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Abstract

Host mobility plays a fundamental role in the spatial spread of infectious
diseases. Previous theoretical works based on the integration of network the-
ory into the metapopulation framework have shown that the heterogeneities
that characterize real mobility networks favor the propagation of epidemics.
Nevertheless, the studies conducted so far assumed the mobility process to
be either Markovian (in which the memory of the origin of each traveler is
lost) or non-Markovian with a fixed traveling time scale (in which individ-
uals travel to a destination and come back at a constant rate). Available
statistics however show that the time spent by travelers at destination is
characterized by wide fluctuations, ranging between a single day up to sev-
eral months. Such varying length of stay crucially affects the chance and
duration of mixing events among hosts and may therefore have a strong im-
pact on the spread of an emerging disease. Here, we present an analytical
and computational study of epidemic processes on a complex subpopulation
network where travelers have memory of their origin and spend a heteroge-
neously distributed time interval at their destination. Through analytical
calculations and numerical simulations we show that the heterogeneity of
the length of stay alters the expression of the threshold between local out-
break and global invasion, and, moreover, it changes the epidemic behavior
of the system in case of a global outbreak. Additionally, our theoretical
framework allows us to study the effect of changes in the traveling behavior
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in response to the infection, by considering a scenario in which sick individ-
uals do not leave their home location. Finally, we compare the results of
our non-Markovian framework with those obtained with a classic Markovian
approach and find relevant differences between the two, in the estimate of
the epidemic invasion potential, as well as of the timing and the pattern of
its spatial spread. These results highlight the importance of properly ac-
counting for host trip duration in epidemic models and open the path to
the inclusion of such additional layer of complexity to the existing modeling
approaches.

Keywords: Mathematical epidemiology, Metapopulation model,
Contagion process, Infectious disease, Non-Markovian dynamics

1. Introduction

The spatial distribution of hosts and their mobility behavior represent
two key ingredients in the spatial dissemination of an infectious disease
affecting the host population. Modeling approaches that take into account
these ingredients can address crucial epidemiological issues on the expected
outcome, such as e.g. the persistence of an infection in the population or
the conditions for the invasion of an emerging epidemic (Riley, 2007).

An ideal theoretical framework to capture the effects of the spatial struc-
ture of a population and to explore its epidemiological implications is given
by the metapopulation approach (Hanski and Gilplin, 1997; Grenfell and
Harwood, 1997; Tilman and Kareiva, 1997; Bascompte and Solé, 1998; Han-
ski and Gaggiotti, 2004). This framework has been widely used in popula-
tion ecology and epidemiology and describes the dynamics of a population
in a fragmented environment where a discrete number of localized subpop-
ulations or patches are connected by mobility fluxes. In metapopulation
epidemic models, individuals belong to well-defined social or geographical
units (e.g. households, towns, or large urban areas) and the coupling among
these units is generated by the mobility connections and determines the dis-
ease circulation on the spatial system (Hethecote, 1978; May and Anderson,
1984; Bolker and Grenfell, 1995; Sattenspiel and Dietz, 1995; Keeling and
Rohani, 2002; Grenfell and Harwood, 1997; Ferguson et al., 2003).

Recently, metapopulation models have been integrated with empirical
data on human demography and mobility to create data-driven computa-
tional tools for the analysis of large-scale geographic spread of infectious dis-
eases (Grais et al., 2004; Hufnagel et al., 2004; Colizza et al., 2006; Cooper
et al., 2006; Colizza et al., 2007a; Epstein et al., 2007; Balcan et al., 2009a).
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The use of real data on human mobility has uncovered the important role of
the various heterogeneities that characterize human movement patterns on
the resulting epidemic. The network structure of human patterns is usually
defined as complex, indicating that it displays a large variability, spanning
several orders of magnitude, in the number of connections between loca-
tions and in the number of travelers between each origin and destination
centre. Such complex features have been found in the worldwide air travel
patterns (Barrat et al., 2004; Guimerá et al., 2005) and in commuting pat-
terns between urban areas (Chowell et al., 2003; Brockmann et al., 2006;
González et al., 2008; Balcan et al., 2009a). These fluctuations are par-
ticularly relevant when human mobility networks are used as a substrate
for metapopulation epidemic models. Under very general assumptions, it
has been shown that a metapopulation system may be characterized by two
epidemic thresholds: a local epidemic threshold, which regulates the spread
of the infection within a single subpopulation (Anderson and May, 1992),
and a global epidemic threshold that determines if the epidemic invasion
can reach a significant fraction of subpopulations (Ball et al., 1997; Cross
et al., 2005; Colizza and Vespignani, 2007; Colizza et al., 2007c; Colizza and
Vespignani, 2008). The latter distinguishes cases of spatial invasion from
outcomes in which, despite an ongoing outbreak in the seed subpopula-
tion, the epidemic is not able to spread spatially because of a small enough
mobility rate, which does not ensure the travel of infected individuals to
other subpopulations before the end of the local outbreak, or which pro-
duces small enough seeding events not enabling the start of an outbreak in
the reached subpopulation due to local extinction events. Assuming that
individuals are homogeneously mixed within each subpopulation, the local
threshold depends on the disease parameters only, but the global threshold
depends also on the statistical fluctuations of the network connectivity and
on the mobility fluxes. In case of a broad distribution of connections per
subpopulation, while the condition for the occurrence of the local outbreak
remains unchanged, the topological fluctuations lower the threshold condi-
tion for the global invasion, thus strongly favoring the spatial spread of the
epidemic (Colizza and Vespignani, 2007; Colizza et al., 2007c; Colizza and
Vespignani, 2008).

Within the metapopulation framework, such results were obtained un-
der the assumption that the mobility of individuals and the concurrent epi-
demic process can be modeled as particle reaction-diffusion processes (Col-
izza et al., 2007c). The first studies also assumed a Markovian dynamics,
representing individuals who are indistinguishable regarding their travel pat-
tern, so that at each time step the same travelling probability applies to all
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individuals without having memory of their origin (Colizza and Vespignani,
2007; Colizza et al., 2007c; Colizza and Vespignani, 2008). This assump-
tion has also been adopted in several modeling approaches for the data-
driven large-scale spreading of infectious diseases (Rvachev and Longini,
1985; Longini, 1988; Flahault and Valleron, 1991; Grais et al., 2003, 2004;
Hufnagel et al., 2004; Cooper et al., 2006; Epstein et al., 2007; Colizza et al.,
2007a,b; Balcan et al., 2009a), mainly for simplification purposes and ab-
sence of exhaustive detailed origin-destination data. Human mobility has
however a clear territorial nature characterized, on average, by individuals
spending short periods away of their permanent location. In addition, re-
cent results on the analysis of detailed mobility data at the individual level
have pointed out the high level of predictability and recurrence of individ-
ual daily travel patterns (Wang and González, 2009; Song et al., 2010b,a).
Such recurrent patterns have therefore been included in spatially structured
approaches with a specific focus on commuting modes of mobility, that is
the type of recurrent daily mobility from the location of residence to the
location of work (Sattenspiel and Dietz, 1995; Danon et al., 2009; Keeling
et al., 2010; Balcan and Vespignani, 2011, 2012; Belik et al., 2011). This
corresponds to recording the subpopulation of residence for each individual,
assuming that they spend a fixed time at destination, before returning to
their residence at each timestep.

Additional modes of mobility, besides the commuting behavior, are char-
acterized by variable lengths of stay at destination, mainly dependent on the
purpose of the trip but also on its logistical details and the accessibility of
the destinations. Data collected from the office of statistics of several coun-
tries worldwide indicate that the time spent by travelers at their destination
is broadly distributed and ranges from a single day to months. In Fig. 1 we
present some examples that support such empirical evidence for a number
of countries. The number of nights spent by foreign travelers in the UK and
other European countries span several orders of magnitude, ranging from
less than a week to 6 months or more, considering all countries of origins
and all travel purposes. Importantly, the average time spent by tourists in
different British cities shows strong geographical variations: some locations
are characterized by a short length of stay (less than 4 days on average)
while in other cities travelers spend on average more than 20 days. The
length of stay also depends strongly on the purpose of the trip. As shown
by Australian data, business trips tend to be shorter, usually lasting less
than 15 days, while educational and employment trips are usually very long
and can easily exceed the 3 months duration, on average. Holiday trips
show large fluctuations in their duration and can last from few days up to
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50 days, on average. Furthermore, similar large fluctuations in the dura-
tion of visits were also observed on different time and spatial scales. For
instance, the time spent by residents in different locations within a US city
during their daily routine varies from few minutes to several hours (Eubank
et al., 2004, 2006). Similarly, the analysis of a large dataset of mobile phone
records revealed that the time spent by mobile phones users at a given lo-
cation identified by a phone tower cell, ∆t, follows a power law distribution
P (∆t) ∼ |∆t|−(1+β) with 0 < β ≤ 1 (González et al., 2008; Song et al.,
2010a).

Prompted by these empirical findings, we study spreading processes on
a metapopulation system where individuals have memory of their subpop-
ulation of origin and spend at destination an average length of stay τ that
is broadly distributed. This corresponds to focus on an additional level of
heterogeneity that is observed in human mobility and that is associated to
the timescales of travel movements.

In order to integrate the large fluctuations of τ observed in reality into
our modeling framework, we assume that the length of stay of travelers
depends on their destination only and it varies from place to place, as a
power-law function of the connectivity of a subpopulation, similar to the
degree dependence observed in other metapopulation variables (such as e.g.
the population size, the total flux of travelers, and others) (Poletto et al.,
2012). Following (Poletto et al., 2012), we show analytically that, similar to
what is observed with a Markovian dynamics, the system is characterized
by a global epidemic threshold which defines a transition between a regime
where only few subpopulations are affected by the spreading process and a
regime where the infectious agent spreads globally on the network. Such
a threshold, whose expression can be computed analytically, depends both
on the network topology and on the considered distribution of the length of
stay. In this paper we fully explore the dependence of the invasion condition
on the transportation structure, the travel volumes of passengers and their
spatial distribution, and the parameter describing the expression of the time
interval spent at destination. A longer time spent by travelers in peripheral
locations, with respect to large hubs, can lead to a substantial suppression
of the disease transmission at the global level, and, conversely, the spreading
process may be accelerated if a longer length of stay characterizes the busiest
locations. We confirm our analytical results with numerical Monte Carlo
simulations on synthetic metapopulation networks, where single individuals
are tracked in time and all the modeled processes are fully stochastic.

In addition to the study of the invasion dynamics and its dependence on
the features of the metapopulation system, we test here the effects of changes
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Figure 1: Empirical data on the length of stay of travelers. (a) The number of nights
spent by foreign travelers visiting the UK (in blue) and by British traveling abroad (in
red) spans several orders of magnitude, from 1 night to several months, considering all
travel purposes and all countries of origin and destination (source: UK Travel Trends
2009). (b) Geographic variations in the average length of stay of foreign travellers in
different cities of the UK (source: UK Travel Trends 2009). (c) The number of nights
spent by tourists traveling to European countries on holiday is broadly distributed. Here
we show data for 5 selected countries of destination, considering only trips of 4 nights
or more (source: Eurostat). (d) Box plot of the length of stay, measured as number of
nights, of travelers who visited Australia in 2008 according to the purpose of their visit:
holiday, business, educational and employment. The statistics is obtained over a sample
of 19 countries of origin (source: Tourism Research Australia).

in the travel behavior of individuals induced by the illness, exploiting the
discrete nature of the model. In particular, we study how the expression
of the global threshold changes when ill individuals do not leave home or
when individuals who got infected during their journey return to their place
of residence and do not travel until they recover. Moreover, we study the
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behavior of the system above the epidemic threshold, characterizing its dy-
namics and invasion pattern, and compare the results obtained within the
non-Markovian framework with those obtained using a classic Markovian
approach. Our results provide new insights on the impact of heterogeneous
mobility timescales on the spatial spread of infectious diseases and open
the path to a more realistic description of mobility processes in epidemic
modeling.

The paper is organized as follows: Section 2 introduces the formalism for
metapopulation epidemic models. In particular, we consider the case of a
non-Markovian traveling dynamics with a substrate mobility network char-
acterized by a heterogeneous distribution of links per subpopulation and by
heterogeneous traveling fluxes, as observed in reality. We also consider the
large fluctuations associated to the length of stay of travelers at destination
in such movement dynamics. Section 3 integrates the modeling of the dis-
ease spreading on the metapopulation system. Assuming that the invasion
dynamics at the level of subpopulation can be described as a branching pro-
cess, we show the existence of an invasion threshold for the metapopulation
system and compute an explicit expression of it, discussing its dependence
on the network structure and the features of the length of stay (Poletto
et al., 2012). Analytical results are validated through a numerical analysis
confirming the dependence of the invasion condition on the various aspects
characterizing the system found in the analytical results. We further ex-
tend the framework first introduced in (Poletto et al., 2012) and study how
changes in the travel behavior following illness affect the global threshold
of the system (Section 4). We then analyze the system behavior above the
threshold, showing how different distributions of the length of stay result in
different paths of infection (Section 5), and conclude with a comparison to
the Markovian dynamics (Section 6).

2. Metapopulation model with heterogeneous length of stay

In order to study the effects of a non-Markovian dynamics with a het-
erogeneously distributed length of stay on the epidemic spread, we consider
a metapopulation system with V subpopulations connected by edges, repre-
senting travel connections along which individuals can migrate. Each sub-
population i is characterized by Ni residents (i = 1 . . . V ) and it is connected
to a set of v(i) other subpopulations. Since we want to keep track of the
origin and destination of travelers during the mobility process, we define the
class Nij of individuals resident in i and present in j, along with the class
Nii of those who are resident in i and located in i – see the model scheme
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in Fig. 2. We assume that individuals leave their origin subpopulation i to
visit subpopulation j with a per capita diffusion rate σij and spend at their
destination a time interval τij , the so called length of stay, before returning
home. The length of stay accounts for the timescale characteristic of the
trip. In principle this timescale may depend on both origin and destination,
but in the following we assume that it depends only on the trip destination,
therefore τij ≡ τj .

The mobility dynamics is fully described by the following set of equa-
tions:

∂tNii(t) = −
∑
l∈v(i)

σilNii(t) +
∑
l∈v(i)

Nil(t)/τl (1)

∂tNij(t) = σijNii(t)−Nij(t)/τj , (2)

where the time evolution of the class Nii is determined by the net balance
between the flux of people leaving the subpopulation i with total rate σi =∑

l∈v(i) σil and the flux of travelers coming back from all their destinations
l. The second equation describes the time evolution of Nij as the difference
between incoming and returning travelers to subpopulation i, with rates
σi and τ−1

j , respectively. The above equations can be solved, using the
following relation for the total population Ni, which is constant in time:

Ni = Nii(t) +
∑
j

Nij(t) . (3)

It is possible to show that the solutions for Nii(t) and Nij(t) are char-
acterized by the relaxation times (τ−1

i + σi) and τ−1
i , respectively (Balcan

and Vespignani, 2012). After an initial transient, the classes Nii and Nij for
each subopopulation i and j therefore reach the stationary values:

N ii =
Ni

1 + σiτi
, N ij =

σijτiNi

1 + σiτi
. (4)

Under the assumption σi � τ−1
j for all i and j, the timescale of relaxation

to equilibrium is given by τmax = maxj τj (Keeling and Rohani, 2002). This
observation is of crucial importance: when the disease dynamics occurs over
timescales that are much longer than τmax, then the population dynamics
can be considered at equilibrium with respect to the infection dynamics and
it is reasonable to assume all population variables to acquire their stationary
values.

When the system is composed by a large number of subpopulations with
highly heterogeneous connectivity patterns, as observed in real networked
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Figure 2: At any time any subpopulation i is occupied by a fraction of its own population
Nii and a fraction of individuals Nji resident in the neighboring subpopulation j and who
are currently visiting the i subpopulation. Travelling individuals from i leave their home
subpopulation to the subpopulation j with rate σij and return back with rate τ−1

ij , where
τij is the average time spent at destination. Here we assume that the length of stay is
function of the destination only, namely τij ≡ τj .

systems, the analytical treatment of Eqs. (1) and (2) becomes unfeasible.
However, it is possible to adopt a mean-field approach to provide a coarse
grained description of the mobility dynamics, which takes into account the
system’s connectivity pattern only and disregards all other details. Such
mean-field approach is called degree-bock approximation and it assumes that
nodes with the same degree are statistically equivalent. This approach has
been successfully applied to model several dynamical processes on complex
networks (Pastor-Satorras and Vespignani, 2001b,a; Colizza and Vespignani,
2007; Colizza et al., 2007c; Colizza and Vespignani, 2008; Balcan and Vespig-
nani, 2011, 2012; Meloni et al., 2011), and it is supported by the empirical
evidence reporting on the degree dependence of numerous system’s vari-
ables, like e.g. the population size of each subpopulation, the traffic amount
at each node, and others (Barrat et al., 2004; Colizza et al., 2006; Colizza
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and Vespignani, 2008).
We consider a random metapopulation system with a given degree distri-

bution P (k). The subpopulations are divided into classes according to their
degree and their properties are described by average quantities through the
degree-block approximation:

Xk =
1

Vk

∑
i|ki=k

Xi, (5)

where Vk is the number of subpopulations with degree k, Xi the quantity of
interest for the subpopulation i, and the sum runs over all subpopulations
having degree ki equal to k. Following the empirical evidence, we assume
that the population of each node and the number of travelers between two
subpopulations are defined by scaling relations with the degree of the nodes.
In particular, we assume that the population of a node of degree k, Nk, is
given by:

Nk = N
kφ

〈kφ〉
, (6)

where N =
∑

kNkP (k) is the average number of residents in each subpopu-
lation of the system. Additionally, we assume that the number of individuals
migrating between a subpopulation of degree k and a subpopulation of de-
gree k′ is defined by:

wkk′ = w0(kk′)θ . (7)

The exponents θ and φ, and the scaling factor w0, vary according to the real
system under study. The mobility of individuals along the connections of
the network is modelled with the per capita diffusion rate σkk′ = wkk′/Nk

and the overall leaving rate out of the node with degree k is given by σk =
k
∑

k′ σkk′P (k′|k), where P (k′|k) is the conditional probability that a node
with degree k is linked to a node with degree k′. We define the leaving rate
rescaling as σ = w0〈kφ〉/N , so that the diffusion rate equation reads

σkk′ = σkθ−φk′θ. (8)

Finally, travelers spend at their destination characterized by a degree k′ an
average time τk′ . This means that in our model the length of stay is a specific
characteristic of a given location of destination, and it is fully determined
by its degree.

Within this framework, we want to explore how different levels of hetero-
geneity in the distribution of the length of stay affect the epidemic process,
modifying the underlying traveling dynamics. In the following, we assume
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that the length of stay characterizing a subpopulation with degree k is de-
scribed by the functional form:

τk =
τ

〈kχ〉
kχ , (9)

where τ =
∑

k τkP (k) is the average length of stay over the whole metapop-
ulation network (Poletto et al., 2012). Different values of the power-law
exponent χ define different dynamical regimes of the system. For χ > 0 the
length of stay is positively correlated with the degree of the subpopulation
of destination, which implies that individuals traveling to a well connected
location will spend a longer time at destination than individuals traveling
to remote locations. In this regime, locations that are important for their
socio-economic, touristic or geographic characteristics, thus being easily ac-
cessible through a large number of connections, are considered also attractive
in terms of the amount of time spent by each visitor at these destinations.
An example on a large geographical scale is represented by large urban areas
served by airport hubs, where an efficient connectivity in terms of transport
also corresponds to large attractiveness of the location for tourism or sea-
sonal/temporary job opportunities (Lohmann et al., 2009). The opposite
regime is defined by χ < 0, where the length of stay increases as the con-
nectivity of the subpopulation of destination decreases. In this case, since
small degree locations are usually peripheral in the transportation system,
a longer length of stay may be explained by an optimization choice made
by the traveler between the time spent at destination and the time spent
to reach the destination (McKercher and Lew, 2003). The value χ = 0
corresponds to the case of homogeneous length of stay, as it is generally as-
sumed for commuting-like process, where the length of stay τ represents the
duration of an average working day (Belik et al., 2011; Balcan and Vespig-
nani, 2011, 2012). On the other hand, the limit χ → ∞ corresponds to
the case of permanent migration, which is commonly used to model mo-
bility processes with no return to the origin (such as the case of livestock
displacements in trade flows (Bajardi et al., 2011a, 2012)) or to approxi-
mate origin-destination mobility by simplifying the modelling approach and
assuming a Markovian process(Rvachev and Longini, 1985; Colizza et al.,
2007c; Balcan et al., 2009b).

Here we want to focus on a range of values for the parameter χ, that can
well capture the empirically observed heterogeneity of the length of stay.
Our assumption that the length of stay depends on the geographic location
of a node, and is fully encoded by its degree k, is also based on the empirical
evidence reported in Fig. 1. Obviously, this is a simple assumption that we

11



consider since it allows us to analytically solve the epidemic metapopulation
model. The expression of τ may be modified to include additional factors
that may affect the length of stay, such as the distance between locations
or other socio-economic indicators. Though representing a fundamental in-
gredient for the modeling of a visitor’s decision-making process, there is
no clear consensus in the economic literature on the determinants of the
length of stay and the matter is still largely debated (Gokovali et al., 2007).
Therefore, alternative choices to our assumption cannot be currently selected
solely based on the available knowledge of the problem. Our perspective is
to show that, even under simple assumptions, the heterogeneity of the mo-
bility timescales modifies the system’s behavior and introduces a number of
new and interesting dynamical properties that impact the epidemic spread.

By considering the assumptions illustrated above, we reformulate the
non-Markovian mobility dynamics within the degree-block description. The
mobility process described by Eq. (1) and (2) can be translated into the
degree block notation by defining all the population variables in terms of the
subpopulation’s degree. Each subpopulation of degree k has Nk inhabitants.
They are further divided into two classes: those who are from k and are
located in k at time t, Nkk(t), and those who are from k and are located in
a neighboring subpopulation of degree k′ at time t, Nkk′(t). The resulting
equations that describe the non-Markovian travelling dynamics are:

∂tNkk(t) = −σkNkk(t) + k
∑
k′

Nkk′(t)P (k′|k)τ−1
k′ (10)

∂tNkk′(t) = σkk′Nkk(t)−Nkk′(t)τ
−1
k′ . (11)

The condition ∂tNkk(t) = ∂tNkk′(t) = 0 yields the equilibrium solutions:

Nkk =
N

〈kφ〉
νkk

φ, (12)

Nkk′ =
σNτ

〈kφ〉〈kχ〉
νkk

θk′θ+χ. (13)

as detailed in Appendix A. In the above expressions, the factor νk is given
by:

νk =

(
1 + στ

〈kθ+χ+1〉
〈k〉〈kχ〉

kθ−φ+1

)−1

. (14)

Adopting the timescale separation approximation originally proposed in (Keel-
ing, 2000; Keeling and Rohani, 2002), we can consider the equations (13) and
(14) to be a good approximation to the system behavior when σk � τ−1

k .
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3. Global Invasion Threshold

We model the epidemic process within each subpopulation by considering
a standard susceptible-infectious-recovered (SIR) model with transmission
rate β and recovery rate µ (Anderson and May, 1992). Recovered individuals
are considered permanently immune to the disease. The occupation number
of each compartment in the subpopulation i, Xi (where X = S, I or R),
is divided into the subclasses Xij and Xii corresponding to the individuals
in the disease state X who are resident in i and are located in subpopula-
tion j or i, respectively (Keeling and Rohani, 2002; Sattenspiel and Dietz,
1995). We assume homogeneous mixing within each subpopulation, there-
fore all susceptible individuals who are present in i at a given time step are
subject to the same force of infection Fi(t) = βI∗i (t)/N∗i (t) defined by the
mass-action principle. Fi(t) depends on the number of infectious individuals
simultaneously present in i, I∗i (t), and the temporary population formed by
resident and non-resident individuals, N∗i (t).

In a fully susceptible population, the ratio R0 = β/µ defines the basic
reproduction number, that is the average number of secondary cases gener-
ated by an infectious individual during his infectious period (Anderson and
May, 1992). When R0 > 1 the epidemic will affect a non-negligible fraction
of the population of the seeded subpopulation, thus representing a threshold
for a local epidemic. In a spatially extended system, however, the condition
on R0 is not sufficient to guarantee the propagation of the epidemic out of
the initial seed to reach a finite fraction of the whole system. This may hap-
pen because of small enough flows of travelers that are not able to allow the
diffusion of infectious individuals before the outbreak dies out in the seed,
or because of local extinction events in newly infected subpopulation due
to rare or limited seeding events. Next to the local threshold condition, an
additional predictor is therefore needed to define the global invasion thresh-
old in a metapopulation system, R∗, that governs the disease transmission
between subpopulations and depends both on the epidemic features and
on the mobility parameters describing individuals’ movements (Ball et al.,
1997; Cross et al., 2005; Colizza and Vespignani, 2007; Colizza et al., 2007c;
Colizza and Vespignani, 2008). The time length spent at destination by each
individual is clearly an important factor that may affect the conditions for
the global threshold, in that it represents the time during which travelers
may be exposed to an outbreak in a trip to an affected area or during which
the passengers themselves, carrying the infection, may transmit the disease
to the population at destination (Poletto et al., 2012). In the following sub-
section we will explore in detail the role of the length of stay at destination
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and of its fluctuations on the global invasion threshold and on the epidemic
dynamics.

3.1. Analytical treatment

Following the approach of (Colizza et al., 2007c; Colizza and Vespig-
nani, 2008; Balcan and Vespignani, 2012), we describe the disease invasion
at the subpopulation level using a branching tree approximation (Harris,
1989; Ball et al., 1997; Vazquez, 2006), where each subpopulation is treated
as the basic elements of the process. We assume that a local outbreak is
taking place in a given subpopulation of degree k and then we follow the
spread of the infection from that subpopulation to the others by means of the
underlying mobility network. Each subpopulation is defined as not infected
if no outbreak is taking place in it, or diseased otherwise. Then, the inva-
sion process starts from an initial set of diseased subpopulations of degree
k, D0

k and each of them infects some of its neighbors, leading to a second
generation of diseased subpopulations, D1

k. We can generalize the notation
indicating with Dn

k the number of diseased subpopulations of degree k at
generation n and derive the relation between subsequent generations of dis-
eased subpopulations, Dn

k and Dn−1
k . Assuming that the mobility network

is uncorrelated and that the value of R0 is slightly exceeding the epidemic
threshold, R0 − 1� 1, it is possible to show that:

Dn
k = (R0 − 1)

kP (k)

〈k〉
∑
k′

Dn−1
k′ (k′ − 1)λk′k , (15)

where λk′k represents the number of infectious individuals that can travel
from a diseased subpopulation of degree k′ to a non-diseased subpopulation
of degree k (see details in Appendix B).

The latter term is the one that relates the microscopic dynamics of the
local infection taking place within a subpopulation to the coarse-grained
view that describes the disease invasion at the metapopulation level. Given
a diseased subpopulation of degree k connected to a disease-free subpopu-
lation of degree k′, the number of possible seeders is the sum of infectious
individuals resident in k and traveling to k′ and susceptible individuals of
k′ traveling to k, catching the disease and coming back infected. Indicating
with α the proportion of individuals that will experience the disease by the
end of the epidemic in a given population, and that can be approximated
by the standard SIR attack rate equation α ' 2(R0− 1)/R0 for R0 ' 1, the
quasi-equilibrium approximation implies that the traveling individuals Nkk′

will be infected in the same proportion. This holds also for the individuals
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of k′ visiting k, since they are subject to the same force of infection of the
residents in k. Therefore, the quantity λk′k can be expressed as:

λk′k = (Nkk′ +Nk′k)α , (16)

where we used the stationary values of Eq. (13), adopting a timescale separa-
tion approximation (Keeling and Rohani, 2002; Balcan et al., 2009a; Balcan
and Vespignani, 2011). This approach is based on the assumption that the
timescale associated to the disease is much larger than the timescale asso-
ciated to the mobility process, µ−1 � τk, for any degree k. It is worth to
notice that Eq. (16) holds under the assumption that all individuals can
travel, regardless of their disease state. It is however important to con-
sider that in reality infectious symptomatic individuals will generally have
a reduced probability of traveling, depending on their symptoms and health
conditions. For this reason we explore in Section 4 the effects of changes in
the travel behavior due to illness, modifying the expression of Eq. (16).

Plugging the explicit expressions of Eq. (13) into Eq. (15) and solving
the iterative equation as detailed in Appendix B, we find that the epidemic
dynamic at the global level is ruled by the predictor (Poletto et al., 2012):

R∗ =
2(R0 − 1)2

R2
0

σNτ
Λ(P (k), σ, τ ,N)

〈k〉〈kφ〉〈kχ〉
, (17)

where the quantity

Λ(P (k), σ, τ ,N) = 〈(k − 1)k2θ+χ+1νk〉+√
〈(k − 1)k2(θ+χ)+1〉〈(k − 1)k2θ+1ν2

k〉 , (18)

is a function of the moments of the degree distribution, of the average length
of stay τ , of the leaving rate rescaling σ and of the average subpopulation
size N .

The condition R∗ > 1 assures that an infection seeded in a single subpop-
ulation will spread globally and reach a finite fraction of the subpopulations
in the metapopulation system. Therefore, by solving the equation R∗ = 1
we can find the threshold values for the model’s parameters related to the
mobility, the demography and the underlying network topology. Since our
main focus is on the effects of the heterogeneous mobility timescales, we look
at the dependence of R∗ on the parameters R0, regulating the local epidemic
threshold, and χ, tuning the heterogeneity of the length of stay (Fig. 3 for
the case of a heterogeneous substrate network). The latter parameter and
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its fluctuations strongly affect the behavior of the global threshold. In the
case χ > 0, the length of stay is positively correlated with the degree of a
subpopulation, therefore travelers spend a longer time visiting large hubs,
thus enhancing the spreading potential of these locations. The correspond-
ing values of R∗ are very large, even in the case of a mild disease. Only for
R0 ≈ 1 the disease spread can be contained, as indicated by the grey region
of the heatmap. When χ < 0, the effect of a heterogeneous topology – gen-
erally favoring the spread of the disease (Colizza et al., 2007c; Colizza and
Vespignani, 2008) – is counterbalanced by a length of stay negatively corre-
lated with the degree of the subpopulation. As visitors tend to spend longer
times in peripheral locations, the disease propagation at the global level can
be sustained only by larger values of R0 and the containment region becomes
wider as χ decreases.

In order to highlight the role of topological fluctuations, in Fig. 3 we
compare the global threshold behavior for a heterogeneous topology with
the one obtained for a topologically homogeneous network, where all nodes
have the same degree k = 3. In the latter case, the expression of Eq. (17) is
greatly simplified and it reduces to:

R∗ =
4(R0 − 1)2

R2
0

σNτ(k − 1)k
2θ
νk , (19)

where νk = (1 + στk
2θ−φ+1

)−1, as detailed in Appendix C. It is worth to
notice that in the homogeneous network the length of stay is constant for
all the subpopulations, due to the absence of topological fluctuations, and
the exponent χ disappears from the threshold equation. Therefore, in the
(R0, χ) plane of Fig 3 the invasion region is delimited by a constant value
of R0, for every χ, as shown by the grey line in the plot. As it has already
been observed for commuting processes or Markovian mobility processes,
the topological heterogeneity of the network considerably favors the global
disease spread by lowering the threshold value (Colizza and Vespignani,
2008; Balcan and Vespignani, 2012), while in the case of a homogeneous
substrate network the containment region spans a wider range of R0 values.

The global epidemic threshold is also determined by other ingredients
of the metapopulation system; in particular by those related to the archi-
tecture of the substrate network, such as the level of heterogeneity of the
degree distribution tuned by the exponent γ, and those related to the indi-
vidual mobility patterns, such as the leaving rate rescaling σ and the scaling
exponent θ. In Fig. 4, we explore the behavior of the phase diagram of the
system under changes in the above mentioned parameters and compare the
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Figure 3: Global reproductive number as a function of R0 and χ in heterogeneous and
homogeneous substrate networks. The Fig. codes with color the value of the function
R∗(R0, χ) in the heterogeneous network. The grey area corresponds to the containment
region. The solid grey horizontal line indicates the threshold that separates the contain-
ment region (below) from the invasion region (above) in the homogeneous network. Both
networks are characterized by V = 104 nodes, average degree 〈k〉 = 3 and average length
of stay τ = 37. The heterogeneous network has a power law degree distribution, P (k) ∝ kγ
with γ = 3. In the homogeneous network all nodes have the same degree k = 3. The
mobility fluxes are characterized by the following parameters: σ = 10−5, φ = 3

4
and θ = 1

2
.
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results obtained with a heterogeneous network topology to those obtained
with a homogeneous one. In all panels, the invasion region R∗(R0, χ) > 1,
not colored for the sake of visualization, is always located above the curve,
being R∗ a monotonous increasing function of R0. As expected, larger mo-
bility flows between connected subpopulations of a given size, corresponding
to larger values of σ, lower the threshold value. Indeed, increasing the mobil-
ity rate of individuals favors the epidemic spreading and this effect is more
relevant when the length of stay is negatively correlated with the degree of
a node (χ < 0). In the case χ > 0, the spreading potential of the hubs sup-
presses the effects related to changes in the mobility of individuals leading to
a very low threshold for any value of σ. These results indicate that, if large
hubs are characterized by a shorter length of stay with respect to poorly
connected locations, then reducing the mobility of individuals can lead to
the containment of an emerging disease. On the other hand, the longer the
time spent by travelers in highly connected locations the less effective is any
travel restriction measure aimed at containing the global disease spread. A
conclusion, although based on a different framework, that is similar to the
results on the effectiveness of travel restrictions obtained using a Markovian
approach (Colizza and Vespignani, 2007; Bajardi et al., 2011b). A similar
effect is observed by varying the scaling exponent θ: larger values of θ, cor-
responding to stronger fluctuations in the traffic distribution, enhance the
invasion potential of the disease yielding smaller values of the critical ba-
sic reproductive number R0 above which a spatial propagation is predicted.
On the other hand, a more uniform traffic distribution obtained for θ → 0
(e.g. θ = 0.3 in the Figure) reduces the spreading potential especially in
the case of χ < 0. For the exponent γ that characterizes the degree dis-
tribution (P (k) ∼ k−γ) we consider the values 2 and 2.5 corresponding to
an increasing degree of topological heterogeneity, respectively. Consistently
with previous results, as the topological fluctuations become more relevant
the global epidemic threshold becomes smaller.

When comparing two network topologies, we see that, for all the con-
sidered changes in the model’s parameters, the global threshold is generally
lower in the heterogeneous network. However, it is worth to notice that in
some cases there is a region in the (R0, χ) parameter space where the global
invasion phase is predicted to occur on a homogeneous topology but not on
a heterogeneous one (Fig. 4). This happens for large and negative values
of χ and indicates that as travelers spend more time in poorly connected
locations and less time in large hubs, the topological fluctuations of the net-
work become less relevant and the disease spread may be contained even on
a system characterized by a heterogeneous topology.
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Figure 4: Phase diagram defined by the threshold condition R∗(R0, χ) = 1, comparing
two network topologies and different values in the model’s parameters. Each panel displays
the effects of variations in the parameter indicated in the legend keeping the others the
same as in Fig. 3. In panels b, c and d two different values of the parameter are compared
(continuous and dashed lines) for a heterogeneous and a homogeneous network (in blue
and red respectively).
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3.2. Numerical validation and assessment of analytical assumptions
Here we present the results obtained with extensive Monte Carlo sim-

ulations in order to validate the theoretical analysis described above and
test the robustness of our results under changes in the assumption on the
timescale separation.

We perform mechanistic numerical simulations at the individual level,
keeping track of each individual’s origin and destination and epidemic sta-
tus over time. All transitions between compartments and the mobility events
are modeled through discrete-time stochastic processes. We create a network
of V subpopulations, where the connections between nodes are generated
according to two different random graph topologies: a homogeneous and
a heterogeneous one. The homogeneous graphs (Erdös and Rényi, 1959)
are created by randomly wiring subpopulations with a constant probability
p = 〈k〉/(V − 1), where 〈k〉 is the chosen average degree. The heteroge-
neous graphs are scale-free networks, characterized by a power law degree
distribution P (k) ∼ k−γ and generated by the uncorrelated configuration
model (Molloy and Reed, 1995; Catanzaro et al., 2005), with γ = 3.0 or
γ = 2.1 and kmin = 2. Once the network topology is defined, the demo-
graphic quantities and the traffic patterns of the system are also defined.
We assign to each node of degree k a population N ∼ kφ, with φ = 3

4 and
we set the average population to N = 103. The leaving rate σkk′ is assumed
to be proportional to σkθ−φk′θ, as indicated in Eq. (8), with θ = 1

2 . With-
out changing the leaving rate distribution, we explore different length of stay
distributions τk by varying the exponent χ in the range [−1, 0.4] and keeping
the average length of stay constant, τ = 37 time steps. Values of χ and τ
are chosen in order to ensure the physical condition min(τk) > 1 and main-
tain feasible computational times. Moreover, in our simulations we explore
different values of the average infectious period µ in order to test the limits
of the timescale separation approximation. Simulations are initialized with
one randomly chosen subpopulation seeded by I(0) = 10 individuals. We
run 500 realizations of the metapopulation model and follow the evolution
of each outbreak until the disease dies out. At the end of each realization we
measure the global attack rate, D∞/V , that is the total fraction of infected
subpopulation, which can be easily related to the global threshold condition.
When the system is below the threshold, the global attack rate will fluctuate
around the zero value, but, as the threshold condition R∗ > 1 is reached,
the global attack rate will be significantly larger than zero.

Let us first focus on the relation between the global epidemic threshold
R∗, the local epidemic threshold R0, and the parameter χ that regulates
the distribution of the length of stay. In the numerical results, we recover
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Figure 5: Global invasion transition as obtained by numerical simulations. Panel a:
global attack rate, D∞/V , as a function of χ for different values of the diffusion rate
rescaling σ. Colored areas highlight for each curve the invasion region defined by Eq. (17).
Panel b: global attack rate, D∞/V , as a two dimensional function of χ and σ for two
different network topologies: a heterogeneous topology and a homogeneous one. Here
R0 = 1.2 and µ = 0.002.
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the dependence of the critical value of the global threshold on R0 and χ,
consistently with the analytical results of Fig. 3. In particular, as shown
by the blue curve of Fig. 5a, given the same network structure used in the
theoretical analysis, if we assume R0 = 1.2 and the diffusion rate rescaling
σ to be equal to 10−5 as in Fig. 3, the system reaches the invasion phase for
a critical value of χ that well matches the theoretical value calculated from
Eq. (17) and indicated by the blue dashed line.

In the same panel of Fig. 5, we uncover the dependence of the global
invasion threshold on the individual mobility rates, by exploring epidemic
scenarios with different values of the diffusion rate rescaling σ. Consistently
with the analytical results, for fixed values of R0 and χ, increasing values
of the diffusion rate can bring the system into the invasion region. For
the values of R0 and σ considered, when the length of stay is positively
correlated with the degree of a subpopulation the system is always above
the threshold, as predicted by the theoretical analysis (see Fig. 4a). However,
the final epidemic size is smaller for smaller values of σ, indicating that even
if it is not possible to halt the spreading by lowering the mobility rates of
individuals, it is possible to reduce the attack rate of the epidemic. In order
to highlight the good agreement between the individual-level simulations and
the corresponding analytical results, for each curve we indicate the invasion
region with a colored area, which is delimited on the left by a dashed line
corresponding to the theoretical threshold value of χ.

The network topology, as we have stressed before, plays a fundamental
role in the disease spreading dynamics. In order to check the effect of the
topology on the global invasion threshold, in the bottom panel of Fig. 5
we compare the numerical results obtained on a heterogeneous topology
and a homogeneous one. In agreement with the analytical picture, in a
homogeneous network the containment phase is achieved for a large range
of χ and σ values, while a heterogeneous topology considerably favors the
global invasion, leading to a non-zero global attack rate for almost all values
of χ and σ explored.

It is important to stress that all the results presented so far have been
derived under the assumption that R0 − 1 � 1 and that the timescale
associated to the disease is much longer than the mobility timescale, i.e.
µ−1 � τk for every degree k. The latter assumption would correspond, for
instance, to consider the case of a typical influenza-like illness spreading on
a network of locations visited during a typical human daily routine. The
mobility timescale would be of the order of minutes or hours, while the
disease timescale would be of a few days. However, we want to test whether
our theoretical framework can be applied also to the case of a network of
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Figure 6: Global invasion transition as obtained by numerical simulations. Global attack
rate as a function of R0 for different values of µ with χ = −1 and σ = 4× 10−5.

cities connected by air travel, as it is often used for the study of the global
spread of infectious diseases (Rvachev and Longini, 1985; Colizza et al.,
2007a,b; Balcan et al., 2009a; Chao et al., 2010), where the typical timescales
of the mobility process and of the disease are comparable. In such case, the
relation µ−1 � τk would no longer be valid, therefore we explore in the
following the validity of our results when this assumption breaks down.

We run simulations for increasing values of µ in the range [2 × 10−3 −
2.5× 10−1], by keeping the length of stay distribution constant with χ = 1
and τ = 37. As shown in Fig. 6, even in the case of a short infectious period
like µ−1 = 4, we still observe a global phase transition as a function of R0,
indicating that our description of the metapopulation system, characterized
by two thresholds, is still valid. While the analytical result of Eq. (17) did
not predict any dependence of R∗ on µ, the global threshold in Fig. 6 is
reached for different values of R0 as µ varies, which is clearly due to the
breakdown of the timescale separation approximation. The effect on the
critical value of R0 is however limited and corresponds to an approximate
variation of 10%, even under a change of two orders of magnitude in µ.
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4. Change of travel behavior due to infection

As discussed in Section 2, the modeling framework we presented so far
has been based on the assumption that individuals will always travel irre-
spective of their infectious status and associated symptoms. However, this
assumption is not completely realistic, since it is quite reasonable to assume
that people would change their travel habits when ill. Modeling human re-
actions to the spread of infectious disease has recently attracted substantial
attention (Funk et al., 2010), also specifically with the inclusion of self-
initiated behavioral changes into the mobility patterns of individuals in a
spatially structured system (Meloni et al., 2011). Here, we study the effects
of changes in the travel behavior of sick individuals on the condition for the
global invasion that we derived in Section 3. In particular, we change our
initial assumption by considering that individuals do not leave home if ill,
but they can return home if they were infected at their destination during
a trip.

The new assumption on individuals’ behavior directly affects the ex-
pression of the global invasion threshold, Eq. (17), through a change in
the seeding mechanism between subpopulations. In particular, given a dis-
eased subpopulation of degree k connected to a disease-free subpopulation
of degree k′, the number of possible seeders is now represented only by sus-
ceptible individuals of k′ traveling to k, catching the disease and coming
back infected. Therefore, Eq. (16) changes to:

λk′k = αNk′k , (20)

where we still apply the quasi-equilibrium approximation. Replacing the
new expression of λk′k in Eq. (15) we find that the global invasion threshold
equation reduces to:

R∗ =
2(R0 − 1)2

R2
0

σNτ
〈(k − 1)k2θ+χ+1νk〉
〈k〉〈kφ〉〈kχ〉

, (21)

where νk is still described by Eq. (14).
In Fig. 7a we compare the phase diagrams of two metapopulation sys-

tems characterized by the same mobility parameters considered in Fig. 5
but two different seeding mechanisms: the baseline seeding framework, de-
scribed by Eq. (16), and the above mentioned change of travel behavior
described by Eq. (20). The curves represent the global invasion threshold
condition R∗ = 1 in the (R0, χ) parameter space. The invasion region is
located above each curve, and the containment region below it. As ex-
pected, the self-imposed limitations of individual mobility result in higher
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Figure 7: Effects of changes of travel behavior on the global epidemic threshold. Panel
a: phase diagram defined by the threshold condition R∗(R0, χ) = 1, for two mobility
modeling assumptions: the baseline case corresponding to Eq. (17) (solid line) and the
behavioral change corresponding to Eq. (21) (dashed line). Both models are run on a
heterogeneous (blue lines) and homogeneous topology (red lines). Panel b: global attack
rate, D∞/V , as a function of χ for two mobility modeling assumptions. Vertical dashed
lines indicate the critical threshold value, as calculated from the curves shown in the
left panel. The colored areas highlight the invasion region for each curve. The substrate
network is scale-free with γ = 3. Other parameters are: R0 = 1.2, µ = 0.002, σ = 2×10−5.

global thresholds with respect to the baseline case, both considering a het-
erogeneous topology and a homogeneous one. Intuitively, by reducing the
number of possible seeding events, the disease invasion can only take place
for higher transmissibility values. However, in a heterogeneous network this
effect can be enhanced or suppressed depending on the assumed distribu-
tion of the length of stay. For positive and increasing values of χ, travelers
spend a significant amount of time in well connected nodes, which are also
the main locations of transmission. In this case, preventing sick individuals
from leaving home does not stop the progression of the disease through the
hubs. On the other hand, when the length of stay is negatively correlated
with the connectivity of a node, i.e. χ < 0, the longer time spent by travel-
ers in poorly connected locations further reduces the number of transmission
events. A change in the travel behavior of infectious individuals may then
result in the containment of the disease, which could not be achieved in the
corresponding baseline traveling scenario.

We validate the above theoretical results on the global epidemic thresh-
old by means of Monte Carlo mechanistic simulations, following the method-
ology described in Section 3. In the right panel of Fig. 7, we compare the
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global attack rate D∞/V as a function of χ obtained in the baseline scenario
and shown in Fig. 5a (σ = 2×10−5) with the global attack rate measured in
a scenario where sick individuals do not leave their homes. Both scenarios
are based on the same mobility parameters and differ only by the seeding
mechanism under consideration. The analytical results of the left panel
are confirmed by the numerical simulations. The good agreement is high-
lighted by the color-coded areas that indicate the invasion regions. Dashed
vertical lines indicate the critical values of χ calculated from Eq. (17) and
Eq. (21), respectively. The reduced mobility of sick individuals leads to the
containment of the disease for a larger range of χ values, confirming the
effects of such changes on the epidemic threshold. Overall, it is evident
that self-imposed behavioral changes related to the disease progression can
have a significant impact on the epidemic spread in a spatially structured
metapopulation model with memory, confirming similar results obtained
within different mathematical frameworks (Perra et al., 2011; Funk et al.,
2009; Sahneh et al., 2012; Poletti et al., 2009).

5. Epidemic spreading simulations above the invasion threshold

In order to study the effects of the heterogeneous distribution of the
mobility timescales on the epidemic dynamics, in addition to the invasion
condition, we numerically study the behavior of the metapopulation system
above the invasion threshold, i.e. for R∗ > 1. In this regime, the thresh-
old condition assures that during the course of an outbreak a macroscopic
fraction of subpopulations will be affected by the epidemic. The spreading
patterns may however be very different depending on the assumed distribu-
tion of the length of stay and its interplay with the network topology and
mobility patterns.

We first focus on the time evolution of the global prevalence of the dis-
ease, I(t), that is the total fraction of infectious individuals that are present
in the system at a given time t. It is possible to show, as detailed in Ap-
pendix D, that this quantity follows the equation:

dI(t)

dt
= β

∑
i∈V

S∗i (t)
I∗i (t)

N∗i (t)
− µI(t) , (22)

where the sum runs over all the subpopulations and S∗i and I∗i represent all
the susceptible and infectious individuals, respectively, who are present in a
patch i at time t; the population size of patch i is indicated by N∗i and it
accounts for all individuals who are located in i at that timestep.
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Figure 8: Evolution of the fraction of infectious individuals for different values of χ and
different mobility regimes. The time is measured in units of the average infectious period
µ−1. When the leaving rate is high (σ = 7 × 10−3, panel a) the parameter χ does not
affect the exponential growth which is given by µ(R0−1) (dashed line). For smaller values
of σ (σ = 10−4, panel b), the role of χ becomes important. In both the cases R0 = 1.8,
the network is scale free with γ = 2.1, µ = 0.002, τ̄ = 37.
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The spatial structure of the system is included in Eq. (22) through the
non-linear terms S∗i (t)I∗i (t)/N∗i (t) that depend on the people locally present
in node i at each time step. In the case of a large number of coupled
subpopulations, it is hard to derive an analytical solution of Eq. (22), how-
ever, we can simplify the picture by considering the infection dynamics in
each subpopulation at the early stage, namely S∗i (t) ' N∗i (t) for every i.
We recover in this case the standard linear differential equation that de-
scribes the early-stage epidemic evolution in a single homogeneously mixed
population, dtI(t) = (β − µ)I(t). The approximation of early stage infec-
tion evolution in all the subpopulations corresponds to the case in which
the infection is rapidly seeded in all the subpopulations and the epidemic
evolves synchronously across the system. Such description can be valid only
if the mobility coupling between nodes is strong enough to allow a fast dis-
ease spreading through the network. In this regime, the subpopulations
are highly mixed and the spatial structure plays a minor role in the epi-
demic process; accordingly, we can expect that the distribution of mobility
timescales does not significantly affect the spreading dynamics.

Numerical simulations confirm the above theoretical picture, as shown
in Fig. 8. The plot displays the time behavior of the global prevalence I(t)
in a heterogeneous network of subpopulations and for different exponents χ
of the length of stay distribution. In panel a, simulations consider a rela-
tively high diffusion rate rescaling – σ = 7× 10−3. Regardless of the values
of χ – positive, null or negative – the three curves follow exactly the same
dynamics and their exponential growth is characterized by the coefficient
(β − µ), indicating that for high mobility rates the global epidemic pro-
cess can be effectively described by a single-population spreading dynamics.
When the coupling among subpopulations is smaller, the strong coupling
approximation is no longer valid. The spatial structure emerges and the
effects of the network topology and traveling timescales on the epidemic
dynamics are significant. Panel b of Fig. 8 shows the effects of a change
of almost two orders of magnitude in the leaving rate rescaling, assuming
σ = 10−4 and keeping all the other parameters the same. Given the value of
the basic reproduction number, R0 = 1.8, the epidemic is still able to invade
the entire system, but the dynamics is slower and, interestingly, completely
different behaviors emerge according to different values of χ: low negative
values of χ significantly slow down the global invasion with respect to the
case of null or positive values. This result reflects the impact of χ on the
global threshold: when χ is positive, travelers spend more time in well fre-
quented locations, which are also well connected, therefore facilitating the
disease transmission among subpopulations. For negative values of χ, trav-
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elers spend more time in less popular locations, reducing the probability of
transmission at the global scale.

When the spatial component becomes relevant, that is for small values
of the diffusion rates, the effects of the heterogeneous distribution of mo-
bility timescales can be observed in the invasion pattern from one infected
subpopulation to the others. In our numerical simulations, we focus on the
average degree of the newly infected nodes at each time step, kinf(t), which
is defined as:

kinf(t) =

∑
k[Dk(t)−Dk(t− 1)]

D(t)−D(t− 1)
, (23)

where Dk(t) represents the number of subpopulations with degree k that
have been infected at time t. As already pointed out in (Barthélemy et al.,
2005), this observable provides a good description of the spreading pat-
tern, highlighting the role of the network topology in shaping the epidemic
propagation. Scale-free networks are characterized by the so called cas-
cade effect (Barthélemy et al., 2005): the highest-degree nodes are quickly
reached by the infection and only afterwards the epidemic reaches the nodes
with smaller degree. In the top panel of Fig. 9, we provide evidence for
this behavior in the case of a non-Markovian dynamics on a heterogeneous
metapopulation network. The quantity kinf(t), as measured in the numerical
simulations, is plotted for two distinct values of χ, χ = 0.4 and χ = −1. The
cascade effect, due to the scale-free topology of the substrate network, is ev-
ident in both cases: at the early stage of the epidemic the average degree of
newly infected nodes is high, but, as the spreading process evolves in time,
kinf(t) decreases towards the smallest degree value, kmin = 2. Even if qual-
itatively similar, the two curves corresponding to different distributions of
the length of stay show some relevant differences: for χ = 0.4 the epidemic
rapidly reaches all the nodes with the largest degree and, after this early
stage, the curve has a sharp drop down to values close to kmin. In the case
χ = −1, such drop is less pronounced, indicating that a short length of stay
in high degree nodes reduces their probability to be seeded by the infection.
In this situation the role of the hubs as super-spreaders is reduced, leading
to a global delay in the epidemic propagation.

In order to further explore the effects of the length of stay on the inva-
sion patterns, we study the changes in the spreading potential of high degree
nodes related to the variations of the length of stay parameter, χ. In our
numerical simulations, we track the degree of the infection seeder for each
infected node i, kseeder, that is the degree of the nearest neighbor subpopula-
tion which is the source of the infection of i. This quantity is plotted in the
bottom panel of Fig. 9 as a function of the degree of the seeded node, k, av-
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Figure 9: Panel a: average degree of newly infected subpopulations as a function of time,
kinf(t). The quantity decreases as the epidemic invades the system, which indicates that
the epidemic diffuses from the high-degree nodes to the small-degree ones. Positive values
of χ enhance this effect. Panel b: average degree of the seeder node as function of the
seeded node degree, kseeder(k). By increasing the value of χ the contribution of the
high-degree nodes to the spreading process increases. The grey line indicates the average
nearest neighbor degree knn, as a reference. Here R0 = 1.8 and σ = 10−4. The substrate
network is scale-free with γ = 2.1. All the other parameters are the same as in Fig. 8.
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Figure 10: Epidemic invasion trees. The cases of a positively-correlated (χ = 0.4, panel
a) and negatively-correlated (χ = −1, panel b) length of stay are shown. The synthetic
network is characterized by a power-law distribution with γ = 2.1. An SIR dynamics
starting from the same seeding node (at the centre of each visualization) is simulated,
with R0 = 1.8, σ = 10−4, µ = 0.002, τ̄ = 37 to ensure the timescale approximation.
Only the first 120 nodes to be infected are displayed for the sake of visualization, on
successive layers of invasion. Larger width grey links correspond to the paths of infection
and lighter grey ones to the existing connections among visible nodes. Nodes are color
coded according to the time of their seeding, and their size scales with their degree; nodes
in the first layer are ordered according to their degree to highlight the role of different
degree nodes in the hierarchical invasion pattern in the two cases.

eraged over each degree block. Since the network is uncorrelated, kseeder(k)
should not depend on k, however, we observe that the functional dependence
of the mobility parameters on the degree introduces non-trivial correlations
between nodes, and eventually, the curve kseeder(k) is not flat. Overall, the
value of kseeder(k) is very high compared to the average nearest neighbor
degree knn, because the hubs are responsible for multiple seeding processes:
the entire system is infected by a few number of high-degree nodes which
are rapidly reached by the epidemic at the beginning and become the most
important vehicle of infection spreading. This mechanism, which is typical
of heterogeneous networks, is affected by the assumed distribution of the
length of stay: by lowering the value of χ, the average values of kseeder(k)
are reduced, as the role of the hubs becomes less relevant.

In order to summarize in a single picture all the differences in the se-
quences of transmission events obtained with different distributions of the
length of stay, we also show a visual representation of the seeding process on
a heterogeneous network. In this analysis, we compare simulated epidemics
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starting from the same initial conditions, randomly choosing a node to be
seeded, and using different values of χ. For each simulation, we build the
epidemic invasion tree that represents the most probable transmission path
of the infection from one subpopulation to the other during the course of the
outbreak (Balcan et al., 2009a). For each subpopulation pair lj, we define
plj as the probability of infection transmission from l to j. This probability
shows the likelihood that the infection in j is seeded by subpopulation l.
This can happen by two means: either a resident in j acquires the infec-
tion in l and brings it home, or an infectious traveller from l brings the
infection to j. Then, plj is defined as the proportion of runs where j has
been seeded by l. Finally, we define a distance metric dij =

√
(1− plj)

to measure dissimilarities for the infection probability, and we extract the
directed weighted minimum spanning tree using the Chu-Liu-Edmunds Al-
gorithm (Chu and Liu, 1965), in order to eliminate loops and highlight the
main directed paths of transmission.

Fig. 10 displays two epidemic invasion trees, extracted from a set of 100
simulations, and two different values of χ: χ = −1 and χ = 0.4 The origin of
the infection is located at the centre of the tree, with successive generations
of infected nodes mapped out as circular layers. In the first layer, the nodes
are ordered by degree (size of the dot) and by seeding time (color), show-
ing how different values of χ alter the hierarchy of the epidemic invasion.
For χ > 0, largely connected subpopulations are infected first and have a
predominant role in the further spatial spread of the disease, thanks to the
two-fold favouring property of having a high degree and a longer visiting
time. On the other hand, for χ < 0, the spreading potential of the hubs is
suppressed by the very short length of stay of visitors. Less connected sub-
populations become instead mainly responsible of the spreading dynamics
towards the rest of the system.

6. Markovian vs. non-Markovian mobility model

In order to further highlight the impact of the heterogeneous distribu-
tion of mobility timescales on the epidemic spread, we compare the results
of our analytical and numerical non-Markovian framework with a standard
Markovian approach. The behavior of Markovian reaction-diffusion pro-
cesses on a metapopulation system connected by a heterogeneous network
has been extensively investigated (Colizza and Vespignani, 2007; Colizza
et al., 2007c; Colizza and Vespignani, 2008). In general, we can expect to
observe a faster disease spread and a wider spatial invasion, at a given time
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step, in memoryless models, because they imply a higher degree of mixing
between individuals (Keeling et al., 2010; Balcan and Vespignani, 2012).

Here, we want to quantify the differences between the two approaches
by comparing the same metapopulation system with two mobility dynamics
and focus on (i) the change in the global invasion threshold as a function of
the local threshold, R0, and (ii) the change in the spreading pattern between
subpopulations. To this aim, we create a metapopulation model with a non-
Markovian mobility dynamics as described in Section 2 and compare it to an
identical metapopulation system having the same traffic volumes along each
connection, but ruled by Markovian mobility equations. Once the leaving
rate and the length of stay in the non-Markovian model are defined, it is
possible to compute Tkk′ , the total volume of people traveling along each
link at the equilibrium, that is the sum of people resident in k and travelling
to their destination k′, and people resident in k′ returning after visiting k:

Tkk′ = σkk′Nkk + τ−1
k Nk′k (24)

By inserting the expressions of Eq. (12) and Eq. (13), we find:

Tkk′ =
σN

〈kφ〉
(kk′)θ(νk + νk′) . (25)

We can therefore construct a Markovian mobility model in which the traffic
through each link is defined by Eq. (25) but no distinction is made between
the individuals that are traveling to a subpopulation i and the individuals
resident in i: all individuals regardless their origin have equal probability to
leave node i for each of the ki neighboring destinations.

6.1. Global invasion threshold

We first focus on the behavior of the global attack rate, D∞/V , in the
two modeling approaches as a function of the local epidemic threshold R0.
In Fig. 11 we compare the global attack rate measured on a heterogeneous
network and using a non-Markovian dynamics to the curve obtained with a
Markovian traveling dynamics characterized by the same mobility parame-
ters on the same network structure. The difference between the two mobility
models is striking: in the Markovian dynamics case, the fraction of infected
subpopulations rapidly increases reaching the whole network for R0 = 1.4.
On the other hand, in the non-Markovian case the epidemic is contained
for almost all the explored values of R0 and reaches a very limited fraction
of subpopulations (at most 4%) for the same value of R0. As expected,
large fluctuations characterize the measured attack rates when the system
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Figure 11: Impact of the mobility model on the threshold behavior: comparison between
the Markovian and the non-Markovian mobility dynamics. Fraction of infected cities
D∞/V as a function R0 on a heterogeneous network with power-law degree distribution
P (k) ∝ k−γ and γ = 3. The curve corresponding to a non-Markovian model with χ = −1
is compared with the case of a Markovian mobility dynamics, where the traffic volume
along each link is equal in both cases. The diffusion rate rescaling is σ = 10−5 and the
average infectious period is µ = 0.002.

is close to the epidemic threshold in both cases. These results highlight
the strong difference between the two models that are characterized by the
same pattern of mobility flows but differ in the mobility mode of each single
individual. A global epidemic threshold is observed in both cases, but the
absence of memory in the model significantly lowers the condition on R0

corresponding to the containment phase. These findings have a significant
impact on the modeling of infectious disease in general, since it is evident
that, when a Markovian approach is adopted, the final impact of an epi-
demic will be potentially overestimated if the role of mobility timescales is
ignored.

6.2. Epidemic dynamics above the threshold

We further explore the difference between non-Markovian and Markovian
modeling approaches by looking at the invasion regime above the global
invasion threshold. In particular, we compare the global prevalence curve
obtained using our non-Markovian framework for the two cases χ = 0.4 and
χ = −1, as displayed in Fig. 8b, with the results of a Markovian mobility
dynamics, where the traffic volume along each link is kept the same as the
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non-Markovian case. It worth to notice that, from Eq. (25), the traffic
volume on a link depends on the exponent χ, therefore also the average
traffic of the system is a function of the exponent χ. The average traffic can
be computed analytically by averaging the expression given by Eq. (25) over
all links of the system:

〈Tkk′〉 =
∑
kk′

kP (k)k′P (k′)

〈k〉2
σN

〈kφ〉
(kk′)θ(νk + νk′) , (26)

where we assumed that the network is uncorrelated. By averaging over the
degrees k and k′, we obtain the final expression:

〈Tkk′〉 =
2σN

〈k〉2〈kφ〉
〈kθ+1νk(χ)〉〈kθ+1〉 , (27)

where we have highlighted the dependence on χ. 〈Tkk′〉 decreases as the
value of χ increases with a relative change that depends on the value of
σ. Therefore, in the comparison between Markovian and non-Markovian
dynamics we do not keep the total traffic per link constant in the Markovian
case, but we change it according to the value of χ under study.

The comparison of the global prevalence curves in the two models, dis-
played in Fig. 12a, points out the strong enhancement in the epidemic
spreading potential resulting from a Markovian traveling dynamics: the in-
fection curve grows exponentially as in a single homogeneously mixed popu-
lation, while the epidemic growth is significantly delayed in a non-Markovian
approach. Moreover, the above results highlight the different role played by
the exponent χ in the two dynamics. When the traveling dynamics is Marko-
vian no appreciable difference exists between the two values of χ, as shown
by the solid lines. The variation in the traffic volume along the links, cor-
responding to the change of χ, is too small to produce a significant effect
at the global level. On the other hand, in the non-Markovian case different
values of the exponent χ correspond to very different epidemic patterns: a
result that is not simply due to modifications of the traffic volumes but is a
consequence of the interplay between the heterogeneous traveling timescales
and the network topology. A simple Markovian mobility model is not able
to capture this particular aspect because it does not take into account the
trip duration.

Furthermore, the Markovian dynamics is not only characterized by a
faster progression of the disease invasion but also by a larger number of
affected subpopulations, for a given value of the global prevalence. In other
terms, even if the total number of infectious individuals at a given time
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Figure 12: Impact of the mobility model on the epidemic spreading above the invasion
threshold: comparison between the Markovian and the non-Markovian mobility dynamics.
Panel a: the curves of Fig. 8b, corresponding to the case χ = −1 and χ = 0.4 are compared
with the results of a Markovian mobility dynamics, where the traffic volume along each
link is kept the same. Dashed and continuous curves corresponds to the non-Markovian
and Markovian case respectively. Panel b: fraction of infected cities as a function of the
global prevalence for different mobility models and distributions of the length of stay. The
Markovian mobility model shows always the largest number of infected cities for a given
global prevalence. Model parameters are: R0 = 1.8, µ = 0.002, σ = 10−4, τ = 37.
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Figure 13: Epidemic invasion trees. The cases of a non-Markovian (panel a) and Markovian
(panel b) mobility process for a given distribution of the length of stay (χ = 0.4) are shown.
The parameters characterizing the substrate network and the dynamical process are the
same of Fig. 10. Only the first 120 nodes to be infected are displayed for the sake of
visualization, on successive layers of invasion. Larger width grey links correspond to the
paths of infection and lighter grey ones to the existing connections among visible nodes.
Nodes are color coded according to the time of their seeding, and their size scales with
their degree; nodes in the first layer are ordered according to their degree to highlight the
role of different degree nodes in the hierarchical invasion pattern in the two cases.

step is the same, they will be distributed among a much larger number of
subpopulations in the Markovian case than in the non-Markovian one. The
bottom panel of Fig. 12 clearly illustrates this phenomenon. The fraction of
infected subpopulations in the system is shown as a function of the global
prevalence for four different cases: a Markovian mobility dynamics and a
non-Markovian mobility dynamics with three different values of the expo-
nent χ. The Markovian model is characterized by the highest geographic
dispersal, which largely exceeds the values observed in a non-Markovian
model with χ = 0.4. On the other extreme, for negative values of χ the
disease spread is confined to a relatively small set of locations.

In order to examine a complete picture of the two mobility dynamics,
we also compare the invasion trees obtained with a Markovian approach
and a non-Markovian one. In particular, we compare the invasion tree of
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a non-Markovian spreading process with χ = 0.4 and shown in panel a
of Fig. 10, with the invasion tree of a spreading process that starts from
the same node in the same network and same mobility parameters, but
characterized by a Markovian dynamics (bottom panel of Fig. 13). Even if
the hubs play an important role in both spreading processes, there are some
relevant differences that can be observed in the invasion trees. First, in the
Markovian model the infection progresses from small degree nodes to high
degree nodes with higher probability than in the non-Markovian case. This
is due to the fact that the non-Markovian dynamics with positive χ strongly
suppresses the spreading potential of small degree nodes. More importantly,
the Markovian dynamics is characterized by a deeper extension of the tree,
for a given number of infected nodes. Indeed, in the non-Markovian case
the first 120 infected nodes all belong to the first and second shell of tree,
while in the Markovian case, the infection quickly reaches the third shell.
Given that the network has diameter equal to 10, this result indicates that
in the Markovian model the epidemic can more easily reach nodes that are
far from the seed in terms of connections. Relevant differences are also
evident in terms of time of infection, as indicated by nodes’ color: in the
non-Markovian case the nodes of the first shell are the first to be infected
and only afterwards the infection progresses to those of the second shell. On
the other hand, the Markovian dynamics accelerates the spreading process
so that nodes belonging to the third shell of the invasion tree can be infected
before nodes of the first shell, as indicated by the colors.

7. Conclusions

In this paper we presented a general theoretical framework to include a
heterogeneous distribution of mobility timescales related to the length of stay
at destination, as observed in reality, into a metapopulation epidemic model.
Our work is built upon the general theory of non-Markovian dynamical pro-
cesses on metapopulation models, originally developed by Sattenspiel and
Dietz (Sattenspiel and Dietz, 1995), and extends the mathematical frame-
work of degree-block variables (Colizza and Vespignani, 2007, 2008) and the
timescale separation approach (Keeling and Rohani, 2002). While previous
studies of non-Markovian mobility processes were based on the assumption
that the mobility timescale is the same for every individual and across the
whole system (Balcan and Vespignani, 2012), here, prompted by empirical
evidence, we introduced an extra layer of heterogeneity characterizing the
host dynamics in terms of the duration of their visits Poletto et al. (2012)
and fully characterize the invasion condition for the metapopulation system
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and its dynamics above the threshold, exploring change of travel behaviors
and differences with respect to Markovian approaches .

It is well known that large fluctuations in the number of connections and
the number of travelers per connection have a strong impact on the spread-
ing dynamics, in particular they favor the epidemic invasion by lowering the
global epidemic threshold. The integration of a non-Markovian dynamics
with a heterogeneous distribution of mobility timescales reproduced simi-
lar results as those observed within a Markovian framework, but uncovered
some relevant differences. We found that the metapopulation system is still
characterized by a global threshold, above which a disease seeded in a single
location can reach a finite fraction of subpopulations. However, given the
assumed dependence of the length of stay with the subpopulation degree,
both the theoretical framework and the applied numerical simulations have
shown that two regimes are found that may dramatically favour or hinder
the invasion, induced by the positive or negative degree-correlation of the
length of stay, respectively, altering the predictions of simple Markovian
models. Moreover, we showed that the interplay between the connectiv-
ity of each node and the assumed distribution of mobility timescales has
a profound impact on the epidemic invasion patterns when the system is
above the threshold. In case of a length of stay that is negatively corre-
lated with the degree, the spreading potential of the hubs is substantially
reduced, leading to a strong delay of the epidemic invasion which also cor-
responds to a lower spatial dispersal of the disease. On the other hand,
when travelers spend more time in highly connected locations the epidemic
spread is accelerated by the dominant role of the hubs. A further compari-
son with the classic Markovian dynamics highlighted the strong differences
between the two approaches: in a memoryless model, due to the high degree
of mixing between individuals and subpopulations, the epidemic progression
occurs much faster and reaches a much larger fraction of subpopulations for
a given prevalence at the system level. This difference might have a strong
impact when interpreting the results of epidemic models. Eventually, the
non-Markovian theoretical framework allowed us to study the effects of self-
imposed behavioral changes of individual mobility. We explored a simple
scenario, where individuals do not leave home if sick but travel back to their
residence if they were infected abroad. Despite its simplicity, this change of
travel behavior affected the general results on the global epidemic threshold,
confirming that the individual response to an epidemic outbreak is an im-
portant aspect that should be considered in simulating epidemic spreading
patterns, and in providing detailed model predictions.

Though applied here to human mobility and human epidemics, our ap-
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proach is however valid for other hosts displaying a territorial nature linked
to a permanent population, and with movements characterized by varying
timescales. Our contribution presents a number of limitations that need
to be addressed in future work. In particular, the assumption on the geo-
graphical dependence of the length of stay, determined by the degree k of the
location, finds its support in travel statistics available at the city level but
there is need for higher resolution mobility data to better characterize the
length of stay distribution and include additional realistic aspects, such as
e.g. the dependence of mobility rates on the age of travelers (Apolloni et al.,
2013), on the distance traveled, and others. For instance, more sophisticated
assumptions can be made on the expression of τ , that may depend both on
the origin and destination subpopulations, or on the individual behavior.

As the spatial spread plays a crucial role in the management and control
of a disease, our results highlight the importance of the mobility timescales
in the epidemic dynamics and pave the way to the development of more
realistic mathematical and computational epidemic models that could be
used to support public health agencies in decision making.
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Appendices

Appendix A. Populations at equilibrium

Here, we provide some further details on the derivation in the degree-
block notation of the equilibrium relations for the populations Nkk and Nkk′

expressed by Eq. (12) and Eq.( 13). We start from the equilibrium condition
applied to Eq. (10):

σkk′Nkk − τ−1
k′ Nkk′ = 0, (A.1)

which yields:
Nkk′ = τk′ σkk′Nkk. (A.2)

We now recall that the number of individuals resident in a subpopulation of
degree k, Nk, can be expressed in the degree-block notation as:

Nk ≡
N̄

〈kφ〉
kφ = Nkk + k

∑
k′

k′P (k′)

〈k〉
Nkk′ , (A.3)
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where we assume that the network is uncorrelated, i.e. P (k′|k) = k′P (k′)/〈k〉.
By plugging Eq. (A.2) into Eq. (A.3) and remembering the definitions of
leaving rate and length of stay:

σkk′ =
wkk′

Nk
= σkθ−φk′θ (A.4)

τk′ =
τ̄

〈kχ〉
k′χ. (A.5)

we obtain the first equation for the stationary population Nkk:

N̄

〈kφ〉
kφ = Nkk

(
1 +

στ̄

〈kχ〉
kθ−φ+1

∑
k′

P (k′)

〈k〉
k′θ+χ+1

)
. (A.6)

The term within round brackets is inverse of the quantity νk as defined
in Eq. (14), therefore Eq. (A.6) provides the expression of Nkk given in
Eq. (12). The expression of Nkk′ , as given by Eq. (13), follows directly by
plugging Eq. (12) into the equilibrium relation Eq. (A.2).

Appendix B. Branching process and global invasion threshold

The number of diseased subpopulations of degree k at generation n can
be related to those at generation n− 1 by the equation:

Dn
k =

∑
k′

Dn−1
k′ (k′ − 1)[1−R−λk′k0 ]P (k|k′)

n−1∏
m=0

(
1−

Dm
k

Vk

)
, (B.1)

where each of the Dn−1
k has (k′ − 1) possible connections along which the

infection can proceed (−1 takes into account the link through which each
of those subpopulations received the infection). In order to infect a sub-
population of degree k, three conditions need to occur: (i) the connections
departing from nodes with degree k′ point to subpopulations of degree k, as
indicated by the conditional probability P (k|k′); (ii) the reached subpopu-
lations are not yet infected, as indicated by the probability 1 − Dn−1

k /Vk;
(iii) the outbreak seeded by λk′k infectious individuals traveling from k′

to k takes place, and the probability for this event to occur is given by

(1−R−λk′k0 ) (Bailey, 1975). As done throughout the paper, we consider the
case of uncorrelated networks in which the conditional probability P (k′|k)
does not depend on the originating node, P (k′|k) = k′P (k′)/〈k〉 (Barrat
et al., 2008). Assuming that at the early stage of the epidemic only a few
subpopulations are infected, i.e. Dn−1

k /Vk � 1 and the system is very close
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to the local epidemic threshold, i.e. R0 − 1 � 1, we can further simplify
Eq. (B.1), by considering the series expansion:

(1−R−λk′k0 ) ' λk′k(R0 − 1) , (B.2)

which leads to the expression reported in Eq. (15).
In order to solve the Eq. (15), we plug the explicit expression for the

number of seeds: λk′k = α(Nkk′ +Nk′k), where the equilibrium populations
are given by Eq. (12). For the attack rate α we use the approximate relation
valid for the condition R0 ≈ 1, α ≈ 2(R0 − 1)/R0 (Murray, 2005). By
replacing these variables in Eq. (15), we find the relation:

Dn
k = C[kθ+1νkP (k)

∑
k′

Dn−1
k′ (k′ − 1)k′θ+χ+

+ kθ+χ+1P (k)
∑
k′

Dn−1
k′ (k′ − 1)k′θνk′ ] , (B.3)

where the constant C is defined by:

C =
2(R0 − 1)2

R2
0

σNτ

〈k〉〈kφ〉〈kχ〉
. (B.4)

We can write a close form of the iterative process by defining the vector
Θn = (Θn

1 ,Θ
n
2 ), whose components are:

Θn
1 =

∑
k

(k − 1)kθ+χDn
k (B.5)

Θn
2 =

∑
k

(k − 1)kθνkD
n
k (B.6)

The next generation equation can be written as Θn = C GΘn−1, with G
being the two dimensional matrix with elements:

g11 = g22 = 〈(k − 1)k2θ+χ+1νk〉 (B.7)

g12 = 〈(k − 1)k2θ+2χ+1〉 (B.8)

g21 = 〈(k − 1)k2θ+1ν2
k〉 (B.9)

The dynamical behavior of the system is determined by the largest eigen-
value of the matrix G, which is the quantity Λ(P (k), σ, τ ,N) defined by
Eq. (18), eventually leading to the expression for the global threshold R∗ of
Eq. (17).
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If we assume that ill individuals do not leave home during their infectious
period, but travel only to come back home if they were infected during their
stay at destination, then the number of possible seeds from a subpopulation
k′ to subpopulation k is reduced to:

λk′k = αNk′k . (B.10)

Under all the above mentioned assumptions, we can rewrite the iterative
process described by Eq. (B.3) as:

Dn
k = Ckθ+χ+1P (k)

∑
k′

Dn−1
k′ (k′ − 1)k′θνk′ , (B.11)

where the constant C is still defined by Eq. (B.4). By defining the variable
Θn =

∑
k(k − 1)kθνkD

n
k , the next generation equation can be written as:

Θn = C〈(k − 1)k2θ+χ+1νk〉Θn−1 . (B.12)

from which the global threshold condition of Eq. (21) is immediately derived.

Appendix C. Global invasion threshold for the homogeneous net-
work

Here, we derive the global invasion threshold parameter R∗ for the case
of a homogeneous network. All nodes have the same degree k and the
same population N . The mobility fluxes along the links are homogeneously

distributed and are determined by the leaving rate σkk′ = σk
2θ

and the
length of stay τk = τ . The invasion process is described by the dynamics
of the diseased subpopulations at generation n, Dn, that is governed by the
equation

Dn = Dn−1(k̄ − 1)
(

1−R−λk̄k̄0

)(
1− Dn−1

V

)
, (C.1)

that is the analogous of Eq. (B.1). The number of seeds, λk̄k̄, is given by
the expression

λk̄k̄ = 2ασN̄ τ̄ k̄2θνk̄, (C.2)

where α is the attack rate of the SIR epidemic and νk̄ =
(
1 + στ̄ k̄2θ+1

)−1
.

We plug Eq. (C.2) into Eq. (C.1), and we assume that the epidemic is at
the early stage (thus 1 − Dn−1/V ' 1), and that R0 is close to unit (thus
α ' 2(R0 − 1)/R2

0 (Murray, 2005)). Then, we recover an explicit form for
Eq. (C.1):

Dn = 4σN̄ τ̄
(R0 − 1)2

R2
0

k̄2θ(k̄ − 1)νk̄D
n−1 , (C.3)
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which directly provides the definition of R∗. Indeed, Dn will grow expo-
nentially and the epidemic will invade a non-infinitesimal fraction of the
network if the following threshold condition is satisfied:

R∗ ≡ 4σN̄ τ̄
(R0 − 1)2

R2
0

k̄2θ(k̄ − 1)νk̄ > 1. (C.4)

When sick individuals change their travel behavior and do not leave home,
the number of possible seeds is simply reduced by a factor 2 since the infec-
tion can arrive from one source only:

λk̄k̄ = ασN̄ τ̄ k̄2θνk̄. (C.5)

Under the same assumptions described above, the final equation for the
global invasion threshold changes to:

R∗ = 2σN̄ τ̄
(R0 − 1)2

R2
0

k̄2θ(k̄ − 1)νk̄. (C.6)

Appendix D. Global disease dynamics above the threshold

The infection evolution on a metapopulation system characterized by a
non-Markovian dynamics can be formalized as a deterministic process ruled
by non linear differential equations which describe the time evolution of each
compartment, for each of the subclasses Xii and Xij (where X = S, I or
R) and in each subpopulation i. The reaction-diffusion epidemic dynamics
is encoded in the rate equations describing the coupling between infection
transmission and traveling. For the infectious compartments Iii and Iij such
equations read:

dtIii(t) = Sii(t)Fi(t)− µIii(t)− σiIii(t) +
∑
l∈υ(i)

1

τl
Iil(t)

dtIij(t) = Sij(t)Fj(t)− µIij(t) + σijIii(t)−
1

τj
Iij(t),

(D.1)

where Fi(t) is the force of infection in the subpopulation i, given by:

Fi(t) = βI∗i (t)/N∗i (t) , (D.2)
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where, by definition:

S∗i (t) ≡ Sii(t) +
∑
j∈υ(i)

Sji(t) (D.3)

I∗i (t) ≡ Iii(t) +
∑
j∈υ(i)

Iji(t) (D.4)

R∗i (t) ≡ Rii(t) +
∑
j∈υ(i)

Rji(t) (D.5)

N∗i (t) ≡ S∗i (t) + I∗i (t) +R∗i (t) . (D.6)

The system of rate equations Eq. (D.1) can be combined into a single equa-
tion giving the evolution of the infected individuals resident in the subpop-
ulation i:

dtIi(t) = Sii(t)Fi(t)−
∑
j

Sij(t)Fj(t)− µIi(t) , (D.7)

which allows the computation of the dynamical equation for the total number
of infectious I(t) in the metapopulation system

dtI(t) =
∑
i

dtIi(t) =
∑
i

Sii(t)Fi(t)−
∑
ij

Sij(t)Fj(t)− µI(t) . (D.8)

We can rename the indexes of the second sum in the r.h.s. of the above
equation,

∑
ij Sij(t)Fj(t) ≡

∑
ji Sji(t)Fi(t), and finally obtain the Eq. (22):

dI(t)

dt
= β

∑
i∈V

S∗i (t)
I∗i (t)

N∗i (t)
− µI(t) . (D.9)

that describes the time evolution of the total number of infectious individuals
of the system.
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