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Abstract 

 

Most UAV(unmaned aerial vehicle) systems use GPS signals only to locate the emitter’s 

position. However GPS signals contain unwanted information contaminated by 

environmental components and many   interference signals. In this paper, to obtain TDoA 

signal, we use two UAVs which are equipped with embedded wireless sensors. Under the real 

geolocation circumstance, it is very difficult to estimate the emitter’s position exactly due to 

environmental noise. In this paper we use the dual-EKF algorithm to obtain the optimal 

estimation of state values and unknown parameters. The dual-EKF algorithm overcomes the 

weakness of EKF algorithm which has been widely used in geolocation problem. The 

performance of our proposed algorithm will be demonstrated through some simulations of 

UAVs. 
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1. Introduction 
 

The tracking techniques for locating emitter’s position in UAV are studied in many 

approaches these days. The localization technique includes many applications such as robot 

SLAM, search for missing child and rescue against disaster.[1-2] There are two main methods 

for acquiring time difference of arrival(TDoA) signal. The first method measures time of 

arrival(ToA) from each UAV to emitter. Using the ToA values, the TDoA can be represented 

in the form of time difference. The second method obtains TDoA signals using the cross-

correlation of each received signal. 

Most techniques that use TDoA require at least three UAVs. However recently there has been 

a trend towards reduced cost. The UAV needs only very basic sensors which measure the 

time of arrival of signals at each receiver and can obtain TDoA signal between UAV and 

emitter. If there is no measurement noise and if there are many adjacent UAVs, the position 

estimation is easily obtained by hyperbola method. However, there exist unwanted noise 

components in real circumstances. In this case, the hyperbolic curves will no longer intersect 

at one precise position. This problem can be solved with least squares method [3-4] 

calculating all measurement signals. Fang[5] has studied closed-form of hyperbolic fix 

through augmented TDoA measurements. However Fang’s method cannot be applied to 

overdetermined situation. Moreover this method needs more TDoA signals. 

In tracking algorithm with TDoA signals there are nonlinearity components caused by 

noises.[6] In the geolocation applications, the extended Kalman filter(EKF) algorithm has 

been widely used.[7] However EKF has the divergence problem in the calculation process 

and poor performance in serious noise circumstance. In this paper, we propose dual-EKF 
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algorithm which can obtain optimal estimation of state and system’s unknown parameters. 

Finally some simulation results demonstrate the performance of dual-EKF under the 

circumstance in which two TDoA signals received from two UAVs are used. 

 

1. Hyperbolic curve method for emitter localization 
 

2.1. Analytical methods 

 
In this section we show a general hyperbolic curve method which has been widely used 

under the ideal circumstance. If there exists more than two UAVs, we can receive more 

associated TDoA signal values and obtain more precise position of unknown emitter. The 

emitter position is located as the intersection of hyperbolic curves. Figure 1 represents the 

general hyperbolic curves under the ideal circumstance. Here we consider only three UAVs 

for simplicity of method. 

 

 
 

Figure 1. Geometric method using hyperbola 
 

We assume that emitter lying on position 
0

( , )r x y=  sends out wireless signals to UAVs 

during the discrete sampling time. Position of three UAVs are supposed to be known as 

{ }( , ), 0,1, 2
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r x y i= = , respectively and each UAV receives wireless signals from emitter at 

each discrete sampling time.  
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where 0

i
r means the distance from emitter to UAVs and c represents the propagation speed. 

Using the norm of a distance, we can derive the following equation. 
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where 1it represents TDoA signal between the i-th receiver and the first one. 

In this paper, we use only two receivers(UAVs) for algorithm’s simplicity. TDoA 

signals using two UAVs are represented as follows. 

 

( )0 0

2 1 21

1
TDoA r r r r v

c
= − − − +                                       (3) 

  

where 
21

v means zero mean Gaussian noise under the real circumstance case and 2 1,r r  

mean the position of UAV2, UAV1, respectively. 

 

2.2 System modeling  

 
We assume that the moving emitter with constant velocity sends wireless signals and 

the two UAVs with elliptical orbit movement can obtain the wireless signal from 

emitter. Through this process, we obtain TDoA measurement values. However TDoA 

signals contain unwanted nonlinear error components. As a robust solution, the dual-

EKF approach using TDoA signals can be more efficient among geolocation methods. 

To use the dual-EKF algorithm, we need the state equation using the emitter’s position 

and velocity as state variables. We set up the following state equation which represents 

two dimensional position and time interval. 
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where ,( ) [ ]Ts k x y x y= ∆ ∆  ( ),x y represents the emitter’s position, ( , )x y∆ ∆  means the 

positional variation at each sampling time, ( )
T

x y
u k v v =    means the known velocity of 

a moving emitter, T  is sampling time, and ( )w k means the process noise as additive 

white Gaussian noise(AWGN). The output equation can be expressed by the 

measurement of TDoA value as 
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where 
0
( )s k  means the emitter’s position and ( )v k is the measurement noise as AWGN. 

   

 

 

2.3 Dual-extended Kalman filter algorithm 
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In this section, to apply geolocation problem, we propose dual-EKF algorithm whose 

plant model is augmented by weight filter(e.g., neural network). The dual-EKF 

algorithm combines the Kalman state and weight filter. This algorithm can estimate 

both the state and model parameter through only measurement values. The major 

process is that two EKF algorithms cooperate concurrently at every time-step. The 

current model parameter ˆ
kw help the EKF state-filter to estimate state values while the 

EKF weight-filter updates the weight parameters with the current state estimate ˆ
kx .[8] 

During the update process, the weight filter is used as weight training method in neural 

network. The weight filter has the high convergence than back-propagation in neural 

network. 

To apply the dual-EKF algorithm, we initialize the estimation of state and weight 

values as  
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The time update equations for the weight filter and the state filter are 
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In equation (7), w  corresponds to values of unknown parameters. The weight 

parameters( w ) are used in the design process of dynamics system. The innovations 

covariance(
r

k
R ) is set to an arbitrary diagonal matrix in which the elements are close to 

zeros for weight training. 
r

k
R  affects the tracking performance and convergence rate. 

The measurement update equations for the state filter and the weight filter are 
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The noise covariance (
e

R ) is a constant diagonal matrix and can be set arbitrarily as 

0.5I . The matrix of I means an identity matrix. The first order linearization of 

measurement signal is necessary in order to approximate the nonlinear dynamics. The 

system applied to geolocation problem is shown schematically in figure 2. 

 

 
 

Figure 2. Process of dual-EKF algorithm in UAV localization 
 

3. Simulation results   

 
In this section, we demonstrates the effectiveness of the proposed geolocation 

method with the dual-EKF algorithm through some simulations. In figure 3, we suppose 

that the emitter moves with a constant speed except that emitter changes its direction 

every 19 sec. The two UAVs are initially located at the position of (8,6) km and (6,11) 

km with constant altitude and move following the formation of circular orbits (radius of 

1 km). In the simulation, we can obtain 500 TDoA measurement values to apply the 

dual-EKF algorithm. The initial estimate of emitter location is randomly obtained from 

a white Gaussian distribution in the ideal emitter. The noise from TDoA signals has the 

Gaussian distribution of 0.0583(standard deviation). The standard deviation of process 

noise is supposed to be 0.0591. 

In Fig. 3, the dotted line means the real movement of the emitter while the solid line 

represents the estimated trajectory using the dual-EKF algorithm. As shown in figure 3, 

there are some differences between the real path and dual-EKF estimation around the 

range of 5 km and 6.5 km in the x-axis. However, after that, the trained weight filter 

enables the state values to track the real path more accurately. Therefore, we can obtain 

the estimated path which is similar to real path with updated weight. 

Figure 4 shows the performance of the proposed localization algorithm with different 

path of emitter. The dotted line is the emitter’s trajectory and the solid line is the one by 

dual-EKF with the weight filter and state filter. The weight value of the unknown 

parameter is updated on each estimation step. 



International JournalInternational JournalInternational JournalInternational Journal    of of of of Control and AutomationControl and AutomationControl and AutomationControl and Automation    

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999    

 

 

40 

3 4 5 6 7 8 9 10
4

5

6

7

8

9

10

11

12

13
X Y estimation

X estimation (km)

Y
 e
s
ti
m
a
ti
o
n
 (
k
m
)

real

dual-EKF

UAV1

UAV2

 
Figure 3.... Trajectory estimation of real path 
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Fig. 4. Trajectory estimation for different path 

 

  

Figure 5 represents the norm of position error in figure 4, i.e., 
0 0

ˆ( ) ( )s k s k− . The general 

geolocation method using GPS signals has the limit of 100 m error. In this paper, we 

supposed that the emitter moves with constant velocity(105 m/s). As shown in Fig. 5, in spite 

of emitter’s fast movement and large unexpected noise, the estimated error values through 

dual-EKF algorithm is limited within the boundary of 100 m± positional error. The 
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effectiveness of algorithm is confirmed and the estimated trajectory is shown to be close to 

real path. 
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Figure 5. Norm of position error 

 

5. Conclusion 
 

In this paper, we introduced a geolocation algorithm using TDoA signals from two UAVs. 

The dual-EKF method can estimate state value and unknown parameter value of dynamic 

state model with only measurement TDoA values. In case of position tracking system with 

TDoA signals, it requires much calculation efforts from the linearization process. Through the 

simulation results we demonstrated the effectiveness of dual-EKF algorithm. It is confirmed 

that the position estimation using dual-EKF is close to the trajectory of real emitter. Through 

the two UAVs simulation, we verified that the positional error of the estimation values resides 

within the boundary of 100m± error. Furthermore, with only two UAVs for the TDoA 

measurement values, we realized geolocation algorithm with dual-EKF. 
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