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Abstract—Reducing device dimensions, increasing transistor
densities, and smaller timing windows, expose the vulnerability
of processors to soft errors induced by charge carrying particles.
Since these factors are only consequences of the inevitable ad-
vancement in processor technology, the industry has been forced
to improve reliability on general purpose Chip Multiprocessors
(CMPs). With the availability of increased hardware resources,
redundancy based techniques are the most promising methods
to eradicate soft error failures in CMP systems. In this work,
we propose a novel redundant CMP architecture (UnSync) that
utilizes hardware based detection mechanisms (most of which
are readily available in the processor), to reduce overheads
during error free executions. In the presence of errors (which
are infrequent), the always forward execution enabled recovery
mechanism provides for resilience in the system. We design a
detailed RTL model of our UnSync architecture and perform
hardware synthesis to compare the hardware (power/area) over-
heads incurred. We compare the same with those of the Reunion
technique, a state-of-the-art redundant multi-core architecture.
We also perform cycle-accurate simulations over a wide range
of SPEC2000, and MiBench benchmarks to evaluate the perfor-
mance efficiency achieved over that of the Reunion architecture.
Experimental results show that, our UnSync architecture reduces
power consumption by 34.5% and improves performance by
up to 20% with 13.3% less area overhead, when compared to
Reunion architecture for the same level of reliability achieved.

I. INTRODUCTION

The boons of technology scaling come with several conse-

quences. We can build chips that have billions of transistors,

but since we pack many of those transistors tightly together,

the increased power density, diminishing node capacitances,

and reduced noise margins make these transistors unreliable.

To counter the power density problem, chip designers have

resorted to multi-core architectures; which provide a way

to continue improving performance, without commensurate

increase in the power consumption. As a result, CMPs have

become popular, e.g., Intel core 2 duo, Intel core i7, AMD

Opteron, IBM Cell processor, etc. However, the reliability

problem continues to grow. Transistors are becoming so small

and fragile that a stray charge or high energy particle can

cause current pulses on a transistor and toggle the logic value

of the gate. This phenomenon, of radiation induced transient

error, is referred to as “Soft Error”. The problem is that

while high energy neutrons (100KeV - 1GeV from cosmic

background) have caused soft errors for a long time, now

low energy neutron particles (10meV - 1eV) also cause soft

errors [1]. This effect is multiplied with the fact that there

are many more low-energy particles, than those at higher

energies [2]. Soft errors have already been attributed to cause

large fiscal damages, e.g., Sun blamed soft errors for the crash

of their million-dollar line SUN flagship servers in November

2000 [3]. At the current technology node, a soft error may

occur in a high-end server once every 170 hours, but it is

expected to increase exponentially with technology scaling and

reach alarming levels of once-per-day! [4]

Chip Multiprocessors or CMPs are inherently good for

reliability due to the availability of many cores, on which

redundant computations can be performed for error detec-

tion, and/or correction. Many redundancy based techniques,

at various levels of design space abstraction, based on Dual

Modular Redundancy (DMR) [5], Triple Modular Redundancy

(TMR) [6], and checkpointing [7] have been proposed to

enable error detection and correction in CMPs. Reunion [8] is

one promising redundancy based multi-core architectures that

achieves error resilience with low performance overhead. In

Reunion, a hash of a set of instructions called fingerprint is

generated at regular intervals and compared between redundant

cores executing the same thread. The retired instructions are

committed to their respective ARF (Architectural Register

File) or memory iff the fingerprints are found to match; if not,

the execution is resumed from the previous correct position.

Though efficient in its design to detect and recover from

errors, the Reunion methodology suffers from issues during

implementation:

1) Significant changes to the core design – Its imple-

mentation requires adding a new pipeline stage in the

processor, resulting in high overheads of power and area.

2) Performance overheads due to serializing instructions –

Blocking-instructions like traps, memory barriers, and

non-idempotent instructions require the redundant cores

to synchronize causing performance degradation. Fur-

thermore, increased ROB (Re-order Buffer) occupancy

during such scenarios, lead to significant performance

degradation.

3) Ignorance of efficient hardware mechanisms for error
detection – The availability of efficient hardware-based

error detection schemes (e.g., parity bits, DMR, etc.) is

overlooked, thus underusing the hardware resources.
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In this paper, we propose a novel redundancy based multi-

core architecture for CMPs: UnSync. In this, already existing

and readily available power efficient hardware error-detection

mechanisms are used to provide effective protection against

“infrequent” soft errors; instead of output/data comparison

among redundant copies. UnSync consists of two identi-

cal cores executing the same thread; each core is modi-

fied with power/area efficient hardware only error-detection

mechanisms, for every sequential element in the processor

core. Contrary to popular redundancy based techniques that

involve loose/tight lock-stepping, UnSync disassociates the

two redundant cores during error-free execution as much as

possible, thereby allowing for maximum possible performance

in the absence of errors. In the event of an error detected

in one of the cores, execution in both the cores are stalled.

The architectural state from the error-free core is copied

onto the erroneous core to resume correct execution on both

the cores, ensuring always forward execution, i.e., it does

not go back for re-execution. Our recovery mechanism has

a higher overhead, compared to popular redundancy based

techniques for CMP. However, by reducing the performance

overheads during error free execution, and given the fact that

errors are infrequent, UnSync achieves better performance at

lower power/area overheads and lesser design complexity. In

UnSync, since every individual core is identical in its hardware

architecture, the number and pairs of redundant cores in the

multi-core system can be configured by the user, based on

reliability and performance requirements. Our experimental

results show that the UnSync architecture achieves up to

20% improved performance with 14.6% reduced area and

34.5% lower power overhead as compared to the Reunion

architecture.

II. RELATED WORK

Solutions to increase the reliability of a system, in the

presence of soft errors, hae been sought after at all levels of

computer design abstraction e.g., chip packaging [9], device

fabrication [10], circuit design [11], computer microarchi-

tecture [12], compiler optimizations [13] and software de-

sign [14]. Though the techniques had been developed for

single-processor systems, they could be made applicable to

many-core systems; however the performance or hardware

overhead in each would be multiplied by the number of cores

it is applied to. Therefore, the problem of error resilience in

a many-core system has to be approached from an orthogonal

perspective, that utilizes the available resources efficiently.

Error resilient redundant processor designs must solve two

key problems: maintaining identical instruction streams and

detecting divergent executions, on the redundant cores. Main-

frames, which have provided fault tolerance for decades, solve

these problems by tightly lock-stepping two executions [15].

Lock-step ensures both processors observe identical load val-

ues, cache invalidations, and external interrupts. While con-

ceptually simple, lock-step becomes an increasing burden as

device scaling continues [16]. As technology scaling continues

to concern the performance and power consumption overheads,

multi-core designs are being investigated to keep up with

Moore’s Law [17]. The increase in the integration of a number

of processor cores on a single chip makes the chip more dense

in area and hence making them more vulnerable to reliability

threats such as soft errors. On the other hand, CMPs inherently

provide replicated hardware resources which can be exploited

for error detection and recovery. A number of proposals [8],

[18]–[20] have attempted to take advantage of the inherent

replication of cores in CMPs to provide fault tolerance by

pairing cores and checking their execution results.

Redundant multi-threading (RMT) [21] is a modified and

efficient SMT (Simultaneous Multithreading) processor archi-

tecture where only store addresses and values are checked to

detect soft errors. It uses a Load Value Queue (LVQ) to provide

consistent replication, on redundant threads, of load values.

Output comparison is performed by a store comparator (SC)

that buffers completed but not yet committed stores. Once a

store has been successfully verified, it is eligible to commit in

each thread, and a single instance of the store is released to the

memory hierarchy. The RMT technique was later extended to

map redundant threads onto separate processor cores in a CMP,

rather than separate hardware threads in an SMT. Chip-level

redundant threading (CRT) [22] solved one source of resource

contention while exacerbating another. Execution on separate

cores eliminated contention by providing each thread its own

private set of resources. However, CMP cores are not as

tightly integrated as SMT threads, and the additional physical

separation increases the round-trip store verification latency.

This subsequently increases the average store execution time,

which reduces any gains reaped from additional hardware

resources, and results in a net slowdown.

Fingerprinting [19] is a checkpointing scheme designed to

minimize hardware changes to commodity hardware. Proces-

sor pairs identify errors by comparing cryptographic signa-

tures that summarize architecture state updates. Mismatches

trigger a rollback to a known good checkpoint; successful

comparisons free prior checkpoints. Such techniques can be

implemented cheaply, however they rely on heavy-weight

checkpointing mechanisms that capture all of system states (in-

cluding memory) and increase error detection latency. In this

paper, we adapt the benefits achieved from core-level redun-

dancy, and propose a method to reduce the hardware overheads

(memory storage, comparators, etc.) and also reduce inter-

core communication (load values, fingerprint, etc.)to ensure

resilience in the system. To increase the resource usage and

flexibility of CMPs, Gupta et al. [23], develop a redundancy

based technique at a finer granularity. In this, the pipeline

stages are connected through routers and resource sharing is

enabled across cores. However, the larger hardware overheads

and design complexity involved, limit their applicability when

the number of cores in the system increases beyond hundreds.

Smolens et al. [8], in their work overcome the issues in

design complexity and overheads in the load-value queue

(LVQ) technique, and propose to relax strict input replication

by allowing the redundant thread to issue loads directly to

the memory system. However, to deal with input incoherence
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resulting from multiprocessor data races, it identifies cases

where redundant loads receive updated values from other pro-

cessors in the system. Such mismatches are essentially treated

as transient errors – both threads re-issue their respective load

and re-check the load values. The mismatch in load values is

handled by issuing the load a third time via synchronizing

memory requests that eliminate input incoherence for the

requested cache line. Reunion [8] is one of the state-of-the-

art CMP based redundant techniques. In order to synchronize

between redundant core pairs and reduce bandwidth of com-

parison, Reunion proposes comparison of fingerprints between

vocal and mute cores. However, our intensive analysis and

experiments show that Reunion incurs high overheads in terms

of area, performance, and power. In this paper, we highlight

in detail the design issues and hardware overheads involved

in the implementation of Reunion on a many-core processor

setup (at Section IV).

Error free execution and minimal error detection overhead

(hardware or software) are the ideal expectations of a reliable

many-core system. Our proposal, UnSync, satisfies these three

ideal expectations: i) UnSync reduces error detection over-

heads in terms of area, performance, and power by exploit-

ing readily-available hardware based error detection mecha-

nisms; especially during error free executions; ii) The limited

hardware overhead involved makes the UnSync architecture

framework more conducive to implementation in a scalable

many-core system.

III. OUR APPROACH: UNSYNC

A. Architecture Overview

Figure 1 describes an overview of the UnSync architecture.

It shows two core-pairs of our two-way redundant UnSync

architecture with their inter-core and intra-core communication

links. Each core in this architecture, is configured with an

on-core write-through L1 cache, and off-core shared ECC

protected L2 cache. As part of the hardware based error-

detection machinery, the L1 cache contains a parity-bit on each

cache line to detect 1-bit errors. Similarly, the core architecture

blocks are fitted with error-detection circuitry, details of which

will be discussed in detail later in this section. The hardware

error-detection blocks are connected to an Error Interrupt
Handler(EIH) for each core-pair, to signal recovery in the

even an error is detected. Data committed into the L1 cache,

from each core of a core-pair executing identical threads of the

program, is first written into a Communication Buffer (CB).

From here, one copy of the data is passed on, to be written-

back in the protected L2 cache.

The working of the UnSync architecture can be best studied

by observing its phases of operation:

(a) Error-free Mode: The two identical cores in a core-

pair execute the same thread of the application, where each

core performs memory accesses on the shared L2 cache as

independent cores. Data written into the L1-cache of a core,

as it leaves the core (as in a write-through cache), is written

into a non-coalescing CB, one for each core in the core-pair;

as described in Figure 1. In the CB, each updated entry is

Fig. 1. UnSync Architecture: The L1 of each redundant core writes into a
CB, that acts as a secondary write buffer. Only one of the redundant copies,
from the CB-pair (a, b), is written into the L2 cache. An error detected in any
of the cores signals “RECOVERY” through the EIH, to the corresponding
core-pair and the CB.

tagged with its corresponding instruction address. As and when

the L1-L2 data bus is free (available for data transfer), the

latest entry, that has completed execution on both the CB is

selected; and one copy of all the CB entries, earlier to this,

are written into the L2 cache. This process ensures that, when

processed data leaves the cores to be updated into the lower-

level memory, both the cores have completed a particular state

in the execution; and that since no error was detected during

this time, the two copies are correct.

(b) Error-detection: Error detection in each core of the

UnSync architecture, is enforced by the use of hardware-

only error-detection blocks. The L1 cache, register file and

the queuing structures are enabled with 1-bit parity based

detection; owing to the fact that data write (parity generation)

and read (parity verification) have a minimum of 1 cycle

time difference. On the other hand, for the architecture blocks

like the program counter and pipeline registers, where data is

read/written on every cycle, parity-based detection cannot be

employed; therefore Dual Mode Redundancy (DMR) based

error detection is enabled. If any of these detection blocks

determine an error in the data, on either core, an interrupt is

transmitted to the EIH for that core-pair; which then performs

error recovery. The interconnect between the core and the EIH

is described by the dotted arrows in Figure 1.

(c) Recovery Mode: Once the EIH, receives an error interrupt,

it signals “RECOVERY” to both the cores and CB of the

corresponding core-pair. In this mode, the following procedure

implements our “always forward execution” recovery mecha-

nism:
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1) Program execution on both the cores of the core-pair is

stopped.

2) The pipeline of the erroneous core is flushed, so as to

reset the pipeline registers.

3) The architectural state (register file, PC, etc.), and the

content of the L1 cache, of the error-free core is copied

onto that of the erroneous core (the core in which error

was detected). This operation is performed by specific

subroutines using the shared L2 cache.

4) Data transfer from the CB to the L2 cache is stopped.

Only the transfers currently in flight are completed.

5) The content of the CB, corresponding to the erroneous

core, is overwritten by data from the error-free core.

6) Once the architectural state, program counter, L1 cache

contents and the CB content of both the erroneous core

has been overwritten, both the cores resume execution

of the program from the same program counter state as

that was copied from the error-free core.

B. Features of the UnSync Architecture

Here we discuss some of the important features of UnSync

that ensure its novel efficient error resilience.

1) Power-Efficient Error Detection in Hardware: The

power and chip-area benefits of the UnSync architecture,

hinges on the use of hardware based error-detection mech-

anisms in each of the cores, in a redundant multi-core

setup. Single Error Correction and Double Error Detection

(SECDED) a cache detection and correction mechanism incurs

an overhead of 22% cache area, owing to tree of XOR gates,

the depth of which increases super-linear to the number of

bits covered by the ECC [24]. In addition, the ECC gener-

ation and verification logic requires more than one cycle to

complete, which also has an impact on the cycle time of the

processor. On the other hand, 1-bit parity based error detection

mechanism requires only a negligible (< 1%) power and

area overhead [24]. In addition, the series of XOR gates don’t

impose a significant delay in its processing, and therefore can

complete its operation in one cycle. It should be noted that,

though the probability of an energy particle strike is uniform

throughout the processor core, sequential elements which store

data (even if it is for one cycle) are the most vulnerable

architectural blocks [25]. TMR based detection and correction

techniques for sequential elements, incur an overhead of 200%
in power, while DMR based detection only technique requires

only around 6% power overheads [26], [27].

Having identified that error detection on sequential elements

and storage elements, can ensure error resilience in processors,

an efficient choice of the right detection mechanism has to

be made for each architecture block. In UnSync we choose

either parity-bit or DMR based error detection methods. Owing

to, the time latency requirements of the parity-bit generation

and verification, data storage elements like: Load Store Queue

(LSQ), Translation Lookaside Buffer (TLB), register file and

the L1 cache data are enabled with parity-bit error detection.

All the other sequential elements (e.g., pipeline register, PC)

which have accesses on every cycle of processor execution;

the 1 cycle latency of parity-bit technique is unacceptable,

and therefore DMR based error-detection is employed. The

use of DMR is reduced as much as possible, because of the

hardware area and power overheads involved in every access.

Since only error-detection methods are employed within the

core, to ensure error resilience, the redundancy of CMPs is

used. By introducing a novel hardware only error reporting

scheme, through the use of the EIH network in the UnSync

architecture, area/power-efficient error resilience is achieved

2) Need for Synchronization Among the Cores is Elim-
inated: In popular redundancy based techniques for error

resilience, the execution on the cores (or within a core) is

synchronized by either lock-stepping [15] or through memory

accesses [21], because: i) error detection is implemented by

comparing the execution outputs or by comparing the memory

accessed among the redundant threads (on the same or differ-

ent cores), and ii) when an error is detected, both the cores can

be directed to re-execute a set of instructions from a previously

identified error-free position (e.g., checkpoint [19]). However,

as suggested by the name of our architecture - UnSync, the

need to synchronize execution among the redundant cores

is eliminated. This is made possible by, i) hardware based

error detection mechanisms that eliminate the need to compare

redundant executions, and ii) the “always forward execution”

based recovery mechanism ensures that the cores resume from

the last executed position of the correct core and no re-

execution is required in either cores.

When an error is detected on a core, execution on both

the cores is stopped and architectural state from the error-

free core is copied onto the erroneous core. While resuming

the processor, the execution sequence is altered on only the

erroneous core (since PC is copied from error-free core). The

error-free core resumes from where it was stopped. Another

aspect of this technique is that the amount of instructions re-

traced (if any), by the erroneous core depends on the difference

in the execution speeds between the two cores. In the case that

the erroneous core was executing at a slower speed, during

recovery, execution on this core is forwarded. The absence

of re-executions in the recovery mechanism, provides some

compensation to the overhead involved in the architectural

state and L1 cache content copy from one core to the other.

C. Implementation Details of UnSync

1) Need for Write-through L1 Cache configuration: Most

architectures used in high reliability applications, use the L1

cache in write-through mode. This is because in the write-

through configuration, a copy of the updated cache data always

exists in the lower-level memory. Therefore, if an error is

detected during read operation on a cache-line, the cache-line

can be invalidated, and the correct updated cache line can

be loaded from the memory. Here, we discuss the need for

the write-through cache configuration and its importance in

the UnSync architecture. If the UnSync core was configured

using a write-back cache, an error on a cache-line may leave

us in a irrecoverable state. Figure 2 describes such a scenario

and thereby demonstrates the importance of the write-through
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Fig. 2. Once an error is detected in a core, non-zero cycles are incurred
in the communication to the EIH and subsequent RECOVERY signaling to
stall the processor and perform cache copy. In write-back cache configuration,
corrupt data (if any) in core B could be written into the memory or copied
over to core A during recovery.

cache in UnSync. Figure 2 shows two redundant cores with

write-back caches, running an identical thread, and the events

in the caches. At time t0, a data cache block is written (on both

cores) and therefore the cache-line is deemed dirty. At time

t1, an error is detected in core A, the error is reported to EIH.

The EIH, on receipt of the error signal, transmits processor

stall signals (RECOVERY) to both the cores, which requires

a non-zero number of cycles for both the processor pipelines

to stall. Based on information received by the EIH, core A is

known to be erroneous, and has to be replaced with contents

from core B. Meanwhile, an error may strike on a dirty cache

block in core B, which would be detected only when read

during the recovery process. Since the cache is a write-back

cache, and the erroneous cache-line in core B is dirty it does

not have an updated copy anywhere else in the system. This

scenario thus makes it impossible to recover from errors on

the cores. On the other hand, if the cache configuration was

a write-through cache, as and when the block was updated, a

copy is written into the L2 cache (or memory). On a similar

situation as in Figure 2, it is possible to simply invalidate

both the cache lines and treat the same as cache-misses as the

correct updated copy of the cache blocks are available in the

ECC protected L2 cache.

IV. COMPARATIVE ANALYSIS: REUNION

A. Issues with Reunion Architecture Implementation

Our meticulous analysis here, shows that Reunion [8] when

implemented on a many-core system, incurs significant hard-

ware power, area and performance overheads.

1) Additional “CHECK” pipeline stage: A key architecture

block in the implementation of Reunion, is the additional

pipeline stage: CHECK, highlighted in Figure 3. The function

of this additional stage is to, 1) generate the fingerprint –

hash of the instruction and output-data of a set of instructions

(fingerprint interval (FI)), 2) send and receive the fingerprints
to compare the same between the vocal and mute cores, 3) tem-

porarily store instruction and output data, in the CHECK Stage

Fig. 3. The core pipeline architecture in Reunion is described, and the
internal components of the additional pipeline stage (CHECK) is shown in
detail.

Buffer(CSB), before committing to the architectural register

file and memory. From our hardware synthesis experiments (at

the 65nm technology node, as described in Section V), we

observe that the CHECK stage alone contributes significantly

to the overall Reunion hardware overhead. Compared to the

“Execute” pipeline stage of the baseline MIPS core, it occupies

75% of chip-area and consumes 40% of per-access energy.

The major architecture components that constitute the CHECK

stage, as described in Figure 3 are: the hashing circuitry –

Fingerprint Generator, CHECK Stage Buffer, and their allied

circuitry.

2) Fingerprint Generator: The fingerprint generator logic,

as described in [8], is composed of a two stage parallel, 16-bit

Cyclic Redundancy Checking (CRC) block [28], [29]. On each

cycle, the fingerprint is generated in parallel to the mechanism

that stores instructions and their output-data into the CSB. The

CRC block is composed of 238 gates [28], which falls right

in the middle of the critical path, that determines the cycle-

time for the CHECK stage. This phenomenon, thus adds to the

overall complexity of the design and also affects the power-

performance trade-offs realized in its implementation.

3) CHECK Stage Buffer: At the end of the “Memory”

stage, in the Reunion pipeline, the data to be written to the

memory is not written, but stored temporarily along with the

instruction in the CSB; as the corresponding fingerprint has to

be verified before the instructions can be committed. Similarly,

the data to be committed to the register files is also stored

in the buffer. Considering nominal data bus speeds [30], we

assume that a minimum of 6 cycles is required to communicate

the fingerprints between cores, compare their values, and

derive a result. While the fingerprint is being compared, the

pipeline continues to executes instructions that will form the

next fingerprint, and thus these instructions and output-data

also have to be stored in the CSB. Since at any point in time,

two fingerprints exist (one in the process of comparison, and

the other due to parallel pipeline execution), an additional

fingerprint buffer is required (described in Figure 3). For a

FI of 10 (the minimum indicated in [8]), a total of 17 buffer
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entries are required, each of size 66-bits; forming a total of

17× 66 = 1122 bits buffer.

In the buffer, each entry requires one exclusive write port

and three exclusive read ports to allow buffering and parallel

instruction commit, before and after fingerprint comparisons.

During hardware implementation, we observe that the cell that

forms each bit of the CSB is 10.40μm2 which is 1.3× the size

of a register file cell (7.80μm2); because of the additional

read port in the buffer. The chip-area occupied by the CSB

is thus 1.46× that of a 32 entry register file (32 × 32-bits).

The authors in [8] indicate the possibility of increasing the FI

(around 1 50) to reduce the communication overhead, without

any discernible difference in system performance. An increase

in the FI involves an increase in the size of the CSB and the

allied circuitry. We observe through synthesis, that for a FI of

50, the CSB alone occupies a chip-area of 39125μm2, which is

91% the size of the whole MIPS core (42818μm2), excluding

only the cache.

4) Register Forwarding Logic: Another consequence of

buffering instructions and their output data before commit-

ting to their respective architectural states, is the possible

pipeline stalls due to data starvation while executing data-

dependent instructions. For example, if a register is updated

by an instruction that is part of the fingerprint generated, and

currently under comparison; and if a succeeding instruction

reads from that register, the (W-R) data-dependency realized

requires the pipeline to stall until the register file data is

committed. Since the output data is buffered in the CSB, a

Register Forwarding logic can be employed to forward the

stored updated register data to the instruction in the execution

pipeline. In the Reunion implementation, such a forwarding

mechanism is essential to maintain the minimal performance

loss indicated, on parallelizing the fingerprint based error

detection process.

On analysis of the hardware implementation (after place and

route of synthesized blocks), we observe that the forwarding

logic and the datapaths between the buffer and the processor

pipeline, add to the overall hardware overhead [31]. In this,

the datapaths constitute around 34% additional metal wiring

length compared to that of the baseline MIPS core. In addition,

it should be noted here that these datapaths add to the total

load capacitance of the connected blocks and thereby increase

the total energy consumption per access. Since the blocks at-

tached to these datapaths (“ALU” and “CSB”) are accessed on

every cycle, the effect cascades to increase the overall power

consumption of the processor. This observed phenomenon,

will only multiply with the increase in the issue-width of the

processor. As discussed above, an increase in the FI will cause

an increase in the size of the CSB. As a consequence to the

increased buffer size, the number of datapaths required for its

implementation increases, which would further increase area

and power overhead estimated earlier.

5) Performance overheads: The fingerprint based error

detection mechanism realizes two kinds of indirect hardware

overheads. Firstly, pipeline occupancy increases from instruc-

tions in CHECK stage, occupying additional Reorder Buffer

Parameter Configuration
Processor Cores 4 logical cores, Alpha 21264

2GHz, 5-stage pipeline; out-of-order
4-wide fetch/issue/commit

Issue Queue 64
L1 Cache 32KB split I/D, 2-way, 10 MSHRs

2 cycle access latency, 64-byte/line
Shared L2 Cache 4MB, 8-way, 64-byte/line

20-cycle access latency, 20 MSHRs
I-TLB 48 entries, 2-way
D-TLB 64 entries, 2-way
Memory 3GB, 64-bit wide, 400 cycles access latency

TABLE I
SIMULATED BASELINE CMP PARAMETERS

(ROB) capacity in the speculative window. For workloads

that benefit from large instruction windows, this reduces the

opportunity to exploit memory level parallelism or perform

speculative execution. Secondly, the serializing instructions

(i.e., traps, memory barriers, etc.) cause the entire pipeline to

stall, when data-dependent instruction are in the issue queue or

pipeline, till the fingerprint including the serializing instruction

is verified. These pipeline stalls cause a cascading effect on the

ROB occupancy and thereby affect the overall performance of

the system.

V. EXPERIMENTAL SETUP

To evaluate and compare the effectiveness of UnSync, in

comparison with Reunion, we develop a multi-core setup to

estimate power, performance and area. The cycle-accurate M5

multi-core simulator [32] is modified to model the UnSync

and Reunion implementation on a 4 core processor. The spec-

ifications of each core is tabulated in Table I. The simulator

is instrumented to obtain application statistics of cycle-time

and the cycle-delays of each architecture block. We model

accurately, 1) the faster core’s delay due to stalls during

the execution of serializing instructions and increased ROB

occupancy in the Reunion architecture, and 2) the stalls caused

when the CB is full and the bus is busy. We experiment over

benchmarks from SPEC2000 and MiBench.

To estimate the power and area overheads incurred, we per-

form hardware synthesis (using the Cadence Encounter [33])

on an RTL implementation of the the MIPS [34] processor.

We implement both the UnSync and Reunion architecture on

the baseline MIPS core. In our analysis since each core is

identical and executes redundantly, we compare and contrast

the area and power of only a single core in three configu-

rations. The hardware components added to the MIPS core,

for the Reunion implementation are: fingerprint size=16bits,

fingerprint interval=10 instructions and the CHECK Stage

Buffer=17entries each of 66bits. In the case of UnSync, the

L1 cache is in Write-through configuration with 10 entries

in the Communication Buffer, for each core. We synthesize

three core models for the same frequency of 300MHz at

65nm technology. In order to accurately evaluate the impact of

datapaths and interconnects in the processor implementations,

we perform place-and-route (PNR) at the nominal density of
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0.49. For an accurate analysis of cache area and power, we

estimate the parameters using CACTI cache simulator [35].

We scale cache line size (and total cache-size accordingly) to

derive power and area values for the cache including parity-bit

and SECDED [36] error protection mechanisms.

VI. EXPERIMENTAL EVALUATION

A. Lower Area and Power Overheads in UnSync

1) Error detection mechanisms incur lower overheads:
Here, we summarize the area and power overheads, of the two

redundant processor architecture implementations (UnSync

and Reunion), in comparison with the baseline MIPS core. The

hardware parameters discussed here are that of a single core

after PNR and therefore demonstrate with greater accuracy

the actual power and area specifications of the chip, in each

configuration, after fabrication.

Parameter Basic MIPS Reunion UnSync
Chip-Area Overhead

Core (μm2) 98558 144005 115945

L1 Cache (mm2) 0.1934 0.2086 0.1939

CB (mm2) N/A N/A 0.00387

Total Area (μm2) 291958 352605 313715
Overhead (%) N/A 20.77 7.45

Power Overhead
Core (W) 1.153 2.038 1.635
L1 Cache (mW) 38.35 42.15 38.45
CB (mW) N/A N/A 0.77258
Total Power (W) 1.19 2.08 1.67
Overhead (%) N/A 74.79 40.34

TABLE II
HARDWARE OVERHEAD COMPARISON

In Table II, we observe that the UnSync architecture core

has a hardware area overhead of only 7.45% (compared to

the MIPS core) and occupies 13.32% lesser chip-area when

compared to the Reunion implementation. Two significant

architectural blocks constitute the area overhead of the Re-

union: i) the additional CHECK stage (46% in core area) –

which is composed of Fingerprint Generator, CHECK Stage
Buffer and the datapath in the register forwarding logic, and

the SECDED protected L1 cache (7.85% in cache area) –

which is composed of additional storage bits (8 check bits for

every 64 bit data chunk), and ECC generation and verification

circuitry, when compared to the MIPS baseline processor. On

the other hand, the UnSync implementation is composed of

only 17.6% increased core-area and 0.2% increased cache area

(1 parity bit for a 256 bit cache-line). In UnSync, the hardware

detection blocks added to all the sequential elements in the

core, are mostly composed of combinational logic, which can

be synthesized optimally for tighter chip-area by the default

configurations of the design compiler. On the other hand,

the hardware components that contribute to the Reunion area

overhead are composed of storage elements, which are mostly

regular array structures, that demonstrate lesser flexibility in

circuit optimization, for area and power. It should be noted

here that, the only additional storage block added to the

UnSync architecture is the CB, which has a negligible area

overhead.

On similar lines, we observe in Table II, that the power

consumption of the Reunion implementation is a staggering

75% more than the baseline MIPS core. This is mostly due to

accesses to the power consuming CHECK stage components

(hashing logic and buffer array structure), which consumes

76.8% more core power compared to the MIPS core. In

addition, the SECDED generation and verification on every

cache access, constitutes around 10% more cache power

consumption than the baseline MIPS cache. On the other

hand, the hardware detection blocks added to the processor

core, only cause around 42% increased power consumption;

while the parity bit protection technique employed, does incurs

an insignificant power overhead (0.2%). It should be noted

here that, the only additional storage structure in UnSync

(CB), adds negligible power consumption overheads. We thus

demonstrate here through accurate hardware synthesis exper-

iments that the UnSync implementation is of significantly

reduced chip-area and low power consumption. Currently

the above discussion, is based on worst case analysis with

basic design optimizations at the design compiler and power

analysis tools. Any circuit level optimization on the detection

techniques, or circuit implementations, will only further reduce

the overheads incurred.

Intel Tilera NVIDIA
Parameters Polaris Tile64 GeForce
Technology node 65nm 90nm 90nm
No. of Cores:n 80 64 128

Per-core Area (mm2) 2.5 3.6 3

Original Die Area (mm2) 275 330 470

Reunion Die Area (mm2) 316.54 377.85 549.76

UnSync Die Area (mm2) 289.9 347.16 498.61

Relative difference (mm2) 26.64 30.69 51.15
DAReunion −DAUnSync

TABLE III
COMPARISON OF PROJECTED DIE SIZES (DS) [37]–[39] OF EXISTING

MANY-CORE PROCESSORS, IN TWO ERROR-RESILIENT IMPLEMENTATIONS

(REUNION AND UNSYNC). WHILE CHOOSING AN ERROR-RESILIENT

MANY-CORE IMPLEMENTATION, THE LAST ROW INDICATES THE

DIFFERENCE IN DIE-AREA BETWEEN THE TWO CHOICES: UNSYNC AND

REUNION.

2) Projected Scaling of Area and Power Overheads to Many
Core Processors: In order to facilitate the design choice of

an error-resilience methodology in a many-core system, we

compare the die size projections of Reunion and UnSync im-

plementations. For this, the per-core overhead parameters are

scaled to existing many-core processors (Table III), where the

original die sizes are obtained from [40]. The overall chip area

scales up linearly as the number of cores increase, but the same

under the error-resilient architecture implementations does not

follow the same trend. To project the die size parameters, we

extract the Core Area Overhead–CAO (per core), for each

configuration, from Table II. Since the area overhead of each

implementation is observed at the per core level, the increase
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in area per core (CAinc), is given by CAinc = n×CA×CAO;

where CA is original area of a single core, and n the number

of cores, in the processor. The projected Die Area–DA of the

processor, in an implementation, is thus given by:

DA = CAinc+DAorig; denoted by DAReunion for Reunion

and DAUnSync for UnSync implementations.

The last row of Table III denotes the difference in the

die areas (DAReunion − DAUnSync) between the two error-

resilient implementations of the many-core processor. We use

this parameter during design, to determine the right redun-

dancy based mechanism to employ in the many core processor

architecture considered. From the projections in Table III, we

observe that:

1) with the increase in the number of cores in the pro-

cessor, the difference between the die areas of the two

implementations increases in a non-linear fashion. In

the case of the Intel polaris and NVIDIA GeForce

processors, for only around 50% increase in the number

of cores, the difference in the die-areas increases by

around 2×. The higher per-core area overhead of the

Reunion implementation (0.2077), as compared to that

of UnSync (0.0745), is the reason for this behavior.

2) the original per-core area is another key factor that

governs the total Die Area parameters. In the case of

the Tilera processor with 64 cores the per-core area

is 3.6mm2; which is larger than that of the NVIDIA

processor with 128 cores, in the same technology node.

In Tilera, the difference between the die areas of the two

implementations, is relatively large, when compared to

that of the NVIDIA processor.

From the two observations made above, we can deduce that

in the design of many-core processors with large number

of cores, or when the per-core area is reduced, the UnSync

implementation demonstrates reduced power overheads, lower

overall die-area, and improved performance.

B. Negligible Performance Overhead in UnSync

Fig. 4. Reunion is affected by serializing instructions, while UnSync is
not. The set of smaller bars on the left, demonstrate performance overheads
incurred.

1) No Performance Penalty from Serialization: To show the

impact of serializing instructions, we analyze the performance

variation on benchmarks which have serializing instructions.

The FI in the Reunion implementation determines the gran-

ularity or frequency of synchronization and therefore we

consider the baseline value for the interval as 10 instructions

(smaller the better for Reunion). As we demonstrate here,

the UnSync implementation is not affected by serializing

instructions, we consider the baseline architecture as described

in Section V. We observe from the results in Figure 4 that, the

Reunion implementation incurs an average of 8% performance

overhead due to serializing instructions. Applications: bzip2,

ammp and galgel suffers from more than 10% overhead

because they have more serializing instructions, which are

2%, 1.7% and 1% of total instructions respectively. However,

galgel also suffers from increased ROB occupancy, and there-

fore has the maximum overhead. On the other hand, UnSync

demonstrates a consistently negligible variation (around 2%)

in performance.

Fig. 5. Reunion suffers from increased ROB occupancy due to the
CHECK stage, and varies with the fingerprint interval and comparison latency
parameters.

2) No Performance Impact due to ROB occupancy: In

Figure 5 we show how the FI and comparison latency can

affect the performance of Reunion. Fingerprint interval is

the granularity of checking, determined by the number of

instructions included in a generated fingerprint; while the

comparison latency is defined as the total time required to

generate, transfer, and compare the fingerprint. Larger FI

has the benefit of less frequent communication and thus less

power overhead, but at the cost of increased ROB occupancy;

and therefore longer comparison latency since there are more

instructions staying longer in the CHECK pipeline stage.

Figure 5 shows the performance of Reunion at different

comparison latencies and FIs. We start at the FI of 1 instruction

and comparison latency of 10 cycles, and then continuously

increase them. We can see that ammp and galgel are greatly

affected by the length of the FI and comparison latencies,

because the program quickly saturates the ROB. At the FI

of 30 instructions and comparison latency of 40 cycles, on
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an average, the performance decreased by 27% and 41%
respectively. In contrast, in UnSync with no synchronization

or inter-core comparisons, it is not affected by the increased

ROB occupancy since instructions are not held in ROB for an

additional time.

3) Larger CB Size Eliminates Performance Bottleneck:
In UnSync, a core with a full CB has to stall and wait for

the latest instruction to complete execution on the other CB

for comparison and thereby eviction to L2. Therefore, if an

application has a large number of write operations, it will

affect the performance of system by stalling the cores when

the CB is full. Figure 6 shows the performance of UnSync

across different CB sizes. We can see that when the CB size

is small, the performance decreases; whereas larger CB sizes

(2KB and 4KB) completely eliminates the resource occupancy

bottleneck, and UnSync has almost identical performance with

that of the baseline CMP architecture.

Fig. 6. Larger CB size eliminates the resource occupancy bottleneck and
demonstrates better performance.

C. UnSync Performs better across SER rates

In order to evaluate the two multi-core architectures for

their reliability, we extrapolated the average IPC (over the

set of benchmarks experimented) for a range of SER rates.

For this, we used the exponential ratio of SERs between the

technology nodes 180nm (1000 FIT) and 130nm (100, 000
FIT), and extrapolated the same to obtain the SER for 90nm

technology. From experiments performed by iRoc technolo-

gies, we observe that the SER rate for technology nodes from

65nm and beyond are more or less saturated and don’t follow

the same exponential ratio trend. For our analysis, we consider

the SER at the 90nm node (2.89×10−17 per instruction) [41].

Our projected results of IPC for both the Reunion and UnSync

processor architectures does not vary with change in the SER

rate from 10−7 to 10−17 (or lower), thereby demonstrating

that the UnSync processor architecture even in the presence

of soft errors performs better than the Reunion architecture.

A hypothetical analysis, to determine the “break-even” SER

that equates the two processors’ performance numbers, reveals

that when the SER reaches 1.29 × 10−3, the two processor’s

will perform alike. Therefore, for all practical purposes, we

can safely say that our UnSync technique, performs with 20%
better performance with or without soft errors as compared to

Reunion.

D. UnSync has Larger Region of Error Coverage

Through simulations of the multi-core system in the two

configurations, we verify that both UnSync and Reunion

architectures execute programs correctly in the presence of

errors; though the error detection and recovery mechanisms

vary in both techniques. However, the region of error coverage

(ROEC) for the Reunion core is limited to the processor

pipeline before the “Commit” stage, as the fingerprint verifies

only the output data of the instructions after the “Execute”

stage. The L1 cache in the Reunion architecture is assumed to

have ECC protection and therefore not included in the ROEC.

On the other hand, the UnSync architecture includes all the

sequential blocks within the processor IP-core and also the L1

cache in its ROEC. We observe that the UnSync architecture

achieves same level of reliability, with a larger ROEC, and at

lesser hardware overheads of power and chip-area.

VII. CONCLUSION

Growing technology scaling expose modern and future

processors to soft error failures caused due to charge carrying

particles. In this paper, we propose UnSync– an error resilient

and power efficient multi-core architecture based on core-level

redundancy. Our always forward execution enabled recovery

mechanism coupled with an efficient choice of hardware

only detection techniques, reduce performance overheads in

redundant designs, while also ensuring error resilience. We,

compare our architecture implementation on a multi-core

environment, with that of Reunion (a state-of-the-art redundant

error resilient technique. Experimental results show that the

UnSync achieves upto 20% improvement in performance, with

13.32% reduced area and 34.5% less power overhead when

compared to that of Reunion architecture. In addition, we

observe that the UnSync architecture achieves same level

of reliability, with a larger ROEC, and at lesser hardware

overheads of power and chip-area.

VIII. FUTURE WORK

With the increasing parallelism in application software,

and the drastic increase in the number of cores available

in the CMP, our architecture opens doors to varied level

of customization and programmability, both at the compiler

and application level, to facilitate development of soft error

resilient applications. Furthermore, our architecture framework

allows for possible customization at the hardware and thereby

help achieve varied degrees of redundancy/resilience trade-

offs. Since our architecture framework is independent of

the underlying architecture within the core, more efficient

hardware detection techniques (multi-bit correction for cache

blocks, hardened pipeline registers, efficient register file pro-

tection, etc.) can be implemented. Our architecture and its

working are unaffected by such modifications.
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