm. In practice this does not seem to be the case. The problem occurs

when there is also a large collection of categories with each assigned to a relatively

small number of documents. This then creates a situation in which each category

has a small number of positive examples and an overwhelming number of negative

examples. When a machine learning algorithm is trained to learn the assignment

function with such an unbalanced training set, the algorithm will learn that the

best decision is to not assign the category. The overwhelming amount of negative

examples hides the assignment function. To overcome this problem an appropriate

set of training examples must be selected. We call this training subset the “category

zone”. This notion of category zone is similar to the local regions described in Wiener

et al. [130] , and Ng et al. [96] but is inspired by the query zone proposed by Singhal

et al. [123] for text routing. Their “query zoning” is based on the observation that

in a large collection a query will have a set of documents that constitutes its domain.

Non-relevant documents that are outside the domain are easy to identify, but it is

83

more difficult to differentiate between relevant and non-relevant documents within the

query domain. Singhal et al. [123] define a procedure that tries to approximate the

domain of the query and then they use this domain to train their routing method.

We suggest that in text categorization, each category also has its own domain. It

will be easier to train a learning algorithm with those documents from the category

domain and also potentially achieve better categorization performance. We explore

two different methods for building the category zone. The first method creates the

category zone using a method similar to that presented by Singhal et al. [123]. This

first category zone that we call centroid-based is created as follows:

1. Take all the positive examples for a category and obtain their centroid.

2. Using this centroid as a query perform retrieval and obtain the top 10, 000

documents. This subset will contain most if not all of the positive examples

and many negative examples that are at least “closely related” to the domain

of the category.

3. Obtain the category zone by adding any unretrieved positive examples to the

set obtained in the previous step.

This method creates category zones that have at least 10, 000 documents and

the size increases for categories that have positive examples outside the retrieved set.

The second method for creating the category zone uses a Knn approach in

which the category zone consists of the set of K nearest neighbors for each positive

84

example of the category. This method takes a more localized view of the zone,

localized around each positive example. It also produces variable sized category

zones. We explore several values of K (10, 50, 100 and 200). Our main concern

with this method was to obtain a training set large enough to train a neural network

without overfitting.

In summary, the neural networks at the nodes of our classifiers correspond

to a natural hierarchical arrangement of our classification scheme – the “Heart Dis-

eases” MeSH subtree of the UMLS Metathesaurus. Moreover, in order to parallel the

human indexing performance in MEDLINE documents, the non-leaf nodes of our hi-

erarchical classifier have both a gating network and an expert network. This chapter

also describes the feature selection methods explored and zoning techniques to select

training examples. In the next chapter we present a series of experiments that show

the performance of the described methods in text categorization using the standard

OHSUMED collection.

85

CHAPTER 6
ASSESSING THE NEURAL NETWORK BASED HME MODEL

Consistent with our research goal we presented in the previous chapter a clas-

sifier that is potentially capable of exploiting the hierarchical structure underling a

classification scheme. In this chapter we address two specific questions that together

explore the value of hierarchical text categorization: (1) Does our hierarchical classi-

fier built on the HME model improve performance when compared to a flat classifier?

(2) How does our hierarchical method compare with other text categorization ap-

proaches? We also address other aspects related to our model such as the effect of

feature selection and training subset selection. With these research questions in mind

this chapter presents in detail a series of experiments. We begin by describing in de-

tail the OHSUMED collection and then describe the implementation of the classifiers

tested. The chapter concludes with a presentation of results.

6.1 Experimental Collection

We use the OHSUMED collection [46], a subset of MEDLINE that we intro-

duced in section 2.4.2. Specifically we use the split proposed by Lewis et al. [78].

Each record from this collection has several fields (see Figure 2.1). We use the fol-

lowing: title (.T), and abstract (.W). In the training set we also use the MeSH (.M)

86

field which represents the manual categorization decisions for the MEDLINE doc-

uments. There are 233,455 records in OHSUMED that have titles, abstracts and

MeSH categories (the remaining do not have abstracts). The first four years of data

dated 1987 through 1990 (183,229 records) are used for training, and the year 1991

(50,216 records) is used for testing. We also use the 119 categories from the Heart

Disease subtree of the Cardiovascular Diseases tree structure of the UMLS1. Observe

that we could have used the MeSH hierarchy directly which is a subset of the UMLS

hierarchy. These are identical within the “Heart Diseases” subtree. We choose to use

the UMLS hierarchy because for future research it will allow us to build hierarchical

classifiers for areas that have limited coverage in MeSH. Of the 119 categories of the

Heart Diseases subtree only 103 categories have positive examples in the training set.

Thus we limit our experiments to these 103 categories. We further divide this set of

103 categories into three sets:

• High frequency categories (HD-49): This includes all categories with at least 75

examples in the training set. This set contains 49 categories (which is the same

as the set of high frequency categories used by Lewis et al.).

• Medium frequency categories (HD-28): This set includes all categories with

frequencies between 15 and 74 in the training set. This set contains 28 categories

(this is equivalent to the second set of categories used by Lewis et al.).

1As mentioned before we use the 1994 version of the UMLS. This avoids inconsistencies
between the categories assigned to the OHSUMED documents and the current version of
the UMLS.

87

• Low frequency categories (HD-26): This set includes all categories with frequen-

cies between 1 and 14 in the training set. This set contains 26 categories.

We report results on these three subsets as well as on the complete set of cat-

egories (HD-119)2. The first two subsets allow us to analyze performance separately

for different levels of positive evidence and also allow us to compare results with other

published research with the same collection [78].

The 119 “Heart Diseases” categories form a 5 level tree where the first level

corresponds to the root node and the fifth level has only leaf nodes. The number of

gates in each level starting from the root is 1, 11, 9, and 3 (see Figure 6.1).

6.2 Baselines

Our first baseline represents a classical Rocchio classifier that is described in

the next section. Our second baseline is a flat neural network classifier. Comparing

the performance of the HME classifier against the flat classifier will allow us to answer

our first research question. Comparing the HME method with a Rocchio classifier

as well as with other published results will allow us to answer our second research

question. Thus we have implemented a Rocchio classifier, a HME classifier, and a flat

neural network classifier which are detailed next.

2We label this set HD-119 in order to stay consistent with the labeling in [135] even
though there are actually only 103 categories with positive examples in the training set.

88

Deseases

Myocardial
Diseases

Heart Deseases

Heart Defects,
CongenitalArrhythmia

Endocarditis

Tachycardia Heart Septal
Defects

Coronary
Deseases

Myocardial
Infarction

Myocardial
Ischemia

Heart Valve

4 experts

10 experts

2 experts

2 experts 2 experts
2 experts

6 experts

6 experts7 experts

8 experts

Figure 6.1: Tree for the 119 categories of the heart diseases sub-tree

89

6.3 Rocchio Classifier

We have implemented the Rocchio classifier described in section 3.1. The Roc-

chio classifier has been used by several researchers [65, 78, 135, 136]. As pointed out

by Schapire et al. [118] most of these studies that use Rocchio as a baseline have

constructed a weak version of the classifier. Schapire et al. also show that a properly

optimized Rocchio algorithm could achieve quite competitive performance. Several

techniques have been proposed to improve the effectiveness of Rocchio’s method:

better weighting schemes [122], query zoning [123], and dynamic feedback optimiza-

tion [10]. We have noticed that Rocchio classifiers benefit from an optimal feature

selection step. To make a fair comparison between the neural networks and the Roc-

chio classifiers we use the set of features selected using correlation coefficient and the

same category zones used to train the neural network classifiers for each category.

Observe that this is an important difference with respect to previously published re-

search that use Rocchio classifiers. In all these studies the vector is computed over

the whole set of features. Since we use feature selection measures that select features

indicative of presence of the category, each classifier has its centroid vector defined

in a different subspace (the sub-space of the selected features) generated from the

category zone.

We build a Rocchio classifier by presenting training examples from the category

zone and updating the weights of the classifier using Rocchio’s formula shown in

equation 3.2 (section 3.1). We then rank the full training collection according to

90

the similarity with this classifier vector. A threshold (τ) on the similarity value that

maximizes the F1 measure (section 2.5) is selected. The optimal Rocchio classifier

for a category is then a weighted vector of selected features along with the optimal

similarity threshold.

During the evaluation phase we compute similarity between the optimal Roc-

chio classifier vector and the document we want to categorize. The similarity is the

Euclidean distance between the vector that represents the classifier and the vector

that represent the new document. The class is assigned if the similarity value is above

the threshold τ .

6.4 Hierarchical Mixture of Experts

We built the HME classifier described in chapter 4 and represented in Fig-

ure 4.4. First a zone of domain documents is identified for each category as explained

before in section 5.2. Next feature selection is applied within each category zone

to extract the “best” set of features. We tested all three feature selection methods

(described in 5.1) in our experiments. For each expert network a backpropagation

neural network is trained using the corresponding category zone and the selected set

of features. Similarly, each gating network is also a backpropagation network. How-

ever the training subset of a gate is the combined category zones of its descendants

in the classification hierarchy. Feature selection for the gate is performed on this

combined subset. This strategy of combining zones from descendant nodes for a gate

is reasonable considering the fact that gates represent hierarchical concepts and not

91

particular categories as described before in chapter 5.

The input feature vectors for documents are weighted using tf × idf weights

where tf is the frequency of the term in the document, and idf is the inverse document

frequency calculated as:

idf = log
N

nc
(6.1)

where N is the number of documents in the training collection and nc is the number

of documents that contain the term in the training collection.

Experts and gates are trained independently using the following parameters:

learning rate = 0.5, error tolerance = 0.01, maximum number of epochs = 1, 000.

These parameter values are fixed for all our experiments. The training of each network

takes between 15 to 30 minutes for an expert (depending on the number of examples),

and around 60 to 90 minutes for a gating network using a HP-700 workstation. Using

15 workstations and a dynamic scheduling program specifically designed for this task

we trained the 103 experts and the 21 gating networks in about 8 hours.

Once experts and gates have been trained individually we assemble them ac-

cording to the hierarchical structure of the UMLS “Heart Diseases” subtree. Since

the output of each network is a real value between 0 and 1, we need to transform

each output value into a binary decision. This step is called thresholding. We do this

by selecting thresholds that optimize the F1 values for the categories. We use the

complete training set to select the optimal thresholds. Since we are working with a

92

modular hierarchical structure we have several choices to perform thresholding. Our

approach is to make a binary decision in each of the gates and then optimize the

threshold on the experts using only those examples that reach the leaf nodes.

Observe that computing the optimal thresholds for binary decisions at the

gates and the experts is a multidimensional optimization problem. We decided to

optimize the gates by grouping them into levels and finding the value of the threshold

at each level that maximizes the average F1 value for all the experts. Each expert’s

threshold is then optimized to maximize the F1 value of the examples in the training

set that reach the expert. In order to constrain the potentially explosive combination

of parameters we decide to fix the thresholds for the gates across all our experiments.

For this purpose we conducted a preliminary experiment in which we sought the

best combination of thresholds per level varying each threshold over fixed values and

computing performance on the whole training set. The optimal thresholds were set to

0.01, 0.005, 0.01 and 0.01 for levels 1(root), 2, 3 and 4 respectively. These values were

obtained by selecting the best results over 1, 764 threshold combinations (0.005, 0.01,

0.05, and 0.10 for level 1, 0.005, 0.01, 0.05, 0.10, 0.15, 0.20, ... 0.95 for levels 2, 3 and

4)3. This experiment was run using correlation coefficient for feature selection and a

standard configuration of 25 input nodes and 50 hidden nodes. The best threshold

values are fixed across all runs.

The test set is processed using the trained networks assembled hierarchically

3Since we only have three gates in level 4 we set their optimal values to the same values
of the gates in level 3. This gives us 4 × 21 × 21 = 1, 764 possible combinations for the
thresholds in the gates.

93

with the established thresholds for each level of gates and each expert network.

6.5 Flat Neural Network Classifier

In order to assess the advantage gained by exploiting the hierarchical structure

of the classification scheme, we built a flat neural network classifier. We decided to

build a flat modular classifier that is implemented as a set of 103 individual expert

networks. This is similar to our Rocchio model where the training phase results in

a set of 103 classifier vectors. In this model the experts are trained independently

using the optimal feature set and the category zone for each individual category. The

thresholding step is performed by optimizing the F1 value of each expert using the

entire training set. These are the values that we report in the next section for the

flat neural network classifier.

6.6 Results

As stated before, we report results on the “Heart Diseases” sub-tree of the

UMLS. We present results on this set of 103 categories (HD-119) and on three

frequency-based subsets of categories HD-49, HD-28 and HD-26 as defined before

in section 6.1.

6.6.1 Feature Selection and Neural Network Architecture

It may be observed that network architecture and feature selection methods

must be studied in combination. In fact, at a basic level feature selection is one of

the factors that define the configuration of the network. Given the many complex

94

combinations in terms of feature selection methods and numbers of nodes in the

different layers for both the expert and gating networks we approach the problem in

stages. Specifically we follow a top-down approach that optimizes first the gates and

then the experts.

While studying the gating networks we used experts with 25 input features

and 50 nodes in the hidden layers. We then explored 5, 10, 25, 50, 100, and 150 input

features for the gating networks with hidden layers that had twice the number of

input nodes. We also tried all three feature selection methods (Mutual Information,

Odds Ratio and Correlation Coefficient). This experiment was done only on the “high

frequency categories” (HD-49) because they allow appropriate training of the neural

networks and also because the variance between different training runs is smaller than

the variance for lower frequency categories.

Interestingly the differences between the three feature selection methods on the

gating networks are not significant. Thus we only report results on the 18 different

combinations obtained using correlation coefficient in the gates4. Table 6.1 shows an

increase in performance between 5 and 25 features and a slight decrease for networks

with larger number of input nodes. It is possible for this slight decrease to be caused

by the limit in the number of iterations (1, 000) that a network was allowed to run

during training. Usually a larger network needs more iterations on the training set

to converge to an optimal value. Observe that all the three feature selection methods

4Six different sizes for the input layer of the gates multiplied by 3 different feature
selection methods for the expert networks.

95

show no significant differences for the expert networks as was also observed for the

gates. This was somewhat surprising since Yang and Pedersen [141] reported that

mutual information does not perform well compared to other methods. As noted

before, instead of averaging values across multiple classes to find the merit of the

features from a global perspective as in [141], we use mutual information for local

feature selection. We also discard rare terms that will in general be ranked very high

by mutual information.

We further explored feature selection using mutual information by running

our experiments without discarding rare terms and selecting the top 25 features. The

average precision for the HD-49 subset was 0.05 and 0.20 for the flat neural network

and the HME model respectively. This is significantly lower than the performance

obtained when we discard low frequency terms and shows conclusively that mutual

information alone is not a good feature selection measure unless we address its major

weakness and discard low frequency terms. This might also be addressed by selecting

a larger number of input features. However, this will go against our goal of reducing

the number of input features to improve training and processing time for the neural

networks.

After optimizing the gates we turned our attention to the expert networks.

We first addressed the number of input nodes for the expert networks by exploring

them individually, i.e., independent of the hierarchical structure. We tested expert

networks with 5, 10, 25, 50, 100, and 150 input features. In each case we used

96

twice the number of input nodes for the hidden layer and all three feature selection

methods. The best result was obtained using 25 input features with 50 nodes in the

hidden layer.

Having determined the optimal number of inputs, next we explored the effect

of the size of the hidden layer for our networks. (Note that so far we have only explored

the simple strategy of having twice the input nodes in the middle layer.) Table 6.2

shows the variations in performance with different sizes of the middle layer. In this

case all networks have 25 inputs and a single output node. The best performance is

obtained with expert networks that have 6 nodes in the hidden layer. The difference

between 6 and 10 nodes is relatively small. Observe also that the flat neural networks

have their best performance when the number of nodes in the hidden layer is 6. This

is not surprising since a smaller hidden layer tends to produce a better generalization

of each category. We ran similar experiments on the gating networks varying the size

of the middle layer (6, 10, 25, 50) and found that the best size of the hidden layer

was 25 (Table 6.3). However, the difference between these runs is very small.

In the following sections we present results using neural networks with 25

input nodes, 6 hidden nodes and 1 output node for the experts and 25 input nodes,

25 hidden nodes and 1 output node for the gating networks.

6.6.2 Comparing the Category Zoning Methods

As explained in chapter 5.2, we use category zoning techniques to select the

training set for each expert and gate. In particular we explore two different types of

97

Table 6.1: Effect of the number of input nodes to the gating
networks and the feature selection methods for the expert
networks1

Gating Networks2 Expert Networks3

of inputs Corr. Coef. Odds Ratio Mutual Inf.
5 0.4455 0.4531 0.4589
10 0.4604 0.4695 0.4712
25 0.4984 0.4961 0.4956
50 0.4894 0.4903 0.4900
100 0.4894 0.4929 0.4840
150 0.4827 0.4890 0.4850

Flat4 0.4449 0.4488 0.4548
1 Performance is measured in macro-averaged F1 on the HD-

49 set.
2 The feature selection method for the gating networks is

correlation coefficient.
3 All expert networks have 25 input features selected by the

indicated feature selection method, 50 nodes in the middle
layer, and 1 output.

4 The last row shows performance of the flat classifier.

Table 6.2: Effect of the number of hidden
nodes on the expert networks1

of hidden nodes Flat NN2 HME2

6 0.5033 0.5241
10 0.4807 0.4975
25 0.4320 0.4824
50 0.4479 0.4867

1 Performance is measured by macro-
averaged F1 on the HD-49 set.

2 All expert networks have 25 input
features selected with the correlation
coefficient feature selection method.

98

Table 6.3: Effect of the number
of hidden nodes on the gating
networks1

of hidden nodes HME2,3

6 0.5219
10 0.5202
25 0.5241
50 0.5158

1 Performance is measured by
macro-averaged F1 on the
HD-49 set. nodes.

2 The gates have 25 inputs se-
lected with correlation coef-
ficient.

3 All expert networks have 25
input features and 6 hidden.

category zones: the centroid-based category zone and the Knn-based category zone.

We compare these two zoning strategies with respect to their zone sizes as well as

classifier performance.

The centroid-based category zone generates zones that have at least 10, 000

examples. For our training set of 103 categories we found that this type of category

zone has an average size of 10, 027 with a maximum of 10, 778 while 75% of the

zones are below 10, 010. The Knn-based category zone generate zones with sizes

proportional to the number of positive examples in the category. We found that

“compact” categories have in general small category zones. We explored different

values of K (10, 50, 100, and 200). Small values of K are problematic for low frequency

categories because they tend to generate a very small training set that the neural

99

network overfits easily. Thus we settled for K=200 because it produces category

zones large enough for the rare categories as well as zones of reasonable size for the

more frequent categories. For our 103 categories we found that the average size of

the Knn-based category zone is 6, 098 examples with a maximum of 35, 917, and

a minimum of 200. 75% of the category zones generated by this method are below

6, 814. As mentioned before the category zone for a gate is the union of the individual

category zones of its descendants in the hierarchy.

To measure the impact of each zoning method we trained both gating and

expert networks with the documents of the corresponding zones. The categorization

results on the test set are shown in Table 6.4. There are small differences in perfor-

mance across zones for classifiers in the high frequencies (HD-49) set and for those

classifiers in the medium frequencies (HD-28) set. However, these differences are not

statistically significant.

The low frequency categories (HD-26) show a statistically significant difference

in favor of the centroid-based zones for both flat and hierarchical classifiers. A detailed

analysis shows that the high value of this difference is due in part to the contribution

of some categories that have one or zero examples in the test set. For these categories

the function becomes more of a hit or miss function5. Since these category zone

training sets have at least 10, 000 examples the classifier learns to reject most of

the documents and in consequence it gets an F1 value of 1.0 for most of them. In

5Categories with no examples in the test set will have F1 = 0 if a document is assigned
to the class or F1 = 1 if no documents are assigned to the class.

100

Table 6.4: Comparison of categorization perfor-
mance using the centroid-based and Knn-based cat-
egory zones1

centroid-based zone Knn-based zone
Flat NN HME Flat NN HME

HD-49 0.5033 0.5241 0.5042 0.5150
HD-28 0.3589 0.4304 0.3613 0.4159
HD-26 0.5653 0.5794 0.4599 0.4828
HD-119 0.4797 0.5126 0.4542 0.4798
1 Values are macro-averaged F1 over the respec-

tive set of categories on the test set (50, 216 doc-
uments).

contrast, the Knn-based zones for low frequency categories generate a smaller zone

and the neural networks trained with them tend to assign the category to at least

a few documents. The classifiers trained with centroid-based zones outperform the

Knn-based classifiers on 13 categories, while the classifiers trained on Knn-based

zones outperform the centroid-based classifiers only on 5 categories (in the remaining

8 categories there is no difference between them).

On the whole set HD-119 the classifiers trained with centroid-based zones

outperform those trained with the Knn-based zones. However this difference is sta-

tistically significant only for the HME classifiers. Given our results with these two

zoning methods we suggest that centroid-based category zones are the most appro-

priate for training hierarchical classifiers that span categories of varying frequencies.

The same conclusion may be made for flat classifiers but with somewhat reduced

confidence.

101

6.6.3 HME, Flat NN, and Optimized Rocchio Classifiers

Table 6.5 shows the performance of our flat neural network, the HME model

and the optimized Rocchio classifiers, all trained using the centroid-based zoning

method and features selected using correlation coefficient. The HME classifier consis-

tently outperforms the flat neural network classifier in all category sets. The difference

is statistically significant for HD-49, HD-28 and HD-119. Another important feature

that we must point out is that our HME model has lower variance in performance in

all the category sets. This result confirms the theoretical claim by Jordan and Jacobs

that soft splitting is a variance reduction method [60]. This is in general a desirable

property of a classifier since this indicates performance that is more stable across cat-

egories. Comparing the HME against the optimized Rocchio classifier we note that

Rocchio significantly outperforms the HME on the HD-49 and HD-28 categories while

the HME significantly outperforms Rocchio for the HD-26 categories. However, there

is no significant difference between both classifiers on the HD-119 set. We have to

admit that the good performance of the Rocchio classifier may in part be due to the

particular combination of category zoning and feature selection methods used for our

classifiers. To remind the reader, first a centroid-based category zone is identified for

each category. This zone of documents is then used for feature selection. Although

this approach is a “filter” approach the specifics of the centroid-based category zoning

technique introduces a bias that may favor the Rocchio classifier. Our Rocchio results

also emphasize the conclusion by Schapire et al. that when the Rocchio classifier is

102

Table 6.5: Comparison between the flat NN, HME NN and
the optimized Rocchio classifiers

Flat NN HME NN Opt-Rocchio
Macro HD-49 0.5033 0.5241 0.5491
Avg F1 HD-28 0.3589 0.4304 0.5176

HD-26 0.5653 0.5794 0.4524
HD-119 0.4797 0.5126 0.5161

Variance HD-49 0.02589 0.02298 0.02470
HD-28 0.06746 0.06773 0.05467
HD-26 0.17879 0.14583 0.16775
HD-119 0.08000 0.06754 0.06877

properly trained, it performs as well as other methods [118]. This result is in contrast

with the performance of Rocchio classifiers observed by other researchers [65, 78, 136].

A detailed analysis of the behavior of the HME with respect to the flat neural

network shows that the thresholds for the expert nodes of the hierarchical classifier is

less than or equal to the thresholds for the networks of the flat classifier in 95 of the

103 categories. This is an expected result because the intermediate layers perform

a pre-filtering of “bad candidate texts” hence the experts receive a smaller number

of examples in the hierarchical approach. Since the optimization process sets these

thresholds to maximize the F1 values in the training set, when the bad matches have

been filtered the algorithm is able to set a lower threshold that increases the number

of true positives without significantly increasing the number of false positives. The

idea is to have a hierarchy that is good at filtering out false positives.

Table 6.6 shows the number of documents that pass through each gate in

103

the test set. The number of documents in the test collection is 50,216. The root

node filters out most of the documents since only 9, 238 pass through it. Observe

that gates 1.11, 1.11.8, and 1.11.9 allow a big portion of the documents to pass

through to the lower levels. This is because they contain two of the categories with

the highest number of training examples (“Coronary Diseases”, and “Myocardial

Infarction”). We expected this to harm the performance of the rest of the categories

in these subnodes but in practice this did not happen. For example, only 2 of the 8

categories in the Coronary Diseases subtree (not shown in the table) have a slightly

lower performance in the HME model than in the flat classifier.

6.6.4 Comparing Results with other Published Works

The OHSUMED collection has been used by very few researchers for text

categorization. Moreover, to the best of our knowledge only two studies have used its

entire set of 14, 000 MeSH categories [67, 135]. The main reason for this is that many

text categorization methods do not scale to such a large dataset. Yang [135], Lewis

et al. [78], and Lam and Ho [65] have published results using the subset of categories

from the “Heart Diseases” sub-tree (HD-119). This has become a standard set for

comparing results for text categorization in the OHSUMED collection. However,

when reading these three works carefully we found that each paper uses a different

test set and report results on a different number of categories.

Lewis et al. use the set of 183, 229 documents from 1987 to 1990 for training

and all the 50, 216 documents from the year 1991 as a test set. Our experiments follow

104

Table 6.6: Number of documents that pass each HME NN gate in the test set
Level 1 # of doc.

≥ threshold
(root) Heart Diseases 9,238
Level 2 Level 3

1.1 Arrhythmia 1,464
1.1.1 Heart Block 176
1.1.2 Pre-Excitation Syndromes 45
1.1.3 Tachycardia 583

1.2 Endocarditis 293
1.2.4 Endocarditis, Bacterial 216

1.4 Heart Defects Congenital 1,187
1.3.5 Heart Septal Defects 277
1.3.6 Transposition of Great Vessels 57

1.6 Heart Failure,Congestive 1,591
1.7 Heart Rupture 377
1.8 Heart Valve Diseases 1,592
1.9 Myocardial Diseases 4,281

1.9.7 Cardiomyopathy, Hypertrophic 102
1.10 Pericarditis 447
1.11 Myocardial Ischemia 5,769

1.11.8 Coronary Diseases 3,343
1.11.9 Myocardial Infarction 2,570

105

exactly this partition with a further reduction for training (using zoning techniques)

but the test set is the same. Table 6.7 shows that our flat neural network model

performs at the same level for HD-49 and slightly worse for HD-28, as the Exponen-

tiated Gradient (EG) algorithm in Lewis et al. [78]. EG is the second ranked and

the top ranked algorithm for HD-49 and HD-28 respectively in [78]. (Note that the

last three rows of the table show results from our work that are most comparable).

The HME model on the other hand shows a performance slightly lower (4.7%) than

the top ranked Widrow-Hoff (WH) for HD-49 but significantly higher than the best

(10.2%) performance for HD-28. Both the flat NN and HME outperform the Rocchio

classifier reported as a baseline by Lewis et al. [78]. Interestingly, our optimized Roc-

chio classifier performs at the same level as WH for HD-49 but significantly better

than all other classifiers for HD-28.

Yang [135] conducts a very different experiment by reducing the collection

to only those documents that are positive examples of the categories of the HD-119.

This limits the training set to 12, 284 documents and the test set to 3, 760 documents.

She explains that the reason for such reduction is the scalability of the LLSF method

which needs to compute a Singular Values Decomposition, a procedure that cannot be

performed efficiently on a large matrix. However, this simplification creates a partition

of the OHSUMED collection that is structurally different from the one originally

proposed by Lewis et al. In order to explore differences we used our trained classifiers

on this reduced test set (with the same thresholds as before). The results obtained

106

are 0.525, 0.521 and 0.530 for the flat neural networks, the HME and optimized

Rocchio respectively. Observe that for our hierarchical model, Yang’s reduction is

equivalent to having a perfect classifier at the root node of the tree and thus using

only gates at levels 2, 3 and 4. We then ran a second experiment where although

we did not retrain the neural networks or Rocchio classifiers on the reduced training

set, threshold selection was done only on the set of 12, 824 positive examples in the

training set (instead of using the whole set of 183, 229 documents of the training set)

and the gates in levels 2, 3 and 4 were used. The results for our flat neural networks,

HME and optimized Rocchio classifiers on this reduced subset are 0.564, 0.557, and

0.558 respectively, scores which are significantly higher than those we found using the

Lewis et al. partition. These scores are about the same as the ones reported by Yang

for the LLSF and ExpNet classifiers, and significantly above Yang’s baseline STR

classifier. Interestingly the HME model does not outperform the flat neural network

model in this constrained experiment. We looked closely at each category and found

that this was due to the fact that our originally trained gates discard documents that

are relevant to their descendants which then impacts the final performance of the

classifier. Although performance may be improved if we train the gates using only

the set of positive examples6, we believe that our original categorization task is more

realistic since we include both positive and negative examples in the test set.

Lam and Ho [65] report results of experiments using the Generalized Instance

6In fact, in experimentation with Knn zoning which uses a smaller training set that
more closely resembles the positive examples, HME was better than the flat neural network
classifier.

107

Table 6.7: Performance comparison between
the flat NN, HME and Rocchio classifiers, and
classifiers published in other works

Yang [135] Lewis et al. [78]
Method HD-119 HD-49 HD-28
LLSF1 0.55 – –

ExpNet1 0.54 – –
STR1 0.38 – –

Rocchio2 – 0.44 0.33
EG2 – 0.50 0.39
WH2 – 0.55 0.39

Flat NN 0.564 0.503 0.358
HME 0.557 0.524 0.430

Opt-Rocchio 0.558 0.549 0.518
1 Yang [135].
2 Lewis et al. [78].

Set (GIS) algorithm. They use the documents from 1991 and take the first 33,478

documents for training and the last 16,738 documents for testing. In contrast to

Yang’s reduction, this is more consistent with the partition proposed by Lewis et al.

because it retains all documents from the collection (not just the positive examples).

Lam and Ho report results using micro averaged BEP on the set of 84 categories that

have at least one example in both training and test sets. We tested our previously

trained HME model in this reduced test set and obtained a micro-averaged BEP

value of 0.502 which is significantly lower than their performance of 0.572 for their

GIS algorithm with Rocchio generalization. In future research we will train and test

our HME model using their data set.

Joachims [57] has also published results for the OHSUMED collection using

108

support vector machines. His work uses the first 20, 000 documents of the year 1991

dividing it into two sets of 10, 000 documents each that are used for training and

testing respectively. He reports impressive results but his text categorization task

is very different from the ones in the previously discussed works. Joachims assumes

that if a category in the UMLS tree is assigned then its more general category in

the hierarchy is also present. Although this is similar to our definition of gates, the

difference is that he uses only the high level disease categories. This simplifies the

categorization task considerably and probably explains the good results obtained in

the reported SVM experiments. The focus on general disease categories alone prevents

comparison of Joachims’ results with any of the previously published results. We did

not run our experiments limited to high level disease categories. However, we consider

that the use of SVM can be a good choice for building an architecture like the one

we have proposed, and we plan to explore this in our future research.

We believe that the combination of category zoning and feature selection gives

a significant boost to Rocchio performance. Optimized versions of the Rocchio classi-

fier in previous work have focused on query zoning and dynamic feedback optimization

[118]. We are not aware of any previous work on reducing the set of features used in

the centroid vector for text categorization purposes. Observe that our feature selec-

tion method favors features indicative of the presence of the category and discards

features that indicate the absence of the category. Feature selection has an important

impact because similarity computation between the document and the centroid vector

109

are made only on the subspace formed by the selected features.

6.7 Comparison with Related Work in Hierarchical Categorization

We now focus on methods exploring the hierarchical structures of classification

schemes.

Koller and Sahami [63, 111] proposed a hierarchical approach that trains inde-

pendent Bayesian classifiers for each node of the hierarchy. The classification scheme

then starts at the root and greedily selects the best link to a second level classi-

fier. This process is repeated until a leaf is reached or until no child node is a good

candidate. Observe that their method selects a single path (the one with highest

probability) and assigns all the categories in the path to the document. According

to their approach, the hierarchical structure is used as a filter that activates only a

single best classification path. Also errors in classification at the higher levels are

irrecoverable in the lower levels. They tested their results in the Reuters collection

defining as higher nodes in the hierarchy those categories that subsume other cate-

gories. Although similar in spirit, our approach differs in the classification assignment

model. We separate the identification of general concepts from the assignment of gen-

eral categories. Our approach also activates more than a single path in the hierarchy

in contrast to their “the winner takes all” approach. There is also an obvious differ-

ence in the machine learning algorithm since they use Bayesian classifiers while we

use neural networks. However in future work we plan to explore Bayesian classifiers

within the HME approach.

110

Ng et al. [96] build their hierarchical classifier using perceptrons. Each node

of the hierarchical tree is represented by a perceptron. They distinguish two types of

nodes, leaf nodes and non-leaf nodes. They apply this to the Reuters corpus where

the categories reflect a geographical/topical hierarchy. Their hierarchy has as a first

level all the possible countries, and for each country different topics are defined,

e.g., economics and politics. The leaf nodes are specific categories of the second

level (e.g., for economics they have communications, industry, etc.). The hierarchical

classifier receives a document and checks whether it belongs to any of the first level

nodes (the root node only connects to the different country nodes). If the tested

document activates any of the first level nodes, then the descendant categories of

that node are tested recursively. If at any of the non-leaf nodes the process finds

that none of its children is a good candidate, then the categorization stops at that

branch of the recursion. The output of the classifier is the final set of leaf nodes

reached in the recursion (zero, one or more). This is similar to the Pachinko machine

proposed by Koller and Sahami [63] but with multiple outputs instead of a single

output. Our approach is similar to Ng et al. [96] in that we also use a top-down

approach. The difference is in the type of classifier. We use non-linear classifiers in

each node while they use linear classifiers. Although the combination of the linear

classifiers in the hierarchy creates a non-linear classifier some studies have shown that

this covers a limited number of non linear problems7 [60, 128]. Our approach also

7This is due to the fact that the high level nodes can only create linear boundaries
between adjacent expert regions in the input space.

111

differs significantly in the way feature selection and subset training selection is done.

Although their experiments also use correlation coefficient for feature selection their

results for the hierarchical classifier are well below other methods that use the Reuters

collection. They report F1 values of 0.52 for the best automatic feature selection

method and 0.728 for the manually selected features (which is considerable lower

than 0.85 [136]). Their best results with the hierarchical classifier are obtained using

manually selected features. We believe that their good results may be a consequence

of manual feature selection. Furthermore, our approach based on category zones

combined with exploiting the hierarchy is more robust and allows us to get results

similar to some of the best methods reported in the literature.

McCallum and his collaborators have been working in text categorization

specifically targeting the problem of classifying web pages [85]. Their approach is

based on Bayesian classifiers. They use the hierarchical classification structure to im-

prove the accuracy of Bayesian classifiers using a statistical technique called shrinkage

that smoothes parameter estimates of a child node with its parent in order to obtain

more robust estimates. The Bayesian classification schemes involves estimating the

parameters of the model from the training collection and then applying the shrinkage

method to improve the estimates using the predefined vocabulary hierarchy. The

classification of the test set is performed by computing the posterior probability of

each class given the words observed in the test document, and selecting the class

with the highest probability. Their experiments show that shrinkage improves the

112

performance when the training data is sparse, reducing the classification error by up

to 29%. Our approach is totally different from McCallum’s approach in terms of

the classification method used, as well as the assumptions in the categorization task.

Observe that their approach assumes that a document belongs to a single category

and their model reflects it by selecting the most probable classification.

Mladenić [90] also explored hierarchical structures using the Yahoo! hierarchy

to classify web pages. Her approach builds a Bayesian classifier. For each node in the

subject hierarchy a classifier is induced. To train each of the non-leaf classifiers a set of

positive examples is defined as all the positive examples of the node (the intermediate

nodes are also valid categories) plus the positives examples of any descendants. These

examples are weighted according to their position in the tree. The classification

process works as described before for the Bayesian classifiers with the set of categories

with predicted probability ≥ 0.95 are assigned. Our approach differs from Mladenić’s

work in terms of the classifier algorithms used, as well as the way in which the

hierarchy is used for feature selection. Her main effort is in creating a weighting

scheme for combining probabilities obtained at different nodes of the tree.

The work on topic spotting by Wiener et al. [131] inspired us to try our

approach using HME. They have recently published a sequel to their work applied to

hierarchical classifiers [129]. They use a meta-topic network using a two level hierarchy

for the Reuters collection and present results that are competitive with those of other

methods. Our work differs from theirs in the definition of the gates (our gates behave

113

like binary filters while their meta-topic network helps more to weight the contribution

of the experts). Our work also extends the hierarchical model to more than two levels

an idea that is suggested but not developed in [129]. Finally, our evaluation on the

OHSUMED collection instead of the Reuters collection allows us to test the benefit

of exploiting a real hierarchical classification scheme.

We think that our main contribution is a general method for combining the

hierarchical structure of a classification with feature selection and category zones. The

zones contain small but optimal subsets of documents that yield features suitable for

training neural networks. Our approach shows that even with a set of only 25 features

per node, we can get results that are comparable with other methods that use larger

feature sets8.

8Most [96, 131, 129] have used feature sets of 200 or more features per category. In [78]
the authors have used all features present in the collection.

114

CHAPTER 7
EXPERIMENTS WITH THE HME MODEL BUILT ON OTHER

CLASSIFIERS

Our main thesis in this dissertation is that it is possible to exploit the hier-

archical structure of a classification scheme via the HME classifier. The focus of our

research is primarily on the hierarchical architecture of the classifier and not on the

particular classifier technology used at each node. Although we have thus far chosen

to employ backpropagation neural nets for these nodes, any other type of decision

making module may be used instead to implement the HME model. We pursue this

idea by exploring two linear classifiers Widrow-Hoff (WH) and Exponentiated Gra-

dient (EG). We use the standard implementations of these algorithms as described

in section 3.3. We use the same set of features selected for the neural networks and

Rocchio classifiers using correlation coefficient.

7.1 Experiments with the HME Model Using Linear Classifiers

In this set of experiments we use the Widrow-Hoff (WH) classifier and the

Exponentiated Gradient (EG) classifier as the nodes of the HME model. For the WH

classifier we initialize the classifier with the vector (0, 0, . . . , 0) and for the learning

rate we use η = 1/(4X2) where X is an upper bound on ‖ x ‖ for all instances x.

We choose this value as the maximum value present in the training collection. This

115

Table 7.1: Comparison between the flat EG and WH classifiers and
the corresponding HME classifiers using EG and WH gating nodes

Flat EG HME EG Flat WH HME WH
Macro HD-49 0.3982 0.4473 0.5363 0.5429
Avg F1 HD-28 0.2996 0.3618 0.4584 0.4786

HD-26 0.1473 0.2520 0.3603 0.3550
HD-119 0.3081 0.3748 0.4707 0.4779

Variance HD-49 0.03023 0.02473 0.02794 0.02478
HD-28 0.05631 0.05014 0.06814 0.05225
HD-26 0.04923 0.08750 0.15426 0.12802
HD-119 0.05171 0.05276 0.07421 0.06275

learning rate has bee proposed by Kivinen and Warmuth [61] and has been used by

Lewis et al. [78] for text categorization.

For the EG algorithm we initialize the vector w as (1/m, . . . , 1/m) (where m

is the number of features of th input vector). The learning rate η = 2/(3R2) (where

maxj(xij) −minj(xij) ≤ R is also selected based on Kivinen and Warmuth [61] and

on Lewis et al. [78].

In order to obtain a binary classification we use the same thresholding tech-

nique (as with the neural networks) based on optimizing the F1 measure on the

training set. We trained linear classifiers for both gates and experts nodes in the

HME. The performance of these HME classifiers on the test set is presented in Table

7.1.

The results show that the HME approach improves performance compared to

the flat classifier for almost all cases, with the exception of the HD-26 for WH where

116

Table 7.2: Comparison between the flat WH and Rocchio classifiers and the correspond-
ing hybrid HME classifiers using NN gating nodes

Flat WH HME NN&WH Flat Rocchio HME NN&Rocchio
Macro HD-49 0.5363 0.5524 0.5491 0.5380
Avg F1 HD-28 0.4584 0.4719 0.5176 0.5269

HD-26 0.3603 0.3562 0.4524 0.3998
HD-119 0.4707 0.4810 0.5161 0.5001

Variance HD-49 0.02794 0.02549 0.02470 0.02232
HD-28 0.06814 0.06329 0.05467 0.05026
HD-26 0.15426 0.11009 0.16775 0.13767
HD-119 0.07421 0.06217 0.06877 0.06100

the performance drops slightly. This difference is statistically significant for all sets

of categories in EG and not significant for all sets in WH. There is also a variance

reduction effect when we use the HME model with the exception of the low frequency

categories HD-26 and in the whole set HD-119 in the EG algorithm.

The Widrow-Hoff (WH) hierarchical classifier shows a high performance on

the HD-49 classes and is very similar to the 0.55 reported by Lewis et al. [78]1. This

is consistent with Kivinen and Warmuth [61] expected square loss formula which

suggests that the WH algorithm should perform well when we can find a vector that

fits the data and the number of training examples is large in comparison to the length

of the fitting vector and the representative document vectors. When we compare

the performance of the WH classifier against the EG classifier we note a significant

difference in performance that favors the WH algorithm. This is consistent with the

1We should note that Lewis et al. use all the features available in the training documents
and the full training set for their experiments

117

results reported by Lewis et al. [78].

When we compare these linear classifiers against the results obtained for the

neural network based HME (Table 6.5) we see that the neural networks model perform

significantly better than the HME EG model in all four sets of categories. HME NN

outperform the HME WH classifiers on the global subset HD-119. However, the source

of this difference is due to the significantly higher performance of the neural networks

on the low frequency (HD-26) categories. In fact, the WH algorithm outperforms the

neural networks on the HD-49 and HD-28 sets of categories.

Table 7.2 shows two hybrid HME models where the gates are neural networks

and the experts are WH and Rocchio classifiers. This combination of classifiers shows

that using different classifiers in the gates and experts could contribute to improve

results compared to using a single classifier. However, because the WH classifier does

not perform well in the low frequency categories the improvements are only notice-

able on the high level categories. Observe also that the use of neural networks in the

gating nodes improves performance for the HD-49, HD-28 and HD-119 sets of cate-

gories. For the Hybrid HME NN-Rocchio classifier we observed that improvements

in performance occur only in the HD-28 categories and drops slightly for the other

three sets of categories but non of the differences are statistically significant. This

was quite surprising because we expected to get similar improvements as with the

hybrid HME NN-WH model. Performing a detailed examination of the results at

each category we found that performance improves in 20 categories and drops in 19

118

categories and there are no changes in the remaining 74 categories.

Tables 7.3 and 7.4 show the behavior of the gates implemented in the HME-

WH and HME-EG linear classifiers respectively. Compared to the gates implemented

in the HME-NN algorithms they seem to behave very differently. The first level node

is more aggressive in the HME linear classifiers than in the HME neural networks.

However, the middle level nodes seem to be accepting a significantly larger number

of documents than the neural networks. This explains why the HME models imple-

mented with the linear classifiers yields a lower performance increment than the HME

models using neural networks gating nodes.

7.2 Ensembles of Classifiers and the HME Model

The results obtained in the previous section points toward the fact that com-

bining classifiers that use different approaches improves results in categorization. This

technique has been studied by several researchers in machine learning and the clas-

sifier obtained is called an ensemble [7, 98, 132]. An ensemble is defined as a set of

individually trained classifiers whose outputs are combined to obtain the final classi-

fication of a new instance.

Ensembles have also been applied in text categorization by several researchers

[71, 117, 118, 121, 144]. Larkey and Croft reported that the combination of multiple

classifiers yields significant performance improvements [71]. Yu and Liddy [144] have

also used an ensemble of classifiers generated by a neuro-genetic algorithm. Their

ensemble computes the weighted sum of the scores of the neuro-genetic classifiers to

119

Table 7.3: Number of documents that pass each HME WH gate in the test set

Level 1 # of doc
≥ threshold

(root) Heart Diseases 8,463
Level 2 Level 3

1.1 Arrhythmia 2,868
1.1.1 Heart Block 817
1.1.2 Pre-Excitation Syndromes 406
1.1.3 Tachycardia 2,106

1.2 Endocarditis 408
1.2.4 Endocarditis, Bacterial 380

1.4 Heart Defects Congenital 2,065
1.3.5 Heart Septal Defects 1,361
1.3.6 Transposition of Great Vessels 261

1.6 Heart Failure,Congestive 4,020
1.7 Heart Rupture 2,866
1.8 Heart Valve Diseases 2,702
1.9 Myocardial Diseases 6,195

1.9.7 Cardiomyopathy, Hypertrophic 1,720
1.10 Pericarditis 1,784
1.11 Myocardial Ischemia 6,853

1.11.8 Coronary Diseases 5,912
1.11.9 Myocardial Infarction 3,329

120

Table 7.4: Number of documents that pass each HME EG gate in the test set

Level 1 # of doc.
≥ threshold

(root) Heart Diseases 8,133
Level 2 Level 3

1.1 Arrhythmia 3,430
1.1.1 Heart Block 1,228
1.1.2 Pre-Excitation Syndromes 763
1.1.3 Tachycardia 1,374

1.2 Endocarditis 1,591
1.2.4 Endocarditis, Bacterial 1,264

1.4 Heart Defects Congenital 2,598
1.3.5 Heart Septal Defects 1,535
1.3.6 Transposition of Great Vessels 1,760

1.6 Heart Failure,Congestive 5,146
1.7 Heart Rupture 3,669
1.8 Heart Valve Diseases 3,942
1.9 Myocardial Diseases 5,669

1.9.7 Cardiomyopathy, Hypertrophic 1,541
1.10 Pericarditis 5,411
1.11 Myocardial Ischemia 6,949

1.11.8 Coronary Diseases 6,053
1.11.9 Myocardial Infarction 3,770

121

obtain the final classification.

As pointed out by Opitz and Maclin [98] combining classifiers helps only when

the classifiers disagree amongst themselves on how to classify a new document. Two

main approaches have been proposed to generate classifiers that differ in their classi-

fication decisions (even though they might use the same learning algorithm): bagging

and boosting. The bagging method, proposed by Breiman [7], is based on the statis-

tical “bootstrap” method proposed by Ephron [27, 28]. In this case several training

sets are generated by sampling with replacement the original training set. These

training sets are used to train several classifiers which are used to build an ensemble

by computing the weighted average of their classification scores. Boosting, proposed

by Schapire [34, 116], includes methods that are used to improve performance in a

series of classifiers. The training set selected for the next classifier in the series em-

phasizes the use of those examples that were classified incorrectly by the previous

classifier in the series. The method selects a probabilistic sample (from the training

set) that gives a higher probability to the misclassified examples in the previous step.

Then the current classifier is trained on this set and the process is repeated until

the classifier achieves perfect classification of the training set or until it reaches a

termination condition.

We have trained different classifiers (neural networks, WH, EG and Rocchio)

using different category zones and feature selection methods. Given the results ob-

tained in our previous experiments we decided to built ensembles of classifiers that

122

combine the neural network classifiers that we obtained with the two different cat-

egory zones, the two linear classifiers and the Rocchio classifier. We use the binary

decision of each classifier to compute a simple majority voting to obtain the final

decision of the ensemble. Thus the approach that we follow to build the ensemble

is closer to the bagging approach but used different zones, features and classification

algorithms instead of using bootstrapping.

We explore the idea of ensembles within both the flat and the HME archi-

tectures. Each flat classifier ensemble is built as a combination of the 5 classifiers

mentioned above. The ensemble makes the classification decision via a majority vote

as depicted in Figure 7.1. For the HME ensemble we decided to built a hierarchy

of flat ensembles. That is, each expert node is represented by its corresponding flat

ensemble while the gates are neural networks trained with the centroid based zones.

Figure 7.2 illustrates the HME ensemble for a gate with a couple of expert nodes.

In other words, the HME model fits the hierarchical structure of the classification on

top of ensembles of flat classifiers. Another alternative that we did not explore here is

to build an ensemble of gates and then combine them with the ensembles of experts

using the HME model. A third potential alternative is to consider each HME model

as a full classifier and combine alternative HME classifiers into an ensemble of HME

classifiers.

Table 7.5 shows on the top part the performance of the individual classifiers

and their corresponding hierarchical versions. The bottom part of the table shows

123

Table 7.5: Performance of ensembles of classifiers using a simple majority

HD-49 HD-28 HD-26 HD-119
Flat NNC 0.5033 0.3589 0.5652 0.4797
Flat NNKnn 0.5042 0.3613 0.4599 0.4542
Flat WH 0.5364 0.4585 0.3603 0.4708
Flat EG 0.3983 0.2996 0.1474 0.3081
Flat Rocchio 0.5491 0.5176 0.4524 0.5161
HME NNC 0.5241 0.4304 0.5794 0.5126
HME NNKnn 0.5150 0.4155 0.4828 0.4798
HME WH 0.5429 0.4786 0.3550 0.4780
HME EG 0.4473 0.3618 0.2521 0.3748

Ensembles
Flat NNC+NNKnn+WH 0.5559 0.4264 0.4982 0.5062
Flat NNC+NNKnn+Rocc 0.5566 0.4674 0.5430 0.5289
Flat NNC+NNKnn+WH+Rocc 0.5752 0.4829 0.2803 0.4757
Flat NNC+NNKnn+WH+Rocc+EG 0.5656 0.4482 0.2866 0.4633
HME NNC+NNKnn+WH 0.5594 0.4215 0.5046 0.5081
HME NNC+NNKnn+Rocc 0.5545 0.4463 0.5590 0.5262
HME NNC+NNKnn+WH+Rocc 0.5637 0.4503 0.2931 0.4646
HME NNC+NNKnn+WH+Rocc+EG 0.5675 0.4390 0.3088 0.4672

124

Classifier 1 Classifier 2 Classifier N

Ensemble output

compute majority vote

x

......

Figure 7.1: Ensemble classifier

the four flat ensembles and their respective hierarchical versions. All these ensembles

include the two neural networks trained with correlation coefficient features using the

centroid-based zone (NNC) and Knn-based zone (NNKnn) and one or more of the

linear classifiers (WH, EG, Rocchio). Observe that all the ensembles except one have

an odd number of classifiers so that the majority decision is always reached. For

the ensemble that combines the two neural networks, WH and Rocchio classifiers we

break ties by favoring the assignment of the category.

Table 7.5 shows that the use of ensembles improves categorization performance

for the HD-49 categories (all the ensembles significantly outperform any of the individ-

ual classifiers for this set of categories). For the medium frequency categories (HD-28)

the performance of the ensembles is better than the corresponding individual classifier

125

Classifier 1 Classifier 2 Classifier N

compute majority vote

...... Classifier 1 Classifier 2 Classifier N

compute majority vote

......

gate

Y

x x

x

Figure 7.2: Gate with two experts in the HME ensemble classifier

except for the Rocchio classifier. For the low frequency categories (HD-26) the neural

networks trained on the centroid-based zones outperform all the other classifier. The

performance of the ensembles seem to decrease when more linear classifiers are added

to the ensemble. This indicates that possibly the linear classifiers agree in many of

these classes and the decisions tend to be dominated by them. The combination of

NNC+NNKnn+WH+Rocchio classifiers appear to be the best for HD-49 and HD-28

while NNC+NNKnn+Rocchio is the best for HD-26 and HD-119.

For the HME ensemble the performance for the high frequency categories

HD-49 is consistently better than the performance of the corresponding HME models

without ensembles. However, for the HD-28, HD-26 and HD-119 the results are mixed.

We also note that for the ensembles the hierarchical versions do not outperform the

126

corresponding flat ensembles. Further investigation of these differences is left to future

research where we will more fully study alternative ensemble architectures.

Comparing the results of the ensembles with other published results we note

that the best ensemble classifier (NNC+NNKnn+WH+Rocchio) outperforms the best

classifier reported by Lewis et al. [78] by 5.2% on the HD-49 categories and by 23.8%

on the HD-28 categories. The corresponding hierarchical version of the Ensemble

classifier also outperforms Lewis et al. by 3.0% on the HD-49 categories and by

15.5% on the HD-28 categories.

This concludes our presentation of experiments using the HME model. We

have shown that in general the use of the HME model improves performance of an

equivalent non hierarchical classifier. The next chapter presents our conclusions and

future lines of research in this area.

127

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

This dissertation explored the use of hierarchical classifiers for text catego-

rization. Our main goal was to exploit the underlying hierarchical structure of the

classification scheme using a variation of the Hierarchical Mixtures of Experts pro-

posed by Jordan and Jacobs [60]. This final chapter summarizes our findings and

presents the conclusions derived from our research. We conclude by presenting our

plans for future research.

8.1 Conclusions

Our experiments on the OHSUMED collection showed that the hierarchical

model improves categorization performance with respect to an equivalent flat clas-

sifier that uses neural network, Exponentiated Gradient or Widrow-Hoff classifiers.

However, in some cases using the HME in conjunction with other classifiers such as

Rocchio classifiers or ensembles reduces classification performance slightly but not

significantly. Despite the fact that the hierarchical model does not show consistent

improvements in classification performance for all methods, its major merit could be

the solution of the scalability problem for text categorization with a large classifi-

cation scheme. Our experiments show that the high level nodes of the hierarchical

128

model are able to filter out documents that are unlikely to belong to any of the cat-

egories of its descendants. A system based on the HME model would activate only

those subsets of categories that are likely to be relevant to a new document that

needs to be classified. This approach could prove useful to implement categoriza-

tion using large classification schemes such as the UMLS (350, 000 concepts), MeSH

(165, 000 concepts), International Patent Classification (IPC) (60, 000 concepts) or

the European Patent Office Classification System (ECLA) (100, 000 concepts).

The use of zoning methods for training set selection and their combination

with feature selection methods has proven to be an effective way to reduce training

time for neural networks without sacrificing performance. Our classifiers trained on

these reduced sets achieve performance comparable to other published results that use

a larger training set. This leads us to conclude that a good set of positive examples

combined with closely related negative examples can be sufficient to properly train a

machine learning method for text categorization.

The study of feature selection also showed us that a carefully selected set of

input features allows us to achieve competitive results thus minimizing training time

for the neural network classifier. From our work we can conclude that localized feature

selection combined with measures to address problems caused by low frequency terms

can succeed in identifying the best set of features for individual classifiers.

In general it appears that HME had greater success with HD-49, i.e. the 49

categories that had at least 75 positive examples in training. The most difficult was

129

the HD-26 categories that have less than 15 examples were performance varied widely.

The larger improvement of the HME with respect to the flat model are obtained for

the HD-28 categories that have between 15 and 74 examples in the training set. This

seems to indicate that the HME model is more dependent upon the availability of

positive examples.

Our work also confirmed the thesis that a properly trained Rocchio algorithm

can achieve performance competitive with more complex methods. In particular we

have discovered that the Rocchio algorithm benefits from careful feature selection,

an aspect that has not been investigated before. This approach, combined with

the category zone, produces a classifier that performs at the same level as the best

published text categorization methods. In fact, our Rocchio classifier is the best of

the individual flat classifiers and only the ensembles achieve better performance than

our baseline Rocchio classifier.

We also explored the use of ensembles for text categorization. Our results

confirm that an ensemble of different classifiers improves categorization performance

They yield the best performance of all the classifiers tested in this work which is

higher than the best published results for this collection (5.2% for HD-49 and 23.8%

for HD-28). However, the version of hierarchical ensembles does not show the same

improvements of categorization performance with respect to the flat classifiers. In

fact performance decreases slightly but not significantly in any of the four groups of

categories that we studied but still higher than the best published results for this

130

collection (3.0% for HD-49 and 15.5% in HD-28). The construction of hierarchical

classifiers that use ensembles is still an open question that we intend to address in

our future research.

In terms of efficiency, working with a large data set like OHSUMED for text

categorization allowed us to realize how important it is to use distributed processing.

The training phase of the neural networks is a computing intensive task that requires

a considerable time to complete. We created a client server application that allows

the distribution of training over a pool of computers. The server controls the progress

of the training and the clients simply ask for allocation of new assignments. This tool

reduced significantly the time needed for training the neural networks from 77 hours

(3.25 days) to an overnight process (it takes between 8 to 10 hours to complete a full

training cycle of the 103 experts and 11 gates using 15 computers).

8.2 Future Research

There are several open issues of research that result from this work. One

important aspect is to see if a wrapper approach towards feature selection would

make a difference to the relative standing of HME with neural network nodes. As

mentioned previously correlation coefficient filters combined with category zoning may

favor Rocchio classifiers because this is one of the best way to improve the Rocchio

algorithm. A second line of research is to expand our variety of feature types. Instead

of limiting our features to stems derived from single words, we could explore phrases

as features.

131

It may also prove beneficial to focus more closely on the particular challenges

offered by the low frequency classifiers, i.e., the categories with few positive examples.

In particular it may be worthwhile to explore the value of bootstrapping methods such

as boosting for these categories.

This thesis has just began the exploration of ensembles both within and ex-

ternal to the HME model. Results obtained are significantly intriguing to warrant

further exploration on alternative ensemble architectures and key concepts of bias

versus variance across classifiers in the ensemble.

On a somewhat different direction we also would like to explore the automatic

categorization of heterogeneous collections such as web pages using existing classifi-

cation hierarchies such as Yahoo!. What intrigues us about heterogeneous collections

is that unlike the OHSUMED dataset, structural characteristics such as document

size and vocabulary are likely to vary widely across the documents.

In conclusion, I hope that with this thesis I have provided the text categoriza-

tion community reasonable responses to our initial questions regarding hierarchical

models, while also identifying future areas of investigation.

132

APPENDIX A
HEART DISEASES SUB TREE OF THE UMLS METATHESAURUS

1 C0018799 Heart Diseases

1.1 C0003811 Arrhythmia

1.1.1 C0003813 Arrhythmia, Sinus

1.1.2 C0004238 Atrial Fibrillation

1.1.3 C0004239 Atrial Flutter

1.1.4 C0006099 Bradycardia

1.1.5 C0015374 Extrasystole

1.1.6 C0018794 Heart Block

1.1.6.1 C0001396 Adams-Stokes Syndrome

1.1.6.2 C0006384 Bundle-Branch Block

1.1.6.3 C0037188 Sinoatrial Block

1.1.7 C0023976 Long QT Syndrome

1.1.8 C0032915 Pre-Excitation Syndromes

1.1.8.1 C0024054 Lown-Ganong-Levine Syndrome

1.1.8.2 C0032916 Pre-Excitation, Mahaim-Type

1.1.8.3 C0043202 Wolff-Parkinson-White Syndrom

133

1.1.9 C0037052 Sick Sinus Syndrome

1.1.10 C0039231 Tachycardia

1.1.10.1 C0039236 Tachycardia, Paroxysmal

1.1.10.2 C0039240 Tachycardia, Supraventricular

1.1.10.2.1 C0039232 Tachycardia, Atrioventricular Nodal Reen-

try

1.1.10.2.2 C0039234 Tachycardia, Ectopic Atrial

1.1.10.2.3 C0039235 Tachycardia, Ectopic Junctional

1.1.10.2.4 C0039238 Tachycardia, Sinoatrial Nodal Reentry

1.1.10.2.5 C0039239 Tachycardia, Sinus

1.1.10.2.6 C0040479 Torsades de Pointes

1.1.10.2.7 C0078888 Idioventricular Rhythm

1.1.10.3 C0042514 Tachycardia, Ventricular

1.1.11 C0042510 Ventricular Fibrillation

1.1.12 C0206068 Parasystole

1.2 C0007093 Carcinoid Heart Disease

1.3 C0007166 Cardiac Output, Low

1.4 C0007177 Cardiac Tamponade

1.5 C0014118 Endocarditis

1.5.1 C0014121 Endocarditis, Bacterial

134

1.5.1.1 C0014122 Endocarditis, Subacute Bacterial

1.6 C0018789 Heart Aneurysm

1.7 C0018790 Heart Arrest

1.7.1 C0085298 Death, Sudden, Cardiac

1.8 C0018798 Heart Defects, Congenital

1.8.1 C0003492 Aortic Coarctation

1.8.2 C0009995 Cor Triatriatum

1.8.3 C0010074 Coronary Vessel Anomalies

1.8.4 C0010334 Crisscross Heart

1.8.5 C0011813 Dextrocardia

1.8.6 C0013274 Ductus Arteriosus, Patent

1.8.7 C0013481 Ebstein’s Anomaly

1.8.8 C0013743 Eisenmenger Complex

1.8.9 C0018816 Heart Septal Defects

1.8.9.1 C0003516 Aortopulmonary Septal Defect

1.8.9.2 C0014116 Endocardial Cushion Defects

1.8.9.3 C0018817 Heart Septal Defects, Atrial

1.8.9.3.1 C0024164 Lutembacher’s Syndrome

1.8.9.3.2 C0041022 Trilogy of Fallot

1.8.9.4 C0018818 Heart Septal Defects, Ventricular

135

1.8.10 C0023569 Levocardia

1.8.11 C0039685 Tetralogy of Fallot

1.8.12 C0040761 Transposition of Great Vessels

1.8.12.1 C0013069 Double Outlet Right Ventricle

1.8.13 C0041207 Truncus Arteriosus, Persistent

1.9 C0018800 Heart Hypertrophy

1.9.1 C0007193 Cardiomyopathy, Congestive

1.9.2 C0149721 THypertrophy, Left Ventricular

1.9.3 C0162770 Hypertrophy, Right Ventricular

1.10 C0018802 Heart Failure, Congestive

1.10.1 C0013405 Dyspnea, Paroxysmal

1.10.2 C0013608 Edema, Cardiac

1.11 C0018809 Heart Neoplasms

1.12 C0018813 Heart Rupture

1.12.1 C0018814 Heart Rupture, Post-Infarction

1.13 C0018824 Heart Valve Diseases

1.13.1 C0003504 Aortic Valve Insufficiency

1.13.2 C0003505 Aortic Valve Prolapse

1.13.3 C0003507 Aortic Valve Stenosis

1.13.4 C0018808 Heart Murmurs

136

1.13.5 C0026266 Mitral Valve Insufficiency

1.13.6 C0026267 Mitral Valve Prolapse

1.13.7 C0026269 Mitral Valve Stenosis

1.13.8 C0034088 Pulmonary Valve Insufficiency

1.13.9 C0034089 Pulmonary Valve Stenosis

1.13.10 C0040961 Tricuspid Valve Insufficiency

1.13.11 C0040962 Tricuspid Valve Prolapse

1.13.12 C0040963 Tricuspid Valve Stenosis

1.13.13 C0079485 Heart Valve Prolapse

1.14 C0027049 Myocardial Diseases

1.14.1 C0007192 Cardiomyopathy, Alcoholic

1.14.2 C0007194 Cardiomyopathy, Hypertrophic

1.14.2.1 C0003500 Aortic Subvalvular Stenosis

1.14.2.2 C0034084 Pulmonary Subvalvular Stenosis

1.14.3 C0007196 Cardiomyopathy, Restrictive

1.14.4 C0007930 Chagas Cardiomyopathy

1.14.5 C0014117 Endocardial Fibroelastosis

1.14.6 C0014183 Endomyocardial Fibrosis

1.14.7 C0022541 Kearns Syndrome

1.14.8 C0027055 Myocardial Reperfusion Injury

137

1.14.9 C0027059 Myocarditis

1.15 C0031039 Pericardial Effusion

1.16 C0031046 Pericarditis

1.16.1 C0031048 Pericarditis, Constrictive

1.16.2 C0031049 Pericarditis, Tuberculous

1.17 C0032319 Pneumopericardium

1.18 C0032805 Postpericardiotomy Syndrome

1.19 C0034072 Pulmonary Heart Disease

1.20 C0035439 Rheumatic Heart Disease

1.21 C0042512 Ventricular Outflow Obstruction

1.22 C0085128 Cardiac Output, High

1.23 C0151744 Myocardial Ischemia

1.23.1 C0010068 Coronary Disease

1.23.1.1 C0002962 Angina Pectoris

1.23.1.1.1 C0002963 Angina Pectoris, Variant

1.23.1.1.2 C0002965 Angina, Unstable

1.23.1.1.3 C0206064 Syndrome X

1.23.1.2 C0010051 Coronary Aneurysm

1.23.1.3 C0010054 Coronary Arteriosclerosis

138

1.23.1.4 C0010072 Coronary Thrombosis

1.23.1.5 C0010073 Coronary Vasospasm

1.23.2 C0027051 Myocardial Infarction

1.23.2.1 C0036980 Shock, Cardiogenic

1.23.3 C0206146 Myocardial Stunning

139

APPENDIX B

140

LIST OF STOPWORDS

a am asking between concerning

a’s among associated beyond consequently

able amongst at both consider

about an available brief considering

above and away but contain

according another awfully by containing

accordingly any b c contains

across anybody be c’mon corresponding

actually anyhow became c’s could

after anyone because came couldn’t

afterwards anything become can course

again anyway becomes can’t currently

against anyways becoming cannot d

ain’t anywhere been cant definitely

all apart before cause described

allow appear beforehand causes despite

allows appreciate behind certain did

almost appropriate being certainly didn’t

alone are believe changes different

along aren’t below clearly do

already around beside co does

also as besides com doesn’t

although aside best come doing

always ask better comes don’t

141

done ex getting hence ie

down exactly given her if

downwards example gives here ignored

during except go here’s immediate

e f goes hereafter in

each far going hereby inasmuch

edu few gone herein inc

eg fifth got hereupon indeed

eight first gotten hers indicate

either five greetings herself indicated

else followed h hi indicates

elsewhere following had him inner

enough follows hadn’t himself insofar

entirely for happens his instead

especially former hardly hither into

et formerly has hopefully inward

etc forth hasn’t how is

even four have howbeit isn’t

ever from haven’t however it

every further having i it’d

everybody furthermore he i’d it’ll

everyone g he’s i’ll it’s

everything get hello i’m its

everywhere gets help i’ve itself

142

j look namely nowhere out

just looking nd o outside

k looks near obviously over

keep ltd nearly of overall

keeps m necessary off own

kept mainly need often p

know many needs oh particular

knows may neither ok particularly

known maybe never okay per

l me nevertheless old perhaps

last mean new on placed

lately meanwhile next once please

later merely nine one plus

latter might no ones possible

latterly more nobody only presumably

least moreover non onto probably

less most none or provides

lest mostly noone other q

let much nor others que

let’s must normally otherwise quite

like my not ought qv

liked myself nothing our r

likely n novel ours rather

little name now ourselves rd

143

re seen somewhere thats this

really self soon the thorough

reasonably selves sorry their thoroughly

regarding sensible specified theirs those

regardless sent specify them though

regards serious specifying themselves three

relatively seriously still then through

respectively seven sub thence throughout

right several such there thru

s shall sup there’s thus

said she sure thereafter to

same should t thereby together

saw shouldn’t t’s therefore too

say since take therein took

saying six taken theres toward

says so tell thereupon towards

second some tends these tried

secondly somebody th they tries

see somehow than they’d truly

seeing someone thank they’ll try

seem something thanks they’re trying

seemed sometime thanx they’ve twice

seeming sometimes that think two

seems somewhat that’s third u

144

un w whereafter wonder

under want whereas would

unfortunately wants whereby would

unless was wherein wouldn’t

unlikely wasn’t whereupon x

until way wherever y

unto we whether yes

up we’d which yet

upon we’ll while you

us we’re whither you’d

use we’ve who you’ll

used welcome who’s you’re

useful well whoever you’ve

uses went whole your

using were whom yours

usually weren’t whose yourself

uucp what why yourselves

v what’s will z

value whatever willing zero

various when wish

very whence with

via whenever within

viz where without

vs where’s won’t

145

REFERENCES

[1] I. Androutsopoulos, J. Koutsias, K. Chandrinos, and C. Spyropoulos. An ex-
perimental comparison of naive bayesian and keyword-based anti-spam filtering
with personal e-mail messages. In N. Belkin, P. Ingwersen, and M.-K. Leong,
editors, Proceedings of the 23rd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 160–167, Athens,
Grece, July 2000. ACM, ACM Press.

[2] C. Apté, F. J. Damerau, and S. M. Weiss. Automated learning of decision rules
for text categorization. ACM Transactions on Information Systems, 12(3):233–
251, 1994.

[3] B. Berlin. Ethnological Classification: Principles of Categorization of Plants
and Animals in Traditional Societies. University Press, Princeton, NJ, 1992.

[4] P. Biebricher, N. Fuhr, G. Knorz, G. Lustig, and M. Schwantner. The automatic
indexing system AIR/PHYS. From research to application. In Y. Chiaramella,
editor, Proceedings of SIGIR-88, 11th ACM International Conference on Re-
search and Development in Information Retrieval, pages 333–342, Grenoble,
FR, 1988. ACM Press, New York, US. Reprinted in Karen Sparck Jones and
Peter Willett (eds.), “Readings in Information Retrieval”, Morgan Kaufmann,
San Francisco, US, 1997, pp. 513–517.

[5] M. Blosseville, G. Hebrail, M. Montell, and N. Penot. Automatic document
classification: natural language processing and expert system techniques used
together. In N. J. Belkin, P. Ingwersen, and A. M. Pejtersen, editors, Pro-
ceedings of SIGIR-92, 15th ACM International Conference on Research and
Development in Information Retrieval, pages 51–57, Kobenhavn, DK, 1992.
ACM Press, New York, US.

[6] H. Borko and M. Bernick. Automatic document classification. Journal of the
Association for Computing Machinery, 10(2):151–161, 1963.

[7] L. Breiman. Stacked regressions. Machine Learning, 24(1):49–64, 1996.

146

[8] L. Breiman, J. H. Friedman, R. A. Olshen, , and C. J. Stone. Classification and
Regression Trees. Wadsworth International Group, Belmont, CA, 1984.

[9] J. Bridle. Probabilistic interpretation of feedforward classification network out-
puts, with relationships to statistical pattern recognition. In F. Fogelman-Soulie
and J. Hérault, editors, Neuro-computing: Algorithms, Architectures, and Ap-
plications. Springer-Verlag, New York, NY, 1989.

[10] C. Buckley and G. Salton. Optimization of relevance feedback weights. In Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 351–357, New York, NY, July
1995. ACM press.

[11] W. Buntine. Introduction to ind and recursive partitioning. Technical report,
RIACS/NASA Ames Research Center, September 1991.

[12] C. Cleverdon. Optimizing convenient on-line access to bibliographic databases.
Information Services and Use, 4(1):37–47, 1984.

[13] W. W. Cohen. Learning to classify English text with ILP methods. In
L. De Raedt, editor, Advances in inductive logic programming, pages 124–143.
IOS Press, Amsterdam, NL, 1995.

[14] W. W. Cohen. Text categorization and relational learning. In A. Prieditis and
S. J. Russell, editors, Proceedings of ICML-95, 12th International Conference
on Machine Learning, pages 124–132, Lake Tahoe, US, 1995. Morgan Kaufmann
Publishers, San Francisco, US.

[15] W. W. Cohen and H. Hirsh. Joins that generalize: text classification using
Whirl. In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Pro-
ceedings of KDD-98, 4th International Conference on Knowledge Discovery and
Data Mining, pages 169–173, New York, US, 1998. AAAI Press, Menlo Park,
US.

[16] W. W. Cohen and Y. Singer. Context-sensitive learning methods for text cat-
egorization. In H.-P. Frei, D. Harman, P. Schäuble, and R. Wilkinson, editors,
Proceedings of SIGIR-96, 19th ACM International Conference on Research and
Development in Information Retrieval, pages 307–315, Zürich, CH, 1996. ACM
Press, New York, US. An extended version appears as [17].

[17] W. W. Cohen and Y. Singer. Context-sensitive learning methods for text cate-
gorization. ACM Transactions on Information Systems, 17(2):141–173, 1999.

147

[18] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory, 13:21–27, 1967.

[19] L. Cranor and B. A. LaMancchia. Spam! Communications of the ACM,
41(8):74–83, 1998.

[20] M. Craven, D. DiPasquo, D. Freitag, A. K. McCallum, T. M. Mitchell,
K. Nigam, and S. Slattery. Learning to extract symbolic knowledge from the
World Wide Web. In Proceedings of AAAI-98, 15th Conference of the Amer-
ican Association for Artificial Intelligence, pages 509–516, Madison, US, 1998.
AAAI Press, Menlo Park, US. An extended version appears as [21].

[21] M. Craven, D. DiPasquo, D. Freitag, A. K. McCallum, T. M. Mitchell,
K. Nigam, and S. Slattery. Learning to construct knowledge bases from the
World Wide Web. Artificial Intelligence, 118(1-2):69–113, 2000.

[22] R. M. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz. Trading MIPS and
memory for knowledge engineering: classifying census returns on the Connec-
tion Machine. Communications of the ACM, 35(8):48–63, 1992.

[23] I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categoriza-
tion. In C. Cardie and R. Weischedel, editors, Proceedings of EMNLP-97, 2nd
Conference on Empirical Methods in Natural Language Processing, pages 55–63,
Providence, US, 1997. Association for Computational Linguistics, Morristown,
US.

[24] R. Dattola. A fast algorithm for automatic classification. Journal of Library
Automation, 2:31–48, 1969.

[25] S. T. Dumais and H. Chen. Hierarchical classification of Web content. In N. J.
Belkin, P. Ingwersen, and M.-K. Leong, editors, Proceedings of SIGIR-00, 23rd
ACM International Conference on Research and Development in Information
Retrieval, pages 256–263, Athens, GR, 2000. ACM Press, New York, US.

[26] S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algo-
rithms and representations for text categorization. In G. Gardarin, J. C. French,
N. Pissinou, K. Makki, and L. Bouganim, editors, Proceedings of CIKM-98, 7th
ACM International Conference on Information and Knowledge Management,
pages 148–155, Bethesda, US, 1998. ACM Press, New York, US.

[27] B. Efron. Bootstrap methods: Another look to the jacknife. Annals of Statistics,
17:1–26, 1979.

148

[28] B. Efron and R. Tibshirani. An Introduction to Bootstrap. Chapman and Hall,
1993.

[29] R. Ellen. Indigenous classifications. Butterword, 1990.

[30] W. K. Estes. Classification and Cognition. Oxford University Press, New York:
NY, 1994.

[31] H. Fangmeyer and G. Lustig. The EURATOM automatic indexing project. In
Proceedings of the IFIP Congress (Booklet J), pages 66–70, Edinburgh, UK,
1968.

[32] B. Field. Towards automatic indexing: automatic assignment of controlled-
language indexing and classification from free indexing. Journal of Documen-
tation, 31(4):246–265, 1975.

[33] W. B. Frakes. Stemming algorithms. In W. B. Frakes and R. Baeza-Yates, ed-
itors, Information Retrieval: Data Structures and Algorithms, chapter 8, pages
131–160. Prentice Hall, Englewood Cliffs, NJ, 1992.

[34] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In
Proceedings of he Thirteenth International Conference on Machine Learning,
pages 148–156, Bari, Italy, 1996.

[35] R. M. Frumkina and A. V. Mikhejev. Meaning and Categorization. Nova Science
Publishers, New York: NY, 1996.

[36] N. Fuhr. A probabilistic model of dictionary-based automatic indexing. In Pro-
ceedings of RIAO-85, 1st International Conference “Recherche d’Information
Assistee par Ordinateur”, pages 207–216, Grenoble, FR, 1985.

[37] N. Fuhr, S. Hartmann, G. Knorz, G. Lustig, M. Schwantner, and K. Tzeras.
AIR/X – a rule-based multistage indexing system for large subject fields. In
A. Lichnerowicz, editor, Proceedings of RIAO-91, 3rd International Conference
“Recherche d’Information Assistee par Ordinateur”, pages 606–623, Barcelona,
ES, 1991. Elsevier Science Publishers, Amsterdam, NL.

[38] N. Fuhr and G. Knorz. Retrieval test evaluation of a rule-based automated in-
dexing (AIR/PHYS). In C. J. van Rijsbergen, editor, Proceedings of SIGIR-84,
7th ACM International Conference on Research and Development in Informa-
tion Retrieval, pages 391–408, Cambridge, UK, 1984. Cambridge University
Press.

149

[39] W. A. Gale, K. W. Church, and D. Yarowsky. A method for disambiguating
word senses in a large corpus. Computers and the Humanities, 26(5):415–439,
1993.

[40] W. A. Gray and A. J. Harley. Computer-assisted indexing. Information Storage
and Retrieval, 7(4):167–174, 1971.

[41] K. A. Hamill and A. Zamora. An automatic document classification system
using pattern recognition techniques. In E. H. Brenner, editor, Proceedings of
ASIS-78, 41st Annual Meeting of the American Society for Information Science,
pages 152–155, New York, US, 1978. American Society for Information Science,
Washington, US.

[42] K. A. Hamill and A. Zamora. The use of titles for automatic document classifi-
cation. Journal of the American Society for Information Science, 33(6):396–402,
1980.

[43] P. J. Hayes and S. P. Weinstein. Construe/Tis: a system for content-based
indexing of a database of news stories. In A. Rappaport and R. Smith, editors,
Proceedings of IAAI-90, 2nd Conference on Innovative Applications of Artificial
Intelligence, pages 49–66. AAAI Press, Menlo Park, US, 1990.

[44] H. Heaps. A theory of relevance for automatic document classification. Infor-
mation and Control, 22(3):268–278, 1973.

[45] M. A. Hearst. Noun homograph disambiguation using local context in large
corpora. In Proceedings of the 7th Annual Conference of the University of
Waterloo Center for the New Oxford English Dictionary, pages 1–22, Oxford,
UK, 1991.

[46] W. Hersh, C. Buckley, T. J. Leone, and D. Hickam. Ohsumed: An interac-
tive retrieval evaluation and new large test collection for research. In W. B.
Croft and C. J. V. Rijsbergen, editors, Proceedings of the 17th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 192–201, Dublin, Ireland, July 1994. ACM, Springer-Verlag.

[47] W. Hoyle. Automatic indexing and generation of classification by algorithm.
Information Storage and Retrieval, 9(4):233–242, 1973.

[48] D. Hull. Information Retrieval Using Statistical Classification. PhD thesis,
Stanford University, 1994.

150

[49] D. A. Hull. Improving text retrieval for the routing problem using latent seman-
tic indexing. In W. B. Croft and C. J. van Rijsbergen, editors, Proceedings of
SIGIR-94, 17th ACM International Conference on Research and Development
in Information Retrieval, pages 282–289, Dublin, IE, 1994. Springer Verlag,
Heidelberg, DE.

[50] D. A. Hull. The TREC-7 filtering track: description and analysis. In E. M.
Voorhees and D. K. Harman, editors, Proceedings of TREC-7, 7th Text Re-
trieval Conference, pages 33–56, Gaithersburg, US, 1998. National Institute of
Standards and Technology, Gaithersburg, US.

[51] S. M. Humphrey. Medindex–the medical indexing expert system. In R. Aluri
and D. E. Riggs, editors, Expert Systems in Libraries, chapter 14, pages 192–
221. Ablex Publishing Co, Norwood:NJ, 1990.

[52] D. J. Ittner, D. D. Lewis, and D. D. Ahn. Text categorization of low quality
images. In Proceedings of SDAIR-95, 4th Annual Symposium on Document
Analysis and Information Retrieval, pages 301–315, Las Vegas, US, 1995.

[53] T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF
for text categorization. In D. H. Fisher, editor, Proceedings of ICML-97, 14th
International Conference on Machine Learning, pages 143–151, Nashville, US,
1997. Morgan Kaufmann Publishers, San Francisco, US.

[54] T. Joachims. Text categorization with support vector machines: learning with
many relevant features. In C. Nédellec and C. Rouveirol, editors, Proceedings
of ECML-98, 10th European Conference on Machine Learning, pages 137–142,
Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE. Published in the “Lec-
ture Notes in Computer Science” series, number 1398.

[55] T. Joachims. Estimating the generalization performance of a svm efficiently.
Technical Report LS-8 Report 25, Universität Dortmund, Dortmund, Germany,
December 1999.

[56] T. Joachims. Transductive inference for text classification using support vector
machines. In I. Bratko and S. Dzeroski, editors, Proceedings of ICML-99, 16th
International Conference on Machine Learning, pages 200–209, Bled, SL, 1999.
Morgan Kaufmann Publishers, San Francisco, US.

[57] T. Joachims. Estimating the generalization performance of a SVM efficiently.
In P. Langley, editor, Proceedings of ICML-00, 17th International Conference
on Machine Learning, pages 431–438, Stanford, US, 2000. Morgan Kaufmann
Publishers, San Francisco, US.

151

[58] T. Joachims, D. Freitag, and T. M. Mitchell. WebWatcher: a tour guide
for the Word Wide Web. In M. E. Pollack, editor, Proceedings of IJCAI-97,
15th International Joint Conference on Artificial Intelligence, pages 770–775,
Nagoya, JP, 1997. Morgan Kaufmann Publishers, San Francisco, US.

[59] G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In Machine Learning: Proceedings of the Eleventh International Con-
ference, pages 121–129, San Francisco, CA, 1994. AAAI, Morgan Kaufmann
Publishers.

[60] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em
algorithm. Technical Report A.I. Memo No. 1440, Massachusetts Institute of
Technology, Cambridge, MA, August 1993.

[61] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors. Technical Report Technical Report UCSC-CRL-94-16,
Baking Center for Computer Engineering & Information Sciences; University
of California, Santa Cruz, CA, 1994.

[62] P. H. Klingbiel. Machine-aided indexing of technical literature. Information
Storage and Retrieval, 9(2):79–84, 1973.

[63] D. Koller and M. Sahami. Hierarchically classifying documents using very few
words. In D. H. Fisher, editor, Proceedings of ICML-97, 14th International
Conference on Machine Learning, pages 170–178, Nashville, US, 1997. Morgan
Kaufmann Publishers, San Francisco, US.

[64] S. L. Lam and D. L. Lee. Feature reduction for neural network based text
categorization. In A. L. Chen and F. H. Lochovsky, editors, Proceedings of
DASFAA-99, 6th IEEE International Conference on Database Advanced Sys-
tems for Advanced Application, pages 195–202, Hsinchu, TW, 1999. IEEE Com-
puter Society Press, Los Alamitos, US.

[65] W. Lam and C. Y. Ho. Using a generalized instance set for automatic text
categorization. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson,
and J. Zobel, editors, Proceedings of SIGIR-98, 21st ACM International Con-
ference on Research and Development in Information Retrieval, pages 81–89,
Melbourne, AU, 1998. ACM Press, New York, US.

[66] W. Lam, K. F. Low, and C. Y. Ho. Using a Bayesian network induction ap-
proach for text categorization. In M. E. Pollack, editor, Proceedings of IJCAI-
97, 15th International Joint Conference on Artificial Intelligence, pages 745–
750, Nagoya, JP, 1997. Morgan Kaufmann Publishers, San Francisco, US.

152

[67] W. Lam, M. E. Ruiz, and P. Srinivasan. Automatic text categorization and
its applications to text retrieval. IEEE Transactions on Knowledge and Data
Engineering, 11(6):865–879, 1999.

[68] K. Lamberts. Process models of categorization. In K. Lamberts and D. Shanks,
editors, Knowledge, Concepts, and Categories, chapter chap. 10, pages 371–403.
MIT Press, 1997.

[69] L. S. Larkey. Automatic essay grading using text categorization techniques. In
W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, edi-
tors, Proceedings of SIGIR-98, 21st ACM International Conference on Research
and Development in Information Retrieval, pages 90–95, Melbourne, AU, 1998.
ACM Press, New York, US.

[70] L. S. Larkey. A patent search and classification system. In E. A. Fox and
N. Rowe, editors, Proceedings of DL-99, 4th ACM Conference on Digital Li-
braries, pages 179–187, Berkeley, US, 1999. ACM Press, New York, US.

[71] L. S. Larkey and W. B. Croft. Combining classifiers in text categorization. In
H.-P. Frei, D. Harman, P. Schäuble, and R. Wilkinson, editors, Proceedings of
SIGIR-96, 19th ACM International Conference on Research and Development
in Information Retrieval, pages 289–297, Zürich, CH, 1996. ACM Press, New
York, US.

[72] D. D. Lewis. An evaluation of phrasal and clustered representations on a text
categorization task. In N. J. Belkin, P. Ingwersen, and A. M. Pejtersen, editors,
Proceedings of SIGIR-92, 15th ACM International Conference on Research and
Development in Information Retrieval, pages 37–50, Kobenhavn, DK, 1992.
ACM Press, New York, US.

[73] D. D. Lewis. Evaluating and optimizing autonomous text classification systems.
In E. A. Fox, P. Ingwersen, and R. Fidel, editors, Proceedings of SIGIR-95, 18th
ACM International Conference on Research and Development in Information
Retrieval, pages 246–254, Seattle, US, 1995. ACM Press, New York, US.

[74] D. D. Lewis. A sequential algorithm for training text classifiers: corrigendum
and additional data. SIGIR Forum, 29(2):13–19, 1995.

[75] D. D. Lewis. Reuters-21578 text categorization
test collection. Distribution 1.0, 1997. Available as
http://www.research.att.com/~lewis/reuters21578/README.txt.

[76] D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers.

153

In W. B. Croft and C. J. van Rijsbergen, editors, Proceedings of SIGIR-94, 17th
ACM International Conference on Research and Development in Information
Retrieval, pages 3–12, Dublin, IE, 1994. Springer Verlag, Heidelberg, DE. See
also [74].

[77] D. D. Lewis and M. Ringuette. A comparison of two learning algorithms for
text categorization. In Proceedings of SDAIR-94, 3rd Annual Symposium on
Document Analysis and Information Retrieval, pages 81–93, Las Vegas, US,
1994.

[78] D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka. Training algorithms for
linear text classifiers. In H.-P. Frei, D. Harman, P. Schäuble, and R. Wilkinson,
editors, Proceedings of SIGIR-96, 19th ACM International Conference on Re-
search and Development in Information Retrieval, pages 298–306, Zürich, CH,
1996. ACM Press, New York, US.

[79] J. B. Lovins. Development of a stemming algorithm. Mechanical Translation
and Computational Linguistic, 11:22–31, 1968.

[80] H. P. Luhn. The automatic creation of literature abstracts. IBM Journal of
Research and Development, 2:159–165, April 1958.

[81] M. Maron. Automatic indexing: an experimental inquiry. Journal of the Asso-
ciation for Computing Machinery, 8(3):404–417, 1961.

[82] B. Masand, G. Linoff, and D. Waltz. Classifying news stories using memory-
based reasoning. In N. J. Belkin, P. Ingwersen, and A. M. Pejtersen, editors,
Proceedings of SIGIR-92, 15th ACM International Conference on Research and
Development in Information Retrieval, pages 59–65, Kobenhavn, DK, 1992.
ACM Press, New York, US.

[83] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Y. Ng. Improving text clas-
sification by shrinkage in a hierarchy of classes. In Proceedings of the 15th In-
ternational Conference on Machine Learning. AAAI, Morgan Kaufmann, July
1998.

[84] A. K. McCallum and K. Nigam. Employing EM in pool-based active learning
for text classification. In J. W. Shavlik, editor, Proceedings of ICML-98, 15th
International Conference on Machine Learning, pages 350–358, Madison, US,
1998. Morgan Kaufmann Publishers, San Francisco, US.

[85] A. K. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving text
classification by shrinkage in a hierarchy of classes. In J. W. Shavlik, editor,

154

Proceedings of ICML-98, 15th International Conference on Machine Learning,
pages 359–367, Madison, US, 1998. Morgan Kaufmann Publishers, San Fran-
cisco, US.

[86] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and Hall,
London, England, 1989.

[87] T. Mitchell. Conditions for the equivalence of hierarchical and non-hierarchical
bayesian classifiers. Technical report, Center for Automated Learning and Dis-
covering, Carnegie Mellon University, 1998.

[88] T. Mitchell. Machine Learning. McGraw-Hill, 1998.

[89] D. Mladenić. Machine Learning on non-homogeneous, distributed text data.
PhD thesis, University of Ljubljana, Faculty of Computer an Information Sci-
ence, Ljubljana, Slovenia, 1998.

[90] D. Mladenić. Machine Learning on non-homogeneous, distributed text data.
PhD thesis, J. Stefan Institute, University of Ljubljana, Ljubljana, SL, 1998.

[91] D. Mladenić. Turning Yahoo! into an automatic Web page classifier. In
H. Prade, editor, Proceedings of ECAI-98, 13th European Conference on Ar-
tificial Intelligence, pages 473–474, Brighton, UK, 1998. John Wiley and Sons,
Chichester, UK.

[92] I. Moulinier. A framework for comparing text categorization approaches. In
AAAI Spring Symposium on Machine Learning and Information Access. Stan-
ford University, March 1996.

[93] I. Moulinier and J.-G. Ganascia. Applying an existing machine learning algo-
rithm to text categorization. In S. Wermter, E. Riloff, and G. Scheler, editors,
Connectionist, statistical, and symbolic approaches to learning for natural lan-
guage processing, pages 343–354. Springer Verlag, Heidelberg, DE, 1996. Pub-
lished in the “Lecture Notes in Computer Science” series, number 1040.

[94] I. Moulinier, G. Ras̆kinis, and J.-G. Ganascia. Text categorization: a symbolic
approach. In Proceedings of SDAIR-96, 5th Annual Symposium on Document
Analysis and Information Retrieval, pages 87–99, Las Vegas, US, 1996.

[95] G. L. Murphy and M. E. Lassaline. Hierarchical structure in concepts and the
basic level of categorization. In K. Lamberts and D. Shanks, editors, Knowledge,
Concepts, and Categories, chapter chap. 3, pages 93–132. MIT Press, 1997.

155

[96] H. T. Ng, W. B. Goh, and K. L. Low. Feature selection, perceptron learn-
ing, and a usability case study for text categorization. In N. J. Belkin, A. D.
Narasimhalu, and P. Willett, editors, Proceedings of SIGIR-97, 20th ACM In-
ternational Conference on Research and Development in Information Retrieval,
pages 67–73, Philadelphia, US, 1997. ACM Press, New York, US.

[97] N. L. of Medicine. Unified Medical Language System (UMLS) Knowledge
Sources. U.S. Department of Health and Human Services, National Institute of
Health, National Library of Medicine, Bethesda, MD, 10th edition, 1999.

[98] D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Jour-
nal of Artificial Intelligence Research, 11:169–198, 1999.

[99] H. Ragas and C. H. Koster. Four text classification algorithms compared on a
Dutch corpus. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson,
and J. Zobel, editors, Proceedings of SIGIR-98, 21st ACM International Con-
ference on Research and Development in Information Retrieval, pages 369–370,
Melbourne, AU, 1998. ACM Press, New York, US.

[100] J. Rennie and A. K. McCallum. Using reinforcement learning to spider the Web
efficiently. In I. Bratko and S. Dzeroski, editors, Proceedings of ICML-99, 16th
International Conference on Machine Learning, pages 335–343, Bled, SL, 1999.
Morgan Kaufmann Publishers, San Francisco, US.

[101] S. Robertson and D. A. Hull. The trec-9 filtering track final report. In Pro-
ceedings of TREC-9, 9th Text Retrieval Conference, Gaithersburg, US, 2000.
National Institute of Standards and Technology.

[102] S. E. Robertson and P. Harding. Probabilistic automatic indexing by learning
from human indexers. Journal of Documentation, 40(4):264–270, 1984.

[103] J. J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor,
The SMART Retrieval System: Experiments in Automatic Document Process-
ing, pages 313–323. Prentice Hall, Englewood Cliffs: New Jersey, 1971.

[104] E. H. Rosch. Principles of categorization. In E. H. Rosch and B. Lloyd, edi-
tors, Cognition and Categorization, pages 27–48. Lawrence Erlbaum Associates,
1978.

[105] M. E. Ruiz and P. Srinivasan. Automatic text categorization using neural net-
works. In E. Efthimiadis, editor, Proceedings of the 8th ASIS/SIGCR Workshop
on Classification Research, pages 59–72, Washington, US, 1997. American So-
ciety for Information Science, Washington, US.

156

[106] M. E. Ruiz and P. Srinivasan. Hierarchical neural networks for text categoriza-
tion. In M. A. Hearst, F. Gey, and R. Tong, editors, Proceedings of SIGIR-99,
22nd ACM International Conference on Research and Development in Infor-
mation Retrieval, pages 281–282, Berkeley, US, 1999. ACM Press, New York,
US.

[107] D. E. Rumelhart, R. Durbin, R. Goldenand, and Y. Chauvin. Backpropagation:
The basic theory. In M. C. Mozer and D. E. Rumelhart, editors, Mathematical
Perspectives on Neural Networks, pages 533–566. Lawrence Associates, Hills-
dale, NJ, 1996.

[108] D. E. Rumelhart and J. L. McClelland. Parallel distributed processing: explo-
ration in the microstructure cognition, volume vols. 1 & 2. MIT Press, 1986.

[109] C. L. Sable and V. Hatzivassiloglou. Text-based approaches for the categoriza-
tion of images. In S. Abiteboul and A.-M. Vercoustre, editors, Proceedings of
ECDL-99, 3rd European Conference on Research and Advanced Technology for
Digital Libraries, pages 19–38, Paris, FR, 1999. Springer Verlag, Heidelberg,
DE. Published in the “Lecture Notes in Computer Science” series, number
1696. An extended version appears as [110].

[110] C. L. Sable and V. Hatzivassiloglou. Text-based approaches for non-topical
image categorization. International Journal of Digital Libraries, 3(3):261–275,
2000.

[111] M. Sahami. Using Machine Learning to Improve Information Access. PhD
thesis, Stanford University, Computer Science Department, 1998.

[112] M. Sahami, S. Dumais, D. Heckerman, and E. Horovitz. A basic approach to
filtering junk e-mail. In Learning for Text Categorization – Papers from the
AAAI Workshop, AAAI Technical Report WS-98-05, pages 55–62, Madison,
Wisconsin, July 1998. AAAI, AAAI Press.

[113] G. Salton and C. Buckley. Term weighting approaches in automatic text re-
trieval. Information Processing and Management, 24:513–523, 1988.

[114] G. Salton and C. Buckley. Improving retrieval performance by relevance feed-
back. Journal of the American Society for Information Science, 41(4):288–297,
1990.

[115] G. Salton and M. J. McGill. Introduction to modern information retrieval.
McGraw-Hill, 1983.

157

[116] R. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227,
1990.

[117] R. E. Schapire and Y. Singer. BoosTexter: a boosting-based system for text
categorization. Machine Learning, 39(2/3):135–168, 2000.

[118] R. E. Schapire, Y. Singer, and A. Singhal. Boosting and Rocchio applied to
text filtering. In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson,
and J. Zobel, editors, Proceedings of SIGIR-98, 21st ACM International Con-
ference on Research and Development in Information Retrieval, pages 215–223,
Melbourne, AU, 1998. ACM Press, New York, US.

[119] H. Schütze, D. A. Hull, and J. O. Pedersen. A comparison of classifiers and
document representations for the routing problem. In E. A. Fox, P. Ingwersen,
and R. Fidel, editors, Proceedings of SIGIR-95, 18th ACM International Con-
ference on Research and Development in Information Retrieval, pages 229–237,
Seattle, US, 1995. ACM Press, New York, US.

[120] F. Sebastiani. Machine learning in automated text categorization. ACM Com-
puting Surveys, 2002. Forthcoming.

[121] F. Sebastiani, A. Sperduti, and N. Valdambrini. An improved boosting al-
gorithm and its application to automated text categorization. In A. Agah,
J. Callan, and E. Rundensteiner, editors, Proceedings of CIKM-00, 9th ACM
International Conference on Information and Knowledge Management, pages
78–85, McLean, US, 2000. ACM Press, New York, US.

[122] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normaliza-
tion. In Proceedings of the 19th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 21–29, Zurich,
Switzerland, August 1996. ACM, ACM Press.

[123] A. Singhal, M. Mitra, and C. Buckley. Learning routing queries in a query zone.
In Proceedings of the 20th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 25–32, Philadelphia,
PA, July 1997. ACM, ACM Press.

[124] H. Taira and M. Haruno. Feature selection in SVM text categorization. In Pro-
ceedings of AAAI-99, 16th Conference of the American Association for Artificial
Intelligence, pages 480–486, Orlando, US, 1999. AAAI Press, Menlo Park, US.

[125] K. Tzeras and S. Hartmann. Automatic indexing based on Bayesian inference
networks. In R. Korfhage, E. Rasmussen, and P. Willett, editors, Proceedings of

158

SIGIR-93, 16th ACM International Conference on Research and Development
in Information Retrieval, pages 22–34, Pittsburgh, US, 1993. ACM Press, New
York, US.

[126] C. van Rijsbergen. Automatic classification in information retrieval. Drexel
Library Quarterly, 14:75–89, 1978.

[127] C. J. van Rijsbergen, D. J. Harper, and F. Porter, M. The selection of good
search terms. Information Processing & Management, 17(2):77–91, 1981.

[128] S. R. Waterhouse. Classification and regression using mixtures of experts. PhD
thesis, University of Cambridge, Cambridge, England, 1997.

[129] A. S. Weigend, E. D. Wiener, and J. O. Pedersen. Exploiting hierarchy in text
categorization. Information Retrieval, 1(3):193–216, 1999.

[130] E. D. Wiener. A neural network approach to topic spotting in text. Master’s
thesis, Department of Computer Science, University of Colorado at Boulder,
Boulder, US, 1995.

[131] E. D. Wiener, J. O. Pedersen, and A. S. Weigend. A neural network approach
to topic spotting. In Proceedings of SDAIR-95, 4th Annual Symposium on
Document Analysis and Information Retrieval, pages 317–332, Las Vegas, US,
1995.

[132] D. H. Wolpert. Stacked generalization. Technical Report LA-UR-90-3460, The
Santa Fe Institute, Santa Fe, NM, 1993.

[133] J. Yang and V. Honovar. Feature subset selection using a genetic algorithm.
In H. Liu and H. Motoda, editors, Feature Extraction, Construction and Selec-
tion: A Data Mining Perspective, chapter 8, pages 117–136. Kluwer Academic
Publishers, 1998.

[134] Y. Yang. Expert network: effective and efficient learning from human decisions
in text categorization and retrieval. In W. B. Croft and C. J. van Rijsber-
gen, editors, Proceedings of SIGIR-94, 17th ACM International Conference on
Research and Development in Information Retrieval, pages 13–22, Dublin, IE,
1994. Springer Verlag, Heidelberg, DE.

[135] Y. Yang. An evaluation of statistical approaches to MEDLINE indexing. In
J. J. Cimino, editor, Proceedings of AMIA-96, Fall Symposium of the American
Medical Informatics Association, pages 358–362, Washington, US, 1996. Hanley
and Belfus.

159

[136] Y. Yang. An evaluation of statistical approaches to text categorization. Infor-
mation Retrieval, 1(1-2):69–90, 1999.

[137] Y. Yang, T. Ault, T. Pierce, and C. W. Lattimer. Improving text categorization
methods for event tracking. In N. J. Belkin, P. Ingwersen, and M.-K. Leong,
editors, Proceedings of SIGIR-00, 23rd ACM International Conference on Re-
search and Development in Information Retrieval, pages 65–72, Athens, GR,
2000. ACM Press, New York, US.

[138] Y. Yang and C. G. Chute. An application of Least Squares Fit mapping to text
information retrieval. In R. Korfhage, E. Rasmussen, and P. Willett, editors,
Proceedings of SIGIR-93, 16th ACM International Conference on Research and
Development in Information Retrieval, pages 281–290, Pittsburgh, US, 1993.
ACM Press, New York, US. An extended version appears as [139].

[139] Y. Yang and C. G. Chute. An example-based mapping method for text catego-
rization and retrieval. ACM Transactions on Information Systems, 12(3):252–
277, 1994.

[140] Y. Yang and X. Liu. A re-examination of text categorization methods. In
M. A. Hearst, F. Gey, and R. Tong, editors, Proceedings of SIGIR-99, 22nd
ACM International Conference on Research and Development in Information
Retrieval, pages 42–49, Berkeley, US, 1999. ACM Press, New York, US.

[141] Y. Yang and J. O. Pedersen. A comparative study on feature selection in
text categorization. In D. H. Fisher, editor, Proceedings of ICML-97, 14th
International Conference on Machine Learning, pages 412–420, Nashville, US,
1997. Morgan Kaufmann Publishers, San Francisco, US.

[142] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In Proceedings of the Fourteenth International Conference on
Machine Learning (ICML’97). AAAI, AAAI Press, July 1997.

[143] Y. Yang and J. W. Wilbur. Using corpus statistics to remove redundant words
in text categorization. Journal of the American Society for Information Science,
47(5):357–369, 1996.

[144] E. S. Yu and E. D. Liddy. Feature selection in text categorization using the
Baldwin effect networks. In Proceedings of IJCNN-99, 10th International Joint
Conference on Neural Networks, pages 2924–2927, Washington, DC, 1999. IEEE
Computer Society Press, Los Alamitos, US.

