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ABSTRACT 

Research that began a decade ago in video copy detection has developed into a technology known as “video 
fingerprinting”. Today, video fingerprinting is an essential and enabling tool adopted by the industry for video content 
identification and management in online video distribution.  This paper provides a comprehensive review of video 
fingerprinting technology and its applications in identifying, tracking, and managing copyrighted content on the Internet. 
The review includes a survey on video fingerprinting algorithms and some fundamental design considerations, such as 
robustness, discriminability, and compactness. It also discusses fingerprint matching algorithms, including complexity 
analysis, and approximation and optimization for fast fingerprint matching. On the application side, it provides an 
overview of a number of industry-driven applications that rely on video fingerprinting. Examples are given based on 
real-world systems and workflows to demonstrate applications in detecting and managing copyrighted content, and in 
monitoring and tracking video distribution on the Internet.   
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1. INTRODUCTION 
In February 1999, a few graduate students at Stanford University wrote a technical report entitled, “Finding pirated video 
sequences on the Internet”.1  The work contained in that technical report eventually became part of two distinguished 
Ph.D. dissertations by Shivakumar2 and Indyk3, respectively. And the technique that was used for identifying pirated 
videos developed into a technology known as “video fingerprinting”. 

To be sure, Shivakumar and Indyk’s work was not the only one on video fingerprinting and copy identification.  There 
were quite a number of related publications by other researchers around the same time in late 1990s and early 2000s. 4-9 
However, Shivakumar and Indyk’s work was particularly notable in two respects.  First, it was the first to use video 
fingerprinting in identifying unauthorized copyrighted videos on the Internet.  Years later, such application became the 
driving force in the development and deployment of video fingerprinting technology in the era of YouTube.  Secondly, it 
was the first to use Locality Sensitive Hashing (LSH) in fingerprint matching.  To date, the LSH algorithm remains the 
state-of-the-art in similarity search in high dimensions; new techniques for fingerprint matching are often compared to 
LSH. 

Research and development activities in video fingerprinting subsided for a period of time after the burst of the first 
Internet bubble in early 2000s.  In the last few years, however, the proliferation of online video in the peer-to-peer (P2P) 
and user-generated-content (UGC) networks has brought renewed interest in video fingerprinting technology for solving 
the copyright violation problems.  At issue is unauthorized distribution of copyrighted video content in the P2P and UGC 
networks.  In recent high-profile legal cases such as MGM v. Grokster and Viacom v. YouTube, the plaintiffs argued 
that the sites that host video content or a search index of video content should proactively police their sites by identifying 
and filtering out copyright-infringing content.  The enabling technology recommended by the plaintiffs for identification 
and filtering of copyright-infringing content at large-scale is fingerprinting. 

In late 2006, the Motion Picture Association of America (MPAA) and the Motion Picture Laboratories (MovieLabs) 
initiated a Content Recognition Systems Study that focused specifically on evaluating fingerprinting technologies for 
video identification. The Study lasted more than 6 months and was joined by 12 participants including large 
corporations, start-up companies, and a university.  Today, all of major Hollywood film and TV studios have adopted 
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video fingerprinting technology.  In practical applications, video fingerprinting is used in identifying, monitoring, 
tracking, as well as filtering of unauthorized, illegal, or offensive content.  Researchers and practitioners are also 
exploring other applications of video fingerprinting, such as video asset management, contextual advertising, and 
content-based video search. 

Despite the resurgence in research activities in video fingerprinting and its adoption by the industry, there has not been a 
comprehensive review about video fingerprinting technology and its applications.  This paper attempts to fill that gap by 
providing a review of both research work and real-world applications.  Before getting down to the details, it is helpful to 
review and clarify on related terminology. 

1.1 Related Terminology 

A video fingerprint is an identifier that is extracted from a piece of video content.  The process of extracting a fingerprint 
from the video content is referred to as fingerprinting the video or video fingerprinting.  There is an obvious analogy to 
human fingerprint and fingerprinting. Just like human fingerprint that can uniquely identify a human being, video 
fingerprint can uniquely identify a piece of video content.  The analogy extends to the process of subject identification 
by fingerprint: first, known fingerprints must be stored in a database; then, a subject’s fingerprint is queried against the 
database for match. 

In a broad sense, the term video fingerprinting has been used to refer to the technology encompassing algorithms, 
systems, and workflows that use video fingerprint for video identification.  It should be evident from the context if the 
term is used to refer to the fingerprinting process or more broadly the technology. 

In research literature, video fingerprinting and fingerprint-based video identification are also commonly known as video 
copy detection or more generally content-based copy detection (CBCD).  Indeed, copy detection is the application that 
motivated development of video fingerprinting.  Here, “copy” has a quite broad meaning.  It could be a small segment 
cut from the original, lasting only a few seconds, and possibly embedded in a long edit or “mash-up”.  It could be 
transformed into different formats, codecs, resolutions, frame rates, and bitrates.  And it could be modified and distorted 
by scaling, cropping, frame dropping, and overlay of text and graphics. 

Another term that is used to describe video fingerprinting is robust video hashing.  It comes from the observation that 
conventional cryptographic hashing such as MD5 is fragile and sensitive to even a single bit change in the content.  The 
idea is to design hashing schemes that are robust to distortions that do not change our perception of the video content.  
For this reason, it is sometimes also called perceptual hashing.  However, the use of “hashing” can be confusing because 
of the additional security requirements that are often imposed on hash functions.  For example, one desired property for a 
hash function is uniform distribution of hash values in order to minimize collisions, the incident that has two different 
entities hashed into the same point in the hash space.  Yet for video fingerprinting, it can be ideal to have different 
versions (can be infinite in number) of the same video content hashed into the same point in the fingerprint space. In 
such observation, “robust hashing” sounds like a self-conflicting proposition. 

Lastly, it is worth noting that the word fingerprinting has also been used in the research literature of watermarking to 
describe the process of adding an identifier (watermark) to the content.  To date, the industry has an unambiguous view 
of what it calls watermarking and fingerprinting.  When an identifier or signature is added to the content and thereby 
changing the content, it is watermarking; when an identifier or signature is extracted from the content without changing 
the content, it is fingerprinting. 

1.2 Organization of Sections 

The rest of this paper is organized as follows.  Section 2 reviews research work on video fingerprinting and fingerprint 
matching algorithms and designs.  First, a set of desired properties and common metrics for fingerprinting algorithms are 
introduced. Then, fingerprinting algorithms are grouped into several categories and reviewed based on their use of 
spatial, temporal, color, and transform-domain signatures.  For fingerprint matching, a complexity analysis is given for 
exhaustive fingerprint search; general strategies for reducing complexities are discussed.  A few existing and new 
algorithms for fast approximate fingerprint matching are reviewed.  The last part of Section 2 contains the author’s 
observations and remarks on the video fingerprinting research.  Section 3 provides an overview of a few industry-driven 
applications that rely on video fingerprinting.  Examples are given based on real-world systems and workflows to 
demonstrate applications in identifying and managing copyrighted content, and in monitoring and tracking video 
distribution on the Internet.  Finally, a few promising new applications are previewed.  Section 4 concludes the paper 
with a summary. 
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2. RESEARCH IN VIDEO FINGERPRINTING  
This section reviews research work on video fingerprinting, including algorithms and designs for video fingerprinting 
and fingerprint matching. Before considering specific algorithms and designs, it is helpful to examine what we aim to 
achieve with video fingerprinting and how to measure the effectiveness of designs and implementations. 

2.1 Properties and Metrics 

Ideally, a design of a video fingerprint should have the following characteristics that hold true for a large corpus of video 
content of diverse types. 

Robust.  A video fingerprint should stay largely invariant for the same video content under various types of processing, 
transformations and manipulations, such as format conversion, transcoding, and content editing. 

Discriminating.  The video fingerprints for different video content should be distinctly different. 

Compact. A video fingerprint should be minuscule in data size, comparing to the data size of the original video content. 

Low complexity.  The algorithm for extracting video fingerprints should have low computational complexity so that a 
video fingerprint can be computed fast. 

Efficient for matching and search.  Although there are generic algorithms that treat all fingerprints as a string of bits in 
matching and search, a good design of video fingerprint should facilitate approximation and optimization to improve the 
efficiency in matching and search. 

Because video fingerprints are generally not perfectly identical for different versions of the same content, fingerprint 
matching is not a simple table lookup in the database.  Instead, it is a similarity search problem.  Typically, a distance 
metric is defined to quantify the similarity between two video fingerprints being compared.  Commonly used distance 
metrics include Manhattan (L1) distance and Euclidean (L2) distance, where a normalized L1 or L2 distance provides a 
good measure of similarity.  When a video fingerprint consists of binary signatures, Hamming distance is often used, and 
a normalized Hamming distance or Bit Error Rate (BER) provides a good measure of similarity. 

In most applications of video identification, having a quantified measure of similarity is not sufficient.  An explicit 
judgment of whether two videos contain the same content is required.  Thus, the effectiveness of a video fingerprint 
design and implementation can be measured by the rate of correct returns to fingerprint queries.  A pair of commonly 
used measures is precision and recall rates that are defined as follows: 

 Pr (%) = 
  

! 

N tp

N p

 × 100 (1) 

and 

 Re (%) = 
  

! 

N tp

N ep

 × 100 (2) 

where Pr is precision rate, Re is recall rate, Ntp is number of true positives or correct matches, Np is total number of 
positives or matches, and Nep is number of expected positives or matches. 

Corresponding to the desired properties of video fingerprint, precision rate is a measure of discriminability, and recall 
rate is a measure of robustness.  Another pair of related measures is false positive (FP) and false negative (FN) rates that 
are defined as follows: 

 Rfp (%) = 
  

! 

N fp

N en

 × 100 (3) 

and 

 Rfn (%) = 
  

! 

N fn

N ep

 × 100 (4) 
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where Rfp and Rfn are false positive and false negative rates, respectively; Nfp is number of false positives, Nfn is number 
of false negatives, Nep is number of expected positives as previously defined, and Nen is number of expected negatives. 
Nep and Nen add up to the total number of fingerprint queries in the test, denoted by Nq. 

The above definitions for false positive and false negative rates assume the knowledge of expected positive and negative 
numbers, Nep and Nen.  This is usually true for controlled tests.  For a real-world running system that receives a large 
volume of queries, it is hard to know or verify the expected positive and negative numbers.  Therefore, the operating Rfp 
and Rfn of a fingerprinting system are often computed by replacing Nen in (3) and Nep in (4) with Nq, the total number of 
fingerprint queries. 

2.2 Video Fingerprinting Algorithms 

2.2.1 Overview of Video Signatures 

In its raw form, a video fingerprint is just a string of bits that represent the “signatures” of the video data. Different 
designs vary in the type of signatures that are chosen to characterize the video data, and the way to compute them.  
Almost all of the video signatures that have been proposed to date can be classified into four types: spatial, temporal, 
color, and transform-domain.  In some designs, different types of signatures are combined to form video fingerprints. 

A spatial signature characterizes spatial features of a video frame and is computed independent of other frames.  
Examples of spatial features include luminance patterns, differential luminance or gradient patterns, and edges.  A 
temporal signature describes temporal features of a video and is computed between two frames in the temporal direction.  
Examples of temporal features include frame difference measures, motion vector patterns, and shot durations.  A color 
signature captures color characteristics of a video frame and is computed in a color space such as RGB or YUV.  Many 
color signatures are an abstraction of patterns in the color histogram. A transform-domain signature is computed from 
coefficients of an image or video transform such as a DCT or wavelet transform.  Transform-domain signatures provide 
a different characterization and representation of some spatial and/or temporal features in the transform domain. 

In addition to various types of video signatures, video fingerprints differ in granularity that is the smallest unit of video 
that a video signature characterizes. Spatial granularity can vary from entire video frame to subdivided blocks to points 
of interest in a frame.  Temporal granularity can be key frames only, group of frames, downsampled single frames, or 
every single frame. 

Different granularities of video fingerprint provide a tradeoff between discriminability, robustness, and compactness. For 
example, by dividing a video frame into multiple blocks and computing temporal and color signatures for each block, we 
gain finer spatial granularity or resolution in temporal and color signatures at the cost of additional storage. 

2.2.2 Spatial Signatures 

A class of spatial signatures is designed to characterize luminance patterns in a video frame.  In such designs, a video 
image is first converted to the YUV color space; the luminance (Y) component is kept, and the chrominance components 
(U, V) are discarded.  The luminance image is further subdivided into a fixed-sized grid of blocks (e.g., a 4x4 grid of 
blocks) independent of frame resolutions, as shown in Figure 1(a).   

Note that unlike in image and video compression where a frame subdivision is by fixed-sized blocks (e.g., 8x8 blocks), 
here the frame subdivision is designed to produce a fixed-sized grid of blocks.  The subdivision of a video frame serves 
two purposes.  First, it leads up to block-based signatures that are robust to changes in pixel values; second, it produces a 
compact and fixed-sized frame fingerprint consisting of fixed number of block signatures. 

One popular block-based luminance signature is based on ordinal ranking.  It was designed by Bhat and Nayar7 for 
image identification and first used by Mohan8 in video fingerprinting and matching.  The simplicity of ordinal ranking is 
illustrated in Figure 1(b)-(c).  After frame subdivision, the average pixel value for each block is computed, and an 
abstraction follows by ranking the blocks by their average pixel values.  The rank of each block in ordinal position is 
assigned to the block as its signature.  Video fingerprints based on ordinal signatures have been studied and 
experimented extensively.9-11  They were found to be more robust than some temporal and color signatures.9  They are 
also compact in size: for a frame subdivision containing M blocks, the required number of bits for a frame fingerprint is 
M * ceiling(log2M). 
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 (a) 

   
 (b) (c) 

Figure 1: Ordinal ranking - an example of spatial signatures. (a) Color-converted and subdivided luminance frame; (b) 
average pixel values of blocks; (c) ordinal ranks of blocks. 

One drawback of ordinal signatures has to do with the global ranking.  The rank of each block is relative to all other 
blocks in the frame.  This means local luminance variations such as a logo insertion that should change the rank of one 
block could actually change the ranks of multiple blocks or all blocks.  Block-based differential luminance signatures 
such as those proposed12-15 are more robust to local luminance variations while maintaining a compact representation 
similar in data size to the ordinal signatures.  Oostveen et al12 computed block difference in one spatial direction 
(horizontal) followed by a binary abstraction (greater than or not).  Lee and Yoo13-14 computed luminance gradients in 
each block and condensed them to the centroid (geometric average) of gradient orientations. Iwamoto et al15 estimated 
luminance edges in 8 quantized directions for each block and kept the direction having maximum strength as an edge 
signature.  It is worth noting that like ordinal ranking for block luminance patterns, differential block luminance patterns 
are quantized or abstracted to form differential signatures.  Abstraction further increases robustness and reduces data 
size; it is key to all fingerprinting algorithms. 

Block-based spatial signatures such as ordinal and differential signatures are susceptible to geometric transformations 
such as rotation, cropping, and scaling that changes aspect ratios.  Figure 2 illustrates the mismatch of content in blocks 
between two transformed and the original frame images after rotation and cropping.  This difficulty has motivated 
designs of spatial signatures that are resilient to geometric transformations.  Many proposed algorithms employ a special 
image transform, such as polar Fourier Transform,16 Radon Transform,17-18, 22 or Singular Value Decomposition (SVD).19  
They have reportedly good resilience to affine transformations such as shift and rotation. However, they are still prone to 
cropping; see, e.g., Seo et al17 for some experimental results.  Unfortunately, in practical applications involving videos, 
cropping often accompanies shift, rotation, and scaling due to fixed video frame size, as shown in Figure 2.  
Additionally, most of the above techniques have high computational complexities that make them impractical for many 
applications of video fingerprinting in the real world. 

Another approach that is fundamentally different from block-based designs is to compute spatial signatures around 
points of interest in a video frame.  This approach is often combined with the use of key frames on which points of 
interest are computed.  Examples of spatial signatures that are based on points of interest include those that use Harris 
points,20-22 scale-invariant feature points,23 and the Difference-of-Gaussian scale-space feature points.24 Unlike block-
based designs, spatial signatures based on points of interest lead to frame fingerprints of variable sizes, because the 
number of points of interest in a frame is content-dependent, and can be potentially very large.  The variable number and 
configuration of points of interest in a frame necessitate an alternative way for similarity definition and search.  The 
computational complexity of the above methods for extracting spatial signatures based on points of interest is 
significantly higher than that of block-based signatures. 
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 (a) 

   
 (b) (c) 

Figure 2: Mismatch of content in blocks in a fixed-sized grid after rotation and cropping. (a) Color-converted and 
subdivided luminance frame; (b) rotation by 10 degrees; (c) rotation followed by cropping and expanding to full 
screen.  Blocks in the center of the frame are less distorted than those on the edge. 

2.2.3 Temporal Signatures 

The groundbreaking work by Shivakumar1-2 used temporal signatures.  The design is quite straightforward.  First, a 
video sequence is segmented into shots.  Then, the duration of each shot is taken as a temporal signature, and the 
sequence of concatenated shot durations form the fingerprint of the video. 

Related to shots are key frames where the content has abrupt changes, such as the boundary that separates two shots.  
Key frames are important anchors in a video sequence that are often used in video fingerprinting.18, 20, 24-26  The locations 
of key frames in a video provide a natural temporal signature.  However, not all designs make use of the temporal 
positions of key frames.  For example, in Cheung and Zakhor’s work,26 the temporal information of key frames is 
discarded; the similarity between two video sequences is measured by the degree of match to a group of key frames.  In 
such design, it is not possible to determine the location or offset of a match in the query and reference videos. 

More commonly, temporal signatures are computed on adjacent frames in a video.  Chen and Stentiford27 proposed to 
use temporal ordinal signatures.  Similar to the steps of deriving spatial ordinal signatures, a frame is subdivided into a 
fixed-sized grid of blocks, and the average pixel value of each block is computed.  Unlike spatial ordinal ranking that 
ranks blocks in a frame, temporal ordinal ranking in Chen and Stentiford27 ranks blocks in same spatial position across 
the frames in a temporal window; the temporal ordinal ranks of the blocks are used as temporal signatures. 

With an approach similar to the way of computing spatial differential signatures, temporal differential signatures are 
explored.  In such an approach,11-12, 28 luminance difference between two adjacent frames or same-positioned blocks in 
two adjacent frames is computed, followed by an abstraction that quantizes the difference to 2 or 3 levels (i.e., greater, 
equal or less).  Hampapur et al9 estimated block motion vectors and quantized them to four orientations to form motion 
signatures.  With a different approach to motion estimation based on tracking points of interest from frame to frame, 
Law-To et al21 computed temporal trajectories of points of interest and abstracted their motion signatures by labels. 

2.2.4 Color Signatures 

Color signatures are among the first being used in video fingerprinting.  Naphade el al5 proposed a technique that was 
also experimented by Hampapur el al.9 In this approach, a level-quantized histogram is computed for Y, U, and V 
components for each video frame.  To reduce the resulting signature data, a polynomial approximation is used to model 
the pixel counts in each bin of the histograms along the temporal direction.  A special distance metric based on histogram 
intersection is used as a similarity measure.  Li et al29 applied ordinal ranking to the bins of histogram based on the 
frequency counts of each bin.  Hu30 computed Alpha-trimmed average histogram on a group of subdivided frames and 
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quantized each color component to eight bins. In the latter two designs, the color signatures can be compared with 
common distance measures such as the Manhattan distance. 

2.2.5 Transform-Domain Signatures 

There are some designs that compute video signatures in a transform domain.  In many cases, the choice of an image 
(2D) or video (3D) transform is motivated by some invariance properties of the transform.  For example, Swaminathan 
et al16 used polar Fourier Transform to compute an image hash that is resilient to rotation and translation.  By a similar 
motivation, Radon Transform17-18, 22 and Singular Value Decomposition19, 31 were explored to generate transform-domain 
signatures that are robust to geometric distortions.  

In another study, Coskun and Sankur32 used 3D Discrete Cosine Transform (DCT) on a group of 64 frames and hashed 
the resulting coefficients into binary signatures with median-based thresholding.  Their work was later extended33 to also 
use a 3D Random Bases Transform (RBT) followed by hashing.  So far, the DCT and RBT based signatures have been 
tested with a small set of short video clips. 33 

2.3 Fingerprint Matching 

2.3.1 Exhaustive Search 

As introduced in Section 2.1, fingerprint matching is a similarity search problem where the degree of similarity is 
quantified by certain distance metric.  More specifically, for a given video fingerprint of a target video clip, fingerprint 
matching amounts to finding in a reference video fingerprint database the closest match or matches to the target video 
fingerprint. In some applications, it suffices to return a list of match candidates ranked by their similarity scores or 
distance values; in many other applications, however, an explicit judgment of match or no-match has to be made.  In 
either case, the heavy load of computation lies in computing the distance values or similarity scores between the target 
video fingerprint and reference video fingerprints in the database.  In a brute-force approach, this comes down to 
computing and comparing the distance from the target video fingerprint to each and every reference video fingerprint in 
the reference database, and finding the one(s) that have the shortest distance.  Because a target video usually has 
different length than the ones in the reference database, and can match to any part of a reference video, comparing the 
target video fingerprint with each reference video fingerprint involves evaluating every offset position for the best 
alignment between the two video fingerprints that gives the smallest distance.  To sum up, the time complexity of a 
brute-force fingerprint matching by exhaustive search can be expressed as follows: 

 Time complexity = O(k*N) (5) 

  = O(k*l*M) (6) 

where k is the length of the target video fingerprint, N is the total length of video fingerprints in the reference database, l 
is the average length of the video fingerprints in the reference database, and M is the total number of video fingerprints 
in the reference database; N = l*M. 

Considering that the length of a given video is finite and not growing, the dominating factor of complexity in fingerprint 
matching is clearly the reference database size which can be represented either by the total length of reference video 
fingerprints, N, or the total number of reference video fingerprints, M.  More specifically, the time complexity of 
fingerprint matching by exhaustive search is linear of the reference database size.  Since in practice the reference 
database size can be very large and continues to grow, fingerprint matching by exhaustive search is clearly not scalable 
for practical applications.  Fortunately, exhaustive search is rarely necessary in practice.  In most cases, a well-designed 
approximate and fast search can find the same best match as an exhaustive search does in a tiny fraction of time required 
for the exhaustive search. 

2.3.2 Approximate and Fast Search 

A well-known algorithm for approximate similarity search is called Locality Sensitive Hashing (LSH).  It was first 
introduced by Indyk and Motwani34 and refined by Gionis el al.35  Although LSH has been widely used in many 
applications that involve similarity search, video fingerprint matching was among the first applications in which LSH 
was used.1-2  Since then, other researchers have explored LSH in fingerprint matching along with their video 
fingerprinting algorithms.30, 36 

The LSH algorithm was conceived for solving the approximate Nearest Neighbor Search (NNS) problem in high 
dimensions; fingerprint matching can be formulated as an NNS problem. Consider a d-dimensional vector space P where 
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a distance metric D(x,y) is defined. For a query point q, if the nearest point p exists in P such that D(p,q) = r, the so-
called ε- Nearest Neighbor Search (ε-NNS) seeks to find a point p´ in P such that D(p´,q) ≤ r (1+ε) for any ε > 0.  For P 
containing N points, it was shown35 that with LSH the approximate nearest neighbor p´ can be found with high 
probability in sublinear time of N, more specifically, 

 Time complexity = O( d*N 1/(1+ε) ) (7) 

Behind the mathematical rigor of LSH is an intuitive geometric reasoning: if two points in a d-dimensional space are 
close to each other, then, their projections onto lower dimensional spaces are very likely to be close as well.  An 
important part of LSH design is to devise hash functions such that the points that are close to the query point will be 
hashed into the same bucket with high probability.  Then, a linear, exhaustive search may be used to find the closest 
point(s) to the query point in the bucket that often contains a much smaller number of candidates than the original search 
space. In Gionis et al35, the hash functions being chosen are random projections from high dimensions to a lower 
dimensional space.  Recently, Baluja and Covell37 took a different approach to hashing for reducing the search space. 
Instead of designing deterministic hash functions, they used machine learning techniques and training data to devise a 
hashing system that adapts to the identification task and data.  This results in a more compact hash bucket that contains 
significantly fewer candidates that may need to be compared with a linear search, thus boosting the speed of fingerprint 
matching.  So far, this “learning to hash” technique has been applied to audio fingerprint matching with excellent 
results;37 it would be interesting to see how it works for video fingerprint matching. 

One of the benefits of using training data for machines to learn to hash is to forgo an explicit definition of similarity that 
can be hard to define precisely for video content and its fingerprints.  This is in contrast to LSH in metric space where a 
distance metric measuring similarity needs to be defined explicitly.  In another approach that does without using 
distance-based similarity measures and deterministic hash functions, Joly et al38 proposed to use a statistical similarity 
search based on probabilistic models of common distortion vectors.  Similar to hashing, a statistical similarity search 
maps the full search space into a small bucket of candidates by probabilistic filtering.  In Joly et al,38 probabilistic 
models for common distortion vectors associated with Harris spatial signatures20 were used and a substantial speed-up in 
fingerprint query was achieved over exhaustive search with little loss in accuracy. 

From optimization point of view, a system for fingerprint matching can be divided into two parts; each part can employ 
some kind of approximation that trades possibly a little loss in accuracy for speed in a fingerprint query.  The first part of 
approximation is to reduce the search space.  More specifically, for a fingerprint query to a reference database containing 
M fingerprint records, we seek to map the reference database to a bucket of size B that is smaller than M.  A refined 
search including possibly exhaustive search may be performed in the resulting bucket for the query fingerprint.  Ideally, 
we would like the bucket to contain only the most likely candidates for match, and the mapping from the full search 
space to the bucket to be super fast.  Besides the hashing and probabilistic mapping methods that have been reviewed 
above, some heuristic techniques can be also very effective for reducing search space.  For example, Oostveen el al12 
attempted to reduce search space by selecting only reference candidates that contain identical anchor fingerprint blocks 
that are present in the query fingerprint. 

It is possible that after search space reduction, the resulting bucket size B remains large, though it is smaller than M.  In 
this situation, a refined search in the bucket of candidates can be quite costly by itself.  Thus, the second part of 
approximation in fingerprint matching aims to reduce the cost of a linear search in the bucket.  For systems that seek to 
match a sequence of frame fingerprints based on a distance measure, several approximation techniques are often used.  
One of these techniques is greedy search: if a portion of the query fingerprint is matched to some references, subsequent 
search for match is directed at the part that immediately follows the matched portion in both the query fingerprint and 
the references.  Another technique is “early exit” that aborts the comparison with a reference if an intermediate value of 
distance measure is already above the threshold for no-match.  Yet another technique is to use downsampled frames in 
distance calculation. 

All of the approximation techniques except “early exit” can incur a loss in search accuracy.  Nonetheless, real-world data 
suggests that with a good video signature design, a speedup in several orders of magnitude can be achieved using these 
approximation techniques with a negligible loss in search accuracy. 



9 

2.4 Remarks 

2.4.1 Which One to Use? 

With so many designs of video signatures and associated video fingerprinting algorithms, a natural question is: which 
one is the best? The answer is that there is no absolute best.  Some video signatures are robust against certain types of 
distortions in video content but vulnerable to other types of distortions; other video signatures may be the other way 
around.  Nonetheless, judging by the criteria outlined in Section 2.1, namely, robustness, discriminability, compactness, 
low complexity, and efficiency for search, the overall category winner appears to be spatial signatures, particularly 
block-based spatial signatures. Temporal and color signatures, while useful in improving discriminability, tend to fall 
short in robustness in comparison to spatial signatures. This observation is supported by experimental results reported in 
research literature, industry evaluation tests, as well as the success of some commercial systems deployed in the real 
world.  

Despite the motivation of using some special transforms for their resilience to geometric transformations, transform-
domain signatures are not widely adopted in video fingerprinting in practice due to their computational complexity.  On 
the other hand, by using some adaptive techniques in fingerprint matching, block-based spatial signatures that are known 
to be prone to geometric transformations can achieve good robustness against moderate geometric transformations, e.g., 
frame rotation by 10 degrees.  One of commonly used adaptive techniques is to apply weighting in distance calculations 
in fingerprint matching.  Generally speaking, simply weighting down the block differences towards the edges of a video 
frame is often helpful because content around the center of the video frame is better preserved in geometric 
transformations and less affected by logo and subtitle overlays. See, e.g., Figure 2 for a visual comparison of distortions 
on the center and edges of a video frame.  Iwamoto et al15 used a more sophisticated method in determining the weights 
in distance calculations. 

Block-based spatial signatures are also compact and have low computational complexity. For many designs using spatial 
ordinal or differential signatures, the data size of a frame fingerprint is on the order of a few hundred bits, or less than 10 
Kbps in data rate for video with frame rate at 30 fps.  These fingerprints can be computed from a standard-definition 
video source in 1/10 of video playback time (or 10 times faster than real-time) on an off-the-shelf consumer-grade PC.   

Because of their many advantages, spatial signatures particularly block-based spatial signatures are most widely used 
and studied in video fingerprinting.  For designs that employ spatial signatures as the primary component of video 
fingerprint, temporal and color signatures are sometimes used as a secondary component to complement spatial 
signatures. 

2.4.2 Temporal Structure from Spatial Signatures vs. Temporal Signatures 

Many block-based spatial signatures are computed on each frame of the source video at certain frame rate, generating a 
sequence of time-stamped frame fingerprints. These frame fingerprints characterize not only spatial patterns in their 
corresponding video frames, but also temporal structure of the video.  They provide a strong temporal constraint for a 
video being compared for match, increasing both discriminability and robustness of fingerprint matching.  This assertion 
comes from an intuitive reasoning: if a single frame fingerprint is matched to a video, it may be by accident; if a number 
of consecutive frames are matched to a video in high degree, the chance of an accidental match decreases quickly as the 
number of consecutive frames increases.  Indeed, many block-based spatial signatures correspond to an ultra-low 
resolution grid downsampled from the original frame resolution (e.g., 4x4 grid of blocks downsampled from a frame of 
720x480); video sequence matching based on these low-resolution spatial signatures relies on a multitude of consecutive 
frame fingerprint matches to increase discriminability.  On the other hand, robustness can also be enhanced with a 
multitude of consecutive frame fingerprints to smooth out a small number of mismatches due to distortions (e.g., frame 
drops) or local content changes (e.g., a fade or dissolve introduced by video editing). 

The temporal structure that is imposed by a sequence of frame fingerprints with spatial signatures can be such a strong 
constraint in video identification that gives a nonessential role to separate temporal signatures such as the ones that 
characterizes the differential patterns in adjacent frames.  Indeed, many proposed designs8,10, 13-15 of video fingerprints do 
not include separate temporal signatures; they rely solely on spatial signatures to form a sequence of frame fingerprints.  
Like an I-frame only video sequence, a sequence of video fingerprints without inter-frame temporal signatures have 
some benefits in content editing and management; for example, it can be cut, split, and merged at any point without a 
need of re-computing or modifying temporal signatures on the boundaries.  Nonetheless, temporal signatures can be a 
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good complement to spatial signatures in video identification.  For example, video sequences containing many still 
frames (e.g., a slide show) can be characterized more effectively when temporal signatures are used. 

2.4.3 Algorithms vs. Systems 

The various approximation techniques used in fingerprint matching creates a complex pipeline where each stage can 
contribute to an increase in FN. Therefore, in an end-to-end video identification system including both fingerprinting and 
fingerprint matching, robustness depends on not only video signature and fingerprinting algorithms, but also a number of 
other factors in the system design.  Specifically, reducing search space may introduce FNs. For example, a matching 
reference that does not fall into the bucket by hashing or mapping results in a FN.  Additionally, the use of greedy search 
in computing alignment and frame downsampling in distance calculation can also introduce FNs. 

To separate algorithms and systems, BER and normalized L1 or L2 distance can be used for pure video fingerprint 
evaluation and comparison, assuming a query fingerprint is perfectly aligned to the matching reference fingerprint, and 
no approximation is made in computing the distance or error rate.  When recall or FN rate is reported, however, it should 
be understood that one is evaluating an end-to-end video identification system; the superiority of a video fingerprint 
measured by BER or other distance-based error rates may not translate into a superior video identification system.  It is 
highly desirable that a video fingerprint design can facilitate and work well with various approximation techniques, 
because in the end, all practical systems must use some approximation techniques in fingerprint matching and what 
matters is the accuracy and speed of such systems. 

2.4.4 Topics of Continuing Research 

There is active research in new video signatures and fingerprinting algorithms as well as faster fingerprint matching 
algorithms and techniques.  Designing an ultimate, versatile video signature is the Holy Grail.  The author of this paper 
believes that it is more achievable and beneficial to develop a set of video signatures that are complementary to each 
other in enhancing robustness and discriminability.  In fingerprint matching, there is a real need for continued advance in 
search algorithms because of the rapid growth in the size of video fingerprint database that is already in the order of tens 
of millions for UGC videos.  Additionally, it would be highly useful to quantify the relationship between the loss in 
accuracy and gain in speed by various approximation techniques used in fingerprint matching. 

3. APPLICATIONS OF VIDEO FINGERPRINTING 
Video fingerprinting technology that can identify video content accurately, efficiently, and automatically has many 
practical applications.  As was introduced in Section 1, the development of video fingerprinting technology has been 
driven largely by needs for finding copyrighted video content on the Internet.  As the technology matures, other 
applications are also emerging.  In this Section, we review a few industry applications that have been commercially 
deployed for copyright management in video distribution on the Internet.  We also provide a brief overview for a few 
emerging applications that are being developed and experimented. 

3.1 Video Content Registration 

Before a video can be identified by its fingerprint, the video fingerprint must be extracted from at least one version of the 
same video content and ingested into a reference database.  Typically, a master reference fingerprint database is centrally 
located while fingerprints are often collected and ingested from distributed locations.  This is similar to the process of 
populating a human fingerprint database.  Like a human fingerprint database, a video fingerprint database contains not 
only fingerprint data, but also information about or associated with the fingerprint data.  Such information is of critical 
importance to applications that query a video fingerprint database. 

One type of information that binds with video fingerprint is the so-called metadata that describes the video content 
and/or the particular instance of the video content from which the fingerprint is extracted.  Currently, there is not yet a 
standardized metadata schema for video fingerprints, but commonly used content metadata includes title, ownership 
information, production and release dates, genres, etc.  Instance metadata includes length, resolution, and frame rate of 
the video, codec and file format, etc.  Because a wealth of video metadata already exists elsewhere, e.g., in an existing 
video asset management system, it is unnecessary to replicate a full set of metadata in a video fingerprint database.  Most 
video fingerprint databases stores only a limited set of metadata for content identification purposes, and reference other 
unique video asset IDs (e.g., ISAN39-40) that link to sources of information outside the video fingerprinting system. 
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Another type of information that is associated with video fingerprint is business rules.  They are specified by content 
owners to determine what actions should be taken when an unauthorized copy of reference content is identified.  
Recently, MovieLabs published Content Recognition Rules (CRR)41 that defines standard XML interfaces to 
communicate about business rules for identified unauthorized content.  Putting a content identification system in the 
center, the CRR defines two interfaces. One interface is from content owners to a content identification system for 
specifying business rules; the other interface is from the content identification system to a caller of content identification 
service to communicate match results as well as the rules and actions specified by the content owner.  The CRR provides 
a flexible framework for existing and anticipated business and application scenarios.  For example, the content owner 
could specify if the UGC site should take it down or allow it to post, or could advertise on it when a copy of 
unauthorized content is identified on the site.  Furthermore, these actions could be determined on different conditions 
and circumstances, such as how long the identified content is, and the geography of the site. 

 
Figure 3: Integration of video content filtering in a UGC service backend. 

3.2 Video Content Filtering 

Content filtering has long been proposed as a solution to the piracy problem on the Internet.  In 2001, Napster 
implemented a music content filter based on audio fingerprinting in its P2P network.  Because of its availability and 
maturity, audio fingerprinting has also been used in video content filtering by identifying the associated audio tracks.  
Only in the last few years content filtering systems based on video fingerprinting have become available and been 
deployed.  Today, video content filtering systems can be based on video fingerprinting, audio fingerprinting, or both, but 
they share basically the same architecture and workflow. 

Figure 3 is a diagram illustrating a content filtering system based on video fingerprinting in the service backend of a 
UGC site. The filter is integrated in an automatic workflow for converting and publishing user uploaded video clips.  
Typically, a user uploaded video clip is processed and transcoded into a common format in site-specified settings (e.g., 
FLV in 320x240, 30 fps, 200 Kbps).  The video is also indexed by its metadata for search and retrieval.  Video 
fingerprinting and identification can be done before or after the transcoding.  In the diagram of Figure 3, fingerprinting is 
done on transcoded video content.  The resulting fingerprint is queried against a pre-populated reference fingerprint 
database for identification.  The identification results are fed back to the publishing workflow. If the query fingerprint is 
matched to a copyrighted asset in the reference database, the corresponding video clip is taken down or handled 
differently according to the rules and actions specified by the copyright owner; otherwise, the video is replicated and 
published to the Web frontend. 

The point of integration of content filters is an important design consideration for effective and efficient content filtering. 
Today, a top online video site such as YouTube has hundreds of thousands of video uploads each day; a second-tier site 
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also has tens of thousands.  While these numbers are non-trivial for a content filtering system, they are a small fraction 
compared with the number of downloads that are in the order of a hundred millions each day for YouTube alone. So, in 
the UGC filtering above, the optimum point of integration is in the path of upload processing on the UGC service 
backend.  In the P2P networks, however, the best point of integration of a content filter is less obvious.  Existing designs 
and implementations put content filters in the P2P client software or on servers that host a directory or search index of 
P2P video content. 

There are also content filtering systems that are designed to work in the packet network to identify and filter out 
unauthorized copyrighted video content in P2P file swaps.  These systems are typically deployed at the gateway of an 
intranet, such as a college campus network, or a traffic aggregation point in a broadband access network operated by an 
ISP.  Content identification in the packet network is more challenging because of the stricter requirement on low latency 
and high scalability.  For this consideration, practical systems often adopt a hybrid design that combines content 
fingerprints with packet-level signatures for increased efficiency in content identification. 

 
Figure 4: Workflow of a video content tracking system. 

3.3 Video Content Tracking 

Owners of video content often want to know where their content is distributed on the Internet and how many people 
have watched it.  Video content tracking is an application and service that serve this purpose.  Figure 4 is a diagram of a 
video tracking system that consists of a web crawler, a video fingerprinting system, and a web interface.  The web 
crawler serves to discover the “suspects”.  Crawling may be targeted to specific sites or specific content categories on a 
site, and may be guided by keywords.  The video fingerprinting system serves to check and verify the “suspects”.  The 
reference fingerprint database can be very targeted; it may contain only the fingerprints of the video content being 
tracked.  The web interface is used to report and update the tracking results.  As the crawler continues to discover new 
“suspects”, they will be verified and reported (if matched) in a continuous, 24x7, and non-stopping workflow.  Figure 5 
shows a screenshot of the VideoTracker™ system developed by Vobile, Inc. 

To date, video tracking has been successfully deployed to track high-valued copyrighted video content, from Hollywood 
blockbuster releases to the 2008 Beijing Summer Olympic programs.42-43  Besides copyright enforcement, video tracking 
has also been used to track various types of video content on the Internet, such as commercials and political campaign 
videos.  One may observe that some of these tasks used to be done by humans before video fingerprinting technology 
became available.  Indeed, the key value that video fingerprinting brings in these applications is enabling an automatic, 
low cost, and more accurate and efficient workflow.  This has changed the way business is done.  For example, 
automatic video tracking systems based on video fingerprinting can now track tens of thousands of titles simultaneously, 
comparing to no more than tens of titles previously by human-based tracking services.  Better yet, the tracking results 
can now be updated instantly and continuously instead of daily or weekly reports. 
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Figure 5: VideoTracker™ - screenshot of a real-world video tracking system. 

3.4 Other Applications 

Broadcast monitoring is among the first applications of video fingerprinting.  It monitors broadcast programs in various 
local markets to find out where and when a program is broadcast and for how many times. The gathered information is 
useful for rights owners to collect royalties for their content or for advertisers to audit the airing of their commercials in 
the paid time slots in a broadcast network.29 

Contextual advertising based on video identification works in a way similar to Google’s AdSense.  While AdSense pairs 
ads with keywords indexed from Web pages or text derived from other media (e.g., audio tracks), fingerprint-based 
video identification can tell exactly what content is being consumed, thus providing a good context for serving relevant 
ads.  When a content owner allows advertising on its content on UGC sites (e.g., specified in a CRR-compliant rule), it 
creates a new model for monetizing its content.  Currently, the industry is experimenting with this approach that will 
hopefully lead to a new way for solving the piracy problem. 

Video asset management using video fingerprints recognizes the fundamental role of video fingerprints: they are content-
based IDs.  There are many benefits of using video fingerprints as content-based IDs in an asset management system.  
Because a video fingerprint is computed from video content, it is a permanent ID that can always be regenerated.  
Copies, segments, and edits of the same video content can be easily identified and related to each other by their 
fingerprints. For example, Kasutani et al44 developed an video archiving system that automatically detects and links 
video edits to the source video footages based on video identification. 

Content-based video search is an area of active research.  The notion of “query by video clip” was coined by Jain et al45 
a decade ago.  The techniques described in their paper – using color, texture, and motion signatures in a query – are 
essentially a video fingerprint query.  To date, video fingerprint queries are primarily for finding copies of the same 
content, partial or whole, transformed or unaltered.  There have been attempts to explore video fingerprinting in broader 
video search for discovering similar but different video content. 

4. CONCLUSION 
Research in video fingerprinting has come a long way since it began a decade ago and developed into a technology that 
is adopted by the industry. Key areas of research include designs of video signatures, fingerprinting and fingerprint 
matching algorithms.  Among the large number of designs, video signatures can be classified into spatial, temporal, 
color, and transform-domain signatures.  Although none is perfect, spatial signatures are found to be the overall winner 
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in terms of robustness, discriminability, compactness, and computational complexity.  Temporal and color signatures can 
provide enhanced discriminability when used together with spatial signatures.  Fingerprint matching by exhaustive 
search has a linear time complexity with regard to the size of reference database.  Fortunately, effective approximation 
techniques have been developed that provide a dramatic reduction in computational complexity, speeding up fingerprint 
queries by several orders of magnitude over an exhaustive search with a negligible loss in accuracy.  This made it 
possible to build practical fingerprint matching systems that are scalable. 

The adoption of video fingerprinting technology was accelerated in the last few years as the content industry responded 
to the increasing cases of copyright violations in the rapidly growing P2P and UGC networks.  As such, major 
commercial applications of video fingerprinting to date are for identifying unauthorized distribution of copyrighted 
video content on the Internet, including video content filtering and tracking. Moving forward, researchers and 
practitioners are also exploring and experimenting other applications of video fingerprinting, including contextual 
advertising, video asset management, and content-based video search. 
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