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Abstract – We introduce a new concept of Fano-like resonances for the extinction cross-section at
light scattering by small (relative to the light wavelength) particles. The resonances occur beyond
the applicability of the Rayleigh approximation, when the interference of different electromagnetic
modes excited in the particle with the same multipole moment is crucial, while the partition
of the incident wave bypassing the particle is unimportant. We present two examples of these
fundamentally new Fano-like resonances: at the light scattering by a particle with large dielectric
permittivity and by a particle with spatial dispersion. In both cases the extinction cross-section
as a function of the incident light frequency exhibits a sequence of the Fano-like resonances, while
each individual resonance is described by the conventional Fano profile.

Copyright c© EPLA, 2012

Being originated in the pioneer paper by Fano [1], the
Fano resonances have become one of the most appeal-
ing phenomena in the wave scattering. There exist many
papers devoted to this topic (see, e.g., the recent review
articles [2,3] and references therein). The study of the
Fano resonances in light scattering by small particles is an
important subfield of this general problem. However, many
authors are focused on rather specific problems related to
practical applications of the resonances [4,5]. Meanwhile,
the original Fano theory deals with a scattering of a quan-
tum particle by a potential with a quasi-discrete level [1],
i.e., it is based upon the Schrödinger equation. Its appli-
cation to the light scattering is not so straightforward,
because though the Maxwell equations have a certain simi-
larity with the Schrödinger equation, they are not identical
at all. On the other hand, the general theory of the Fano
resonances in optics does not exist yet.
In this letter, we reveal the fundamental features of

the Fano resonances for the extinction cross-section at
light scattering by small (relative to the light wavelength)

(a)E-mail: tribelsky at mirea.ru

particles. Our analysis is based on the exact Mie solution
of the Maxwell equations for a spherical spatially homo-
geneous nonmagnetic particle and on a generalization of
this solution to the case of a particle with spatial disper-
sion of its dielectric permittivity. We demonstrate that
the Fano resonances occur beyond the applicability of the
Rayleigh approximation, and the fundamental role in the
resonances is played by the interference of different elec-
tromagnetic modes with the same multipole moment l
(see footnote 1). We name those resonances unconven-
tional Fano resonances. It is remarkable that, despite the
drastic differences in the nature, the unconventional reso-
nances exhibit in the leading approximation the conven-
tional Fano profile [1].

1The origin of a Fano profile in [1] is in interference of a
background partition of a scattering wave, bypassing a scatterer, and
a resonance partition, which first is trapped, exciting a quasi-discrete
state, and then reemitted by the scatterer owing to finiteness of
lifetime for the quasi-discrete state. In contrast, the discussed optical
resonances would correspond to intereference of partitions reemitted
from different quasi-discrete levels, while the partition bypassing the
scatterer is unimportant.
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First, we discuss the physics of these novel Fano-like
resonances. In general, the origin of any Fano resonance is
in the interference between the resonant and background
partitions of the scattered field. In the off-resonant regions
the phase difference of the fields in the partitions either
vanishes or is equal to π, while the amplitude of the reso-
nant partition is small relative to the background. At the
maximum of the resonant line the amplitude of the reso-
nant partition is large relative to the background. Then,
at the edges of the resonant line for the resonant partition,
there exist two points lying on different sides of the maxi-
mum, where amplitudes of the resonant and background
partitions coincide. The phase of the background partition
is not affected by the resonance, and therefore it is the
same at both the points. The phase of the resonant parti-
tion at one of these points equal zero while at the other
it is π (passage of the resonance adds the phase shift π to
the resonant field). Hence, one of the two points should be
a point of destructive interference where the resonant and
background partition cancel each other.
The study of the field lines for the Poynting vector in the

near field of a small light scattering particle indicates that
a part of the incident light is scattered passing through the
particle, while the other just bypasses it [6,7]. However it is
easy to see that, within the framework of the conventional
Rayleigh approximation, the lineshapes for the cross-
sections are symmetric Lorenzian (Breit-Wigner) [8]. It
occurs because for the small particle the resonant dipole
mode remains dominant over the background even in off-
resonant regions and the destructive interference cannot
happen. Therefore, the Fano resonances in optics should
take place beyond the Rayleigh approximation.
For small scattering particles made of weakly dissipat-

ing materials, the destructive interference conditions may
be satisfied for two modes with different values of the
multipole moment, e.g., for the dipole and quadrupole in
the vicinity of the quadrupole resonance [8]. In this case,
the off-resonant dipole mode plays the role of the back-
ground partition. However, scattering diagrams for modes
with different orders have different angular dependences.
It means that if at a given light frequency ω the destructive
interference conditions are satisfied along a certain direc-
tion, they are not satisfied along other ones. Thus, the
suppression of the scattering is possible along the given
direction only. In order to obtain the scattering suppres-
sion along all directions at once, one should arrange
the destructive interference of different modes with the
same angular dependences of the scattering diagrams. The
latter takes place if and only if the modes have the same
value of the multipole moment. These general reasonings
allow us to predict two new classes of Fano-like reso-
nances at light scattering by small spatially homogeneous
particles.
The first class corresponds to the interference of two

dipole modes —the off-resonant Rayleigh one and the
resonant, excited at a large value of the particle dielectric
permittivity εp. Though such large values of εp hardly

could be found in natural materials, they may become
meaningful for metamaterials. It should be emphasized
also that as long as partial cross-sections are concerned,
the obtained results could easily be extended to the case of
large particles, where the resonances correspond to much
smaller values of the dielectric permittivity. For more
details see below.
The second class deals with effects of spatial disper-

sion, which always exist in any optical material. These
effects are usually weak, but they may change the scat-
tering process dramatically and bring about the Fano-
like resonances. The resonant modes in this case corre-
spond to longitudinal electromagnetic oscillations realized
at vanishing dielectric permittivity of the particle. These
modes in light scattering have been discussed in many
papers, see, e.g., [9,10], but their connections with the
Fano resonances have not been elucidated yet.
The two classes exhibit remarkable similarity in

features. It should be also stressed, that while for the sake
of simplicity magnetic particles are not discussed here,
the Fano resonances for these particles obey essentially
the same laws as those inspected in the present letter.
Note also that the pointed out concept of the uncon-

ventional Fano resonances, namely, the interference of
different electromagnetic modes with the same multipole
moment each, while it has not been said explicitly, in fact,
has been successfully employed in numerous examples of
the constructive (scattering enhancement) or destructive
(cloaking, invisibility) interference in light scattering by
nanoshells, multilayer nanoparticles and nanocavities, see,
e.g., discussion of these effects in review papers [2,3] and
references therein. In all these cases the resonant and back-
ground modes correspond to modes with the same multi-
pole moments excited in different layers of the particle or
cavity.
Now let us consider in detail light scattering by a

nonmagnetic (µ= 1) spherical particle with radius R and
complex dielectric permittivity εp(ω) embedded in a trans-
parent medium with purely real dielectric permittivity
εm(ω), Im εm(ω) = 0 [11]. It is convenient to normalize the
extinction (σext), scattering (σsca) and absorption (σabs)
cross-sections over the geometrical cross-section of the
particle πR2, introducing the dimensionless scattering effi-
ciencies, so that σext, sca, abs = πR

2Qext, sca, abs. Then, the
net efficiencies are presented as sums, of the corresponding
partial ones [11],

Qext, sca =
∞∑
l=1

Q
(l)
ext, sca; Qabs =Qext−Qsca, (1)

where the partial efficiencies are expressed in terms of the
so-called complex scattering electric (al) and magnetic (bl)
coefficients,

Q
(l)
ext=

2

q2
(2l+1)Re(al+bl), Q

(l)
sca=

2

q2
(2l+1)(|al|2+|bl|2).

(2)
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Here the size parameter q= nmRk= nmRω/c, k and c
designate the incident light wave number and the speed of
light in vacuum, respectively, nm stands for the purely real
refractive index of the environmental medium (nm =

√
εm)

and al, bl read as follows:

al =
F
(a)
l

F
(a)
l + iG

(a)
l

, bl =
F
(b)
l

F
(b)
l + iG

(b)
l

. (3)

Regarding the general expressions for F
(a),(b)
l and G

(a),(b)
l ,

they could be found, e.g., in [11]. These expressions are
rather cumbersome and will not be presented here.
The points |al|2 = 1 and |bl|2 = 1 correspond to optical

resonances, whose positions are defined by equations

G
(a,b)
l (q, n) = 0, where n stands for the relative refractive

index n=
√
εp/εm. Through the dispersion relation n(ω)

these equations define the resonant frequencies ω
(a,b)
l (q),

which, generally speaking, are complex quantities. It is
also convenient to split the partial efficiencies, eq. (2),
into the electric Q(l,a) and magnetic Q(l,b) parts, related to

the corresponding coefficients, so thatQ
(l,a)
ext = (2/q

2)Re al,
etc.
Smallness of the particle means that q� 1. As for nq,

it should not necessarily be small. Then, expansion of

F
(a)
l and G

(a)
l in powers of small q yields the following

expressions:

F
(a)
l � ql

(2l+1)!!
[(l+1)nψl(nq)− qψ′l(nq)], (4)

G
(a)
l �

(2l− 1)!!
ql

[
nl

q
ψl(nq)+ψ

′
l(nq)

]
, (5)

F
(b)
l � ql

(2l+1)!!
[nqψ′l(nq)− (l+1)ψl(nq)]

− ql+2

2(2l+3)!!
[nqψ′l(nq)−(l+3)ψl(nq)], (6)

G
(b)
l �−

(2l− 1)!!
ql

[
nψ′l(nq)+

l

q
ψl(nq)

]
, (7)

where ψl(z) =
√
πz
2 Jl+ 12

(z), Jν(z) stands for the Bessel
function and the stroke indicates differentiation over
the entire argument of the corresponding function, so
that ψ′l(z) = dψ/dz, etc. (eq. (6) requires higher accuracy
relative to the other expressions because at small nq the
leading term there vanishes).
To begin with, we consider the nondissipative limit, i.e.,

Im ε= 0, Imn= 0, Q
(l)
abs = 0, Q

(l)
ext =Q

(l)
sca. Let us fix q and

inspect the scattering coefficients as functions of n. It

is seen straightforwardly that the equations G
(a,b)
l (n) = 0

have infinite number of roots n
(a,b)
l,r , r= 1, 2, 3, . . . asso-

ciated with oscillations of the Bessel functions and that,

F
(a,b)
l (n

(a,b)
l,r ) �= 0. At fixed a, b, l the root sequence may be

arranged so that n
(a,b)
l,1 <n

(a,b)
l,2 <n

(a,b)
l,3 < . . . . Each n

(a,b)
l,r

corresponds to a resonant point, where a scattering coef-
ficient (a or b, respectively) reaches its maximal value,
namely unity. In the vicinity of each root the correspond-
ing resonant electromagnetic mode should be regarded as
a resonant partition, while the off-resonant modes play the
role of the background ones.
All these resonances are alike. Let us inspect the vicinity

of a certain root n
(a)
l,r = ñ lying in the range n� 1. In the

leading approximation ñ is defined as a root of equation
ψl(ñq) = 0, see eq. (5). Considering small deviations δn of
n from n= ñ after trivial algebra one obtains the following

expression for F
(a)
l , G

(a)
l :

F
(a)
l � q2l+1

(2l+1)[(2l− 1)!!]2 [(l+1)ñδn− 1], (8)

G
(a)
l � (1+ lñδn). (9)

It yields an asymmetric lineshape for |al|2 with the peak
of the constructive interference (al = 1) at δn= δn+ �
−1/(lñ) and the complete destructive interference (al = 0)
at δn= δn− � 1/[(l+1)ñ)] (see footnote 2). The linewidth
for the constructive interference at the level |al|2 = 1/2
(FWHM) is given by the following expression:

γ � 2q2l+1

ñl[l(2l− 1)!!]2 � |δn±| � 1. (10)

Note that linear transformation δn=Aε+B, where A
and B are certain real constants, reduces the obtained line
to the conventional Fano profile: |al|2 ∝ (ε+κ)2/(ε2+1);
κ= const.
As an example, dependences |a1|2, |b1|2 and |a1|2+

|b1|2, determining the corresponding partial cross-sections
for the dipole modes, are presented in fig. 1(a) as functions
of Re ε≡Ren2 (for numerical calculations ε-dependence is
more convenient than n-dependence because the dissipa-
tion rate is just proportional to Im ε).
Finite dissipation, as usual, makes the resonant peaks

less pronounced. To illustrate this feature of the phenom-
enon, evolution of the fine structure of the resonant line
for |a1|2 with an increase in Im ε is presented in fig. 1(b).
The resonances occur rather robust against the dissipa-
tion: the resonant peaks are still quite pronounced at such
large values of Im ε as 2.
To conclude the discussion of this topic note, that

a rough estimate of the spacing between two adjacent

resonances ∆n
(a,b)
l,r,r+1 = n

(a,b)
l,r+1−n(a,b)l,r coincides with

that between two adjacent zeros of the Bessel function
Jl+ 12

(qn), see eqs. (5), (7); which, in turn, is defined by

the condition q∆n
(a,b)
l,r,r+1 ∼ π. Thus, roughly speaking,

the spacing is the inverse of the size parameter q. In
other words, by increasing the particle size one decreases
the spacing and moves the resonances to the range of

2Despite the perfect vanishing of the given al, the net extinction
cross-section remains finite owing to the contribution of bl and other
off-resonant modes, see eqs. (1), (2).
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Fig. 1: (Color online) (a) Typical Fano profiles for depen-
dences |a1|2 (red solid line), |b1|2 (blue dashed line) and |a1|2+
|b1|2 (black solid line) on Re ε at q= 0.3 and zero dissipation
(Im ε= 0). Calculations according to the exact Mie solution.
(b) A fine structure of the resonance line for |a1|2 and its de-
pendence on the value of Im ε (indicated in the figure).

moderate values of n. From these arguments it seems
that to make experimental observation of the resonances
easier one should just select the particle size large enough.
Unfortunately, this is not quite the case. An increase
in q does decrease the spacing between the adjacent
resonances for any given partial cross-section, but simul-
taneously it increases the number of partial cross-sections
whose contribution to the net cross-section should be
taken into account to provide reasonable accuracy of the
calculations. The more partial cross-sections contribute
to the net cross-section the less pronounced peculiarities
of every individual summand it makes.
To illustrate this issue, plots of the extinction electric

(Q
(1,a)
ext ) and magnetic (Q

(1,b)
ext ) efficiencies for the dipole

mode along with the corresponding net efficiency (Qext)
as functions of Re ε are presented in fig. 2 in the nondis-
sipative limit (Im ε= 0) for spherical particles with q= 1
(fig. 2(a)) and q= 5 (fig. 2(b)). The calculations are made
based upon the exact Mie solution. It is seen clearly that
at q= 5 the spacings between the adjacent resonant points
for the dipole modes are much smaller then those at q= 1
(cf. also the spacings at q= 0.3 in fig. 1(a)). However, while

at q= 1 the resonances of Q
(1,a)
ext are still pronounced in the

profile of the net efficiency Qext, they practically do not
affect this profile at q= 5.
Now let us discuss the Fano-like resonances in media

with spatial dispersion. In isotropic, nonchiral materials
the spatial dispersion is a weak effect which occurs when
one takes into account that the vector of induction of
electromagnetic field D in addition to its dependence
on the vector of electric field E depends also on spatial
derivatives ∂Ei/∂xj . However, this weak effect bring about
a qualitatively new type of electromagnetic modes which
may be exited in a medium with the spatial dispersion,

,
,

,
,

(a) (b)

Reε Reε 

Fig. 2: (Color online) Partial extinction efficiencies for the

dipole modeQ
(1,a)
ext (red solid line),Q

(1,b)
ext (blue dashed line) and

the net extinction efficiency Qext (thin black solid line) at light
scattering by a nondissipating (Im ε= 0) particle as functions
of Re ε at q= 1 (a) and q= 5 (b). It is seen that an increase in
q on the one hand results in a decrease in the spacings between
adjacent resonances for the partial efficiencies; on the other
hand it makes the influence of peculiarities of a specific mode
on the net efficiency less pronounced: if at q= 1 the Fano-like
resonances of Q

(1,a)
ext still affect the net efficiency Qext, at q= 5

their effects are already diminished.

namely longitudinal plasma waves (volume plasmons),
which obey the dispersion law

ε‖(k‖, ω) = 0, (11)

while the transverse electromagnetic waves obey the usual
dispersion law

k2⊥ = ε⊥(ω)ω
2/c2. (12)

To understand qualitative features of the phenomenon
we employ the simplest heuristic expression for ε‖(k‖, ω),
namely

ε‖ = ε⊥(ω)−αx2, x≡ k‖R, (13)

where the dimensionless quantity α=O(d2/R2)� 1. Here
d stands for the interatomic distance. In the range of the
volume plasmon excitations, according to eqs. (11)–(13)
|ε⊥|= |αx2| � 1, provided |x|=O(1), or smaller. It means,
the problem in question has two independent small para-
meters, namely q and the relative refractive index for the
transverse modes n.
Taking into account the spatial dispersion, one increases

the order of the Maxwell equations. Therefore, in the
case of light scattering by a particle with the spatial
dispersion, additional boundary conditions (ABC) are
required. A number of possible ABC have been proposed
and discussed, see, e.g., [12]. For the problem in question
all of them yield similar results. For definiteness we
employ the ABC used by Ruppin [10], which correspond
to the continuity at the particle boundary of the normal
component of the displacement current (1/4π)∂E/∂t.

44005-p4
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Then, the general solution of the diffraction problem yields
scattering efficiencies which still keep the structure of
eqs. (1)–(3). The explicit expression for bl remains exactly
the same as that in the conventional Mie solution (it is
related to the fact that the longitudinal modes do not
have magnetic components). Regarding the expression for

al, in the limit q� 1 the corresponding quantities F (a)l
and G

(a)
l read as follows:

F
(a)
l � (1−n

2)(l+1)nlq2l+1

[(2l+1)!!]2

(
j′l(x)
jl(x)

− l

x

)
, (14)

G
(a)
l �

lnl

2l+1

{
(1−n2) l+1

x
−j
′
l(x)

jl(x)

(
n2+

l+1

l

)}
, (15)

where jl(x)≡
√
π
2xJl+ 12

(x) stands for the spherical Bessel
function.
Once again we begin the analysis from the nondissipa-

tive limit. In this case x is a purely real quantity. The
extinction and scattering efficiencies vanish when x= xl,r,
where xl,r are solutions of the transcendental equation
ljl(x) = xj

′
l(x), see eqs. (2), (3), (14). We will see that the

vanishing corresponds to the destructive Fano resonance
and that close to this point there is a point of the construc-
tive resonance, where al = 1. To this end let us consider
the vicinity of a given xl,r, introducing δx≡ x−xl,r. Then,
expanding F

(a)
l and G

(a)
l in powers of small δx, the expres-

sion for al may be reduced to the form

al =
Al,rq

2l+1δx

Al,rq2l+1δx+ inl [Bl,rδx− (n2l/xl,r)] , (16)

where Al,r and Bl,r are cumbersome expressions of order
of unity. Equation (16) yields immediately that δx= 0
corresponds to al = 0, i.e., it is a point of the destructive
interference indeed. Note remarkable similarity of this
profile with the one given by eqs. (3), (8), (9).
According to eq. (16), al = 1 at δx= δxmax ≡

n2l/(xl,rBl,r) =O(n
2)� 1. The linewidth of the profile

|al|2 is given by the solutions δx1,2 of the equation
|al(δx)|2 = 1/2, which read

δx1,2 =
n2l

xl,r

1

[nlBl,r ±Al,rq2l+1] . (17)

At q2l+1� nl the profile |al|2 has a deep sharp mini-
mum, centered about δx= 0, while the maximum is bad
pronounced (the maximal value is situated close to a
plateau of the profile). The linewidth defined at the level
|al|2 = 1/2 corresponds to the shape of the minimum being
of the following order of magnitude: O(n2 nl

q2l+1
)� n2.

At q2l+1� nl the profile |al|2 has a sharp maximum,
centered about δx= δxmax, while the minimum is bad
pronounced (the plateau height is small). The linewidth
at the level |al|2 = 1/2 corresponds to the shape of the
maximum. Its order of magnitude is O(δxmax

q2l+1

nl
)� n2.
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Fig. 3: (Color online) Extinction efficiency Qext for a nanopar-
ticle of radius R= 50nm (a) with ε⊥(ω) given by eq. (18). The
dashed blue line corresponds to the conventional Mie theory,
while the solid red line represents the results of its generaliza-
tion to the spherical particle with spatial dispersion calculated
in accord with the Ruppin exact solution [10]. Note a number
of Fano-like resonances at ω >ωp. A fine structure of the first
resonance of that type is shown in the inset with high reso-
lution. A snapshot of the x -component of the total (incident
plus scattered) electric field in the particle and its vicinity (b)
and modulus of the total electric field inside the particle (c)
for the resonant suppression of the scattering efficiency at the
first Fano-like resonance. The color scale inside the particle
in panel (b) corresponds to that in panel (c). The plotted
profiles are normalized over the amplitude of electric field in
the incident wave. While the particle does not distort the inci-
dent plane wave and remains completely invisible, the field
inside it exceeds the one in the incident wave by five orders of
magnitude.

The widest line with the linewidth O(n2)� 1 is
achieved at q2l+1 ∼ nl. In this case both the minimum
and maximum of the resonant line are well pronounced.
To illustrate this general discussion we perform

computer simulation of light scattering by a spherical
metal particle with spatial dispersion. The transverse
permittivity is approximated by the nondissipative
version of the Drude formula

ε⊥(ω) = 1− (ωp/ω)2 (18)

with a constant plasma frequency ωp. The exact solution
of the light scattering problem obtained by Ruppin [10],
generalizing the Mie solution to the case of the particle
with the spatial dispersion, is employed. In this case α in
eq. (13) equals as follows [13]:

α=
3

5

(vFωp
ω2R

)2
, (19)
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where vF stands for the Fermi velocity of free electrons.
To be able to compare our results with previous calcula-
tions [10] the material constants are assigned the following
values: ωp = 8.65× 1015 s−1, vF = 1.07× 108 cm/s, which
corresponds to sodium. The results of these calculations
for a particle with R= 50nm are presented in fig. 3.
The plane incident wave propagates along the z-axis from
minus infinity. The electric field shown in fig. 3 is normal-
ized over its amplitude in the incident wave. In addition
to the well-known transverse localized surface plasmon
resonances below the plasma frequency ω <ωp (the Mie
theory), there are a number of asymmetric, very narrow
bulk plasmon resonances beyond the plasma frequency
ω >ωp (Fano-like resonances), which correspond to exci-
tation of longitudinal modes. Note, that while the destruc-
tive Fano-like resonances do not distort the incident wave,
which results in complete invisibility of the particle (see
fig. 3(b)), the field inside the particle is very large, see
fig. 3(c), where the modulus of the total electric field inside
the particle |E⊥+E‖|2 is plotted. Here E⊥ and E‖ stand
for the electric fields of the transverse and longitudinal
modes, respectively. The high concentration of the elec-
tric field inside the particle together with the undistorted
field in its vicinity may open new prospects in the design
of nanosensors, which do not perturb measured fields.
Finite dissipation diminishes the resonance. Details of

this effect require more room for discussion and will be
reported elsewhere.
In conclusion, we summarize our results. We have

predicted the unconventional Fano resonances in light
scattering by small particles. We have shown that i) these
resonances are described beyond the applicability of the
Rayleigh approximation; ii) the interference of different
modes with the same multipole moment each is the key
condition for the resonances to come into being; and iii) in
the leading approximation the resonances still give rise to
the lineshapes described by the conventional Fano profile.
We have revealed two new classes of such resonances in
light scattering by particles with large dielectric permit-
tivity and the ones with spatial dispersion. We believe our

study sheds new light on the Fano resonances in photonics,
it may stimulate further study of this important and fasci-
nating phenomenon and might be employed in the design
of a new generation of unperturbing nanosensors.
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